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Abstract Examining the functional response of predators

can provide insight into the role of predation in structuring

prey populations and ecological communities. This study

explored feeding behaviour and functional responses of

planktivorous damselfishes when offered captive reared

larvae of crown-of-thorns starfish, Acanthaster sp., with the

aim of determining whether these predators could ever play

a role in moderating outbreaks of Acanthaster sp. We

examined predatory behaviour of 11 species of planktivo-

rous damselfish, testing: (1) the relationship between

predator size and predation rate, both within and among

fish species; (2) consumption rates on larvae of Acanthaster

sp. versus larvae of a common, co-occurring coral reef

asteroid Linckia laevigata; (3) maximal feeding rates upon

both Acanthaster sp. and L. laevigata; and (4) functional

responses of planktivorous fishes to increasing densities of

Acanthaster sp. Consumption rates of crown-of-thorns

larvae by damselfishes were independent of predator size;

however, there was a significant negative relationship

between predator size and consumption rate of L. laevi-

gata, when pooling across all predatory species. Some

damselfishes, including Acanthochromis polyacanthus and

Amblyglyphidodon curacao, consumed larval Acanthaster

sp. at a greater rate than for L. laevigata. Most predatory

species (all except A. curacao and Pomacentrus

amboinensis) exhibited a Type II functional response

whereby the increasing feeding rate decelerated with

increasing prey density. In addition to revealing that a wide

range of planktivorous fishes can prey upon larvae of

Acanthaster sp., these data suggest that planktivorous

damselfishes may have the capacity to buffer against

population fluctuations of Acanthaster sp. Importantly,

predators with Type II functional responses often con-

tribute to stability of prey populations, though planktivo-

rous fishes may be swamped by an abnormally high influx

of larvae, potentially contributing to the characteristic

population fluctuations of Acanthaster sp.

Keywords Predation � Functional response � Chemical

defence � Acanthaster � Larvae � Damselfish

Introduction

Predatory release has long been considered a potential

cause of outbreaks of the crown-of-thorns starfish, Acan-

thaster sp. (e.g., Endean 1969). Essentially, key predators

of adult starfishes (such as the giant triton and/or predatory

reef fishes) have been subjected to extensive or sustained

harvesting pressure, and it is thought that this may have

drastically reduced rates of predation and adult mortality,

leading to outbreaks of Acanthaster sp. (e.g., Endean 1969;

Campbell and Ormond 1970; Owens 1971; Dulvy et al.

2004). While scientific interest in predators of Acanthaster

sp. has traditionally focussed on predators of adult (or at

least post-settlement) stages (e.g., Endean 1969; Campbell

and Ormond 1970; Owens 1971; Dulvy et al. 2004),

predatory regulation might equally occur during spawning

and at pre-settlement and settlement stages (e.g., Babcock
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et al. 1986; Westneat and Resing 1988; Bachiller et al.

2015).

Acanthaster sp. must run the gauntlet of the plankton

feeders throughout their planktonic development (Lucas

1975). However, few studies have attempted to identify

potential predators on the eggs or larvae of Acanthaster sp.;

in part, logistic challenges to sampling the early life stages

of Acanthaster sp. in the field make it difficult to quantify

natural rates of predation. Further, high levels of toxicity

(saponins) were once thought to effectively protect early

life history stages from predation (e.g., Lucas et al. 1979).

However, these may be consumed in large numbers by reef

fishes, including some Pomacentridae and Chaetodontidae

(e.g., Pearson and Endean 1969; Keesing and Halford

1992; Ciarapica and Passeri 1993). On coral reefs, plank-

tivorous pomacentrid fishes are highly efficient predators,

capable of removing a large proportion of the zooplankton

in near reef waters (Hamner et al. 1988). If planktivorous

fishes readily consume eggs and larvae of Acanthaster sp.,

their high densities and high feeding rates may significantly

influence reproductive and settlement success (Kingsford

and MacDiarmid 1988). Moreover, small changes in rates

of predation and survivorship at the pre-settlement life

stages of Acanthaster sp. could have significant effects on

adult abundance (McCallum 1988, 1990).

