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Abstract The trophic behavior of some deep-sea New-

foundland cold-water corals was explored using fatty acid

(FA) and lipid profiles. No significant effect of geographic

location and/or depth was identified in lipid or FA com-

position. However, differences were detected between and

within taxon groups in hexa- or octocoral subclasses.

Phospholipids constituted the main lipid class in all groups

except black-thorny corals which had less structural lipids

likely due to their morphology (stiff axes) and slower

growth rates. Within each subclass, major differences in

the identity of dominant FAs were detected at the order

level, whereas differences between species and taxon

groups of the same order were mainly driven by a variation

in proportions of the dominant FA. Soft corals and gor-

gonians (Order Alcyonacea) were close in composition and

are likely relying on phytodetritus resulting from algae,

macrophytes and/or foraminifera, while sea pens (Order

Pennatulacea) seem to consume more diatoms and/or her-

bivorous zooplankton with the exception of Pennatula sp.

In the hexacoral subclass, black-thorny corals

(Stauropathes arctica) differed significantly from the

stony-cup corals (Flabellum alabastrum); S. arctica was

seemingly more carnivorous (zooplankton markers) than F.

alabastrum, which appears omnivorous (phyto- and zoo-

plankton markers). Our results suggest that deep-sea corals

are not as opportunistic as expected but have some selec-

tive feeding associated with taxonomy.
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Introduction

Cold-water corals (CWCs) are ecosystem-engineer species

supporting high biodiversity and providing habitat and food

sources for several other types of organisms. CWCs con-

stitute nurseries for many fish species and promote taxo-

nomic richness and diversity by offering a multitude of

microhabitats for associated fauna (epifauna, crypto-fauna,

parasitic, and surrounding organisms) with variation

according to coral age, shape, and species (Buhl-Mortensen

and Mortensen 2005; Wareham and Edinger 2007; Baillon

et al. 2014; Buhl-Mortensen et al. 2016). In the Northwest

Atlantic, CWCs are threatened by bottom-contact fishing,

especially trawling (Wareham and Edinger 2007; Edinger

et al. 2007; Gilkinson and Edinger 2009; Buhl-Mortensen

et al. 2016), but may encounter other threats such as

hydrocarbon drilling or ocean acidification (Roberts et al.

2006). Northwest Atlantic coral faunas consist of a variety

of slow-growing and long-lived species (Sherwood and

Edinger 2009; Neves et al. 2015; Neves 2016) in several

functional groups, including gorgonian sea fans, soft cor-

als, sea pens, solitary stony-cup corals, and black-thorny

corals (Wareham and Edinger 2007; Baker et al. 2012).
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Slow growth rates might jeopardize potential recovery after

a perturbation (Sherwood and Edinger 2009; Lacharité and

Metaxas 2013; Huvenne et al. 2016). In addition, there is a

lack of knowledge on coral recruitment in deep waters;

identification of the factors driving the distribution of coral

species on the seafloor such as food availability and trophic

behavior is essential to predict their presence and work

toward better conservation measures and management.

Food availability is one of the factors that dictate CWC

species distribution and colony shape (Mortensen and

Buhl-Mortensen 2004, 2005; Dullo et al. 2008; Baillon

et al. 2015; Buhl-Mortensen et al. 2015a, b, 2016). For

deep-sea CWCs, food availability depends on the deposi-

tion of particles and plankton migration through the water

column, current regimes, internal waves propagated along

water mass boundaries, and the thickness of benthic

boundary layer (Roberts et al. 2006; Zedel and Fowler

2009; Buhl-Mortensen et al. 2016). CWCs have two

feeding mechanisms: (1) mucus entrapment of the prey and

digestion outside the coral polyp and (2) capture and

digestion of prey directly by the polyp (Buhl-Mortensen

et al. 2016). CWCs may also directly absorb dissolved

materials from seawater (Mueller et al. 2014). Feeding

mechanisms may vary according to species and food

availability but also by other factors inherent to the colony

such as coral polyp spacing, polyp diameter, or polyp

distance from the seafloor (Sherwood et al. 2008; Baillon

et al. 2015; Buhl-Mortensen et al. 2016). Many CWC

species are cosmopolitan, and most species can apparently

feed on various food sources including detrital organic

matter, bacteria, or zooplankton (Mortensen et al. 2001;

Roberts et al. 2006; Naumann et al. 2011; Mueller et al.

2014), but little is known about their trophic ecology

(Roberts et al. 2006). The purpose of this paper is to

explore the trophic ecology of CWCs in Northwest Atlantic

waters using lipid composition and fatty acid analysis.

Lipid composition and fatty acid (FA) profiles change

with the ecology, nutrition, and health of organisms and are

powerful tools when used as trophic markers (e.g., Dals-

gaard et al. 2003). Some primary producers synthesize

specific FAs such as 22:6x3 (docosahexaenoic acid, DHA:

dinoflagellates) or 20:5x3 (eicosapentaenoic acid, EPA:

diatoms) that can be assimilated and identified in primary

consumers (Graeve et al. 1994, 1997; Dalsgaard et al.

2003). Moreover, some ratios (DHA/EPA, 18:1x9/18:1x7)
are also indicators of degree of carnivory (Graeve et al.

1997; Dalsgaard et al. 2003). Understanding the feeding

process in deep-sea ecosystem-engineering organisms is

essential to anticipate potential changes in these ecosys-

tems due to modifications of current circulation, primary

production cycles, or ocean acidification. The loss of

ecosystem-engineer species may have irreversible effects

(Jordán and Scheuring 2004).

