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Abstract A five-year period (2002–2006) of below-

median rainfall followed by a six-year period (2007–2012)

of above-median rainfall and seasonal flooding allowed a

natural experiment into the effects of runoff on the water

quality and subsequent coral community responses in the

Whitsunday Islands, Great Barrier Reef (Australia). Satel-

lite-derived water quality estimates of total suspended

solids (TSS) and chlorophyll-a (Chl) concentration showed

marked seasonal variability that was exaggerated during

years with high river discharge. During above-median

rainfall years, Chl was aseasonally high for a period of

3 months during the wet season (February–April), while

TSS was elevated for four months, extending into the dry

season (March–June). Coinciding with these extremes in

water quality was a reduction in the abundance and shift in

the community composition, of juvenile corals. The inci-

dence of coral disease was at a maximum during the

transition from years of below-median to years of above-

median river discharge. In contrast to juvenile corals, the

cover of larger corals remained stable, although the com-

position of communities varied along environmental gra-

dients. In combination, these results suggest opportunistic

recruitment of corals during periods of relatively low

environmental stress with selection for more tolerant spe-

cies occurring during periods of environmental extremes.

Keywords Coral community � River runoff � Coral

juveniles � Coral disease � Satellite remote sensing

Introduction

It has long been recognised that key environmental

parameters controlling the local distribution of coral spe-

cies include their exposure to sediment (e.g., Darwin 1851)

and the availability of light (Dana 1853). Following these

early observations has been a large body of literature

serving to further identify physical and chemical environ-

mental conditions that are stressful to corals (see reviews

by Fabricius 2005, 2011; Erftemeijer et al. 2012). The

repeated conclusion has been that eutrophication, a term

taken here to encompass nutrient enrichment, increased

sedimentation and the introduction of toxins related to

human activities, similar to Tomascik and Sanders (1987)

in reference to coral reefs, has resulted in coral community

degradation (Fabricius 2005).

The term eutrophication remains particularly pertinent

to corals as it explicitly acknowledges that stress to colo-

nies is a result of the interactions between many environ-

mental parameters. For example, if one considers the

increased supply of sediments, local hydrodynamics will

determine the balance between the accumulation or

resuspension and removal of settling material (Storlazzi

et al. 2004). The depth of the water will influence the

exposure to wave-driven resuspension (Wolanski et al.

2005), but also light attenuation as a result of turbidity.

Grainsize will influence the effectiveness of corals’ self-
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cleaning mechanisms (Stafford-Smith 1993). In combina-

tion, the availability of nutrients will enhance microbial

activity both within the water column and sediment,

altering the composition of settling material (Bainbridge

et al. 2012), further influencing the energetic cost of self-

cleaning, limiting survival of coral recruits (Fabricius et al.

2003) and promoting coral disease (Weber et al. 2006,

2012).

Physiological differences between species govern the

ability to maintain a positive energy balance along envi-

ronmental gradients (Anthony and Connolly 2004), e.g., the

efficiency of sediment shedding (Rogers 1983; Stafford-

Smith 1993) and the ability to utilise a range of energy

sources (Anthony and Fabricius 2000). Such physiological

differences likely explain observed changes in species

composition of coral communities along environmental

gradients such as light availability, exposure to sedimenta-

tion and water movement (Loya 1976; Rogers 1979;

Sheppard 1982; Kleypas et al. 1999). Within species, this

‘niche’ may be broad as physiological (Falkowski et al.

1990; Anthony and Fabricius 2000; Hennige et al. 2008) and

morphological (Todd 2008) plasticity allows individual

corals to acclimate to local environmental conditions. As a

result, coral communities within a particular location will be

both adapted but also acclimated to those conditions,

meaning that species-specific tolerances will vary as a

function of a coral’s environmental setting (as discussed by

Erftemeijer et al. 2012). The susceptibility to eutrophication

also varies among life-history stages with egg production,

fertilisation, settlement and postsettlement survival all sen-

sitive to substantially lower levels of sediment and/or

nutrient exposure than adult colonies (Fabricius 2005, 2011).

Degradation of coral reef communities in response to

acute increases in sediment supply, such as those caused by

dredging, is well documented (Erftemeijer et al. 2012), as

are those resulting from severe eutrophication in associa-

tion with local nutrient discharges (e.g., Walker and

Ormond 1982; Pastorok and Bilyard 1985; Loya 2004).

Responses of coral communities attributed to chronic

degradation of environmental conditions have largely been

inferred from observed differences in community attributes

such as species composition, coral cover, colony size dis-

tributions, incidence of disease, or abundance of space

competitors along environmental gradients (e.g., Tomascik

and Sanders 1987; Sutherland et al. 2004; Fabricius et al.

2005, 2012; Dikou and van Woesik 2006; Kline et al. 2006;

De’ath and Fabricius 2010; Golbuu et al. 2011). In most

cases, environmental condition was assumed to have

deteriorated; however, such changes were rarely demon-

strated. At the scale of regions (10’s of km), evidence for

the degradation of coral communities as a consequence of

chronic eutrophication has remained difficult to demon-

strate (Fabricius 2005).

