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Abstract Marine dinoflagellates in the genus Symbiodi-

nium are primarily known for their symbiotic associations

with invertebrates and protists, although they are also found

free-living in nanoplankton and microphytobenthic com-

munities. Free-living Symbiodinium are necessary for hosts

that must acquire their symbionts anew each generation and

for the possible reestablishment of endosymbiosis in

bleached adults. The diversity and ecology of free-living

Symbiodinium are not well studied by comparison with their

endosymbiotic counterparts, and as a result, our under-

standing of the linkages between free-living and endosym-

biotic Symbiodinium is poor. Here, we begin to address this

knowledge gap by describing the genetic diversity of

Symbiodinium in the surface water and reef sediments of

Hawai‘i and Florida using Symbiodinium-specific primers

for the hypervariable region of the chloroplast 23S domain V

(cp23S-HVR). In total, 29 Symbiodinium sequence types

were detected, 16 of which were novel. The majority of

Symbiodinium sequence types in free-living environments

belonged to clades A and B, but smaller numbers of sequence

types belonging to clades C, D, and G were also detected.

The majority of sequences recovered from Hawai‘i belonged

to clades A and C and those from Florida to clade B. Such

distribution patterns are consistent with the endosymbiotic

diversity previously reported for these two regions. The

ancestral sequence types in each clade were typically

recovered from surface water and sediments both in Hawai‘i

and Florida and have been previously reported as endos-

ymbionts of a range of invertebrates, suggesting that these

types have the capacity to exploit a range of very different

habitats. More derived sequence types in clades A, B, C, and

G were not recovered here, suggesting they are potentially

restricted to endosymbiotic environments.

Keywords Symbiodinium � Dinoflagellate �
Chloroplast ribosomal 23S � Hypervariable region

of DomainV (cp23S-HVR)

Introduction

The genus Symbiodinium is a diverse group of unicellular

dinoflagellates best known for their endosymbiotic inter-

actions with scleractinian corals and other marine inver-

tebrates and protists. Genetic studies have revealed that the

genus Symbiodinium is comprised of nine major groups or

clades named clades A–I that each contains multiple sub-

clade types (Pochon et al. 2006; Pochon and Gates 2010).

This taxonomic diversity is reflected in differences in the

functional attributes of Symbiodinium. The nature and

composition of endosymbiotic unions, therefore, influence

host characteristics such as growth rates, reproductive

output, and thermal tolerance (Kinzie and Chee 1979; Fitt

1985; Rowan et al. 1997; Rowan 2004; Little et al. 2004;

Stat et al. 2008). Coral–Symbiodinium associations are

essential to the survival of the host and underpin the

productivity and calcification that creates habitat for the
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immense biodiversity that coral reefs support (e.g., Musca-

tine and Porter 1977). The perpetuation of these endosym-

bioses through time is therefore central to the maintenance of

functional integrity in the coral reef ecosystems.

The majority of scleractinian corals produce asymbiotic

gametes and larvae that must acquire Symbiodinium from the

environment anew each generation (Harrison and Wallace

1990). This mode of endosymbiont acquisition, also called

horizontal transmission, requires that Symbiodinium be pres-

ent and available for acquisition in the free-living compart-

ments of coral reef environments (sediments and surface

water). These free-living Symbiodinium have also been pro-

posed to be a source for replenishing endosymbiotic com-

munities in hosts recovering from bleaching (Buddemeier and

Fautin 1993; Baker et al. 2008). Although pivotally important

to coral reef ecology, our understanding of free-living Sym-

biodinium diversity and ecology is still limited.

Nano-sized dinoflagellates (2–20 lm) are common in

both planktonic and benthic communities (Li 2002; Werner

et al. 2008). Free-living Symbiodinium in these communi-

ties have been examined using asymbiotic invertebrate

hosts as collectors (Kinzie et al. 2001; Coffroth et al. 2006)

and by isolating, culturing, and genotyping Symbiodinium-

like cells from environmental samples (Carlos et al. 1999;

Gou et al. 2003; Coffroth et al. 2006; Hirose et al. 2008b;

Porto et al. 2008). Asymbiotic hosts typically acquire one

or a few specific Symbiodinium genotypes (Baker 2003;

LaJeunesse et al. 2004a; Stat et al. 2009) rather than

visualizing the full diversity present in the environment.

