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Abstract Tropical aspidochirotid holothuroids are among

the largest coral reef invertebrates, but gaps remain in our

understanding of their ecological roles in lagoon sediment

habitats, a vast component of coral-reef ecosystems. Sti-

chopus herrmanni, listed as vulnerable (IUCN), is currently

a major fishery species on the Great Barrier Reef (GBR)

and throughout the Indo-Pacific. It is critical to characterise

how this species interacts with its environment to under-

stand how its removal may impact ecosystem functionality.

We investigated seasonal variation in movement, biotur-

bation, feeding and gonad development of S. herrmanni

over 3 yr at One Tree Reef, which has been a no-take area

for decades. We determined the direct influence of the

deposit-feeding activity of S. herrmanni on sediment

turnover and granulometry, and on the abundance of

infauna and benthic productivity in a comprehensive in situ

analysis of tropical holothuroid feeding ecology. This

species is highly mobile with identifiable individuals

exhibiting site fidelity over 3 yr. With the potential to turn

over an estimated 64–250 kg individual-1 yr-1, S. her-

rmanni is a major bioturbator. Stichopus herrmanni is a

generalist feeder and influences trophic interactions by

altering the abundance of infauna and microalgae. Sticho-

pus herrmanni exhibited decreased feeding activity and

gonad development in winter, the first documentation of a

seasonal disparity in the bioturbation activity of a tropical

holothuroid. Sediment digestion and dissolution by S.

herrmanni has the potential to influence seawater chem-

istry, a particularly important feature in a changing ocean.

Our results provide essential baseline data on the functional

roles of this ecologically important species to inform

development of ecosystem-based bêche-de-mer fisheries

management on the GBR.

Keywords Sea cucumber � Curryfish � Sediment �
Bioturbation � Bêche-de-mer

Introduction

Despite their prominence in benthic sediment systems,

gaps remain in our understanding of the feeding biology

and trophic ecology of aspidochirotid sea cucumbers

(Holothuroidea). Aspidochirotids are epibenthic deposit

feeders that ingest sediment and associated organic matter

using specialised feeding tentacles (Roberts 1979; Roberts

et al. 2000; Purcell et al. 2016a). They can process large

amounts of sediment in association with their feeding

activity, and so have been called the earthworms of the sea

(Bonham and Held 1963; Purcell et al. 2016a). Active

selective foraging by size and/or organic content of sedi-

ment particles has been reported for shallow-water (Yingst

1976; Uthicke 1999; Slater and Carton 2010; Slater and

Jeffs 2010; MacTavish et al. 2012; Navarro et al. 2013) and

deep-sea (Roberts et al. 2000; Hudson et al. 2005) species.

Questions remain on the details of the diet of aspidochi-

rotids, how they influence their environment through their
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feeding and bioturbation, and whether they are selective or

non-selective feeders with respect to sediment grain size

and/or nutrient profiles (Hammond 1982; Klinger and

Johnson 1998; Roberts et al. 2000).

Many aspidochirotids are commercially valuable (Co-

nand 1998, 2001; Purcell et al. 2012, 2014), harvested to

generate the dried body wall product called bêche-de-mer

(or trepang). This high-value product is traded in the Asian

market and provides a source of income and food to mil-

lions worldwide (Purcell et al. 2013, 2014; Eriksson and

Clarke 2015). Due to their ease of collection, holothuroids

are particularly vulnerable to overfishing with many in a

perilous state of conservation (Conand 2001; Uthicke et al.

2004; Friedman et al. 2011; Eriksson and Byrne 2015).

Increased demand for bêche-de-mer is driving worldwide

exploitation (Conand 1998, 2001; Purcell et al. 2013), and

16 species are now listed as threatened to extinction by the

IUCN (Conand et al. 2014; Purcell et al. 2014). Many

species are now locally extinct (Hasan 2005; Anderson

et al. 2011; Branch et al. 2013; Price et al. 2013; Purcell

et al. 2014), with at least 70% of the world’s tropical

holothuroid fisheries considered exploited, over-exploited

or depleted (Purcell et al. 2013).

Understanding the ecological roles of exploited species

is critical for ecosystem-based fisheries management (An-

derson et al. 2011; Purcell et al. 2016a). Tropical aspi-

dochirotids are among the largest and often most abundant

non-coral invertebrates in coral reef carbonate sediment

habitats. Reef sediment habitats are vast, sometimes

accounting for up to 95% of areal benthic coverage, and

constitute the majority of calcium carbonate stored in

coral-reef ecosystems (Gattuso et al. 1998). In these habi-

tats, aspidochirotids turn over vast quantities of sediment

through their deposit-feeding activity (Yamanouti 1939;

Bonham and Held 1963; Hammond 1982; Klinger et al.

1994; Uthicke 1999; Mangion et al. 2004; Shiell and Knott

2010). This bioturbation activity directly increases oxygen

levels in the sediment (Hammond 1982), with increased

sediment anoxia noted following their removal from reef

flat habitats (Lee et al. 2017). The digestion and dissolution

of carbonate sands in the holothuroid gut may further alter

biogeochemical processes by reducing sediment grain size

and increasing local alkalinity in reef environments

(Hammond 1981; Schneider et al. 2011, 2013; Purcell et al.

2016a). This compensatory process could contribute to the

biogenic buffering of ocean acidification, and thus reef

resilience, in a changing ocean (Schneider et al.

2011, 2013).

Tropical aspidochirotids also play critical roles in

trophic functionality. They are reported to consume bac-

teria, diatoms and microalgae, with infauna considered to

be a minor food source (Moriarty 1982; Moriarty et al.