Coral reefs in the inshore area of the Great Barrier Reef,

Australia (GBR), are situated in naturally turbid waters, as

fine terrigenoclastic sediment is continuously resuspended

by prevailing south-easterly winds and tidal currents

(Larcombe et al. 1995, 2001; Wolanski et al. 2005; Orpin

and Ridd 2012). In addition, suspended solids, nutrients,

pesticide residues and other contaminants are delivered by

catchment runoff during seasonal flooding of adjacent

rivers (Devlin and Brodie 2005; Devlin and Schaffelke

2009; Brodie et al. 2010) and reach the inshore reefs

(McCulloch et al. 2003; Jupiter et al. 2008; Kennedy et al.

2012; Bainbridge et al. 2012; Devlin et al. 2012). Since

European colonisation, the loads of sediment, total nitrogen

and total phosphorus transported to the coastal GBR as

runoff are estimated to have increased by factors of 5.5, 5.7

and 8.9, respectively (Kroon et al. 2012). These additional

pollutant fluxes accumulate in the inshore environment

contributing to the turbidity and nutrient stocks for periods

of months to years (Luick et al. 2007; Wolanski et al. 2008;

Lambrechts et al. 2010; Andutta et al. 2011; Brodie et al.

2012; Fabricius et al. 2013), and have been implicated in

the decline of inshore coral communities (Brodie et al.

2012).

Despite clear evidence for differences in coral reef

communities that correspond to environmental conditions

within the turbid inshore zone of the GBR (van Woesik

et al. 1999; Fabricius et al. 2005, 2012; DeVantier et al.

2006; Cooper et al. 2007; De’ath and Fabricius 2010;

Browne et al. 2010, 2012; Uthicke et al. 2010), it remains

difficult to directly demonstrate that coral communities

have changed as a response to increased pollutant fluxes.

The lack of baseline data against which current coral

communities and water quality can be compared has been

problematic. At a small number of locations, palaeoeco-

logical data allow comparisons between historical and

present-day coral communities. Roff et al. (2013) describe

the loss of staghorn Acropora species that persisted for

hundreds of years—a change they interpret as resulting

from increased sediment and nutrient fluxes as a result of

agricultural development on adjacent catchments. In con-

trast, in very turbid waters Perry et al. (2008, 2009) dem-

onstrate the continued persistence of a low diversity

community, albeit limited to very shallow water. The dis-

crepancy between these studies may suggest species-spe-

cific susceptibilities to changed conditions, or differing

degrees of change in conditions between sites.

In this study, we took advantage of a coral community

monitoring dataset that captured the transition between two

climatically distinct periods; a five-year period of below-

median river discharge (2002–2006), followed by six year

of above-median river discharge (2007–2012). The avail-

ability of remotely sensed estimates of total suspended

solids (TSS) and chlorophyll-a (Chl) concentrations over
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this period allowed us to investigate whether increased

river runoff resulted in measurable differences in envi-

ronmental conditions at the regional scale and, if so, how

coral communities responded to these changes. We con-

sider the marked increase in river discharge and any

observed change in remotely sensed water quality as

proxies for increased fluxes of sediments, nutrients and

other contaminants from the adjacent catchments. We then

focus on coral community dynamics as a way of under-

standing the responses of coral communities to eutrophi-

cation of the inshore GBR. The dataset was explicitly

selected because confounding acute disturbances such as

severe storms, coral bleaching, or outbreaks of the coral-

eating crown-of-thorns seastar were largely absent. Over

the period of monitoring, the only acute disturbance was

Tropical Cyclone Ului in 2009, which caused substantial

physical damage to corals at only one of the seven study

reefs.

Methods

Coral community data

Coral community data were collected at seven reefs in the

Whitsunday Islands, located within the turbid inner-shelf of

the central GBR. Sites were selected at locations at which

fringing reefs had developed and were spaced along a

gradient of increasing distance from the mouths of

regionally significant rivers (Fig. 1). At each location, two

sites were selected along contiguous sections of reef slope

and separated by at least 250 m. Within each of these sites,

five 20-m-long transects were deployed along depth con-

tours at both 2 and 5 m below lowest astronomic tide

(LAT). Transects were permanently marked with steel

markers at the mid points and each end. Compass bearings

were recorded at each point of inflection to ensure accurate

relocation between surveys.

Of the seven reefs, Daydream, Double Cone and Pine

were sampled once a year from 2005 to 2012. The

remaining four reefs were sampled in 2005 and 2006 and

then only every other year: Hook and Shute in 2007, 2009

and 2011, and Dent and Seaforth in 2008, 2010 and 2012

(Fig. 1). Sampling was conducted opportunistically during

periods of calm weather and occurred in May (2006, 2011),

June (2007, 2008, 2010), July (2005) and was split between

May and July in 2009 and 2012. Only the disease data were

used from 2005 surveys, as slight inconsistencies in

methodology between the first survey in 2005 and sub-

sequent surveys precluded the use of cover and juvenile

coral estimates. The cover of major benthic groups for each

transect was estimated using the photo point-intercept

method developed by the Australian Institute of Marine

Science (AIMS) for monitoring of coral reef communities

(Jonker et al. 2008). In brief, digital images capturing a

nominal 0.1 m2 of substrate were taken at 50-cm intervals,

and the benthos falling below five evenly spaced points

identified. Only the estimates of hard coral cover were

included in this analysis, with corals consistently identified

to genus.