Similarly, diversity estimates using culturing approaches

are confounded by the fact that only a subset of Symbi-

odinium types are easily culturable (Santos et al. 2001;

Coffroth et al. 2006; Hirose et al. 2008b). Interestingly, the

majority of free-living Symbiodinium types that have been

successfully cultured belong to clades A and B, and some

of these have not been identified as endosymbiotic types in

these clades. This suggests that Symbiodinium types within

the same clade may have very different habitat preferences

and may be restricted to either free-living or endosymbiotic

mode of living (Carlos et al. 1999; Coffroth et al. 2006;

Hirose et al. 2008b; Porto et al. 2008). Microscopy, flow

cytometry, and genetics are all common methods used to

describe the diversity and abundance of specific taxa in the

nanoplankton and microphytobenthic communities (Dı́ez

et al. 2001; Moreira and López-Garcı́a 2002; Unrein et al.

2005; Werner et al. 2008). Recent studies applying these

approaches to free-living Symbiodinium have revealed that

they are present in high densities in reef sediments and

water column (Littman et al. 2008) and that free-living

Symbiodinium communities are diverse and contain repre-

sentatives in clades A, B, and C (Pochon et al. 2010).

The distributions of free-living Symbiodinium types are

of interest at all spatial scales, especially in relation to the

biogeographic patterns that are relatively well character-

ized for endosymbiotic Symbiodinium (LaJeunesse 2002;

Baker 2003; LaJeunesse et al. 2004b; Pochon et al. 2004;

Goulet et al. 2008). Based on the latter, habitat partitioning

and large-scale biogeographic distribution patterns are

expected among free-living Symbiodinium communities.

Habitat partitioning among free-living Symbiodinium types

has been suggested by previous studies (Coffroth et al.

2006; Adams et al. 2009; Pochon et al. 2010) and likely

reflects variability in environmental ranges and habitat

preferences of Symbiodinium. Large-scale biogeographic

patterns of free-living Symbiodinium are also expected and

may correlate with those of endosymbiotic Symbiodinium

depending on the degree to which symbiotic hosts rely on

horizontal acquisition. For example, locations across the

Hawaiian Archipelago may show less overlap between

endosymbiotic and free-living Symbiodinium communities

due to the predominance of symbiotic hosts that perpetuate

endosymbiosis via vertical transmission (Krupp 1983;

Richmond and Hunter 1990). In contrast, an increased

overlap may be more common in the Caribbean, where

most hosts acquire symbionts from the environment (Baker

2003; Coffroth et al. 2006). Here, we investigate this

hypothesis by exploring the diversity and distribution of

Symbiodinium in the surface water and sediments of coral

reefs from sites on two islands in Hawai‘i and the Florida

Keys. The presentation of our data in the context of pre-

vious research also provides a summary of all free-living

Symbiodinium chloroplast 23S domain V hypervariable

region sequences (cp23S-HVR) available to date.

Materials and methods

Collection

Seawater and sediment samples were collected from four

sites in Hawai‘i and three sites in the Florida Keys during

June–July 2008 (Fig. 1, Table 1). The Hawaiian sites and

collection times included Lele‘iwi (N19�44001.1100

W155�01004.5900; 15:30–17:00 h), Puakō (N19�58015.6700

W155�50052.9400; 09:00–10:00 h), and Honokōhau (N19�
40010.4700 W156�01037.4600; 11:00–12:00 h) on Hawai‘i

Island, and Kāne‘ohe Bay (N 21�26050.4400 W157�470

49.6200; 10:30–11:45 h) on O‘ahu, Hawai‘i. The Florida

Keys sites and collection times were at The Cable

(N24�28010.7400 W81�43025.0200; 09:00–10:00 h), Western

Sambo (N24�28044.8800 W81�42059.16; 10:30–11:30 h),

and Cottrell Key (N24�36049.1400 W81�55016.9200; 09:00–

10:00 h). At each site, triplicate 10 l samples of surface

seawater were collected directly over the reef at a depth of

\1 m. Similarly, three to ten replicates of 2 ml surface

sediment samples were collected at depths between 5 and

158 Coral Reefs (2012) 31:157–167

123



10 m using a microcentrifuge tube at each site. Only the

surface layers of sediments determined as oxic by colora-

tion were collected (i.e., the top 1–5 mm of sediment).

