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Abstract Coral reefs are often subject to disturbances

that can cause enduring changes in community structure

and abundance of coral reef organisms. In Moorea, French

Polynesia, frequent disturbances between 1979 and 2003

caused marked shifts in taxonomic composition of coral

assemblages. This study explores recent changes in live

cover and taxonomic structure of coral communities on the

north coast of Moorea, French Polynesia, to assess whether

coral assemblages are recovering (returning to a previous

Acropora-dominated state) or continuing to move towards

an alternative community structure. Coral cover declined

by 29.7% between July 2003 and March 2009, mostly due

to loss of Acropora and Montipora spp. Coral mortality

varied among habitats, with highest levels of coral loss on

the outer reef slope (7–20 m depth). In contrast, there was

limited change in coral cover within the lagoon, and coral

cover actually increased on the reef crest. Observed

changes in coral cover and composition correspond closely

with the known feeding preferences and observed spatial

patterns of Acanthaster planci L., though observed coral

loss also coincided with at least one episode of coral

bleaching, as well as persistent populations of the coral-

livorous starfish Culcita novaeguineae Muller & Troschel.

While climate change poses an important and significant

threat to the future structure and dynamics coral reef

communities, outbreaks of A. planci remain a significant

cause of coral loss in Moorea. More importantly, these

recent disturbances have followed long-term shifts in the

structure of coral assemblages, and the relative abundance

of both Pocillopora and Porites continue to increase due to

disproportionate losses of Acropora and Montipora.

Moreover, Pocillopora and Porites dominate assemblages

of juvenile corals, suggesting that there is limited potential

for a return to an Acropora-dominated state, last recorded

in 1979.
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Introduction

Disturbances have an important influence on the structure

and dynamics of shallow marine environments (Hughes

et al. 2003; Worm et al. 2006), especially for coral reef

ecosystems, which are subject to a diversity of different

disturbances, including severe tropical storms, freshwater

plumes, over-fishing, and infestations of invertebrate

corallivores (Karlson and Hurd 1993; Hughes et al. 2003).

Importantly, the incidence and severity of episodic distur-

bances has increased greatly in recent years, as climate-

related disturbances are compounding upon numerous

pre-existing natural and anthropogenic disturbances (Jackson

et al. 2001; Gardner et al. 2003; Hughes et al. 2003).

Increased frequency, severity and diversity of disturbances
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on coral reefs are contributing to declines in abundance of

reef-building corals (Bellwood et al. 2003), which may be

associated with strong directional shifts in taxonomic

structure of coral communities (Berumen and Pratchett

2006; McClanahan et al. 2007). Coral depletion and chan-

ges in coral assemblages also affect reef-associated fishes

and invertebrate communities (Pratchett et al. 2008, 2009b),

which could undermine biodiversity, ecosystem function,

fisheries production, and other critical goods and services

provided by coral reef ecosystems.

Since 1998, effects of climate change on coral reefs,

including widespread coral bleaching (Hughes et al. 2003)

and increasing prevalence of coral disease (Bruno et al.

2007), have caused extensive coral loss and contributed

greatly to coral reef degradation throughout the world

(Knowlton 2001) and will only get worse in coming dec-

ades (Sheppard 2003; Donner et al. 2005). However, fur-

ther increases in the frequency and severity of disturbances

may not necessarily favour those corals that are most

resistant (or least vulnerable) to local disturbances (Baker

et al. 2008). Rather, the persistence of different corals may

depend largely upon their capacity for recovery following

successive disturbances (Knowlton 2001; Baker et al.

2008). On some reefs, highly susceptible corals (e.g.,

Acropora) have become even more dominant in the after-

math of severe bleaching (Kayanne et al. 2002), owing to

their potential for rapid recolonisation and recovery (e.g.,

Kayanne et al. 2002; Sheppard et al. 2002; Pratchett et al.

2009a). In the central Great Barrier Reef, 5 years after

coral bleaching killed virtually all corals along exposed

reef fronts, Acropora is recovering rapidly and now

accounts for [90% of coral cover (Pratchett et al. 2009a).

Elsewhere (e.g., the Persian or Arabian Gulf), recent dis-

turbances have caused marked declines in the abundance

of Acropora, leading to increases in the abundance of

relatively robust corals, such as Porites and Faviidae

(Sheppard et al. 2010), thereby revealing limited resilience

among local coral assemblages.

Resilience and the potential of coral assemblages to

effectively reassemble following major disturbances

depends on a host of factors, including: (1) the spatial scale

and intensity of disturbances, (2) the temporal pattern of

disturbances (Riegl and Purkis 2009) and (3) whether these

disturbances have unique, common, or interacting effects,

(4) the availability of remnant populations for the replen-

ishment of degraded populations, and (5) the functional

integrity of the system (e.g., Wilson et al. 2006). The threat

of climate changes has therefore generated renewed inter-

est in other large-scale disturbances, such as outbreaks of

Acanthaster planci, that also contribute to extensive and

widespread coral mortality.