The abundance of juvenile corals (\10 cm in diameter)

was counted within 34-cm-wide (dive slate width) transects

co-located with the point-intercept transects. Annual sam-

pling was conducted at least five months after the major

summer spawning period on the GBR, and most juveniles

surviving settlement and early postsettlement mortality

were expected to have attained a size available to obser-

vation. Care was taken to exclude colonies considered to

have resulted from the partial mortality or fragmentation of

larger colonies. Possible inconsistencies in taxonomic dif-

ferentiation of very small corals necessitated the pooling of

some genera into the following four groups: Favia, Mon-

tastrea, and Barabattoia; Favities and Goniastrea; Lobo-

phyllia, Symphyllia, and Scolymia; Echinophyllia and

Oxypora. In each case, these groups combine genera from

the same family and species with similar traits; for species

in these groups included in Darling et al. (2012), all were

classified as stress tolerant. For convenience, when these
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Fig. 1 Map of study area. Location of coral (circles) and environ-

mental (triangles) monitoring locations
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taxonomic groups are referred to in following sections,

only the most abundant genus within each group is named.

Instances of coral mortality were recorded within a 2-m-

wide belt along each transect following the ‘scuba search

method’ developed by AIMS (Miller 2003). For each col-

ony suffering recent or partial mortality, the cause of

mortality was classified as either: ‘white syndrome’ where

ongoing mortality and tissue necrosis or discoloration at

the tissue/skeleton interface was observed, ‘brown band’ or

‘skeletal eroding band’ where ciliates were observed,

‘atramentous necrosis’ where tissue was being decomposed

by sulphur-reducing bacteria (Jones et al. 2004), ‘sedi-

mentation’ where tissue beneath sediment deposits was in a

state of decomposition, or ‘unknown’ where no obvious

cause could be determined or entire colonies were recently

dead. In practice, there was a continuum between colonies

classified as either ‘atramentous necrosis’ or ‘sedimenta-

tion’, and these were grouped prior to analysis and here-

after referred to as ‘sediment damage’.

Environmental data

Chl and TSS estimates were extracted from daily MODIS-

Aqua satellite observations from a square of nine, 1-km2

pixels located in optically deep waters as closely adjacent

to coral sampling locations as possible. The average values

of Chl and TSS estimated from these nine pixels consti-

tuted daily estimates over the period 2002–2012 for each

reef.

Chl and TSS concentrations were derived using a

regionally adapted physics-based ocean colour algorithm

(Brando et al. 2012; Schroeder et al. 2007, 2012). This was

necessary because of the significant contribution of ter-

restrial dissolved and particulate organic matter in the

water column, resulting in the frequent failure of MODIS

standard ocean colour algorithms (Qin et al. 2007). Recent

validation results across the entire GBR using ground

observations collected within ±3 h to the satellite mea-

surements showed that for individual points, the error for

the retrieval of Chl and TSS from the regionally adapted

algorithm was ±90 and 70 %, respectively, compared to

errors exceeding 240 % for MODIS standard Chl and TSS

products.

Algorithm performance could not be evaluated in a

similar fashion for our study region due to an insufficient

number of coincident in-situ and satellite observations.

However, for TSS, we had access to two additional datasets

that allowed us to evaluate the magnitude of MODIS-

derived TSS to that observed at the reef sites. At three of

the study reefs (Daydream, Double Cone and Pine; Fig. 1),

WETLabs Eco FLNTUSB turbidity sensors were deployed

at the 5-m-deep coral sites from 2007 onward and recorded

turbidity (in nephelometric turbidity units, NTU) at 10-min

intervals. At these same reefs, water samples were col-

lected close to the sensors and from the surface, mid water

and near-bottom of the water column within 250 m of the

reef at approximately 4-month intervals, again from 2007

onward, from which TSSf (total suspended solids, filtered)

data were derived. The MODIS-derived TSS estimates

were then evaluated by substitution of terms between

model 2 regressions (Legendre and Legendre 1998) of

MODIS TSS with NTU and TSSf with NTU.

To relate variability in TSS to river discharge, TSS

estimates were first standardised for the influence of wave

and tidal conditions at the time of sampling. Tidal range

estimates were the difference between the daily maximum

and minimum in observed sea level values from tide gauge

data supplied by the Queensland Department of Transport

and Main Roads (Fig. 1). Mean wave height for each day

and the three days preceding observations of TSS were

calculated from wave-buoy recordings provided by the

Queensland Department of Environment and Heritage

Protection (Fig. 1).

Daily discharge volumes of the Proserpine, O’Connell

and Pioneer rivers were obtained from the Queensland

Department of Natural Resources and Mines. These three

rivers enter the ocean to the south of the study area (Fig. 1),

with plumes merging to become indistinguishable from

each other at the study locations (Brodie et al. 2012;

Schroeder et al. 2012). As a point of reference, long-term

median discharges were estimated from records from 1967

to 2000 (Proserpine River), 1971–2000 (O’Connell River)

and 1979–2000 (Pioneer River).

The proportion of reef sediments with grainsizes

\63 lm was estimated from five 1-cm-deep sediment

cores collected from available surface deposits along each

5-m-deep coral site at the time of coral surveys. The

grainsize distributions of the samples were estimated by

MALVERN laser analysis of the portion of samples that

passed through a 1-mm sieve.