Sediment layers of a gray or black coloration indicating

anoxic conditions were strictly avoided. Water and sedi-

ment samples were immediately stored on ice in the dark

and directly transferred to the laboratory for preservation

and storage.

Sample preparation

All seawater samples were first filtered by gravity through

a 20-lm nylon mesh to exclude endosymbiotic Symbiodi-

nium from invertebrate larvae ([100 lm; Edmunds et al.

2005, Nozawa and Harrison 2005, Hirose et al. 2008a),

soritid foraminifera (100–15,000 lm in diameter; Pochon

et al. 2007), and those trapped in coral mucus. The

resulting filtrate was then subjected to further filtration

through a 5-lm filter using low constant vacuum filtration

at a constant 0.1 bar to capture particles of the size range

5–20 lm, including free-living Symbiodinium (5–15 lm;

Stat et al. 2006). Each sediment sample was suspended in

approximately 200 ml of filtered (0.22 lm) seawater and

then sequentially filtered through 20- and 5-lm filters as

described above.

DNA analysis

Genomic DNA was extracted from the organisms on the 5-lm

filter using 1 ml of a guanidinium protocol described in

Adams et al. (2009). DNA was isolated and purified from

200 ll of the total DNA extraction solution. In order to

achieve successful PCR amplification, some samples were

diluted 1/10 or 1/50. A nested PCR strategy was used to

amplify the cp23S-HVR. First, the entire cp23S-DomainV

region was amplified from the genomic DNA extraction using

the primers ‘‘23S1M13’’ and ‘‘23S2M13’’ (Santos et al. 2002)

under the following thermal cycler conditions: 2 min at 94�C,

36 cycles of 94�C for 30 s, 50�C for 1 min, 72�C for 1 min

15 s, followed by 7 min at 72�C. This primer set is not Sym-

biodinium-specific and amplified the cp23S-Domain V region

of other dinoflagellates, as well as Symbiodinium (Santos et al.

2002). One (1) microliter of the resulting PCR products was

used as template in a second PCR to amplify the cp23S-HVR

region using the Symbiodinium-specific primers ‘‘23SHYP-

ERUP’’ (Santos et al. 2003) and ‘‘23SHYPERDN’’ (same as

‘‘23SHYPERDNM13’’ in Santos et al. 2003 without the M13

sequence, and first applied in Manning and Gates 2008) under

the same conditions given above except with an annealing

temperature of 55�C. The product of a no-template control

from the first PCR was used as template in the second PCR as a
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Fig. 1 Map of collection sites in the Hawaiian Islands and the Florida Keys
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negative control for the nested PCR protocol employed. In

cases where the second round of amplification yielded no

products after several attempts, successful amplification of the

Table 1 Summary of all cp23S-HVR sequence types included in the

phylogenetic networks (Fig. 2)