1985; Uthicke 1999; Roberts et al. 2000). Nitrogen

excretion by aspidochirotids encourages benthic produc-

tivity in oligotrophic coral reef systems (Uthicke and

Klumpp 1998; Uthicke 2001; Wolkenhauer et al. 2010;

Purcell et al. 2016a). In manipulative experiments, seagrass

growth and biomass decreased following the removal of

the sandfish, Holothuria scabra (Wolkenhauer et al. 2010).

Similarly, field-based incubations showed that the nitrogen

waste products of H. atra promoted benthic microalgal

growth and productivity, suggesting that holothuroids fer-

tilise their own gardens (Uthicke and Klumpp 1998).

Overall, the ecological consequences of removing holo-

thuroids from coral reefs are likely to be detrimental to

ecosystem functionality (Purcell et al. 2016a).

The distances covered by tropical holothuroids as they

feed are not well known, largely because they are difficult to

tag or track (Conand 1983, 1989, 1991; Purcell et al.

2016a, b). While they have been considered to be largely

sedentary (Conand 1983, 1991; Purcell 2010), a recent study

on two large tropical holothuroids, Bohadschia argus and

Thelenota ananas, showed that these species moved between

2–8 and 5–9 m d-1, respectively (Purcell et al. 2016b).

While this suggests they are highly mobile, these species also

display long-term site fidelity (Purcell et al. 2016b). The

curryfish, Stichopus herrmanni, has been recorded to move

0.4–0.7 m h-1 (Purcell and Eriksson 2015), with no differ-

ence in activity between day and night (Eriksson et al. 2013).

Information on the effects of season on holothuroid activity

and bioturbation is limited to one study on H. scabra, which

exhibited increased activity coinciding with annual peaks in

water temperature and gonad development (Shiell and Knott

2010). These features of movement, activity and site fidelity

have important implications for conservation of holothuroids

and the identification of effective marine protected areas

(Purcell and Kirby 2006; Purcell et al. 2016b; Wolfe and

Byrne 2017), and are especially important to understand for

fished species.

Globally, tropical bêche-de-mer fisheries follow a pre-

dictable pattern of serial exploitation of high-value species,

with a transfer of effort to lower value species (Conand

1998, 2001; Branch et al. 2013; Purcell et al. 2013, 2014).

These patterns of overfishing are typical of developing

countries, but similar trends are also documented for

higher-income regions including on Australia’s World

Heritage-listed Great Barrier Reef (GBR) (Eriksson and

Byrne 2015). On the GBR, catches of the mid-value cur-

ryfish, S. herrmanni, increased at a rate of*200% per year

between 2007 and 2011 (Eriksson and Byrne 2015). This

species is increasing in value as it becomes rarer in tropical

waters worldwide (e.g. Torres Strait: Skewes et al. 2004;

Papua New Guinea: Kinch et al. 2008; East Africa:

Eriksson et al. 2010; GBR: Eriksson and Byrne 2015).

Stichopus herrmanni is now listed as vulnerable to

extinction (Conand et al. 2014; Purcell et al. 2014).
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We investigated seasonal variation in movement, bio-

turbation, feeding and gonad development in S. herrmanni

at One Tree Reef (OTR), GBR, over 3 yr. Previous studies

indicated that spawning in this species occurs during

summer with suppressed gonad growth in winter (Conand

1993a, b). We hypothesised that this holothuroid would be

highly mobile, as shown recently for S. herrmanni (Purcell

and Eriksson 2015), and other large tropical holothuroids

(Purcell et al. 2016b). We predicted seasonal activity and

bioturbation would increase in summer, coinciding with

increased water temperature and gonad development, as

shown for H. scabra (Shiell and Knott 2010). It has been

suggested that S. herrmanni does not exhibit selective

feeding behaviour (Roberts and Bryce 1982; Klinger et al.

1994), and so we hypothesised that this species is a gen-

eralist grazer with non-selective feeding traits. We com-

pared the biota in ambient sediment to that in the

oesophagus, intestine and faecal casts of S. herrmanni to

characterise the available food source and their diet. Since

the digestive biology of aspidochirotids is likely to have an

important biogeochemical impact due to the dissolution of

carbonate sediment in the low-pH sea cucumber gut

(Hammond 1981; Schneider et al. 2011, 2013), gut pH was

determined at different stages of sediment digestion. Coe-

lomic fluid pH was also measured to assess acid–base

regulation in S. herrmanni (Collard et al. 2013, 2014), and

the reproductive cycle was assessed through gonad index

analysis. The data assimilated here provide new empirical

information on the ecological roles of S. herrmanni in a

lagoon sediment habitat on the GBR, information critical

for the development of ecosystem-based fisheries man-

agement (Anderson et al. 2011; Purcell et al. 2016a), and

the conservation of this exploited bêche-de-mer species.

Methods

Habitat conditions

Fieldwork was conducted in the shallow (1–3 m) sandy

habitat ‘Shark Alley’ in OTR lagoon (23�300S, 152�050E),
southern GBR, Australia (Fig. 1a). The feeding biology

and movement of S. herrmanni (Fig. 1b) were investigated

each season (summer, autumn, winter, spring) between

2013 and 2015, with each season replicated twice. Tem-

perature was intensively monitored in Shark Alley across

2016, using in situ HOBO loggers to determine the con-

ditions directly experienced by S. herrmanni in Shark

Alley. Average temperatures in 2013–2015 were also cal-

culated for each season using average daily temperatures,

available from the in situ weather station positioned inside

OTR lagoon (http://data.aims.gov.au/aimsrtds/station.

xhtml?station=131).