Data analysis

Chl and TSS data were explored graphically to identify the

duration of influences attributable to river discharge. The

relationships between observed Chl and TSS over these

identified periods and the discharge of local rivers were

assessed with generalised additive mixed models (GAMM;

Wood 2006). The mean concentrations of Chl and TSS for

each reef and each year were modelled against the cumu-

lative discharge from the beginning of the water year (1

October) to the end of April for Chl, and to the end of June

for TSS. To account for the inherent auto-correlation of

means from the same locations, a random-effect term ‘reef’

was included. As turbidity is strongly influenced by

resuspension, the TSS estimates included in the GAMM
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were first standardised for the predictable influence of

resuspension by separately fitting generalised additive

models (GAM; Wood 2006) including terms for ‘tidal

range’, ‘average wave height’ and ‘average wave height

over the preceding 3 days to the TSS observations for each

reef.

The influence of environmental conditions on variation

in the coral community attributes: density of juvenile

corals, coral cover and disease incidence was investigated

with linear models. For each community attribute, reef-

level means were modelled against the three environmental

variables: mean Chl, mean TSS and mean proportion of

fine sediment. Model selection based on Akaike’s infor-

mation criterion values was used to identify any environ-

mental variable contributing to the variation in the coral

community attributes between reefs.

Differences in univariate community attributes between

depths were assessed with linear mixed-effects models

(LME; Pinheiro et al. 2013) applied to data averaged to

reef and depth. Models included a random-effect term for

reef to account for auto-correlation between communities

at the same reef.

Changes in coral community attributes over the study

period were investigated using separate GAMMs, applied

to each attribute and depth. For coral cover and juvenile

coral densities, these GAMMs included a term for year and

random term for reef. No additional terms for environ-

mental variables were included as both coral cover and

juvenile density are the result of processes operating over

several years. For coral disease, separate models including

terms for annual estimates of Chl, TSS or the proportion of

sediments with grainsizes less than 63 lm were assessed.

For these analyses, Chl was averaged over the months of

February–April while TSS was averaged over the months

of March–May. This period was one month shorter than the

period when TSS was identified to be influenced by runoff

(March–June) and was used because in several years the

disease surveys were completed in May. For each reef and

depth combination, disease incidence was scaled to a dis-

tribution with a mean = 0 and a standard deviation = 1 to

account for differences in disease susceptibility because of

compositional differences between communities.

Analyses of multivariate genus-level juvenile and coral

cover data were based on Bray–Curtis dissimilarities

between square-root-transformed observations (Bray and

Curtis 1957). The unconstrained structure in communities

was visualised in bi-plots of reef and genus scores against

the first two axis of principal coordinates analyses (PCoA;

Legendre and Legendre 1998). The influence of depth, Chl,

TSS and sediment grainsize composition was analysed with

permutational MANOVA models (Anderson 2001), fitted

separately for each combination of environmental variable

and community type. For these analyses, community data

and environmental variables were averaged over years to

avoid any issues of auto-correlation between observations

from the same reefs. As the focus was on consistent

changes in community composition rather than abundance,

as investigated by univariate analyses, data were stand-

ardised by dividing the transformed genus-level abun-

dances by the sum of the transformed abundances for that

reef. When permutational MANOVA tests indicated the

significant influence of an environmental parameter,

canonical analyses of principal coordinates (CAP; Ander-

son and Willis 2003) were used to identify genera corre-

sponding to those environmental conditions. Change in

community composition through time was analysed by

permutational MANOVA including a term for year and

with permutations limited to occur within reefs. Genera

demonstrating correlations with time were identified on the

basis of their scores against the canonical axis of a partial

CAP, which first removed spatial variability in community

composition attributed to different reefs (Oksanen et al.

2013).

Results

Influence of river discharge on water quality

The combined long-term median annual discharge of the

O’Connell, Proserpine and Pioneer Rivers was 518 GL.

From 2002 to 2006, discharge was consistently below this

median, while from 2007 to 2012 discharge was well above

the median (Fig. 2). It was on the basis of this difference

that we categorised the pre-2007 years as ‘Dry’ and 2007

to 2012 as ‘Wet’.

Remotely sensed TSS and Chl concentrations, while

variable, were seasonally high during and following the

summer wet season (Fig. 3). Over the months February to

April, the mean wet period Chl concentration was

0.53 lg l-1 and 31 % higher than during the dry period.

Over the months March to June, the wet period TSS was

1.47 mg l-1 and 51 % higher than during the dry period.

Simultaneous solving of model 2 regressions: log(TSS) =

-0.026 ? l.0628*log(NTU) with R2 = 0.54, and

log(TSSf) = 0.27 ? l.1.216*log(NTU) with R2 = 0.76,

demonstrated that TSSf sampled close to the reef was

higher than TSS estimated from MODIS in open water.

Wet period TSSf was estimated at 2.17 mg l-1 with 95 %

confidence intervals of 1.75 to 2.62 mg l-1.

Both TSS and Chl concentrations showed a significant

relationship with river discharge (Fig. 4a, b). The rela-

tionship between TSS and discharge levelled out at the

extremely high discharge values observed during 2011

(Fig. 4a). It is important to note that TSS was standardised

prior to analysis to remove any predictable influence of

Coral Reefs (2014) 33:923–938 927
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wave height or tidal range that, in combination, explained

between 21 and 32 % of the variation in TSS observed at

the seven study reefs.