Clade cp23S-

HVR name

Origins Regions Accession

#

Clade

A

*chvA1 C, G, J, S F, H, J, O, P AY035405

*chvA2 C, J, M, S,

W

H, O AY035410

*chvA3 Z, S F, H, J, O AY035413

chvA4 A F AY035404

chvA5 SP C EU006528

chvA6 C JA FJ461476

chvA7 C, S, W H, JA, O FJ461477

chvA8 C M FR773855

chvA9 C M FR773856

chvA10 C M FR773857

chvA11 S H GQ370584

chvA12 S, W H, O GQ370621

**chvA13 S H GQ370585

**chvA14 S, W H GQ370586

**chvA15 S F, H GQ370587

chvA16 W H GQ370588

chvA17 W H GQ370589

**chvA18 S H GQ370590

chvA19 W H GQ370591

**chvA20 S F GQ370592

chvA21 W H GQ370593

**chvA22 W H GQ370594

Clade

B

*chvB1 A, C, S, W F, H, O AY035416

*chvB2 A, C, G, S,

W

F, H, MX, P AY055231

*chvB3 A, G, S F, H AY035420

chvB4 SC F AY035415

chvB5 G B AY035417

chvB6 G P AY035419

chvB7 SC F AY055239

chvB8 SC F AF474164

*chvB9 W F, MX EF428345

*chvB10 G, S H, P AY055233

chvB11 W MX EF428344

chvB12 W MX EF428347

chvB13 W MX EF428351

**chvB14 S F GQ370600

**chvB15 W F GQ370601

chvB16 S, W H GQ370602

**chvB17 S, W F, H GQ370603

**chvB18 S F, H GQ370604

**chvB19 S F GQ370605

**chvB20 S F GQ370606

**chvB21 S H GQ370607

Table 1 continued

Clade cp23S-

HVR name

Origins Regions Accession

#

*chvB22 S, W C, F EU139605

Clade

C

*chvC1 C, F, J,

SC, S, W

F, G, GBR, H, JA,

M, O, P, PU

AY035424

chvC2 F, W GBR, O AJ872085

*chvC3 C, S, W F, H, M EF428361

chvC4 W H EF428359

chvC5 F P AJ872081

chvC6 W H EF428360

chvC7 W H FM877461

chvC8 F R FM877442

chvC9 F H, JA FN298479

chvC10 C JA FJ461486

chvC11 C M FR773858

chvC12 C M FR773859

**chvC13 S H GQ370613

Clade

D

*chvD1 A, C, W G, GBR, H, JA, M,

O

AY035426

Clade

G

*chvG1 SP, S, W C, F, H EU006517

chvG2 F G AJ872106

chvG3 F G AJ872107

chvG4 SP G EU006519

chvG5 SP G EU006521

chvG6 SP G EU006522

chvG7 SP G EU006524

**chvG8 S H GQ370619

**chvG9 S H GQ370620

chvG10 SP F GU219511

chvG11 SP GBR GU219516

chvG12 SP F GU219492

chvG13 SP F GU219494

chvG14 SP GBR GU219514

One asterisk before the name indicates that the sequence was found in

this study as well as previous studies; two asterisks indicate a novel

sequence only found in this study. Origins refers to the environmental

or symbiotic host sources

One representative accession number is listed for each sequence type.

A more detailed version of this table that includes previous names for

these sequence types is provided in online supporting information

(Table S1)

A sea anemone, C scleractinian coral, F foraminiferans, G gorgonian,

J jellyfish, M mollusk, O octocoral, S sediment, SC soft coral, SP
sponge, W water, Z zoanthid. Regions refers to the geographic source,

B Bahamas, C Colombia, F Florida, G Guam, GBR Great Barrier

Reef, H Hawai‘i, J Jamaica, JA Johnston Atoll, M Moorea, MX
Mexico, O Okinawa, P Panama, PU Palau, R Reunion Islands
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first round of PCR with the less specific primer set served as a

positive control. This positive control determined that the lack

of PCR products with Symbiodinium-specific primers was

because of the absence of Symbiodinium in the samples rather

than poor-quality DNA templates. Multiple (8–16) extraction

dilutions were amplified, and final amplified products were

isolated by gel extraction and purified using the QIAquick Gel

Extraction Kit (Qiagen), according to the manufacturer’s

protocol. Purified PCR products were pooled for each sample

and cloned into the pGEM�-T Easy Vector System II (Pro-

mega). A total of 18–25 clones per sample were sequenced

using an ABI 3730XL capillary-based DNA sequencer

(Applied Biosciences) at the Advanced Studies in Genomics,

Proteomics and Bioinformatics Sequencing Facility at

University of Hawai‘i at Mānoa.

Sequence analyses

Sequences were manually edited and aligned, using

Sequencher 4.5 (Gene Codes Corporation). Only sequences

that were amplified from two or more independent samples

or those identical to sequences deposited in GenBank were

included in the analysis (Apprill and Gates 2007; Manning

and Gates 2008; Pochon et al. 2010; but see Thornhill et al.