Movement and bioturbation

For each observation period, ten S. herrmanni (length

30.8 ± 4.0 cm; width 8.9 ± 1.0 cm; mean ± SD; n = 80)

were tracked in situ for 5 h across afternoon low tides (neap

low *1500 hrs) to quantify their movement and bioturba-

tion activity. Each season was repeated twice across

2013–2015, so that a total of 20 individuals were tracked

per season. No surveys were conducted at night as S. her-

rmanni does not behave differently between day and night

(Eriksson et al. 2013). Tagging S. herrmanni is notoriously

difficult (Conand 1983, 1989, 1991), and so was not

attempted. Identifiable individuals (i.e. by colouration,

scarring, spot patterns) were noted during each survey.

To determine the distance moved and faecal cast pro-

duction of S. herrmanni, the initial position of each indi-

vidual was marked with a stake, and individuals were

revisited hourly. Each hour the distance between the initial

stake and new position of the holothuroid was measured.

The exact route of each individual was measured following

the trail of faecal casts produced (Fig. 1b), not a straight

line. After measuring the distance travelled, all faecal casts

were collected and the holothuroids’ new position was

marked. Faecal casts are encased in a thin mucous layer

and were collected carefully by hand. This process was

repeated hourly for each individual at low tide when OTR

lagoon is ponded, removing confounding hydrodynamic

interference with the integrity of faecal casts. The total

distance moved and amount of sediment released in a 5-h

period were then determined.

Daily movement rates were calculated from the average

hourly distance moved for each individual. Analyses of the

amount of sediment released each hour showed that time

had no significant effect on defecation rates across the 5-h

sampling periods (RMANOVA: F4,80 = 1.4, p = 0.23).

Thus, average hourly defecation rates per individual were

calculated from the total amount of sediment released over

5 h. Maximum average daily and annual defecation rates

were extrapolated from this estimate, assuming that S.

herrmanni is a continuous feeder (i.e. 24 h) (Klinger and

Johnson 1998; Eriksson et al. 2013). Minimum sediment

turnover rates were calculated using the 15-h feeding per-

iod determined for S. herrmanni by Yamanouti (1939).

Surface sediment cores were also collected adjacent to

each S. herrmanni to compare ambient sediment to that

digested by the holothuroids. Cores were taken with plastic

coring tubes stoppered at 5 mm depth, as this is the esti-

mated feeding depth of deposit-feeding holothuroids

(Uthicke 1999).

The sediment grain size profiles of S. herrmanni faecal

casts and ambient sediment cores were compared (n = 20

season-1). Sediment samples were partitioned by wet

sieving with fresh water into the size fractions 1400, 1000,
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500 and\500 lm, and dried in a 60 �C oven for[24 h.

The dry weight of each size class was calculated as a

percentage of the total sample weight. The total dry weight

(g) of each faecal cast was used to extrapolate hourly, daily

and yearly bioturbation rates of S. herrmanni over each

observation period.

Infauna in ambient, gut and faecal cast sediment

A separate set of faecal cast (n = 10) and ambient sedi-

ment (n = 10) samples were collected from Shark Alley

each season and fixed in 10% formaldehyde in filtered

seawater with a Rose Bengal dye. The presence of infauna

(*100–1000 lm length) was determined under a dissect-

ing microscope, identified by their pink stain. The total

number of organisms present in 2-mL subsamples of sed-

iment were counted and categorised into predominant

groups: Amphipoda, Nematoda, Polychaeta, Platy-

helminthes and other Crustacea (e.g. Copepoda, Ostracoda,

Isopoda). Biota in the ambient sediment cores and S. her-

rmanni faecal casts were compared. To identify the infauna

ingested by S. herrmanni, sediment samples were also

taken from the oesophagus (right behind the mouth) of

dissected individuals (n = 8), before digestive processes

impaired the ability to identify gut contents.

Surface sediment photopigments

Faecal cast (n = 6) and ambient sediment (n = 12) sam-

ples were also collected each season for analysis of

chlorophyll-a. Samples were dried in an oven at 60 �C for

*24 h, and the dry weight was measured. Chlorophyll-

a was extracted from the dry sediment samples with 90%

acetone. Samples were kept dark and cool (*4 �C) for

18–24 h before analysing the supernatant by spectropho-

tometry at wavelengths of 630 and 664 nm. Chlorophyll-

a levels were calculated using formulae produced by Jef-

fery and Humphrey (1975), relative to the dry sediment

weight. Mean values for chlorophyll-a were taken for each

season.

Internal pH

A total of 32 S. herrmanni were collected from Shark Alley

and quickly transported to One Tree Island Research Sta-

tion (OTIRS) for analysis of internal pH. Half of the

specimens were used immediately, to ensure their stomachs

were filled with sediment (full; n = 16). The remaining S.

herrmanni were left for[24 h in flow-through aquaria to

empty their digestive tracts (empty; n = 16). The body

wall of each individual was cut open, and the coelomic

fluid drained. pH of the coelomic fluid was measured

immediately. The pH probe was then carefully inserted into

a small incision in the foregut of each S. herrmanni, and the

pH was recorded. pH was also measured in incisions at the

hindgut for several full and empty individuals (n = 6), and

of ambient seawater samples (n = 9). All pH measure-

ments were made using a ROSS Sure-flow sensor (Orion,

Thermo Scientific) or WTW Multiline probe, calibrated to

NIST buffers 7.00 and 10.02 (Hach, Radiometer

Analytical).

Gonad index

The gonad index was determined for S. herrmanni col-

lected in summer (n = 29), autumn (n = 8), winter

Fig. 1 Location of One Tree Island in the Capricorn Bunker Group (Great Barrier Reef, Australia), with indication of a Shark Alley (black box).

b Stichopus herrmanni bioturbation and faecal cast trail
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(n = 9) and spring (n = 24). Collections were made over a

number of years (2008–2016), due to permit restrictions on

harvest numbers. Stichopus herrmanni were collected from

Shark Alley and returned to OTIRS for dissection. Gonad

index was calculated as the weight-percent of the gonads

relative to the combined drained body wall and viscera

weights. The weight range (drained) of individuals used for

gonad index analyses was 667–2370 g (n = 70). Two of

nine specimens completely lacked identifiable gonads in

winter and were recorded as zero weight. Data were

combined by season of collection.