Variation in environmental conditions between reefs

The environmental conditions at the study reefs were

characterised by the two water quality parameters (TSS and

Chl) and by the grainsize of sediments. TSS and Chl were

significantly different between reefs; however, these dif-

ferences were relatively small compared to the temporal

variability within the reefs (Fig. 5a, b). For TSS, con-

trasting means for each reef against Daydream indicated

higher levels at Pine (p \ 0.001) and lower levels at Hook

(p \ 0.001), Double Cone (p \ 0.001) and Seaforth

(p = 0.011). For Chl, Double Cone (p = 0.005), Hook

(p \ 0.001) and Seaforth (p = 0.025) had lower mean

concentrations than Daydream. These differences in mean

conditions between reefs only accounted for 7 % (TSS) and

3 % (Chl) of the overall variability observed. In contrast,

between-reef differences in the proportion of sediment with

a grainsize \63 lm accounted for 72 % of the variability

in that dataset. Double Cone (p = 0.006), Hook

(p = 0.001) and Seaforth (p = 0.005) had a lower pro-

portion of sediment with grainsize \63 lm than Day-

dream; the grainsize distributions at the remaining reefs did

not differ from Daydream (Fig. 5c).

Separate linear models relating the reef-level mean for

each of the three environmental variables to the coral

community attributes of mean coral cover and mean

juvenile density at each of the 2 and 5 m depths revealed

no relationships (p [ 0.1 for all 12 models).

Variation in coral reef community attributes

Over the period of our study, the density of juvenile corals

declined (Fig. 6a, b). In contrast, there was no consistent

trend in coral cover (Fig. 6c, d). At 2 m depth, there was a

rapid increase in coral cover at Double Cone and Shute

between 2010 and 2012. These increases largely reflect

changes in the cover of Acropora that accounted for 80 %

of the increase in cover from 33 to 46 % at Double Cone

and 74 % of the increase in cover from 35 to 43 % at

Shute. In contrast, the decline in cover at both depths at

Daydream was almost entirely due to reductions in cover of

branching Acropora species as a result of damage incurred

Fig. 2 Combined daily discharge of the O’Connell, Pioneer and Proserpine Rivers. Numbers indicate the total annual discharge (GL) based on

water years (1 October–31 September)
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during the passage of Tropical Cyclone Ului in early 2009.

At all other sites, only minimal changes in cover were

observed.

Variation in coral disease

The incidence of disease varied among reefs (Table 1);

‘white syndrome’ at 5 m depth was positively correlated

with the proportions of fine-grained sediments (p = 0.001,

R2 = 0.88) while ‘unknown scarring’ was more prevalent

on reefs with high proportions of fine-grained sediments at

both 2 m (p = 0.017, R2 = 0.65) and 5 m (p = 0.038,

R2 = 0.53) depths. The distributions of ‘white syndrome’

and ‘unknown scarring’ show broad similarities, and as

there is potential inconsistency in the differentiation

between these classifications, we have combined the

response of these for presentation (Fig. 7a). The relation-

ship between both ‘white syndrome’ and ‘unknown scar-

ing’ with fine sediments was primarily driven by high

incidences at the two reefs with highest cover of branching

growth forms of the genus Acropora: 5 m depths at Day-

dream (mean Acropora cover 25.4 %) and Dent (mean

Acropora cover 12.3 %). The combined category ‘sedi-

ment damage’ at 5 m depth was positively associated with

TSS concentration (p = 0.018; Fig. 7b). This relationship

was strongly influenced by the highest disease incidence at

the most turbid site, Pine Island, where corals are mostly of

massive or laminar growth form and accumulation of

sediment onto living corals was observed over a wide range

of genera.

The highest incidence of disease was observed in 2007

and 2008 (Fig. 8a), reflecting the high incidence of ‘white

syndrome’, ‘brown band disease’, ‘unknown scaring’ and

‘skeletal eroding band’ variously among reefs (Fig. 8b–e).

Overall, incidence of disease was higher in 2007 than in

either 2005 (p = 0.009), 2006 (p = 0.018) or 2009

(p = 0.02). This maximum was coincident with the
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Fig. 5 Environmental variables at study reefs, a total suspended

solids (TSS; March–June), b chlorophyll-a (Chl; February–April) and

c proportion of sediments with grainsizes \63 lm. Boxes represent

the median and second and third quartiles of all observations of TSS

and Chl from 2003 to 2012 and from 2007 to 2012 for Grainsize;

whiskers extend to twice the interquartile range of the data
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transition from the Dry to the Wet climactic period. Sub-

sequent observations indicated no further increase in dis-

ease despite higher river discharges in subsequent years

(Fig. 2). Relationships between disease incidence and

changes in environmental conditions were only observed

between the ‘sediment damage’ categorisation and both

total discharge (at 5 m p = 0.002, R2 = 0.18; at 2 m

p = 0.002, R2 = 0.15) and mean TSS (at 5 m p \ 0.001,

R2 = 0.19; at 2 m p = 0.01, R2 = 0.1).

Responses of coral community composition to changes

in water quality

The composition of coral communities differed both

between reefs and between depths within reefs (Fig. 9).

Constrained analyses found no strong relationship between

juvenile community composition and environmental con-

ditions (Tables 2, 3). Rather, the spread of observations

from each reef–depth combination in the unconstrained

analysis demonstrates the variability in the composition of

juvenile assemblages through time (Fig. 9a; Table 2). The

genera identified as declining most consistently over the

period of the study (Table 3) were largely aligned with the

first principal coordinate, demonstrating that changes in

composition of communities over the period of the study

were more consistent than, or aligned with, any unresolved

environmental variable structuring these assemblages

(Fig. 9b). The second principal coordinate aligns with

those genera showing the most consistent variation with

depth (Fig. 9b; Table 3).