2007). Sequence types that were represented by only one

clone in any given library were verified by sequencing in

the reverse direction. The clade of each sequence type was

identified using nucleotide BLAST (Altschul et al. 1990).

Sequences belonging to each clade were aligned with

closely related published sequences from GenBank, using a

Clustal W alignment in BioEdit v5.0.9 (Hall 1999), and the

alignment refined manually. A statistical parsimony net-

work was generated for each cladal alignment using TCS

v1.21 (Clement et al. 2000) with a maximum of 50-bp

connection steps and treating gaps as a fifth state. Each

sequence was assigned a unique name reflecting the locus,

clade, and sequence number. For example, ‘‘chvA1’’ corre-

sponds to the chloroplast hypervariable, clade A, sequence

number 1 (Table 1, Electronic Supplemental Material,

ESM Table S1).

Results

Symbiodinium sequence diversity

The first-round of amplification with the less specific

primer set 23S1M13/23S2M13 in the nested PCR was

successful in 80 samples. This verified that the quality of

extracted DNA was suitable as a PCR template in these

samples. Of these, the cp23S-HVR region of Symbiodinium

was then successfully amplified and sequenced from 62

samples (i.e., 77.5%; Table 1). Symbiodinium was detected

in 20 out of 21 surface water samples (95.2%) and 42 out

of 59 of the sediment samples (71.2%). A total of 1,113

Symbiodinium sequences were recovered in our analyses,

representing 29 different sequence types (Fig. 2), 13 of

which are known and 16 are novel. Each Symbiodinium

sequence type was found in 1-19 independent samples in

this study, with an average of 3.6 samples per sequence

type, though many of the sequence types (N = 18) were

found in only 1 or 2 samples. The number of sequences

recovered for each clade varied; 9 belonged to clade A

(GQ370580–GQ370582, GQ370585–GQ370587, GQ370590,

GQ370592, and GQ370594), 13 to clade B (GQ370595–

GQ3705601, GQ370603–GQ370607, and JF327758), 3 to

clade C (GQ370609, GQ370611, and GQ370613), 1 to

clade D (GQ370614), and 3 to clade G (GQ370618–

GQ370620) (Table 1, ESM Table S1). No Symbiodinium

sequence types belonging to clades E, F, H, or I were

found. The majority of novel sequences belonged to clades

A and B, while only one novel sequence was recovered in

clade C and 2 novel sequences in clade G. Each individual

sample yielded 1–5 sequence types, averaging 1.5 Symbi-

odinium sequence types per sample.

The sequence networks for clades A, B, C, and G show

multiple sequences radiating out from core sequences,

defined here as sequences having 3 or more sequence types

radiating from them (Fig. 2). These core sequences are

assumed to be ancestral (Correa and Baker 2009; Stat et al.

2009). Only 1 sequence was recovered from clade D and

was distantly related (58-bp substitutions and insertions/

deletions) to the only other clade D sequence known

for this locus. Core sequences included chvA1, chvA2,

chvA15, chvB1, chvB2, chvB17, chvC1, chvG1, and

chvG10 (Fig. 2).

Sequence diversity among regions

All 5 clades, A, B, C, D, and G, and 21 out of 29 sequence

types, recovered in this study were identified in Hawaiian

samples, of which 14 sequence types were unique to

Hawai‘i (Figs. 2a, 3). In comparison, a total of 15 sequence

types were recovered from Florida samples. Of these, 8

types were found only in Florida, 7 of which belonging to

clade B. Seven sequence types were common to Hawai‘i

and Florida (chvA3, chvA15, chvB1, chvB2, chvB17,

chvB18, and chvG1) (Figs. 2a, 3).