Statistics

Average hourly movement and sediment turnover rates of S.

herrmanni were analysed using analysis of covariance

(ANCOVA), with season as the fixed factor and holothuroid

size as the covariate. Year was not considered a fixed factor

due to the unbalanced sampling of each season twice over

3 yr (2013–2015). Sediment granulometry (grain particle

size) was analysed by converting the dry weight-percent of

each sieve class into a measure of kurtosis (i.e. skewedness,

tailedness, homogeneity) for each sample using the loga-

rithmic method of the GRADISTAT package (Version 8.0,

Crowthorne, UK) (Blott and Pye 2001). The value of kur-

tosis for each sediment sample was then analysed using a

two-way ANOVA, with season and sediment type (faecal

cast/ambient sediment) as the fixed factors.

Seasonal differences in infauna composition between S.

herrmanni faecal casts and ambient sediments were visu-

alised using non-metric multidimensional scaling (MDS)

plots. Abundance data of infauna groups were arcsine

transformed before visualisation in the two-dimensional

MDS space. Within this space, communities that have

similar compositions cluster together, while those that are

different are spaced further apart. Further determination of

differences in the abundance of infauna groups due to our

two factors (season, faecal cast/ambient sediment) was

done using PERMANOVA, calculating the F-statistic

using 9999 permutations for all factors (Anderson et al.

2008). Similarity of percentages (SIMPER) tests were

performed to examine combined effects. MDS, PERMA-

NOVA and SIMPER tests were done using Primer V6.

Benthic photopigment data were analysed using a two-

way ANOVA, with season and sediment type (faecal cast/

ambient sediment) as the fixed factors. Internal pH of S.

herrmanni was analysed using a two-way ANOVA, with

gut condition (empty, full) and position in the gut (coe-

lomic fluid, foregut, hindgut) as fixed factors. Data on the

gonad index of S. herrmanni were analysed using one-way

ANOVA, with season as the fixed factor. Homogeneity of

variance and normality were checked and confirmed for all

data series (Quinn and Keough 2003). Percentage data

were arcsine transformed before analysis. Post hoc Tukey’s

HSD tests were used to determine where significant dif-

ferences lay. All ANOVAs were analysed using JMP 501

(Cary, NC, USA).

Results

Habitat conditions

The average water temperature in Shark Alley was

24.5 ± 0.01 �C (mean ± SE) in 2016, with a minimum

and maximum temperature of 17.5 and 32.3 �C, respec-
tively (Electronic supplementary material. ESM, Fig. S1).

The average daily water temperature in OTR lagoon

2013–2015 was 27.2 �C (±0.07) during summer, 25.1 �C
(±0.14) in autumn, 21.5 �C (±0.07) in winter and 23.9 �C
(±0.95) in spring (ESM Fig. S1). Based on average daily

water temperatures in OTR lagoon, the maximum tem-

perature was 29.4 �C (summer), and the minimum was

19.4 �C (winter) (ESM Fig. S1).

Movement and bioturbation

Stichopus herrmanni moved an average of

47.2 ± 9.2 cm h-1 across all seasons, ranging between 5.8

and 192 cm h-1. The average distance moved was greatest

in summer (62.4 ± 13.0 cm h-1), and smallest in winter

(37.5 ± 7.5 cm h-1) and spring (38.8 ± 7.9 cm h-1), but

these data did not differ significantly (Fig. 2a; ESM

Table S1). However, the spread of data indicated that the

upper 25th percentile was fastest in summer (Fig. 2a).

Stichopus herrmanni moved an average of 9 m d-1 in

winter and 15 m d-1 in summer. In total, six recognisable

individuals were repeatedly observed within the study area

3–4 times each over 3 yr.

There was a significant seasonal difference in the total

amount of sediment released by S. herrmanni over the 5-h

monitoring period. The length of S. herrmanni (range

19–44 cm) had no effect on sediment defecation (Fig. 2b;

ESM Table S1). Tukey’s HSD test revealed that rates of

bioturbation were higher in summer (28.6 g h-1) and

autumn (25.2 g h-1), compared to winter (13.7 g h-1) and

spring (11.7 g h-1) (Table 1; Fig. 2b; ESM Table S1).

Calculated values for minimum and maximum daily and

annual defecation rates are displayed in Table 1.

Sediment grain size was dominated by small sediment

particles (\500 lm) compared to larger grain sizes

([500 lm) in all seasons (Fig. 3; ESM Table S1). There

was a significant difference in sediment grain size distri-

bution (kurtosis) between the faecal casts and ambient

sediment, and between seasons, but no interactive effect

(Fig. 3; ESM Table S1). Tukey’s HSD tests revealed that
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there were more fine sediment particles (\1000 lm) and

fewer large sediment fragments ([1000 lm) in the faecal

casts produced by S. herrmanni than in the surrounding

environment (Fig. 3). Between seasons, Tukey’s HSD tests

showed that the kurtosis of each sample was greatest in

spring and summer (i.e. least homogenous), and lowest in

winter (i.e. most homogenous) (Fig. 3; ESM Table S1).