On the Northwest Atlantic coast (Newfoundland and

Labrador, NL), Sherwood et al. (2008) studied the diet of

11 CWC species using carbon and nitrogen stable isotopes

and found some differences in carnivory among species/

taxon group. In addition, bulk lipid analysis on CWC

species revealed variation in lipid composition among

higher taxonomic groups (Hamoutene et al. 2008). How-

ever, stable isotope signatures and lipid composition of

CWCs did not vary with depth or latitude (Hamoutene

et al. 2008; Sherwood et al. 2008). From these studies, the

authors hypothesized that the strong interspecific variation

in feeding habits was due to differences in habitats and

colony morphologies but mostly associated with the need

to reduce interspecific competition in food-limited, deep-

sea environments (Iken et al. 2001; Sherwood et al. 2008).

However, these studies did not always explore taxon dif-

ferences in conjunction with species differences and envi-

ronmental factors. We evaluate the potential diet of a

variety of coral species from one region of the Northwest

Atlantic using FA and lipid class profiles to better under-

stand the effect of location, depth, taxon group, and species

on the trophic behavior of CWCs. Through this explo-

ration, we comment on the potential effect of species,

clades and morphological differences on trophic choices

and/or contrasting opportunist feeding behaviors.

Materials and methods

Coral collection

This study took advantage of routine multispecies research

surveys conducted by Fisheries and Oceans Canada (DFO)

along the continental shelf and slope of NL (eastern

Canada; Fig. 1). Surveys follow a stratified transect sam-

pling design using a Campelen 1800 trawl towed for

15 min or * 1.4 km of seafloor (Wareham and Edinger

2007). In this study, we used samples collected during one

complete trip of the Fall 2007 surveys in the Flemish Pass

region (Fig. 1), between the Grand Bank and the Flemish

Cap, at depths ranging from 770 to 1370 m (depths are in

50 m ranges in Table 1). Temperature was recorded at

depth during the trawl using a CTD attached to the safety

line of the net and was stable, ranging from 3.5 to 3.9 �C.
Eighteen of the 37 transects contained corals as bycatch:

seven in North Atlantic Fisheries Organization (NAFO)

Division 3L, nine in 3M, and two in 3N (Fig. 1). The

species sampled were identified to the lowest taxonomic

level and classified in taxon groups as described in Table 1.

After collection, samples were individually bagged with

identification tag and frozen in liquid nitrogen. Within the

gorgonian group, individuals isolated from the Para-

muricea genus were considered separately (P. placomus,
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Paramuricea sp. [B3a and b]) according to preliminary

genetic analysis on 28S; distribution of Paramuricea genus

in the North Atlantic includes cryptic species (Radice et al.

2016).

Lipid and fatty acid analyses

Lipid extraction was performed as described previously

(Parrish 1999). Samples were homogenized in a 2:1

mixture of ice-cold chloroform/methanol and homogenized

with a Polytron PCU-2-110 homogenizer (Brinkmann

Instruments, Rexdale, Ontario, Canada). Chloroform-ex-

tracted water was added to bring the ratio of chloroform/

methanol/water to 8:4:3. Samples were sonicated for

4–10 min in an ice bath and centrifuged at 5000 rpm for

2 min. The bottom, organic layer was removed using the

double pipetting technique of placing a long, lipid-cleaned

Pasteur pipette inside a short one, to remove the organic

Fig. 1 Sampling locations of

trawling sets in NAFO

(Northwest Atlantic Fisheries

Organization) zones 3L, 3M,

and 3N, and corresponding coral

species distribution
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layer without disturbing the top, aqueous layer. Chloroform

was then added back to the extraction test tube, and the

entire procedure was repeated three times. All organic

layers were pooled into lipid-cleaned vials and concen-

trated using a flash evaporator (Buchler Instruments, Fort

Lee, NJ).

Lipid class composition was determined using an

Iatroscan Mark VI TLC–FID, silica-coated Chromarods,

and a three-step development method (Parrish 1987). The

lipid extracts were applied to the Chromarods and focused

on a narrow band using 100% acetone. The first develop-

ment system was hexane/diethyl ether/formic acid

(99.95:1:0.05). The rods were developed for 25 min,

removed from the system for 5 min, and replaced for

20 min. The second development was for 40 min in hex-

ane/diethyl ether/formic acid (79:20:1). The final devel-

opment system had two steps; the first was 100% acetone

for two 15 min time periods, followed by two 10 min

periods in chloroform/methanol/chloroform-extracted

water (5:4:1). Before placing them in each solvent system,

the rods were dried in a constant humidity chamber. After

each development system, the rods were scanned in the

Iatroscan and the data collected using Peak Simple soft-

ware (v3.67, SRI Inc). The Chromarods were calibrated

Table 1 Description of collected and analyzed samples (number, depth, and location)

Taxon group Species Location (zone 3) Number of samples Depth (m)

FA Lipids

Black-thorny coral Stauropathes arctica L 1 1 1100

M 2 2 850

Gorgonian Acanella arbuscula L 1 0 900

M 1 0 1200

N 1 0 1200

Gorgonian Acanthogorgia armata L 3 1 1100

M 1 0 1400

Gorgonian Keratoisis grayi L 2 0 1200

Gorgonian Paramuricea placomus [28S-a] M 2 0 800

Gorgonian Paramuricea sp. [B3a] N 1 0 1200

Paramuricea sp. [B3b] L 2 0 800

Gorgonian Radicipes gracilis L 1 0 800

Sea pen Anthoptilum grandiflorum L 3 2 1100

M 8 3 900

Sea pen Distichoptilum gracile M 1 0 800

Sea pen Funiculinia quandrangularis L 1 1 900

Sea pen Halipteris finmarchica L 2 1 850

M 2 1 1150

Sea pen Pennatula grandis M 2 1 850

Sea pen Pennatula sp. L 2 1 1000

M 2 0 800

Soft coral Anthomastus sp. L 5 0 1000

M 5 0 900

N 2 0 1200

Soft coral Duva florida L 5 1 1000

M 6 2 850

N 1 0 1200

Soft coral Nephtheidae sp. L 4 1 1100

M 3 1 850

Stony-cup coral Flabellum alabastrum M 3 0 900

Total N species = 13 L 32 9

N species = 13 M 38 10

N species = 4 N 5 0
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using standards from Sigma Chemicals (St. Louis, MO).