Periodic infestations of corallivorous starfishes, such as

the coral-feeding crown-of-thorns sea star, Acanthaster

planci (L.) and the pincushion sea star, Culcita novae-

guineae Muller & Troschel, represent a significant bio-

logical disturbance to coral reefs in the Indo-Pacific

(e.g., Moran 1986; Birkeland and Lucas 1990). The

crown-of-thorns starfish is renowned for its capacity to

cause large-scale devastation on tropical coral reefs. At

very high densities, during outbreaks, A. planci can kill

up to 80% of corals across large reef areas (Chesher

1969; Pearson and Endean 1969). Even at moderate

densities, A. planci has the potential to greatly modify

coral community structure by selectively feeding on cer-

tain corals (Branham et al. 1971; Glynn 1987; Pratchett

2010). Similarly, C. novaeguineae exhibits strong pref-

erence for certain corals (Glynn and Krupp 1986) and

could potentially contribute to directional shifts in species

composition of coral assemblages. Normal densities of

C. novaeguineae are typically higher than for non-out-

break populations of A. planci, such that C. novaeguineae

may represent a persistent force in structuring coral

communities (e.g., Quinn and Kojis 2003). However, few

studies have ever considered the ecological impacts of

C. novaeguineae (cf. Glynn and Krupp 1986).

Coral reefs on the north coast Moorea, in the Society

Islands, French Polynesia, have been subject to frequent

disturbances over the last 30 years (Adjeroud et al. 2002,

2009; Berumen and Pratchett 2006; Penin et al. 2007).

Most notably, severe episodes of coral bleaching have been

reported every 2–5 years since 1991, corresponding with

positive temperature anomalies (Hoegh-Guldberg 1999;

Penin et al. 2007). These reefs have also been subject to a

major outbreak of A. planci in 1980–1981, as well as at

least one major cyclone in 1991 (Adjeroud et al. 2002;

Berumen and Pratchett 2006). In 2003, coral cover on the

north coast of Moorea (mainly Tiahura) was equivalent to

that recorded in 1979, before the first recorded outbreak of

A. planci (Berumen and Pratchett 2006). However, coral

composition in Moorea has changed markedly over this

period. Most notably, Porites and Pocillopora replaced

Acropora as the dominant coral genera (Berumen and

Pratchett 2006). However, it is unknown whether this

change in composition reflected a permanent shift in

community structure, or an early successional stage of

coral recovery. The purpose of this study was to investigate

changes in coral cover and composition from 2003 to 2009.

Specifically, we wanted to test whether the local abundance

of Acropora is increasing, and the community structure of

coral assemblages is tending towards an Acropora-domi-

nated state, last recorded in 1979 (Bouchon 1985). Alter-

natively, recovery may have been further retarded by

ongoing disturbances. Most notably, there was a major

infestation of A. planci recorded in 2006–2009, but the

ecological effects of this recent disturbance are yet to be

reported.
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Materials and methods

Study site

This study was conducted on the northern coast of Moorea

(17�300 S, 149�50 W), Society Islands, French Polynesia.

Sampling was conducted at two locations, Vaipahu and

Tiahura, separated by approximately 2 kilometres on the

north coast of Moorea (Fig. 1). Coral assemblages were

sampled in July 2003, May 2007, and March 2009. On each

occasion, sampling was conducted in six distinct reef

zones: (1) the inner reef flat (1–2 m depth); (2) the outer

reef flat (1–3 m depth), (3) the reef crest (3–5 m depth), (4)

the shallow reef slope (7–9 m depth), (5) the mid-slope

(10–12 m depth), and (6) the deep slope (18–20 m depth).

Within each zone, percentage cover of individual corals

was recorded using 5 replicate 50-m-long point-intercept

transects, whereby coral or substratum types were recorded

directly beneath 100 uniformly spaced points (50 cm apart)

along the transect line. All transects were run from hap-

hazardly selected starting points and run parallel to the reef

crest within each zone. In this study, we distinguished four

major coral genera: Acropora, Pocillopora, Porites, and

Montipora. All other genera were pooled into a single

category ‘‘other hard corals’’.

Variation in coral cover was analysed using 3-way

ANOVA to test for variation in total coral cover among

sampling occasions (3-levels, fixed factor), between loca-

tions (2-levels, fixed factor), and among reef zones (6-levels,

fixed factor). Proportional cover of scleractinian corals on

50-m point-intercept transects was arcsine transformed, as is

appropriate for proportion data (Sokal and Rohlf 1987).

Variation in the relative abundance of the different coral

genera (Acropora, Pocillopora, Porites, Montipora, and

other hard corals) was analysed using MANOVA, also

testing for differences among samples, between locations,

and among reef zones. Mostly, we were interested in estab-

lishing whether there was significant variation in rates and/or

direction of change in percentage cover among different

coral genera, reflective of selectivity in disturbances and/or

differential recovery during this period.