The potential ecological importance of planktivorous

fish predation as a regulatory factor upon populations of

Acanthaster sp. depends largely upon the ability of the

predators to find and consume prey (Hassell 1978). A

common method that provides insight into the dynamics of

predator–prey systems is the quantification of the func-

tional response (Abrams 1990; Buckel and Stoner 2000;

Nilsson and Ruxton 2004), described by the intake rate of

prey as a function of prey density (Holling 1959b). Func-

tional responses are categorised as Type I, II, or III (e.g.,

Galarowicz and Wahl 2005; Gustafsson et al. 2010). Type I

functional response describes a linear increase in feeding

rate with increasing prey density, until reaching a satura-

tion point (Holling 1959a). This is most commonly

observed in filter-feeding species (e.g., Jeschke et al. 2004)

and is assumed to result when handling time is negligible,

so that consumption increases in direct proportion to the

densities of prey (Jeschke et al. 2002). The Type II func-

tional response is defined by a feeding rate that increases at

a decelerating rate towards a satiation point (Holling

1959a) and assumes that handling time and searching time

are mutually exclusive (Kaspari 1990; Baker et al. 2010). It

typically describes the foraging behaviour of species cap-

able of handling only one prey item at a time, and where

there are no increases in capture success with increases in

the rate of encounter for given prey items (Real 1977;

Abrams 1990). The Type III functional response describes

a feeding rate that initially increases with increasing prey

densities and then decelerates towards a maximum value,

producing a characteristic sigmoidal curve (Holling 1959a;

Nachman 2006). This pattern is produced by factors that

affect the probability of detection or attack of prey items,

including learned behaviour, prey switching, capture suc-

cess, or aggregation of prey (Murdoch 1973; Morgan and

Brown 1996).

The specific functional responses of predators are

important because they determine the extent to which

predators potentially regulate prey abundance or respond to

changes in prey abundance (Eggleston 1990; Eggleston

et al. 1992; Taylor and Collie 2003; Ward et al. 2008).

Importantly, when predators exhibit a Type II response,

prey species occurring at low densities within a closed

system suffer an increased risk of mortality and may be

driven to extinction (Murdoch and Oaten 1975; Hassell

1978; McCallum et al. 1989). When predators exhibit a

Type III response however, prey in low-density popula-

tions experience a reduced risk of mortality (Hassell 1978).

Thus, on a single patch, a Type III response can be sta-

bilising, whilst a Type II response can be destabilising. If,

however, there is sufficient larval mixing between patches,

predators exhibiting a Type II functional response may be

capable of stably maintaining prey populations at low

levels across most of a metapopulation (McCallum 1988).

In such situations, two stable equilibria may exist across

patches, where most patches have very low prey densities,

though a small number of patches have very high prey

densities. Whilst the low-density equilibrium is locally

stable, sufficiently high larval influx from other patches

may lead to a switch in states (McCallum 1988). Larval

mixing between starfish populations on the Great Barrier

Reef (GBR) is known to occur at very large scales,

exceeding that of individual reefs (e.g., Hock et al. 2014).

Therefore, sufficiently large numbers of predators

exhibiting Type II functional responses could contribute to

generally low densities of Acanthaster sp. at most reefs and

most of the time.

We examined feeding behaviour of planktivorous

damselfishes in a series of laboratory assays where fish

were provided with varying densities of captive reared

larvae of Acanthaster sp. This study aims to establish

whether planktivorous reef fishes could be important in

regulating abundance and/or contribute to extreme fluctu-

ations in abundance of Acanthaster sp. Specifically, we

tested (1) the relationship between predator size and pre-

dation rate, both within predator species and across the

planktivorous fish community; (2) consumption rate of

larvae of Acanthaster sp. versus larvae of a common, co-

occurring coral reef asteroid Linckia laevigata; (3) maxi-

mal feeding rates upon both Acanthaster sp. and L. laevi-

gata; and (4) functional response of fishes feeding upon

Acanthaster sp. The blue starfish, L. laevigata, was selected
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as a comparative species as it co-occurs with Acanthaster

sp. and has a similar larval development pattern (Yam-

aguchi 1973). While L. laevigata is generally very common

(e.g., Williams 2000), it does not exhibit extreme fluctua-

tions in abundance as seen in populations of Acanthaster

sp. If predation activity upon the early life stages of

Acanthaster sp. is much reduced compared to predation

upon other starfish, this might explain why Acanthaster sp.

exhibit population outbreaks while most other starfishes

have generally much more stable population sizes.