Lipid classes (corresponding standards are indicated in

brackets) identified were: hydrocarbons [nanodecane];

steryl esters/wax esters [cholesteryl stearate]; ethyl esters,

methyl esters, ethyl ketones, and methyl ketones [3-hex-

adecanone]; glyceryl ethers and triacylglycerols [tri-

palmitin]; free FAs [palmitic acid]; alcohols [1-

hexadecanol]; sterols [cholesterol]; acetone mobile polar

lipids (AMPL) [1-mono-palmyoyl-rac-glycerol]; and

phospholipids [dipalmitoylphosphatidylcoline]. For all

samples, lipid extracts were transesterified using methylene

chloride and Hilditch reagent for 1 h at 100 �C. The fatty

acid methyl esters (FAME) were analyzed on a HP 6890

gas chromatography flame ionization detector equipped

with a 7683 auto-sampler. The GC column was a ZB

wax ? (Phenomenex, USA). The column length was

30 mm with an internal diameter of 0.32 mm. The column

temperature began at 65 �C and was held at this tempera-

ture for 0.5 min. Temperature then ramped to 195 �C at a

rate of 40 �C min-1, was held for 15 min, and then ramped

to a final temperature of 220 �C at a rate of 2 �C min-1.

This final temperature was held for 0.75 min. The carrier

gas was hydrogen flowing at a rate of 2 mL min-1. The

injector temperature started at 150 �C and ramped to a final

temperature of 250 �C at a rate of 120 �C min-1. The

detector temperature stayed constant at 260 �C. Peaks were
identified using retention times from standards purchased

from Supelco, 37 component FAME mix (product number

47885-U), bacterial acid methyl ester mix (product number

47080-U), PUFA 1 (product number 47033), and PUFA 3

(product number 47085-U). Chromatograms were inte-

grated using the Varian Galaxie Chromatography Data

System, version 1.9.3.2.y.

The analytical method used in this study for FA analysis is

standard and did not assess tetracosapolyenoic acid (TPA)

proportions as the analyses predate a series of articles (Imbs

and Dautova 2008; Imbs et al. 2010, 2016; Baptista et al.

2012) on the importance of TPAs (24:5x6 and 24:6x3). The
total time of GC analysis was too short; the retention time of

TPA methyl esters is known to be 75–90 min on a poly-

ethylene glycol column of 30 m length at 210–220 �C. TPAs
are known to be present in octocoral species and absent from

hexacoral species (Imbs et al. 2010); this dictates our deci-

sion to run FA statistical analysis on each subclass sepa-

rately. This limitation is further discussed in the

‘‘Discussion’’ section.

Some FAs were combined into classes: ‘‘bacterial bio-

marker’’ consists of i15:0, ai15:0, 15:0, 15:1,i16:0, ai16:0,

i17:0, ai17:0, 17:0, 17:1, and 16:1x6 (we did not include

18:1x6 here); ‘‘bacterial (x7)’’ includes the latter set (‘‘bacte-
rial biomarker’’) plus 18:1x7 and 16:1x7. ‘‘SAFA’’ is the sum
of saturated FA and PUFA andMUFAare the sumof poly- and

mono- (respectively) unsaturated fatty acids, while EPA

(20:5x3) andDHA (22:6x3) are the FAbiomarkers of diatoms

and dinoflagellates, respectively. The ‘‘x3’’ and ‘‘x6’’ classes
correspond to the sum of omega-3 FA and omega-6 FA from a

sample. Two trophic ratios were used: DHA/EPA and 18:1x9/
18:1x7 to evaluate the level of carnivory (Graeve et al. 1997;
Dalsgaard et al. 2003).

Lipid and fatty acid analyses were run consecutively on

19 coral samples, and an extra analysis of FA was per-

formed on an additional set of 54 coral samples for a total

of 75 coral samples.

Statistical analyses

Proportions of lipid classes and FA are expressed in the text

as averaged percentages ± standard deviation. Kruskal–

Wallis ANOVAson ranks followed by pairwise comparisons

when applicable were performed in Sigmaplot 13.0 to

compare total lipid percentages (n = 19) andDHA/EPA and

18:1x9/18:1x7 ratios (n = 75) between taxon groups.

Lipid classes and fatty acid composition (only FAs

representing more than 1% of the total FA composition of

at least one individual were selected) were analyzed using a

multivariate approach in Primer 7.0 and PERMANOVA

add-on (Anderson et al. 2008; Clarke and Gorley 2015).

Analyses were run with a full comparison (all individuals

in the hexacoral and octocoral subclasses) of lipid class

composition. In contrast, statistical analyses on FA com-

positions were completed separately for octocoral and

hexacoral subclasses. Resemblance matrices between

individuals were built using Bray–Curtis distances without

data transformation. First, principal coordinates analysis

(PCO) was run on the resemblance matrix among indi-

viduals for FA analyses. No PCO analysis was completed

on lipid classes data due to a smaller data set (n = 19 vs

n = 75 for FA). Second, on each matrix, we ran a PER-

MANOVA (9999 permutations of residuals under a

reduced model, sums of squares type I) to test the effect of

depth (depth was used as covariate), geographic location

(NAFO divisions, fixed factor), taxon groups as described

in Table 1 (fixed), and species nested in the taxon group

(fixed) and their interactions. The model was adjusted to

pool interactions or factors when p values exceeded 0.25

(see Anderson et al. 2008). Pairwise tests (9999 permuta-

tions) and similarity analyses (SIMPER) were then used to

detail differences when applicable. The model was modi-

fied (no species or location factors) for the FA composition

of the hexacoral group due to (1) the small number of

samples (n = 6) and location (NAFO division, n = 2), and

because (2) each group is constituted by a single species

precluding a test of the species effect. The PERMANOVA

on hexacorals was run with Monte Carlo (MC) tests and

designed with depth as covariate and group as a fixed

factor.
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Results

Specimen collection and distribution

A total of 75 samples were collected over the three geo-

graphic areas (Table 1; Fig. 1). Corals sampled belonged to

(1) the Hexacorallia subclass: stony-cup corals (Order

Scleractinia) and black-thorny corals (Order Antipatharia)