In contrast to the juvenile communities, the composition

of coral cover at each reef was less temporally variable
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Table 1 Incidence of coral

disease

Values are the number of

colonies observed within

400 m2 belts (sum of the ten

40 m2 transects at each depth)

averaged over all observations

between 2005 and 2012

Reef Depth

(m)

Brown

band

Skeletal eroding

band

Sediment

damage

Unknown

scarring

White

syndrome

Daydream 2 4.4 0.1 0.5 19.8 4.1

5 2.5 0.5 3.2 22.5 23.2

Dent 2 2.4 1.6 0.2 15.6 7

5 4.2 1 1.8 15.8 9.6

Double

cone

2 0.5 0.5 1 11.2 3.1

5 0.1 1.6 1.8 12.4 2

Hook 2 0.6 1.2 0.4 5.4 0.8

5 0 0 1.4 2.4 0.8

Pine 2 0.2 0.1 7.9 13.1 4.9

5 0.5 0.2 14.2 9.9 6

Seaforth 2 0 0 0 4.6 0.4

5 0 0 0.2 5.6 0.8

Shute 2 0.2 0.6 1.8 7 2

5 0.4 0 4.8 8.6 2.4
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(Fig. 9c; Table 2). Acropora was the only genus to show a

consistent decline over the period of the study, and this was

more pronounced at 5 m than at 2 m depths (Table 3). The

first principal component strongly aligned with the cover of

Acropora and Goniopora, the genera that most influenced

the observed difference in composition between depths

(Table 3). The composition of coral cover also varied in

response to differences in TSS concentration (5 m only)

and the proportion of fine-grained sediments in reefal

substrata (Table 2). In contrast to Acropora and Gonio-

pora, the remaining genera showing relationships to TSS

and the sediment composition (Galaxea, Pavona, Pectinia

and Porites; Table 3) were aligned with the second prin-

cipal component of the unconstrained ordination (Fig. 9d).

Discussion

The change between a period of below-median discharge to

a period of above-median discharge and flooding of local

rivers resulted in higher Chl and TSS concentrations and

concomitant coral community responses. Our observations

were consistent with the general concept that variable

selection pressure along environmental gradients influences

the composition of coral communities. However, the vari-

ability in response among reefs reiterates some of the

issues that limit a clear demonstration of coral community

responses to chronic eutrophication at regional scales.

Short time series of turbidity document the strong

influence of wave-driven resuspension on turbidity in

coastal waters of the GBR (Larcombe et al. 1995), leading

to ongoing debate as to the magnitude of influence that any

additional flux of materials from rivers could have on the

conditions experienced by corals (Orpin and Ridd 2012).

For the Whitsunday Region, the decade-long MODIS-Aqua

time series demonstrated that Chl and TSS concentrations

in waters surrounding inshore coral reefs were influenced

by river discharge. The prolonged (months) elevation of

TSS supports emerging evidence that flood-derived fine

sediments are retained within the inshore GBR (Lamb-

rechts et al. 2010; Fabricius et al. 2013), as shown else-

where (Draut et al. 2009), and add to turbidity as a result of

repeated resuspension until being winnowed away by wave

and tidal activity (Storlazzi et al. 2009). The demonstrated

relationship between discharge of local rivers and Chl

reiterates the relationship between runoff and the avail-

ability of nutrients in coastal waters (Furnas et al. 2005,

2011; Wooldridge et al. 2006).

The exposure of corals to stressful conditions associated

with a higher concentration of TSS varies as a result of
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interactions between local hydrodynamics and depth as

determinants of rates of sedimentation and light attenuation

(Wolanski et al. 2005; Storlazzi et al. 2009), but also the

susceptibility of the corals present (Rogers 1983; Erfte-

meijer et al. 2012). While teasing apart such fine-scale

processes was beyond the scope of our data, in general it

could reasonably be assumed that observed increases in

TSS would have resulted in both an increased sediment

flux and reduction in light at the substrate level. Light

attenuates in water exponentially as a function of the light

attenuation coefficient of the water and depth in metres,

with the type and concentration of suspended matter

influencing the light attenuation coefficient of turbid waters

(Van Duin et al. 2001). For three of the reefs monitored in

this study, Cooper et al. (2007) estimate attenuation coef-

ficients, the mean of which was 0.2055. Using this atten-

uation coefficient at mid-tide (LAT ?1.5 m), our 2-m sites

would receive 49 % of surface irradiation and our 5-m sites

26 %, demonstrating the potential stress associated with

reduced light availability over even this small depth range.
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The partial contribution of TSS to the attenuation coeffi-

cient is variable within the literature; however, the value of

0.067*TSS reported by Devlin et al. (2008) is within the

bounds of those reported elsewhere (e.g., Van Duin et al.

2001). Using this partial contribution of TSS to adjust the

attenuation coefficient implies a further reduction of sur-

face light to *20 % at our 5-m sites as result of the pro-

portional increase in TSS we observed. This level of

surface light attenuation is approaching the limit for reef

development of 6–8 % reported by Cooper et al. (2007),

and the lower limit for corals in general in the range of

2–8 % reported by Titlyanov and Latypov (1991). In

combination, the observed increases in Chl and TSS

demonstrate the increased exposure of these reefs to

catchment-derived contaminants, including the likelihood

for exposure to other contaminants such as pesticides that,

while not measured here, have been shown to correlate to

runoff within the GBR (Kennedy et al. 2012).