Infauna in ambient, gut and faecal cast sediment

There were clear differences in the abundance of infauna in

ambient sediment (54.8 ± 2.7 individuals mL-1) com-

pared to faecal cast samples (4.05 ± 0.2 individu-

als mL-1; Table 2; Fig. 4). There was no distinct

differentiation of infauna among seasons, but infauna

found in ambient sediment samples in winter were different

to other seasons (Fig. 4). PERMANOVA confirmed these

patterns, detecting differences in the abundance of infauna

among seasons and between faecal casts and ambient

sediment, with an interactive effect (Fig. 5a, b; ESM

Table S2). Infauna were more abundant in ambient sedi-

ment samples (67%) than in casts produced by S. her-

rmanni (14%) (Table 2; Fig. 5a, b). There were also more

organisms present in ambient sediment during summer and

autumn than in winter and spring (Fig. 5a). SIMPER tests

suggest that this was driven by low numbers of amphipods

in spring (7%) compared to the remaining seasons
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feeding; Klinger et al. 1994)

daily and annual rates (see

‘‘Methods’’)

Sediment turnover rate
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Min Max Min Max

Summer 28.6 ± 1.8 429.2 686.7 156.7 250.7

Autumn 25.2 ± 1.3 377.5 604.0 137.8 220.5

Winter 13.7 ± 1.7 205.2 328.3 74.9 119.8

Spring 11.7 ± 1.9 175.5 280.8 64.0 102.5
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(14–15%) (Fig. 5a). Sediment in the oesophagus of S.

herrmanni (n = 8) included the most common organisms

in ambient sediment samples (Table 2).

Surface sediment photopigments

The average level of benthic chlorophyll-a was signifi-

cantly higher in ambient sediment samples

(3.00–3.28 lg g-1) than in faecal casts (1.87–2.52 lg g-1)

(Fig. 5c; ESM Table S1). Chlorophyll-a did not differ

among seasons in the environment or in S. herrmanni

faecal casts (Fig. 5c).

Internal pH

The pH of the digestive tract of S. herrmanni was signifi-

cantly different for individuals with their gut empty and

full of sediment, and for measurements taken in the fore-

gut, hindgut and coelomic fluid (Fig. 6; ESM Table S1).

There was also a significant interaction between these

factors (Fig. 6; Table S1). pH was highest in the coelomic

fluid, regardless of whether the digestive tract was empty

(pH 7.91 ± 0.03) or full (pH 7.98 ± 0.03) (Fig. 6). pH was

significantly lower in the foregut than in the hindgut

(Fig. 6). In digestive tracts full of sediment, the average pH

of the hindgut was 7.65 (±0.07), but was 7.49 (±0.05) in

the foregut (Fig. 6). In empty guts, the average pH was

7.37 (±0.06) and 7.05 (±0.09) in the hindgut and foregut,

respectively (Fig. 6). The pH of ambient seawater was

8.12 ± 0.03.

Gonad index

The gonad index differed between seasons (Table 3; ESM

Table S1). Stichopus herrmanni had a higher gonad index

in the summer (4.85%) than in other seasons (Table 3;

ESM Table S1). Gonads were notably reduced during

autumn (0.41%) and winter (0.19%), and increased in size

in spring (0.99%) (Table 3).

Discussion

Movement and bioturbation

This is the longest in situ study tracking the seasonal

activity and bioturbation of individual aspidochirotids

(Table 4). We showed that S. herrmanni moved

Fig. 4 Non-metric

multidimensional scaling

ordination plots on Bray–Curtis

similarity of meiofauna

community structure in Shark

Alley for Stichopus herrmanni

faecal casts (open shapes) and

ambient sediment cores (closed

shapes), taken during summer

(triangles), autumn (diamonds),

winter (squares), and spring

(circles)

Table 2 Average (±SE) abundance of sediment infauna in (2 mL) ambient sediment samples (n = 40), Stichopus herrmanni faecal casts

(n = 40), and oesophagus sediment samples (n = 8)

Amphipoda Nematoda Polychaeta Platyhelminthes Other Crustacea

Ambient 21.2 ± 1.2 15.2 ± 0.6 5.9 ± 0.4 0.2 ± 0.05 12.2 ± 0.5

Faecal casts 1.4 ± 0.06 0.8 ± 0.03 0.3 ± 0.02 0 1.5 ± 0.08

Oesophagus 9.6 ± 0.8 8.0 ± 1.1 0.5 ± 0.2 0 1.4 ± 0.3

Coral Reefs (2017) 36:1143–1156 1149

123



considerably, at an average rate of 47.2 cm h-1 throughout

the year. This speed is comparable to that documented for

S. herrmanni in New Caledonia (Purcell and Eriksson

2015), and for other tropical holothuroids (\100 cm h-1:

Conand 1991; Roberts et al. 2000; Uthicke 2001; Shiell and

Knott 2010; Purcell et al. 2016b). However, some S. her-

rmanni reached speeds[300 cm h-1. The average hourly

movement of S. herrmanni was greater in summer and

autumn (50–62 cm h-1) compared to winter and spring

(37–39 cm h-1), but this trend was non-significant and was

likely driven by several particularly active individuals.

Seasonal trends of decreased holothuroid activity (move-

ment) in winter have been documented for the sandfish, H.

scabra, on Ningaloo Reef, Western Australia (Shiell and

Knott 2010). More data are needed to identify seasonal

activity patterns in S. herrmanni, including for lower-lati-

tude populations that may be less influenced by seasonal

change.