specimens and to (2) the Octocorallia subclass: sea pens

(Order Pennatulacea), soft corals, and gorgonians (Order

Alcyonacea). Taxon groups are referred to as five coral

groups by their common name (Table 1), reflecting the

particular shapes of the animals, i.e., soft corals (lack of

hard consolidated skeleton), gorgonians (presence of solid

axis), sea pens (feather-like or whip-like appearance),

stony-cup corals (calcareous skeleton), and black-thorny

corals (non-calcareous skeletons composed of protein and

chitin). Each group was comprised, respectively, of 3, 7, 6,

1, and 1 species (Table 1). FA analyses were completed on

the entire sample collection, whereas lipid class analyses

were run on a subsample of 19 specimens: three black-

thorny corals (Stauropathes arctica), one gorgonian

(Acanthogorgia armata), ten sea pens (five Anthoptilum

grandiflorum, one Funiculinia quandrangularis, two Pen-

natula grandis, two Halipteris finmarchica), five soft corals

(two Duva florida, three Nephtheidae sp.) and none on

stony-cup corals.

There was considerable variability in coral presence

among trawls, sampling stations, and geographic locations

(Table 1; Fig. 1). The two stations in Division 3N had 2–3

species each for a total richness of 4. The same number of

species was recorded in Divisions 3L and 3M, but with

some species differences; Keratoisis grayi, Paramuricea

sp., Radicipes gracilis, Funiculinia quandrangularis were

absent from 3M and Paramuricea placomus, Distichop-

tilum gracile, Pennatula grandis, Flabellum alabastrum

absent from Division 3L. Interestingly, the three specimens

of stony-cup corals were found only at the three stations in

Division 3M.

Lipid classes

The total individual lipid content for all species varied

between 0.29 and 7.71% with a mean of 3.08 ± 2.15%

(± SD). Overall, the main lipid groups found in deep-sea

corals were the phospholipids (34.6 ± 12.1%) followed by

steryl and wax esters (15.2 ± 8.7%), AMPL

(10.6 ± 5.4%), sterols (10.2 ± 2.9%), triacylglycerols

(8.5 ± 5.5%), free FAs (6.6 ± 4.3%), and hydrocarbons

(3.8 ± 5.7%) (Fig. 2). Black-thorny corals diverged from

this pattern exhibiting a higher concentration of steryl and

wax esters than the other taxon groups (Fig. 2). Total lipid

percentages were significantly different between taxon

groups (Kuskal–Wallis, p\ 0.05) but with no significant

distinction among groups. The nonsignificance of taxon

group comparisons was mainly due to the low number of

samples analyzed (only one specimen of gorgonian, for

example; Table 1). Similarly, we could not test differences

among species, depth ranges and/or locations because

specimen numbers varied from 1 to a maximum of 5 for

every group.

There was no effect of depth or geographic locations on

lipid classes, but a significant (PERMANOVA, p\ 0.01)

difference between taxon groups (Table 2). Differences

between taxa were mostly between black-thorny corals and

sea pens (p\ 0.01, 36.1% average dissimilarity), and sea

pens and soft corals (p\ 0.05, 30.5% dissimilarity)

(Table 3). Black-thorny corals had lower content of phos-

pholipids than sea pens (25.8% contribution to dissimilar-

ity) and higher steryl and wax esters (23.6% contribution to

dissimilarity). Similarly, soft corals had lower percentages

of phospholipids than sea pens (20.3% contribution to

dissimilarity) and higher AMPL (13.5% contribution to

dissimilarity) (Fig. 2). Comparisons of lipid classes

between taxon groups and gorgonians were limited by the

single sample of gorgonian collected.

Fatty acid composition

Deep-sea corals collected as part of this study contained a

high proportion of MUFA and PUFA as well as x3 and x6
FA with few differences between taxon groups in total

SAFA, PUFA, and MUFA (Fig. 3). The main FAs identi-

fied (based on the mean per taxon group) were 16:0,

16:1x7, 18:1x7, 18:0, 18:1x9, 20:1x9, 20:1x7, 20:4x6,
20:5x3 (EPA), 22:1x11, 22:1x7, 22:4x6, 22:5x3, and

22:6x3 (DHA) (Fig. 4). The dominant FAs within each

taxon group and species are presented in electronic sup-

plementary material (ESM Tables S1, S2).

DHA/EPA and 18:1x9/18:1x7 ratios are often used to

characterize level of carnivory (e.g., Graeve et al. 1997;

Dalsgaard et al. 2003). The highest values of DHA/EPA

were recorded in gorgonians (0.53) and soft corals (0.42)

followed by a tendency for sea pens (0.27) to be more

carnivorous. In contrast, ratios suggest a low level of car-

nivory in stony-cup corals (0.16) and black-thorny corals

(0.15). Similarly, the lowest values for the ratio 18:1x9/
18:1x7 were recorded in black-thorny corals. However,

even though taxon group was significant in Kruskal–Wallis

ANOVAs (p\ 0.01), there were no significant differences

among taxon groups within each subclass in DHA/EPA or

18:1x9/18:1x7.
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The hexacoral subclass

The main FAs for black-thorny (Stauropathes arctica)

corals were 22:5x3 (DPA) and 20:1x9 followed by EPA;

for stony-cup corals (F. alabastrum), the main FAs were

16:0, 20:4x6, DPA, 22:1x11, and EPA (ESM Table S1).