The influence of the ‘first flush’ of the rivers in this

region was evident in our coral disease records with disease

incidence at a maximum in 2007, following the first

drought-breaking rains after a period of dry years. The

timing of maximum disease incidence demonstrates the

selective pressures associated with environmental

extremes, with susceptible colonies that had persisted

during conditions of lower Chl and TSS concentrations

dying as water quality declined. This conclusion is sup-

ported by reports of increased disease prevalence in

response to stress associated with floods, increased nutrient

availability and sedimentation (Bruno et al. 2003; Ha-

apkyla et al. 2011, 2013; Lesser et al. 2007; Weber et al.

2006, 2012; Vega Thurber et al. 2014).

The absence of a continued increase in coral disease at

higher river discharges was consistent with our observa-

tions of a levelling of the relationship between TSS and

discharge. Rivers’ TSS loads may be decoupled from dis-

charge volume as a result of the timing of peak flows

within individual wet seasons or within longer-term cli-

matic cycles that alter the availability of erodible and

mobile sediment within the catchments (e.g., Kuhnert et al.

2012). The peak discharge occurred in 2011 after four -

years of above-median flows, which is likely to have flu-

shed out available sediments that had accumulated during

the preceding dry period as well as resulting in higher

vegetation cover in the catchments, thus reducing the

availability of sediments to erosional processes. A further

consideration is that susceptible colonies had died on first

exposure to sufficiently stressful conditions, resulting in the

remaining community being less susceptible to subsequent

exposure to similar conditions. Our estimates of disease

incidence were potentially confounded by the slight sea-

sonal differences in the timing of surveys. The three years

2005, 2009 and 2012 for which sampling was undertaken

in July returned the lowest overall precedence of disease, a

result consistent with lower winter prevalence of ‘ulcera-

tive white spots’ and ‘white syndrome’ (Haapkyla et al.

2010) and of ‘atramentous necrosis’ (Jones et al. 2004),

though contrasting with a higher incidence of ‘brown band

disease’ in winter (Haapkyla et al. 2010). However, we also

observed a similarly low incidence of disease during the

earliest sampling of May 2006, detracting from seasonal

confounding as an explanation of our observed patterns of

disease incidence.

The reduction in density and change in assemblage

composition of juvenile corals over the study period was

consistent with the well-documented sensitivity of early

life-history stages of corals to eutrophication (Fabricius

2005, 2011; Erftemeijer et al. 2012). That the responses of

the juvenile communities were more pronounced at 5 m

than at 2 m depth was consistent with the expected com-

pounding of reduced light availability and increased

deposition of sediments with increasing depths (Wolanski

et al. 2005; Cooper et al. 2007). This was particularly

Table 2 Results of permutational MANOVA of the responses of

coral community attributes to depth, water quality and time

Depth F (model) R-square P([F)

Juveniles 1.681 0.123 0.02

Cover 1.056 0.081 0.029

Chlorophyll F R-square P([F)

Juveniles (2 m) 1.206 0.194 0.218

Juveniles (5 m) 0.960 0.161 0.534

Cover (2 m) 0.991 0.165 0.444

Cover (5 m) 1.616 0.244 0.115

TSS F R-square P([F)

Juveniles (2 m) 1.037 0.215 0.125

Juveniles (5 m) 0.745 0.130 0.771

Cover (2 m) 1.334 0.211 0.215

Cover (5 m) 1.898 0.275 0.033

Fine sediment F R-square P([F)

Juveniles (2 m) 1.039 0.172 0.398

Juveniles (5 m) 1.055 0.174 0.403

Cover (2 m) 2.438 0.328 0.02

Cover (5 m) 2.183 0.304 0.009

Time F R-square P([F)

Juveniles (2 m) 1.703 0.046 0.001

Juveniles (5 m) 3.810 0.098 0.001

Cover (2 m) 0.523 0.015 0.052

Cover (5 m) 0.461 0.013 0.047

Each row represents a separate analysis of log-transformed genus-

level observations of mean coral cover or juvenile density over the

years 2006–2012 from each reef and depth sampled. Depth was a

categorical variable differentiating communities at 2 and 5 m below

lowest astronomical tide. The other environmental variables were

averaged over all available data from each reef

Coral Reefs (2014) 33:923–938 933

123



pertinent as our study reefs were located in sheltered

locations prone to the accumulation of fine sediments at

5 m depth: a point demonstrated by high proportions of

clay and silt-sized fractions in sediments. Indeed, although

unquantified, it was the observation of increased accumu-

lation of fine sediments from 2007 that prompted this

study. Such conditions have been shown to be particularly

detrimental to the settlement of coral larvae, which require

suitable stable substratum (Babcock and Mundy 1996;

Birrell et al. 2005) as well as chemical settlement cues

associated with specific benthic bio-films on that substra-

tum (Negri et al. 2001; Webster et al. 2004; Tebben et al.

2011).

Comparing the responses between juvenile and adult

communities provides insight into the processes governing

coral community composition and dynamics in the study

area. For both juvenile and coral cover assemblages, the

composition of communities varied between the 2 and 5 m

depths, demonstrating the selective pressure of light

availability and exposure to sedimentation. There were,

however, few genera that showed consistent preference for

the 2 or 5 m depths; Acropora was the only genus con-

sistently having both higher numbers of juveniles and

higher cover at 2 m compared with 5 m depth. Acropora

was also the only genus to show declines over the study

period in both juvenile abundance and cover at both depths.