Materials and methods

Collection and maintenance of study species

This study was conducted at Lizard Island Research Sta-

tion. Adult Acanthaster sp. and L. laevigata were collected

from reefs at Lizard Island (14�400S; 145�270E) in the

northern GBR during October–November 2015. Spawning

was induced by injecting 1 mL of 10-4 M 1-methyladenine

into the gonads in each arm, through the aboral side for

Acanthaster sp. and through the tube feet for L. laevigata.

Gametes were collected from three to four individuals of

each sex to ensure that a mix of genotypes was used.

Spawning commenced immediately for males, and within

30 min for females. Sperm was rinsed in 0.2 lm filtered

seawater (FSW) and refrigerated at 4 �C prior to use. Eggs

were collected from around the arms of females following

their release from gonopores and rinsed with 0.2 lm FSW.

Fertilisation was achieved by adding sperm to reach a final

sperm–egg ratio of approximately 100:1. Fertilised eggs

were transferred to 16-L larval rearing chambers at a den-

sity of approximately 1–2 larvae mL-1. Chambers were

maintained at 28.4 ± 1.1 �C (mean ± SD). Larvae were

fed twice daily on a mixture of cultured algal species

(Dunaliella tertiolecta and Chaetoceros muelleri at a con-

centration of 5000 cells mL-1 of each species). Water in

the chambers was changed daily. Bipinnaria stage larvae

were used in experiments. At this stage, the two larval

species exhibited minor differences in colour, opacity,

shape, and size (Fig. 1).

Eleven species of damselfish (A. sexfasciatus, A. polya-

canthus, A. curacao, C. atripectoralis, C. viridis, C. rollandi,

D. aruanus, D. reticulatus, N. azysron, P. amboinensis and

P. moluccensis), which are among the most common

planktivorous fishes on the northern GBR, and commonly

occur within habitats occupied by adult Acanthaster sp.

(e.g., Pearson and Endean 1969), were collected using fence

nets or clove oil from reefs at Lizard Island. All fishes were

maintained with conspecifics in 32-L flow-through aquaria

with PVC pipes for shelter until they were acclimatised to

tank conditions. Fish were fed a commercial dried fish food

and were considered acclimatised when they readily fed on

food provided. This took 1–9 d depending on the species.

Experimental design

To test predatory behaviour on larval starfish, 2 h prior to the

experiment individual fish were transferred to 10-L plastic

aquaria containing 0.2 lm FSW and 5-cm-long open-ended

PVC tubing for shelter. Throughout the course of the experi-

ment, water temperature ranged between 26.4 and 27.8 �C. Fish
were starved for 24 h prior to the start of feeding experiments, in

an attempt to standardise for hunger within and among species.

During the experimental trials, individual fish were

provided with specified densities of Acanthaster sp. or L.

laevigata. Fish were allowed to feed for 1 h before being

removed, and aquaria water was then sieved through a

70-lm mesh to capture and count the number of uneaten

larvae. Individual fish were used only once in each

experiment. During control trials in which the predator was

absent, 100% of larvae were recovered from aquaria.

Consumption rate

To examine the effect of predator size on predation rate,

individual fish of various size (Table 1) were provided with

100 larvae of either Acanthaster sp. or L. laevigata for 1 h.

Fish were weighed in a 400-mL beaker filled with seawater

immediately after the experiment. Linear regression was

then used to test whether the number of larvae consumed

over the test period varied with the size (specifically

weight) of fish, both within and among predator species.

Consumption rates on larvae of Acanthaster sp. versus

larvae of L. laevigata were then compared using t tests for

each of the eleven damselfish species separately.

Functional response and satiation limits

Functional responses were explored by providing individ-

ual fish with larvae of Acanthaster sp. at one of seven

Fig. 1 Bipinnaria larvae of a Acanthaster sp. and b Linckia laevigata
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different densities: 2, 5, 10, 25, 50, 75 and 100 larvae

10 L-1 seawater. D. aruanus and P. amboinensis were not

satiated when provided with 100 larvae, so additional trials

were conducted with up to 300 larvae 10 L-1. Functional

responses for each fish species were modelled in the sta-

tistical program R (R Core Team 2015). When the response

is suspected to be independent of handling time, the Type I

response can be modelled (Eq. 1), where N is the number

of prey eaten, a is the attack rate, N0 is the number of prey

available, and T is the total time available.

N ¼ aN0T ð1Þ

The Type II functional response is most typically rep-

resented by the Holling’s (1959b) ‘disc equation’ (Eq. 2),

where h is handling time.