Sequence diversity among habitats

Thirteen sequence types representing clades A, B, C, D,

and G were identified in surface water samples. Five

sequence types were only found in surface water samples

(Fig. 2b), and each water sample contained 1–4 sequence

types (average = 2 types/sample). In Hawai‘i, 8 sequence
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Fig. 2 Statistical parsimony networks of clades A, B, C, D, and G
of Symbiodinium comprised of sequence types identified in this study

and that of closely related published Symbiodinium types, showing

a diversity of Symbiodinium in Hawai‘i (yellow) versus Florida

(green) and b diversity of Symbiodinium in the sediment (brown)

versus surface water (blue). The number of independent samples that

contained each sequence type is indicated by the size of the circle;

indices are given in each figure. Sequence types identified in this

study are indicated by circles and published sequence types by

squares. Names of novel sequence types are in red
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types from clades A–D were identified in surface water

(Fig. 3), though clade B (chvB1) was only identified in one

water sample from Kāne‘ohe Bay and clade D was only

found at Puakō. Sequence types chvA2, chvC1, and chvC3

were the most common in Hawai‘i, and 2 of these 3

sequences were always recovered at a site. Surface water

samples in Florida were dominated by clade B, which was

found in every sample at every site. In Florida, 5 clade B

types were identified, and type chvB2 was the most com-

monly encountered, being present in every sample but one.

Clade G, specifically type chvG1, was found in only 2

water samples at 2 different sites, Cottrell Key and The

Cable, in Florida.

In sediment samples, 21 out of the 24 sequence types

identified were from clades A–C and 16 of these were

found solely in sediment samples (Figs. 2b, 3). Each sed-

iment sample yielded 1–5 sequence types, averaging 1.8

types per sample. In Hawai‘i, 18 sequence types from

clades A, B, C, and G were found, though clade C was

identified in only 4 (out of 21) sediment samples and clade

G was only identified in samples from Puakō. In addition,

clade A was the most ubiquitous, being present at every

site and in most samples (13); however, no one type was

particularly common, as was found for the surface water

samples. In Florida, sediment samples contained 14

sequence types from clades A, B, and C; however, clade A

was only present in 4 samples (out of 21) and clade C in 1

sample (at The Cable). Clade B was the most frequently

found clade in Florida; however, as with Hawai‘i, no one

sequence type was more prevalent than another. Of the 29

sequence types identified in this study, 8 (chvA2, chvA14,

chvB1, chvB2, chvB17, chvC3, chvC13, and chvG1) were

found in both surface water and sediment samples

(Figs. 2b, 3); however, no sequence type was found in all

habitats and regions (Fig. 3).

Discussion

Free-living Symbiodinium are necessary to establish or re-

establish endosymbiosis with many marine organisms and

are also likely to have important ecological roles in benthic

and pelagic ecosystems (GuoFu et al. 2008; Werner et al.

2008). A number of previous studies have identified free-

living Symbiodinium from coral reefs globally, but detailed

characterization of their diversity is only now beginning to

emerge (Carlos et al. 1999; Gou et al. 2003; Coffroth et al.

2006; Koike et al. 2007, GuoFu et al. 2008; Hirose et al.

2008b; Littman et al. 2008; Manning and Gates 2008; Porto

et al. 2008; Pochon et al. 2010; Venera-Ponton et al. 2010).

The overall irregularity in the detection of Symbiodinium in

our environmental samples and the fact that new studies

continue to find previously uncharacterized sequence types

suggest that the distribution patterns of free-living Symbi-

odinium are spatially heterogeneous. This is not surprising

given that the distribution patterns of many dinoflagellates
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are similarly spatially heterogeneous (Mouritsen and

Richardson 2003). Part of spatiotemporal heterogeneity in

free-living Symbiodinium diversity at any given location

may also depend on diel vertical migration observed in

cultured Symbiodinium (Yacobovitch et al. 2004) and

commonly seen in other dinoflagellates in the field (e.g.,

Blasco 1978). Sample collection in our study generally

occurred in late morning to minimize temporal variability.

Expanded sampling in the future is needed to gain a more

comprehensive understanding of the ecology of free-living

Symbiodinium over dynamic spatiotemporal scales.

The hypervariable region of the chloroplast 23S domain

V (cp23S-HVR) was selected as the molecular marker in

this study because it is the only marker specific enough to

distinguish Symbiodinium from other closely related dino-

flagellates in environmental samples (Manning and Gates

2008; Pochon et al. 2010). Although cp23S-HVR provides

less taxonomic resolution than either the nuclear ITS, or

cp23S-Domain V within which it resides, the phylogenetic

patterns resolved by all of these markers are largely con-

sistent with one another (Stat et al. 2009; Pochon et al.