Stichopus herrmanni moved an average of 9 and

15 m d-1 during winter and summer, respectively. A

recent study of other large tropical holothuroids, B. argus

and T. ananas, showed that they moved 2–8 and

5–9 m d-1, respectively (Purcell et al. 2016b). These two

species exhibited site fidelity and long-term home ranging

behaviour, as indicated by the reoccurrence of recognisable

individuals over 2 yr (Purcell et al. 2016b). While we did

not tag or track individuals over the years, several recog-

nisable S. herrmanni were repeatedly encountered in Shark

Alley. Thus, adult S. herrmanni may also display home

range affinity. The apparent site fidelity of S. herrmanni,

and patterns of ontogenetic migration within their recruit-

ment reef (Eriksson et al. 2013; Palazzo et al. 2016; Wolfe

and Byrne 2017), highlight their vulnerability to overhar-

vesting on reefs open to fishing, and the potential for

heavily targeted species to suffer marked population

declines, local extinction and poor recovery (Gillanders

et al. 2003; Uthicke et al. 2004; Hasan 2005; Purcell 2010;

Friedman et al. 2011). This has important implications for

fisheries management regarding connectivity between

recruitment and nearby adult habitats within the same reef

(Wiedemeyer 1994; Gillanders et al. 2003; Grüss et al.

2011; Bourjon and Morcel 2016).
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Fig. 5 Benthic community composition: average abundance of

infauna (mL-1) in a naturally occurring sediment cores and b casts

produced by Stichopus herrmanni (n = 10 season-1;±SE). c Average
level of chlorophyll-a (lg g-1 dry sediment) in S. herrmanni faecal

casts (n = 6 season-1) and ambient sediment cores (n = 12 sea-

son-1; ±SE). Different letters indicate significantly different groups

(Tukey’s HSD test)
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Fig. 6 Average (±SE) internal pH in the foregut (n = 16), hindgut

(n = 6) and coelom (n = 16) of Stichopus herrmanni with a gut

empty (light grey bars) or full (dark grey bars) of sediment. Different

letters indicate significantly different groups (Tukey’s HSD test)

Table 3 Average (±SE) gonad

index for Stichopus herrmanni

in each season, with indication

of sample size (n)

GI (%) SE n

Summer 4.85 0.49 29

Autumn 0.41 0.09 8

Winter 0.19 0.07 9

Spring 0.99 0.20 24
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Rates of sediment turnover by S. herrmanni were sig-

nificantly lower in winter and spring than in summer and

autumn, providing the first documentation of a seasonal

disparity in bioturbation for a tropical holothuroid

(Table 4). This is likely due to low water temperatures

and a reduced gonad index (i.e. reduced energetic

demands) during winter, as suggested for seasonal effects

on the movement of H. scabra (Shiell and Knott 2010).

We estimate that sediment turnover by S. herrmanni could

range from 64 to 250 kg individual-1 yr-1 (Fig. 7),

depending on season and diurnal feeding patterns

(Yamanouti 1939; Purcell and Eriksson 2015). Even at the

calculated minimum value, the total rates of sediment

turnover reported here for S. herrmanni are above those

previously documented for this and other aspidochirotids

(9–105.1 kg individual-1 yr-1) (Table 4). This reflects

our robust sampling technique, collecting all faecal casts

produced over 5 h in a hydrodynamically stable environ-

ment, compared to previous studies estimating total

turnover rates from single faecal casts (e.g. Yamanouti

1939; Bonham and Held 1963; Hammond 1982; Klinger

et al. 1994).

Table 4 Sediment processing rates (g dry weight h-1) of tropical aspidochirotids based on field observations and faecal casts collected in situ

Species Sediment processed

(g h-1)

Sample

size (n)

Period of continuous

tracking (h)

Diel

difference

Seasons

sampled

Habitat References

Holothuria

Arenicola 1.7–2.9a 50 24b n/s – Sandy, reef Hammond (1982)

Atra 3.6a 65 24b n/s 1 Sandy, reef Yamanouti (1939)

6–12a – – – 1 Reef flat,

lagoon

Bonham and Held

(1963)

1.2a – – – 1 Lagoon Klinger et al. (1994)

3.6 12 2 – 2 Seagrass Uthicke (1999)

2.9–3.8 6 24b – 1 Back reef Mangion et al.

(2004)

Bivittata 5.2a 29 24b PM[AM 1 Sandy, reef Yamanouti (1939)

Edulis 2.5a 34 24b n/s 1 Sandy, reef Yamanouti (1939)

0.9a – – – 1 Lagoon Klinger et al. (1994)

Flavo-

maculata

1.0a 24 24b n/s 1 Sandy, reef Yamanouti (1939)

Leucospilota 0.7a – – – 1 Lagoon Klinger et al. (1994)

3.3–4.1 6 24b – 1 Back reef Mangion et al.

(2004)

Mexicana 4.6–5.0a 20 24b PM[AM – Sandy, reef Hammond (1982)

Scabra 8.2a 47 24b PM[AM 1 Sandy, reef Yamanouti (1939)

Vitiens 3.0a 39 24b PM[AM 1 Sandy, reef Yamanouti (1939)

Whitmaei 3.3–7.1 18–30 24b n/s 3 Reef,

lagoon

Shiell and Knott

(2010)

Stichopus

Chloronotus 0.3a – – – 1 Lagoon Klinger et al. (1994)

11.5 12 2 – 2 Seagrass Uthicke (1999)

Herrmanni 2.1a 64 24b PM[AM 1 Sandy, reef Yamanouti (1939)

1.0a – – – 1 Lagoon Klinger et al. (1994)

5–23 10 2.5 PM[AM 1 Sandy,

lagoon

Purcell and

Eriksson (2015)

11.7–28.6 80 5 n/s 4 Sandy,

lagoon

Present study

Isostichopus

Badionotus 2.8–4.9 30 24b PM[AM – Sandy, reef Hammond (1982)

Values available as daily rates were converted to an hourly rate (–, no data or unclear; n/s, no significant effect)
a Estimated from average dry weight of single faecal casts multiplied by mean number of casts produced over 24 h, rather than faecal casts

expelled over time
b Individuals visited several times across 24 h, not continuously followed
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Considering the amount of sediment turned over by S.

herrmanni in a year, this species is likely to be ecologically

important in its lagoon habitat, influencing benthic pro-

cesses and trophic interactions (Fig. 7). This is especially

true for unfished reefs, such as OTR and Heron Reef, where

S. herrmanni is abundant (31.25–1100 individuals ha-1;

Eriksson et al. 2013; Wolfe and Byrne 2017), and prompts

the question of the ecological impact of removing this

bêche-de-mer species from tropical sediment habitats.