N ¼ aN0T

1þ ahN0

ð2Þ

Prey replacement could not be achieved in our experi-

ments without disruption to the study species; therefore, it

was more appropriate to use the ‘random predator equa-

tion’ (Rogers 1972), which describes a Type II functional

response but additionally accounts for prey depletion

(Eq. 3). As N appears on both sides of the equation, this

was modified using the Lambert W function (W in Eq. 3;

Bolker 2008) from the emdbook package in R (Bolker

2010), where T is the total time available.

N ¼ N0 �
W ahN0e

�a T�hN0ð Þ� �

ah
ð3Þ

When the attack rate is considered as a function of prey

density, rather than remaining constant across prey densi-

ties, as in a Type II response, the Type III response can be

modelled. In the most general form, a is a hyperbolic

function of N0 (Juliano 2001):

a ¼ d þ bN0ð Þ
1þ cN0ð Þ ð4Þ

where b, c, and d are constants. The Type III functional

response, incorporating prey depletion, can be written as

per Hassell et al. (1977):

N ¼ N0 1� e
dþbN0ð Þ hN�Tð Þ

1þcN0ð Þ

 !

ð5Þ

Logistic regression analyses of the proportional mor-

tality of prey as a function of prey density, within the frair

package in R (Pritchard 2014), enabled discrimination

between Type II or Type III responses. Type II response

was indicated by a significantly negative first-order term,

and Type III response was indicated by a significantly

positive first-order term, followed by a significantly nega-

tive second-order term (Juliano 2001). The suggested Type

II or Type III model, along with a Type I model, was then

fit to data, and AIC values were compared to determine the

model of best fit, indicated by lowest AIC value.

Functional response curves were fit to the data using

maximum likelihood estimation from the bblme package in

R. Parameters of interest relating to a predator’s foraging

behaviour can be extracted from the fitted functional

response models (Jeschke et al. 2002). As the scaling

coefficient, the attack rate is one such parameter that

describes the initial slope of the curve (Hassell and May

1973; Jeschke et al. 2002). Differences in the extracted

attack rate parameters were compared using ANOVA and

post hoc Tukey test, providing an indication of the most

important predators at low larval densities.

Results

Consumption rate

There was no significant effect of fish size (specifically,

weight) on consumption rates of larvae of Acanthaster sp.

either among (F(1,90) = 3.79, p[ 0.05) or within fish

Table 1 Weight range in g of

planktivorous pomacentrid fish

predators, provided with 100

larvae of either Acanthaster spp.

or Linckia laevigata

Predator species Range (Acanthaster) Range (Linckia)

Abudefduf sexfasciatus 11.56–59.67 23.85–60.18

Acanthochromis polyacanthus 7.00–31.28 15.06–46.75

Amblyglyphidodon curacao 5.75–31.83 5.81–41.55

Chromis atripectoralis 2.65–8.60 2.35–11.35

Chromis viridis 2.10–6.97 1.67–4.35

Chrysiptera rollandi 0.50–1.86 0.58–2.34

Dascyllus aruanus 1.22–5.88 1.59–4.20

Dascyllus reticulatus 2.06–7.51 1.35–4.42

Neopomacentrus azysron 1.85–5.77 1.33–4.69

Pomacentrus amboinensis 0.51–16.05 0.38–7.73

Pomacentrus moluccensis 0.50–6.80 0.65–3.10
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species (F(10,90) = 1.52, p[ 0.05). For L. laevigata,

increasing weight of the fish predator had a significantly

negative effect on consumption rate of larvae when pooling

for all fish species (F(1,97) = 4.02, p = 0.05); however, this

was attributable to the low levels of consumption by some

larger species (e.g., A. sexfasciatus) and there was no sig-

nificant effect of weight of the predator on consumption

rate within fish species (F(10,97) = 1.34, p[ 0.05).

Consumption rate of Acanthaster sp. differed significantly

from consumption rate of L. laevigata for three of the eleven

predatory fish species (Fig. 2). N. azysron consumed signifi-

cantly more larvae of L. laevigata than that of Acanthaster sp.

(t(16.75) = -3.58,p\0.01),whilst consumption rate of larvae

of Acanthaster sp. was significantly greater than that of larvae

ofL. laevigata forA. curacao (t(18.68) = 2.25,p = 0.04) andA.

polyacanthus (t(11.79) = 2.58, p = 0.02). Consumption rate of

the two larval specieswasnot significantly different for eightof

the eleven predatory species (p[0.05).