Interestingly, stony-cup corals have proportionally higher

levels of 22:4x6 compared to the other coral taxon groups.

Fig. 2 Averaged lipid class composition (% of total lipid) of corals grouped by taxon. Error bars are SD

Table 2 PERMANOVA results on raw data of lipid composition using Bray–Curtis distances with depth as covariate, location, species, and

taxon group as fixed factors, species being nested in taxon group

Source df SS Pseudo-F P (perm) Perms Estimate component of

variation (square root)

Depth 1 158.08 0.38 0.8803 9940 - 3.704

Location (NAFO zone) 1 278.39 0.66 0.669 9942 - 4.9591

Taxon group 3 4056.4 3.23 0.006 9940 16.618

Species (taxon group) 5 1605.2 0.77 0.7832 9914 - 7.5509

Pooled ? residuals 8 3350 de 9 NA (p = 0.30) ? de 9 gr (p = 0.57) ? NA 9 gr

(p = 0.55) ? de 9 sp (gr) (p = 0.69)

20.463

Total 18 9448.1

Tests were run under reduced models and using 9999 permutations

de depth, NA location, Sp species (taxon group), gr taxon group

Significant results are highlighted in bold

Table 3 Pairwise comparisons

of average similarity results

after PERMANOVA within and

among taxon groups based on a

total matrix of lipids with 9999

permutations

Black-thorny corals Sea pens Soft corals Gorgonians

Black-thorny corals 68.8

Sea pens 63.9** 74.0

Soft corals 64.7 69.5* 72.9

Gorgonians 50.0nc 74.1 60.6 0

nc not calculable (small sample size)

* p\ 0.05, ** p\ 0.01
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The first two PCO axes explained 89.5% of the variation

(Fig. 5), and differences among taxon groups were signif-

icant (PERMANOVA: p = 0.0016, p-corrected

MC = 0.0356, pseudo-F = 6.83) with no effect of depth or

interaction between depth and taxon group. Pairwise tests

demonstrated that S. arctica specimens were similar at

77.0% and F. alabastrum specimens at 83% and that the

two species were dissimilar at about 32.7%. Flabellum

alabastrum individuals were grouped together by a high

proportion of 16:0, 22:5x3, 20:4x6, and EPA and S. arc-

tica by 22:5x3, 20:1x9, EPA, and 18:1x7. They differed

mainly by a higher content of 20:4x6 and lower content of

22:5x3 and 20:1x9 in F. alabastrum in comparison with S.

arctica individuals (Fig. 5; ESM Table S1, S2).

The octocoral subclass

The dominant FA differed between orders: 20:4x6 in

gorgonians and soft corals (Alcyonacea), and EPA in sea

pens (Pennatulacea) (Fig. 3). The first PCO axis (PCO1)

explained 30.6% of variation in FAs between individuals,

whereas PCO2 explained 17.9% and PCO3 explained

Fig. 3 Averaged fatty acid (FA) classes (% of total FA) and ratios (DHA/EPA, PUFA/SAFA, 18:1x9/18:1x7) of corals collected and grouped

by taxon. Error bars are SD. S sum

Fig. 4 Averaged fatty acid (FA) composition (% of total FA) of deep-sea corals grouped by taxon. Only FAs contributing to more than 1% of the

total FAs in at least one individual are represented here. Error bars are SD
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15.3% (Fig. 6a, b). The three axes accounted for more than

63% of the total variability. The PCO1 axis was mainly

driven by the proportion of three fatty acids: 20:4x6,
22:1x9, and EPA, with 20:4x6 being opposed to the other

two FAs (Fig. 6a). Along this axis, there was segregation

between two groups corresponding to the two orders

(Pennatulacea and Alcyonacea); the first group included all

the sea pens except Pennatula sp. (Pennatulacea), and the

second group included all gorgonians and soft corals

(Alcyonacea). Pennatula sp. was grouped with the second

group of species because of its high content of 20:4x6 and

lower content of EPA. Along PCO2, a clear distinction

appeared between Halipteris finmarchia and the other sea

pens, and along PCO3, contents of 20:2x6 and saturated

FAs differentiated soft coral groups (Fig. 6b). Intraspecies

variations were more pronounced on PCO2 while the

PCO3 axis discriminated among soft coral species. Within

the gorgonian group, the Paramuricea genus had high
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inter-individual variability in FA profiles (Fig. 6). The

PERMANOVA confirmed PCO results, highlighting a

significant effect of the taxon groups (i.e., soft corals,

gorgonians, and sea pens) and, to a lesser extent, an effect

of species (estimate source of variation) on FA composi-

tion, with no significant impact of depth or geographic

locations (Table 4). It is important to state that the small

number of samples at the species level limited the statis-

tical power of the analysis, especially within the gorgonian

group. Differences between all three octocoral taxon

groups were significant (Table 5). SIMPER analyses on

pairwise comparison of octocoral taxon groups are detailed

below (only the differences in FA contributing to more

than 10.0% of the dissimilarity):

• Sea pens differed from soft corals and gorgonians with

32% dissimilarity and had a higher proportion of

20:5x3 and a lower proportion of 20:4x6.
• Gorgonians differed from soft corals with only 25%

dissimilarity. They had the same dominant FAs with

little variation in proportions of 20:4x6 (17% in soft

corals and 16% in gorgonians) and 16:0 (10% in soft

corals and 13% in gorgonians).

The main significant differences among species within

taxon group were (not all differences are listed):

• Within sea pens, Pennatula sp. differed significantly

from four sea pen species but not from Funiculina

quadrangularis (n = 1) and Distichoptilum gracile

(n = 1). Pennatula sp. had lower EPA concentrations

than the other sea pens and different dominant FAs

(20:4x6 and 20:1x9). On the other hand, Anthoptilum

grandiflorum and Halipteris finmarchica differed sig-

nificantly: A. grandiflorum had lower EPA and 20:1x7.
• Within soft corals, Anthomastus sp. was significantly

different from Duva florida and Nephtheidae sp. These

species differed in EPA (lower in Anthomastus sp.) and

20:4x6 content.