Our understanding of the feeding mechanisms and

preferences of tropical holothuroids with respect to sedi-

ment grain size, nutrient profiles and associated biota is

poor. Very little new data are available since the Roberts

et al. (2000) review on holothuroid feeding strategies. The

ability of holothuroids to select particular sediment grain

sizes appears to be species specific and associated with

feeding tentacle morphology (Roberts and Bryce 1982;

Roberts et al. 2000). The size range of particles ingested by

shallow-water tropical species is very broad, from a median

of 100 lm in B. argus to *6000 lm in H. atra (Ya-

manouti 1939; Roberts et al. 2000). As shown in the profile

of ambient sediment from Shark Alley, this area of OTR

lagoon has a relatively uniform sediment granulometry,

dominated by fine particles (*73%\ 1400 lm). Early

research suggests S. herrmanni does not reduce sediment

grain size through its digestion (Yamanouti 1939). In

contrast, we found the faecal casts produced by S. her-

rmanni had a comparatively finer mean grain size

(*81%\ 1400 lm) than the ambient environment.

Whether S. herrmanni selects smaller sediment particles in

its feeding (e.g. Roberts 1979; Roberts et al. 2000), or

reduces grain size through the partial dissolution of sedi-

ment in the low-pH gut (e.g. Hammond 1981; Schneider

et al. 2013) could not be determined in our study. The

feeding niche and distribution of tropical aspidochirotids in

lagoon systems is likely also influenced by other factors

such as reef shelter (Klinger et al. 1994; Klinger and

Johnson 1998), and hydrodynamic displacement (Wolfe

and Byrne 2017).

Generalist consumer diet

Through an assessment of three stages of sediment pro-

cessing by S. herrmanni (ambient sediment, oesophagus,

faecal casts) we provide new insights into the trophic role

of S. herrmanni in its tropical lagoon habitat. This is the

first study to examine sediment in the oesophagus, where

ingested biota can still be identified. Faecal casts had lower

levels of infauna and chlorophyll-a than the ambient sed-

iment, and infauna was found in the oesophagus of S.

herrmanni, indicating that this species ingests and con-

sumes benthic infauna and microalgae (Fig. 7). In contrast,

previous studies concluded that infauna is not consumed by

tropical aspidochirotids (Moriarty et al. 1985), and that

infauna may not play a large role in the overall nutrition of

some holothuroids (Uthicke 1999). However, these studies

examined sediment in the stomach and intestines, which

was likely too advanced in the digestive process to be able

to identify organisms. Stichopus herrmanni processes large

quantities of sediment, and we suggest that this species is a

generalist grazer that ingests what is available in the

environment. Our data suggest that S. herrmanni does not

Altered reef carbonate chemistry 

 

Altered benthic community structure

Generalist grazer

Finer sediment in faecal casts:
- Particle dissolution
- Selective feeding

Summer spawning

Bioturbation
           = 64-250 kg ind-1 y-1

Fig. 7 Representation of the biological and ecological roles of Stichopus herrmanni
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select for specific infauna or benthic microalgal food, as

suggested previously for this species (Roberts and Bryce

1982). However, since infauna abundance was lower in the

oesophagus than in ambient sediment, it is likely that some

mobile species are able to escape predation by S.

herrmanni.

Infauna were more abundant in the sediment during

summer and autumn, coinciding with higher rates of bio-

turbation and movement by S. herrmanni. There was sig-

nificantly less infauna during winter and spring, likely

driven by low water temperatures on this southern reef,

with a *15 �C difference between summer maximum and

winter minimum temperatures. Seasonal changes in the

composition of benthic habitats, including infauna and

algae, are common in coral reef systems (Uthicke and

Klumpp 1998; Diaz-Pulido et al. 2009; de Oliveira et al.

2016; van Hoytema et al. 2016). We did not find significant

seasonal changes in benthic productivity (chlorophyll-a) at

our study site, as shown previously for OTR (Johnstone

et al. 1990). However, benthic productivity can be very

patchy in lagoon sediment (Koop and Larkum 1987;

Johnstone et al. 1990). More research is needed to under-

stand the seasonality of benthic algae in tropical lagoon

systems, and the influence of bioturbators like S. herrmanni

on the production or disruption of benthic algal mats and

associated infauna.

Aspidochirotids can increase the productivity of benthic

microalgae and seagrass systems through their bioturbation

activity and increasing local nutrients (especially ammo-

nium) through their excretory physiology (Uthicke and

Klumpp 1998; Uthicke 2001; Wolkenhauer et al. 2010;

Costa et al. 2014). Local enhancement of productivity by

aspidochirotids has also been used to benefit integrated

tropical mariculture systems (Namukose et al. 2016). This

is important for the health of benthic lagoon systems in the

presence or absence (i.e. fishing) of holothuroids. Infor-

mation on the ecological consequences of removing bêche-

de-mer species from coral-reef ecosystems is limited (e.g.

Uthicke and Klumpp 1998; Wolkenhauer et al. 2010; Lee

et al. 2017) and warrants greater attention (Purcell et al.