Functional response

Logistic regression suggested that changes in the feeding

rates of most predatory species (A. polyacanthus, A. sex-

fasciatus, C. atripectoralis, C. rollandi, C. viridis, D.

aruanus, D. reticulatus, N. azysron and P. moluccensis)

with increasing densities of Acanthaster sp. larvae was best

represented by a Type II functional response whereby the

increasing feeding rate decelerated with increasing food

density (Fig. 3). A Type III functional response, described

by a significantly positive first-order term followed by a

significantly negative second-order term, was exhibited for

A. curacao and P. amboinensis (Fig. 4). However, visual

comparisons of fitted models suggested the range of prey

densities offered to P. amboinensis was not sufficiently

high to effectively capture satiation; additional replicates,

including at higher initial prey density, would reveal a

satiation point and better capture the full shape of the curve

(Fig. 4c).

Predicted satiation points, based on the asymptote of the

fitted model (Figs. 3, 4), were highly variable between

species, ranging from consumption of approximately 14

Acanthaster sp. larvae h-1 (C. viridis) to a consumption

rate of approximately 158 Acanthaster sp. larvae h-1 for D.

aruanus (Fig. 3).

Parameter estimates of each functional response model

with the appropriate data set revealed variable attack rates

between predatory species (F10,118 = 13.45, p\ 0.01).

Attack rates of D. aruanus and A. curacao were found to be

the highest and were significantly greater than the attack

rates of C. viridis (p = 0.03), A. sexfasciatus (p\ 0.01), N.

azysron (p\ 0.01), A. polyacanthus (p\ 0.01), C.

atripectoralis (p\ 0.01), and P. amboinensis (p\ 0.01,

p\ 0.01) (Fig. 5).

Discussion

This study shows that at least 11 different species of

planktivorous damselfish will readily prey upon larvae of

Acanthaster sp., clearly refuting the idea that these larvae
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are effectively (chemically) protected from predators (e.g.,

Lucas et al. 1979), and supporting previous studies (e.g.,

Pearson and Endean 1969; Keesing and Halford 1992;

Ciarapica and Passeri 1993) that suggest larval crown-of-

thorns starfish are highly vulnerable to predation. Impor-

tantly, most of the fish species tested (all but N. azysron)

fed upon larvae of Acanthaster sp. at equal or greater rates

than larvae of a comparable starfish, L. laevigata. These

results suggest that toxins present in larval crown-of-thorns

starfish (saponins) are largely ineffective in reducing pre-

dation, at least by common and widespread damselfishes.

This directly contradicts the work by Lucas et al. (1979),

who showed that all four of the damselfishes tested

(Chromis caerulea, A. polyacanthus, D. aruanus, and N.

azysron) significantly avoided artificial food pellets con-

taining saponins extracted from eggs of Acanthaster sp.,

relative to equivalent food pellets without saponins added.

Taken together, these studies suggest that fishes are able to

detect saponins and find them generally distasteful or

unpalatable compared to a palatable control, but this is not

sufficient to deter fishes from actually feeding on whole

larvae of crown-of-thorns starfish.

Rates of predation upon larvae of Acanthaster sp. varied

among planktivorous damselfishes, but were independent

of predator size. This pattern may be due to prey size

relative to predator size, which can influence prey prefer-

ence in generalist predators (Lafferty and Kuris 2002). For

most fishes, both the size and range of sizes of prey
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consumed generally increase with increasing predator size

(Keast and Webb 1966; Popova 1967, 1978; Nielsen 1980;

Persson 1990; Juanes 1994): larger predators eat larger

prey, whilst the minimum prey size may change only

slightly over a wide range of predator sizes. Further, as fish

typically prefer larger food particles (e.g., Werner and Hall

1974), the comparatively larger larvae of Acanthaster sp.

may be consumed in preference to species with smaller

larvae, including L. laevigata, if they co-occur in the

plankton.

Predators consuming more prey at lower densities

should have a higher attack rate parameter, owing to the

greater initial slope of the line describing their functional

response. Predatory species such as D. aruanus, A. cura-

cao, D. reticulatus, and C. rollandi which have a higher

initial attack rate are likely to be disproportionately

important in reducing effective settlement rates when

Acanthaster sp. populations are at normal, low densities.