2010). An additional advantage of this locus is that it is

coding and may be directly linked to physiological per-

formance. The cp23S gene transcribes for the chloroplastic

ribosomal RNA (rRNA), which is strongly conserved

through evolution (Harris et al. 1994). Chloroplastic 23S-

rRNAs are most closely related to eubacterial 23S-rRNAs

(Gray 1988), which forms the peptidyl transferase center

that helps protein folding and could ultimately affect

physiology (Samanata et al. 2008). Interestingly, Symbi-

odinium types that were distinguished by cp23S-DomainV

sequences have different growth rates under different

temperatures in culture (Kinzie et al. 2001, Santos et al.

2002), suggesting that this marker links to phenotypic traits

that are important.

Free-living Symbiodinium diversity as compared

to symbiotic counterpart

The general structure of the statistical parsimony networks

of free-living Symbiodinium based on cp23S-HVR is sim-

ilar to networks generated for Symbiodinium in other

studies for the ITS-2 and cp23S-DomainV in that the

derived types radiate out from few ancestral types in each

clade (LaJeunesse 2005; Correa and Baker 2009; Stat et al.

2009) (Fig. 2). The diversity of free-living sequence types

in clade A recovered in this study is high and much greater

than, and in part distinct from, the endosymbiotic Symbi-

odinium diversity known for this clade (Stat et al. 2006;

Correa and Baker 2009). Although our understanding of

both endosymbiotic and free-living Symbiodinium diversity

is far from complete, this difference supports the sugges-

tion of Coffroth et al. (2006) and Hirose et al. (2008b) that

at least some clade A Symbiodinium do not engage in

endosymbiosis and are exclusively free-living. Similarly,

the high number of free-living clade B sequence types,

mostly previously uncharacterized by this marker, is in

agreement with a recent study (Manning and Gates 2008)

and suggests that some clade B Symbiodinium may also be

exclusively free-living. The contrastingly low diversity of

free-living clade C Symbiodinium is surprising. Many

corals, particularly those in the Pacific, associate with clade

C Symbiodinium (e.g., Pochon et al. 2006), and thousands

of Symbiodinium cells are expelled from hosts on a daily

basis (Stimson and Kinzie 1991; Jones and Yellowlees

1997; Baghdasarian and Muscatine 2000). Consequently,

the diversity of clade C Symbiodinium in the environment

is expected to be as high as found in endosymbioses. Our

results indicate otherwise and suggest that some clade C

Symbiodinium may be confined to endosymbiotic habitats.

Occurrence of free-living clade G Symbiodinium in both

Hawai‘i and Florida is intriguing. Although clade G Sym-

biodinium has been found in association with a wide range

of invertebrates and protists, their distribution range was

previously considered to be restricted to the Indo-Pacific

(van Oppen et al. 2005; Pochon et al. 2006; Goulet et al.

2008; Granados et al. 2008). Recent phylogenetic analyses

of the genus Symbiodinium using the nuclear large subunit

ribosomal DNA have revealed that clade G contains two

genetically divergent sub-clades. One of these has so far

only been found in soritid foraminifera from Guam,

Micronesia (Pochon et al. 2001, 2007), and the other sub-

clade is most commonly associated with excavating spon-

ges of the genus Cliona (Schönberg and Loh 2005;

Schönberg et al. 2008). Recently, the latter sub-clade has

also been found in symbiosis with excavating sponges in

the Caribbean (Granados et al. 2008; Hill et al. 2011).

Interestingly, clade G had not been recovered from the

free-living Symbiodinium community in Hawai‘i and the

Caribbean (Manning and Gates 2008; Porto et al. 2008),

but our study retrieved three clade G sequence types, one

of which (chvG1) was found in both Hawai‘i and Florida,

and is identical to numerous cp23S-HVR Symbiodinium

sequences previously reported from Caribbean excavating

sponges (see Table 1, ESM Table S1).

Of the 29 free-living Symbiodinium sequence types

recovered in this study, 11 types (chvA1, chvA2, chvA3,

chvB1, chvB2, chvB3, chvB10, chvC1, chvC3, chvD1, and

chvG1) have previously been identified as endosymbiotic.