• Within gorgonians, only the two species Acanthogorgia

armata and Keratoisis grayi differed because of a low

proportion of 20:1x11 in A. armata, as well as lower

EPA and slightly higher 20:4x6.

Discussion

Considerable heterogeneity was observed in coral presence

among trawl sampling stations and geographic locations.

Like most organisms, deep-sea corals have preferred depth

distributions and habitat characteristics. Food availability,

temperature, salinity, substrate, currents, and slope con-

tribute to distributional trends and level of abundance (e.g.,

Roberts et al. 2006; Wareham and Edinger 2007). Tem-

perature was stable at all locations and is not likely to be a

factor driving species distribution in our study. This study

is based on coral lipid content to determine feeding types

and behavior; no data on seasonal patterns (one sampling

point in time) or suspended particulate and/or sedimentary

organic matter were available.

Lipid classes

Lipid percentages in NL CWCs were lower than in shal-

low-water corals with values varying between 6 and 47%

(Harland et al. 1993; Grottoli et al. 2004), as was also

found by Hamoutene et al. (2008). The total lipid content

measured in this study varied between 0.3 and 7.7%, while

in Hamoutene et al. (2008), values ranged from 2.4 to

38.8% in soft corals and gorgonians. Taxa, species, and

depth ranges considered in the two studies are different,

likely explaining range differences.

Table 4 PERMANOVA results on raw data of fatty acid composition of octocorals (when[ 1%) using Bray–Curtis distance with depth as

covariate, location, species, and taxon group as fixed factors, species being nested in taxon group

Source df SS Pseudo-F P (perm) Perms Estimate component of variation (square root)

Depth 1 235.16 0.87 0.5147 9938 - 0.71598

Location (NAFO zone) 2 920.77 1.70 0.0778 9936 3.346

Taxon group 2 6551.6 12.11 0.0001 9928 12.002

Species (taxon group) 13 8771.7 2.49 0.0001 9843 10.58

Pooled ? residuals 50 13526 De 9 NA (p = 0.30) ? de 9 gr

(p = 0.65) ? NA 9 gr (p = 0.89) ? de 9 sp(gr)

(p = 0.99) ? NA 9 sp(gr)(p = 0.92)

16.448

Total 68 30006

Tests were run under reduced models and using 9999 permutations

de depth, NA location, Sp species (taxon group), gr taxon group; perm permutations

Significant results are highlighted in bold
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In their study, Hamoutene et al. (2008) showed patterns

in total lipid and lipid classes with depth, location, and

species. Patterns with depth and location were attributed to

lipid storage constraints due to a decrease in food avail-

ability. No effect of depth, species, or geographic location

were evidenced here, but numbers of samples, depth ran-

ges, and sampling areas were smaller in the present study

(800–1400 m as opposed to 100–1300 m in Hamoutene

et al. 2008). There are conflicting findings on the effect of

depth and/or geographic locations on lipid classes in

CWCs. Kiriakoulakis et al. (2005) found that the level of

sterols in the scleractinian corals Lophelia pertusa and

Madrepora oculata was highly variable (0.6–12.4% of total

lipids) but independent of depth. Imbs et al. (2016) did not

find significant differences in the lipid class content

between specimens of the same species collected from

different depths in the sea of Okhotsk (Russia).

NL CWC lipid classes were highly variable among

taxon groups; phospholipids were the dominant lipid class

in all taxon groups except the black-thorny coral species (S.

arctica), which was dominated by steryl and wax esters.

Monoalkyldiacyl glycerol and wax esters were the most

represented classes in the coral samples investigated in

Hamoutene et al. (2008) while Kiriakoulakis et al. (2005)

showed that FAs and alcohols prevailed in two deep-sea

stony-cup coral species: L. pertusa and M. oculata. In this

study, black-thorny corals had higher levels of storage

lipids and lower amounts of structural lipids than any other

coral species. Physiology and morphological characteris-

tics of S. arctica (stiff axes) may require less axial thick-

ening (Sherwood and Edinger 2009) than gorgonians and

less investment in new tissue/material production than

other coral taxon groups. Moreover, black-thorny corals are

known for their extreme longevity and very slow growth

rates (e.g., Roark et al. 2009). Distinct morphological

characteristics, longevity and slow growth rates, may

influence lipid storage and metabolic demand and can

explain the differences observed in lipid classes in S.

arctica and highlight the taxonomic divergence of black-

thorny coral from the other taxon groups. Oku et al. (2002)

showed that decreased storage lipid (triacylglycerols and

wax esters) in shallow-water Montipora digitata was

associated with increased energy expended by proliferating

cells for growth. In addition, authors suggest that as a

strategy to respond to stress (Grottoli et al. 2004) or dif-

ferential access to food (Hamoutene et al. 2008) for

growth, corals adapt by changing the proportion of lipid

classes but maintaining equivalent lipid levels.

Fatty acid composition

Trophic origins of fatty acids

Deep-sea corals collected for this study contained a high

proportion of MUFA and PUFA as well as x3 and x6 FAs.
Trophic markers, such as markers of diatoms (EPA,

18:1x7), zooplankton (20:1x9, 22:1x9, 22:1x11),
dinoflagellates (DHA), and bacterial markers (see ‘‘Mate-

rials and methods’’; Graeve et al. 1994; Dalsgaard et al.

2003), were measured in all the CWC samples studied.

Other dominant FAs were 20:4x6 and 22:5x3 (docos-

apentaenoic acid: x3DPA is an intermediary product

between EPA and DHA; Kaur et al. 2011).