Of these, A. curacao may be particularly important in

reducing recruitment of Acanthaster sp., as this species was

found to consume larvae of Acanthaster sp. at a signifi-

cantly higher rate than it consumed larvae of the compar-

ative species, L. laevigata. As densities of larval

Acanthaster sp. increase on a reef, for example during a

mass influx of larvae, those predators with high satiation

limits (e.g., D. aruanus and P. amboinensis) would be most

important in potentially reducing the number of larvae and

therefore effectively reducing settlement rates. When

coupled with field observations that have detected high

larval densities of up to 53.3 individuals m-3 (Suzuki et al.

2016), our results suggest that planktivores could sub-

stantially reduce incoming Acanthaster sp. larvae.

Regarding both initial attack rates and satiation limits, D.

aruanus emerges as the most important of the eleven

damselfish species tested in this study, representing the

most efficient predator of Acanthaster sp. larvae across

both low and high larval densities. In contrast, C.

atripectoralis had a low attack rate and a low satiation

limit, though we also need to take account of variation in

actual abundances of the different predators in different

reef environments.

The planktivorous damselfishes considered in this study

primarily exhibited Type II functional responses, suggest-

ing that they may be capable of consuming sufficient larvae

of crown-of-thorns starfish to effectively suppress settle-

ment rates when larvae are already scarce, thereby con-

tributing to very low natural densities of Acanthaster sp.

This does not mean, however, that the initiation and spread

of outbreaks can be directly attributed to spatial and tem-

poral patterns in the abundance of these damselfishes (and/
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Fig. 4 Predation of

Acanthaster sp. larvae by

Amblyglyphidodon curacao (a,
b) and Pomacentrus

amboinensis (c, d). a,
c Mean ± SE number of prey

consumed at each density; the

Type III functional response

(Hassell et al. 1977) where

attack rate increases with prey

density. b, d Proportional

mortality of Acanthaster sp. at

each density, and curve

generated from second-order

logistic regression analysis
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or other planktivorous organisms), because very high

densities of larvae, which are a necessary condition for the

rapid and pronounced onset of outbreaks (e.g., secondary

outbreaks), are likely to swamp even the combined con-

sumption capacity of all planktivorous reef fishes

(McCallum 1988). At best, high densities of planktivorous

fishes, especially those species that selectively target larvae

of Acanthaster sp. and are capable of eating very large

numbers of such larvae, may contribute to low densities of

Acanthaster sp. recorded outside of outbreak conditions,

thereby reducing (in part) the incidence of new outbreaks.

If damselfishes, and/or other planktivorous reef fishes,

are important in suppressing local densities of Acanthaster

sp., any extrinsic threats to the abundance or composition

of planktivorous fish assemblages may in turn give rise to

population outbreaks of crown-of-thorns starfish. Impor-

tantly, several of the damselfishes considered in this study

are extremely vulnerable to coral depletion (e.g., Pratchett

et al. 2012). This means that there is a potentially important

feedback loop where high densities of crown-of-thorns

starfish, which effectively remove essential habitat for

coral-dwelling damselfishes (e.g., D. aruanus), may

actually contribute to increased survival of larval starfish

and therefore promote even higher densities of crown-of-

thorns starfish and ever greater coral loss. This may be

important in the formation of primary outbreaks, in which

the population builds up gradually over successive years

(e.g.,, Pratchett 2005).

In conclusion, this study shows that coral reef dam-

selfishes, probably like many other planktivorous reef

fishes, will readily consume larvae of crown-of-thorns

starfish, and each individual fish can eat hundreds of larvae

before becoming satiated. Planktivorous fishes may there-

fore be important in regulating the abundance of crown-of-

thorns starfish by moderating settlement success, and

especially when starfish are in low abundance, potentially

preventing the onset of outbreaks. It remains to be tested

whether large-scale variation in the abundance and diver-

sity of planktivorous fishes may account (in part) for spatial

and temporal patterns of outbreaks of crown-of-thorn

starfish, but high densities of damselfishes are not neces-

sarily, in themselves, insurance against outbreaks of

Acanthaster sp. What is needed is much more focussed

research on the demographics of both low-density (non-
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outbreak) and high-density (outbreak) populations of

crown-of-thorns, estimating not only the rates of repro-

duction, settlement, and mortality, but also considering key

biological interactions that moderate these rates.
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