These clear indications of a preference for lower exposure

to eutrophication were at odds with the positive relation-

ship of Acropora cover at 5 m depth with TSS and at both

depths with the proportion of fine grainsizes in sediments.

The Acropora community on these reefs was dominated by

branching species (predominantly A. muricata and A.

micropthalma) that form thickets on sheltered reef crests.

These thickets appear to tumble down the reef slope as they

grow, which might explain their presence where juvenile

densities were low. In contrast to the predominance of

branching Acropora species in cover, the majority of

juvenile Acropora observed were species that develop

corymbose growth forms and from our observations within

the turbid waters of the GBR, as a group, suffer high

incidence of disease and appear to be transient in the

communities studied here.

Interpreting the observed relationships between cover of

individual genera and environmental conditions was con-

founded by the highly variable composition of communi-

ties between reefs, the limited number of study reefs and

differences in environmental conditions suggesting vari-

able exposure to environmental stressors. The majority of

Table 3 Results of canonical

analysis of principal coordinates

Coral genera for which juvenile

density or cover corresponded

to the constraining canonical

axis for each analysis are

presented along with their

weightings on the canonical

axis. Only community and

environmental variable

combinations for which the

permutational MANOVA

indicated significant effects of

environmental variable, p values

\0.05 (Table 2), are

represented. Only genera with

weightings [±0.15 are

included. The sign of the

weightings indicates either a

positive or negative relationship

with the constraining variable

Genus Depth TSS Fine sediment Time

Juveniles Cover Cover

5 m

Cover

2 m

Cover

5 m

Juveniles

2 m

Juveniles

5 m

Cover

2 m

Cover

5 m

Acropora -0.18 -0.35 0.17 0.54 0.48 -0.33 -0.52 -0.17 -0.30

Cyphastrea -0.18 -0.17

Echinopora

Favia -0.15

Fungia -0.22

Galaxea 0.20 0.22

Goniastrea -0.22 -0.20

Goniopora 0.32 -0.27 -0.32 -0.22

Leptastrea -0.20

Lobophyllia -0.18 -0.28

Montipora -0.17

Moseleya 0.15

Mycedium

Oxypora

Pachyseris

Pavona -0.20 -0.27 -0.17

Pectinia 0.24 0.17 -0.31

Pocillopora 0.18

Podobacia -0.18

Porites -0.22 -0.29 -0.29 -0.18 -0.15

Turbinaria

% Variance

explained

37.6 29.2 27.5 32.3 30.4 10.3 17.3 4.2 4.9
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genera we identified as varying along environmental gra-

dients could be categorised as having high cover at only

one or two reefs compared to low to very low cover else-

where. A combination of more locations, spread across

longer environmental gradients, would improve confidence

in assigning distributions of individual genera to environ-

mental parameters.

The changes in the taxonomic composition of commu-

nities through time were more informative. Within the

juvenile community, 11 genera declined at one or both 2

and 5 m depths compared to just one genus, Pocillopora,

which increased in abundance at 2 m depths. Pocillopora is

particularly susceptible to coral bleaching (Marshall and

Baird 2000). Reefs in this region were moderately bleached

by high temperatures in 2002, and it is possible that the low

initial numbers of juvenile Pocillopora were related to the

loss of local broodstock during this event. The consistency

of decline among other genera implies a limitation to

recruitment. In contrast, with the exception of a decline in

Acropora, the composition of cover remained remarkably

stable, implying that the majority of colonies present were

tolerant of the environmental conditions over the period of

high river discharge. This is unsurprising given the large

size of many corals, which indicates their tolerance to past

fluctuations in environmental conditions.

Our study demonstrates that selective pressures manifest

during environmental extremes and vary along depth-gra-

dients and between the life-history stages of corals. Despite

this generalisation, exposure to stressful conditions result-

ing from increased runoff will vary in response to unique

combinations of site-specific hydrodynamics, historical

disturbance regimes (Harmelin-Vivien 1994), proximity to

rivers and the runoff characteristics of those rivers. High

rates of sedimentation are generally detrimental to corals

(Fabricius 2005, 2011; Erftemeijer et al. 2012). However,

these high rates of sedimentation require a combination of

supply in the form of high concentrations of suspended

particles, measurable as high turbidity, coupled with a low

energy hydrodynamic setting that allows these particles to

settle and accumulate (Wolanski et al. 2005). While such

conditions were typical of the reefs included in this study,

even here, shallow water coral communities were less

affected by the altered conditions than communities in

deeper water. From a regional perspective that recognises

individual reefs as supporting small populations of coral

taxa belonging to regionally connected meta-populations, it

is important that generalisations relating to the effects of

runoff be made at the appropriate scale. Studies focused

only on reefs in relatively shallow areas exposed to fre-

quent wave energy may overestimate the resilience of

communities, while studies in areas predisposed to high

rates of sedimentation, such as those at our deeper sites,

may underestimate resilience. We suggest that the careful

interpretation of community dynamics in the context of

detailed environmental data is necessary to tease apart the

influence of environmental degradation from naturally

varying environmental condition. Further, our data suggest

that the primary response to runoff in this region was the

result of the short-term (months) exceedance of ambient

environmental conditions as a result of pollutants delivered

as runoff during high flow conditions. That community

selection appeared to occur during extreme conditions,

while entirely logical, is a key point demonstrated by our

work. The implication is that observations during periods

of relatively benign conditions will almost certainly doc-

ument community dynamics divorced from selective

processes.
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