Knowledge of C20 PUFA metabolism in CWCs (i.e.,

azooxanthellate corals) is limited, but many animals are

known to be restricted in the synthesis of 20:4x6 and EPA

(Monroig et al. 2013). Hence, a hypothesis about pre-

dominance of the trophic origin of these PUFAs in CWCs

is reasonable (Imbs et al. 2016), and despite the potential

removal of some PUFAs during passage through the water

column (Budge and Parrish 1998; Parrish et al. 2005), it

seems adequate to use the FA profiles of CWCs to distin-

guish diets and infer pelagic food sources.

Potential food sources of EPA in the context of deep-sea

ecosystems are likely the result of sedimentation from

surface waters since there is no primary productivity at

depths [ 100 m, or are contained in herbivorous zoo-

plankton (Parrish et al. 2005; Dodds et al. 2009). Phyto-

plankton cells that reach deep seas are mostly dominated

by diatoms with a small abundance of dinoflagellates

(Agusti et al. 2015). If those results were applicable to the

NL deep-sea environment, we could hypothesize that a

proportion of the EPA measured in the NL CWCs might

originate from diatoms. On the other hand, the lower

availability of dinoflagellates (Agusti et al. 2015) might

limit CWC access to DHA. However, the proportion of

diatoms and dinoflagellates reaching the seafloor can vary

seasonally with surface productivity and advection (Agusti

et al. 2015; Parrish et al. 2005).

Known food sources of 20:4x6 are mesozoobenthos and

marine macrophytes (brown and red algae) inhabiting lit-

toral and sublittoral zones, bacteria and foraminiferans

(Graeve et al. 2002; Suhr et al. 2003; Würzberg et al.

2011a, b). Potential trophic transfer from macroalgae to

CWCs is likely the result of long-distance advection of

Table 5 Pairwise comparisons of average similarity results after

PERMANOVA within and among taxon groups based on the total

matrix of fatty acids of octocorals with 9999 permutations

Sea pen Soft coral Gorgonian

Sea pen 72.5

Soft coral 67.2*** 77.6

Gorgonian 67.7*** 75.0* 74.5

* p\ 0.05, *** p\ 0.001
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nutrients to offshore habitats, considering the distance of

macrophyte-dominated habitats from the Flemish Cap area.

Another source of 20:4x6 could be micro-heterotrophs that

are present in the sediment and potentially feed on x6
PUFA-rich phytodetritus (Chang et al. 2012). DPA, on the

other hand, has not been extensively studied because of the

limited availability of the pure compound (Kaur et al.

2011). Corals without zooxanthellae, such as CWCs, have

lower content of polyenoic C18 and 20:3x6 acids, but

higher levels of 18:lx9 and DPA acids than species with

zooxanthellae (Latyshev et al. 1991). Further understand-

ing of the role and origin of DPA needs to be acquired

before discussing in detail the significance of higher values

of DPA in some CWCs relative to others.

Fatty acid composition of NL cold-water corals

Overall, no effect of depth or geographic location was

measured on FA composition for the hexacoral or octocoral

subclasses, but effects of taxon groups and in some

instances differences between species were significant. All

the FAs cited above as characterizing a particular trophic

behavior were measured in all specimens studied, with

some differences in FA dominance/proportions patterns

suggesting feeding preferences.

The hexacoral subclass The restricted number of speci-

mens within the two hexacoral groups studied here (i.e.,

three individuals for each species of S. arctica [black-

thorny coral] and of Flabellum alabastrum [stony-cup

coral]) limits the generalization of our findings to other

hexacoral taxa. In S. arctica, DPA was the dominant FA

but information on the trophic role/origin of this FA is

limited. After DPA, zooplankton markers (20:1x9,
22:1x9, 22:1x11) had the second highest proportions,

highlighting the importance of carnivory for this species.

Other FA markers for diatoms (EPA or 18:1x7; Dalsgaard
et al. 2003) were also abundant and may originate from

herbivorous zooplankton (Parrish et al. 2005; Dodds et al.

2009). Conversely, in F. alabastrum, similar proportions of

EPA (diatoms), DPA, 22:4x6, 22:5x11 (zooplankton), and

20:4x6 suggest that they prey on multiple food sources. In

addition, the two hexacoral species are significantly dif-

ferent: F. alabastrum had a higher content of 20:4x6
(phytodetritus, foraminifera) and a lower content of zoo-

plankton markers, suggesting more omnivorous behavior

compared to carnivorous behavior in S. arctica. Importance

of carnivory is also expressed as a high level of PUFA/

SAFA (Cripps and Atkinson 2000). However, it was not

confirmed by other traditional trophic ratios such as DHA

(dinoflagellate marker)/EPA (diatom) or 18:1x9 (higher in

carnivores)/18:1x7 also used to determine trophic levels

(Graeve et al. 1994, 1997; Dalsgaard et al. 2003). These

two ratios could be inadequate for CWCs for the following

reasons: (1) few dinoflagellates occur in the deep sea

(Agusti et al. 2015), limiting the use of DHA as a trophic

marker and (2) the origin of 18:1x7 could be associated not
only with phytoplankton but also with bacterial markers of

degrading organic matter settling from the surface (Dals-

gaard et al. 2003). Likewise, the low level of carnivory

inferred using those ratios contradicts the findings of other

authors for F. alabastrum. With large unitary polyps, F.

alabastrum occupy higher trophic levels, suggesting the

ability to catch larger prey (Buhl-Mortensen et al. 2007;

Sherwood et al. 2008). Similarly, polyp sizes in S. arctica

are relatively large (diametric polyp size ranges from 3.5 to

7 mm; Molodtsova 2006) compared to other species stud-

ied here except for stony-cup corals (Sherwood et al. 2008)

and support the hypothesis of feeding on bigger prey. The

applicability of DHA/EPA and 18:1x9/18:1x7 as trophic

markers needs to be further verified by determining com-

position of deepwater food sources.