2016a). This could be examined using inclusion–exclusion

experiments (e.g. Wolkenhauer et al. 2010) and/or

stable isotope analyses (e.g. Slater and Carton 2010) to

understand community-level responses, trophic cascades

and potential phase shifts in sediment ecosystems resulting

from the overharvest of large bêche-de-mer species.

Internal pH and seawater chemistry

The gut pH of S. herrmanni was higher when full of sed-

iment (pH 7.04–7.81) compared to empty digestive tracts

(pH 6.42–7.77), as shown previously for H. atra, H. mex-

icana and Isostichopus badionotus (Hammond 1981;

Schneider et al. 2013). Tropical deposit-feeding holothur-

oids can play a pivotal role in the carbonate chemistry of

coral-reef ecosystems, at least at the local scale (Hammond

1981; Schneider et al. 2011, 2013; Purcell et al. 2016a;

Vidal-Ramirez and Dove 2016). It has been hypothesised

that the digestion and dissolution of carbonate sediment in

the holothuroid gut may buffer external changes in local

carbonate chemistry (Fig. 7), and that this may be partic-

ularly important under scenarios of ocean acidification

(Schneider et al. 2011, 2013). Our results show that the

digestion of carbonate sediment in the gut of S. herrmanni

drives an increase in gut pH, likely due to dissolution of

carbonate sediment. This may influence external seawater

chemistry when redeposited into the environment, poten-

tially benefiting local reef calcifiers. This feature of their

feeding biology warrants greater attention in the face of

continued global change.

In contrast to changing pH in the gut, the coelomic fluid

pH of S. herrmanni (7.91–7.98) was stable and similar to

that recorded for the external environment (pH 8.12 ± 0.03;

n = 9). Thus, coelomic fluid pH conforms to environmental

pH (Fig. 7), as shown for tropical and temperate holothur-

oids (Collard et al. 2013, 2014). Holothuroids have a

reduced ability to regulate their internal acid–base levels

compared to other echinoderms (e.g. sea urchins), which

may impact their physiological and metabolic processes as

seawater chemistry changes due to ocean acidification

(Collard et al. 2013, 2014). Conversely, as poorly calcified

organisms, holothuroids may be more resilient to changing

ocean chemistry compared to more heavily calcified reef

species (e.g. corals, sea urchins, molluscs) (Dupont et al.

2010; Byrne 2011; Collard et al. 2013).

Reproduction

The gonad index data indicated that the reproductive

activity of S. herrmanni on OTR peaked in summer (Dec–

Feb) and that gonad growth was suppressed during winter

(Jun–Aug) (Fig. 7), with two of nine individuals lacking

identifiable gonads. This pattern is similar to that reported

for another high-latitude population of this species in New

Caledonia (Conand 1993a) and has been observed in

temperate and tropical stichopodid species (Cameron and

Fankboner 1989; Conand 1993b; Hu et al. 2010). Consid-

ering the time of spawning and likely planktonic duration,

summer spawning of S. herrmanni agrees with observa-

tions of annual recruitment of juveniles in 2015 and 2016

on the GBR (Wolfe and Byrne 2017). These data on

reproduction and recruitment are an important considera-

tion for fisheries management, especially considering the

likely trajectory of declining stock of this species on the

GBR and elsewhere (Conand et al. 2014; Eriksson and

Byrne 2015).
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Implications for bêche-de-mer management

on the GBR

Ecosystem resilience is strengthened by ecological func-

tionality, which depends on species across trophic levels

(Kroeker et al. 2011; Connell and Ghedini 2015). Emerg-

ing research on the contribution of holothuroids to

ecosystem functionality indicates that they enhance local

productivity and sediment health (Uthicke and Klumpp

1998; Uthicke 1999; Wolkenhauer et al. 2010; Purcell et al.

2016a; Lee et al. 2017) and may help buffer the effects of

ocean acidification (Schneider et al. 2011, 2013). Funda-

mental gaps in information on holothuroid biology and

ecology have not only limited our ability to gauge stock

productivity, sustainable extraction rates and the ecological

impacts of bêche-de-mer fisheries, it has hampered man-

agement dialogues (Wiedemeyer 1994; Anderson et al.

2011; Purcell et al. 2013; Eriksson and Byrne 2015).

Improving our understanding about how these organisms

interact with their environment and influence ecosystem

processes is critical to understanding how bêche-de-mer

fisheries impact coral reefs. This information is needed to

support decision-making on conservation and ecosystem-

based management (Anderson et al. 2011; Purcell et al.

2016a). Current approaches to bêche-de-mer fisheries are

not viable for holothuroids (Conand 2001; Purcell et al.

2012, 2013, 2014), prompting the suggestion that a para-

digm shift in fisheries management is needed.

As global patterns of exploitation continue it is likely

that ecosystem function will be compromised in the

absence of the ecosystem services holothuroids provide

(e.g. Moriarty et al. 1985; Uthicke and Klumpp 1998;

Uthicke 1999; Michio et al. 2003; Wolkenhauer et al. 2010;

Costa et al. 2014; Purcell et al. 2016a; Lee et al. 2017).

Biological and ecological information, as determined here,

are important to inform effective ecosystem-based man-

agement strategies for target bêche-de-mer species. While

we now have good information on the biology and ecology

for high-latitude tropical populations of S. herrmanni (New

Caledonia, Heron Island, One Tree Island), data are needed

to determine the feeding ecology, population dynamics and

spawning cycles of this species in its warmer, more tropical

northern range across the Indo-Pacific (Purcell et al. 2012).

It is critical that empirical data are collected for reefs both

open and closed to harvest across the geographical range of

bêche-de-mer targets. We urge the need for increased

locally relevant information for targeted bêche-de-mer

species to reduce the risk of continued global exploitation,

threatened species and localised extinctions.
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