In Hawai‘i, 5 sequence types (chvA1, chvA2, chvB1, chvC1,

and chvC3) previously known as endosymbiotic (Santos

et al. 2001; Pochon et al. 2010) were identified as free-living

in this study. The overlap between free-living and symbiotic

communities in Hawai‘i was greater than was found in

Pochon et al. (2010), which is likely due to the additional

sampling in Hawai‘i in this study. Nonetheless, the overlap
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between symbiotic and free-living Symbiodinium commu-

nities in Hawai‘i is relatively small, perhaps suggesting that

some Symbiodinium are restricted and optimized to the

endosymbiotic environment and have a limited ability to

survive outside their hosts once expelled (Hill and Ralph

2007). Interestingly, most coral hosts in Hawai‘i transmit

their dinoflagellate symbionts vertically without relying on

the environmental Symbiodinium pools (Krupp 1983, Rich-

mond and Hunter 1990); therefore, the limited overlap

between symbiotic and free-living communities is expected.

A larger overlap would then be predicted in Florida where

much more symbiotic hosts acquire Symbiodinium from the

environment than those in Hawai‘i (Baker 2003; Pochon

et al. 2010). The endosymbiotic Symbiodinium communities

in Florida, however, have not been thoroughly characterized

using the cp23S-HVR marker (Hill et al. 2011), so it is

impossible to test this prediction at this time.

Free-living Symbiodinium diversity patterns in different

regions

Comparison of free-living Symbiodinium sequence diversity

from Hawai‘i and Florida reveals some interesting biogeo-

graphic patterns. The free-living Symbiodinium sequence

types belonging to clades A, B, C, D, and G were recovered in

Hawai‘i, and those of clades A, B and G were found in

Florida (Figs. 2a, 3). Furthermore, 85.1% of the free-living

diversity in Florida was found in clade B. In contrast,

82.3% of the free-living diversity in Hawai‘i was found in

clades A and C (sequences in circles in Figs. 2, 3). The

dominance of clade B in free-living Symbiodinium com-

munity in Florida interestingly mirrors the endosymbiotic

Symbiodinium community for the Caribbean (LaJeunesse

2002; Baker 2003; Goulet et al. 2008). Additionally, higher

genetic diversity of free-living Symbiodinium was detected

in Hawai‘i (21 sequence types) as compared to Florida (15

sequence types) (Fig. 3). However, it is unclear if this pattern

reflects the ecology or is correlated with the uneven sample

sizes. Lastly, the sequence types that were found in both

Hawai‘i and Florida were all ancestral sequence types,

except for two, chvA3 and chvB18 (Fig. 2a). These ‘gener-

alists’ may have been widespread before the Indo-Pacific and

Atlantic oceans were separated and remained undifferenti-

ated because of limited sexual reproduction (LaJeunesse

2005). However, because dinoflagellate endemism is gen-

erally considered rare (Taylor et al. 2008, but see Thornhill

et al. 2009), more derived types may be found elsewhere with

further sampling.

Diversity patterns in different habitats

Some interesting patterns also emerge when genetic

diversity of free-living Symbiodinium in surface water and

sediment are compared with one another. The most abun-

dant and ancestral sequence types (except chvA14) were

found both habitats, while the less abundant and more

derived sequence types were generally found in sediments

(Fig. 2b). Further, a relatively smaller number of sequence

types dominated surface waters, chvA2, chvC1, and chvC3

in Hawai‘i and chvB2 in Florida (Fig. 3). In contrast,

sequence types were almost equally represented in sedi-

ments of each region (Fig. 3). Given the differences in

sample size and collection protocols to accommodate the

solid and liquid nature of environmental samples, the

Symbiodinium diversity in the two habitats cannot be

directly compared. However, the observed diversity of

Symbiodinium sequence patterns characteristic for each

environment is noteworthy. It is possible that such diversity

patterns are indicative of ecological differences in free-

living Symbiodinium communities in these habitats. The

specificity of certain Symbiodinium sequence types to a

particular habitat, and their abundances and capacity to

move between these habitats are largely unknown at this

stage but certainly warrant further investigation.
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