The octocoral subclass Despite high variability among

and within species, significant differences were observed in

FA profiles with a separation of the sea pen (Order Pen-

natulacea) species except Pennatula sp. from the Alcy-

onacea (soft corals and gorgonians). To a lesser extent, soft

corals and gorgonians were also significantly different from

each other: differences between orders were higher

([ 32%) in dissimilarity percentages than differences

between taxa within the Order Alcyonacea (25%).

With EPA being the dominant FA, sea pens feed mostly

on diatoms derived from sinking organic matter or on

herbivorous zooplankton prey, except Pennatula sp., which

was found closer in composition to the soft corals and

gorgonians (high 20:4x6). Even though amounts of C16

PUFAs (primary producers) were low for all octocoral

groups, the 16:1x7/16:0 ratio, which is an additional

indicator of diatoms (Dalsgaard et al. 2003), was higher in

the sea pens (0.45, excluding Pennatula sp.) than the other

taxon groups (0.30). Our results are consistent with Sher-

wood et al. (2008), who concluded that sea pens consumed

the degraded fraction of particulate organic matter. Within

the sea pens (other than Pennatula sp.), we also found

significant interspecies differences between Anthoptilum

grandiflorum and Halipteris finmarchica, principally due to

variation in the two main FA proportions (EPA and 16:0).

Interspecies differences within the sea pens have also been

documented by other authors. Using stable isotopes on NL

sea pens, Baillon et al. (2015) hypothesized that sea pen

diets differed enough to preclude the pooling of species in

trophic studies; they showed that A. grandiflorum, H. fin-

marchica, and P. aculeata had different carbon and nitro-

gen stable isotope signatures that could be explained

primarily by their different polyp diameters and colony
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shapes, suggesting that they rely on slightly different food

sources (varying proportions of phytodetritus and

zooplankton).

Within the Order Alcyonacea (soft corals and gorgoni-

ans), the dominant FA was 20:4x6, suggesting a higher

reliance than sea pens on phytodetritus resulting from

macrophytes and/or degradation of foraminifera. In addi-

tion, Baptista et al. (2012) found that 20:4x6 was the most

important FA in soft corals. Differences between soft coral

and gorgonian groups were low (25%) and likely the result

of variability in 20:4x6 proportions. Within both soft

corals and gorgonians, we also detected small interspecies

differences suggesting some variation in feeding selection.

Tetracosapolyenoic acids

The analytical method used for FA analysis did not assess

TPA concentrations as the analyses predate a series of

articles on the importance of TPAs (24:5x6 and 24:6x3).
TPAs are specific of octocorallia (sea pens, soft corals, and

gorgonians) and absent from hexacorals (stony-cup corals

and black-thorny corals); they are used as chemotaxonomic

markers of polyp tissues, being independent of the presence

of zooxanthellae and exoskeleton, and thus help in the

discrimination of octocorals from other coral species (Imbs

and Dautova 2008; Imbs et al. 2010, 2016; Baptista et al.

2012). They are key compounds in FA metabolism of

octocorals and important for the explanation of sources and

levels of C20–C22 PUFAs in soft corals. Information on

TPA content may have modified the trends observed here

in the calculation of the relative concentration of other FAs

(Baptista et al. 2012) and required that statistical analyses

for hexacorals and octocorals be completed separately.

According to Sprecher’s pathway (Sprecher 2000), 24:5x6
can be derived from DHA (22:6x3) that was first elongated
from arachidonic acid (20:4x6), and 24:6x3 from EPA.

The low concentrations of DHA (\ 5%) and docosapen-

taenoic (\ 1%) in octocorallia in this study suggest that

TPAs were not metabolized by Sprecher’s pathway, and

thus if TPAs were present, they may originate from 20:4x6
and EPA. The disregard of TPAs when calculating the

relative concentration of FAs could result in an amplifi-

cation of the percentage of such FAs when compared to

species that may exhibit TPAs.

To conclude, lipid and FA profiles of NL CWCs differed

among taxon groups. The sampling area was deep

([ 800 m) and distribution of coral sparse and heteroge-

neous; no trend with location or depth was detected in FA

or lipid profiles. However, the lipid and FA profiles dif-

fered significantly among taxon groups. Phospholipids

were dominant in all taxon groups except for Stauropathes

arctica (black-thorny coral), likely related to coral mor-

phology and growth rates. Within the hexacoral subclass,

the dominant FA in black-thorny corals (S. arctica) was

DPA; they were also rich in FA markers of zooplankton

suggesting a degree of carnivory. Conversely in stony-cup

coral, individuals (F. alabastrum) appeared more omniv-

orous with no specific dominant FA. Differences in car-

nivory were not captured by traditional markers of trophic

ecology (DHA/EPA, 18:1w9/18:1w7), suggesting a need

for analyses of deepwater food sources and potential

reconsideration of the value of these markers within deep-

sea ecosystems. Within the octocoral subclass, differences

between orders were greater than within taxon groups of

the same order. Soft corals and gorgonians both had higher

amounts of 20:4x6, suggesting reliance on phytodetritus

resulting from algae, macrophytes and/or foraminifera

while sea pens likely consumed more diatoms derived food

and/or zooplankton consuming diatoms with the exception

of Pennatula sp.. The latter had FA profiles closer to the

Order Alcyonacea, confirming differences already docu-

mented by authors between species within the sea pen

group.

This study provides a snapshot of CWC trophic choices

in the NL deep-sea environment. The limited food avail-

ability characterizing deep-sea ecosystems requires

opportunist feeding. We observed differences in trophic

behaviors mostly driven by taxonomy (differences in

morphology), suggesting food selection and less oppor-

tunistic feeding than expected. More studies on the nature

of food sources present in the deep sea in a wider range of

depths are necessary to properly characterize trophic

behaviors of deep-sea CWCs and better describe taxo-

nomic differences.
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