Causes of coral loss

To account for recent changes in the abundance and/or

composition of scleractinian corals, densities of coral-

feeding asteroids were also recorded in each habitat at each

location. Densities of both Acanthaster planci and Culcita

novaeguineae were recorded by carefully searching for

both these coral-predators within 2 m either side of the

50-m coral transects. To maximise detection of sea stars,

divers moved very slowly (\5 m per minute) along each

side of the transect tape carefully searching within and

under all coral colonies for cryptic individuals. Divers also

recorded the incidence of coral bleaching, by recording the

proportion of corals sampled along 50 9 4-m belt transects

that exhibited conspicuous signs of bleaching. The severity

of bleaching for different coral genera was assessed based

on the proportion of colonies that were (1) healthy, (2)

partly bleached, (3) completely bleached, and (4) recently

dead, following Marshall and Baird (2000). For recently

dead corals, it is important to recognise that mortality may

be due to either severe coral bleaching or coral predation

by corallivorous starfishes.

Juvenile corals

Densities of juvenile corals, defined as small corals (\5 cm

diameter) that had settled on natural substrates and were

visible with the naked eye (Rylaarsdam 1983), were

recorded in March 2009 to assess whether the proportional

replenishment of different coral taxa is reflective of the

adult assemblage, following Penin et al. (2010). Densities

of juvenile corals were quantified within a 1-m-wide belt

along the first 10-m transects deployed to quantify benthic

composition. As such, five replicate transects were sur-

veyed in each zone at each location. However, densities of

juvenile corals were not measured within the lagoon (zones

1 and 2) due to the lack of consolidated carbonate sub-

strates upon which larval corals typically settle. In these

habitats, fragmentation is likely to have greater importance

in the production of new colonies, which would lead to
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Fig. 1 Map of study sites (Tiahura and Viapahu) in Moorea, French

Polynesia, as well as stylised drawing of the reef profile to indicate

the relative proximity of reef zones within each study site
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strong taxonomic biases in patterns of recruitment (High-

smith 1982). For data collected from zones 4–6, variation

in the densities of juveniles for each coral genera (Acro-

pora, Pocillopora, Porites, Montipora, and other hard

corals) were analysed using MANOVA, testing for differ-

ences between locations (Tiahura and Viapahu), and

among reef zones (zones 3, 4, 5 and 6). Count data was log-

transformed to normalise the data.

Results

Coral cover and composition

Overall coral cover declined by 44.2% across the two study

locations (Tiahura and Viapahu), from 34.8% (±2.0 SE)

in July 2003 down to 19.4% (±1.6 SE) in March 2009.

However, temporal variation in coral cover was conditional

upon both zone and location (ANOVA, Table 1). Declines

in coral cover were most pronounced on outer reef slope,

with greatest loss (93.7% decline) recorded in zone 6. In

zone 4, coral cover declined significantly at Tiahura, but

not Viapahu. In shallow reef habitats (zones 1, 2, and 3),

coral loss was generally negligible, except at zone 2 for

Tiahura, which experienced marked declines in coral cover

from 2003 to 2007, but no further change to 2009. In zone

3, coral cover tended to increase throughout the course of

this study (Fig. 2).

Declines in coral cover were not equally apportioned

among different coral genera. In general, Acropora and

Montipora declined in abundance from 2003 to 2009,

leading to increases in the proportional abundance of

Pocilllopora and/or Porites (Fig. 3). Analyses of commu-

nity structure revealed a significant interaction between

year, location, and zone (MANOVA, Table 2), whereby

changes in the relative abundance of the major coral taxa

varied among zones and between locations. Absolute cover

of Montipora declined by 50.1%, mostly between 2003 and

2007, and declines were apparent across all zones (Fig. 3).

For Acropora, overall cover declined by 39.8%, but

greatest declines occurred in zones 4, 5, and 6 (Fig. 3).

Conversely, the proportional cover of Pocillopora and

Porites increased by 16.3 and 18.0%, respectively. In

March 2009, Pocillopora and Porites accounted for 38.7

and 33.1%, respectively, of overall coral cover. However,

the dominant coral varied by zone, whereby Pocillopora

was dominant in zones 3 and 4, whereas Porites dominated

in zones 1, 2, 5, and 6 (Fig. 3).

Bleaching versus coral predation

Coral loss recorded during this study coincided with both

an outbreak of A. planci, as well as at least one episode of

coral bleaching. Acanthaster planci were first recorded on

the outer reef slope (12 m depth) at Vaiapahu and Tiahura

in April 2006 and rapidly increased in abundance at these

locations throughout 2006 and 2007 (Lison de Loma, pers.

comm.). In May 2007, highest densities of Acanthaster

planci (3.60 ± 1.12 starfish per 200 m2) were recorded

along the shallow (6 m depth; zone 4) slopes of Tiahura,

though starfishes were recorded in every zone on the reef

slope at both locations (Fig. 2b). No A. planci were

observed on the reef crest, and only a single starfish was

recorded on the reef flat (Fig. 2b). In 2009, starfishes were

still most prevalent on the outer reef slope, though overall

densities had dropped significantly compared to 2007.

Several starfish were recorded on the reef crest (zone 3) at

Viapahu, but the greatest densities were recorded on the

shallow reef slope. Culcita novaeguineae was found in low

densities (B1 individual per 200 m2) across all surveys,

and always restricted to the reef flat (zones 1 and 2). No

C. novaeguineae were ever recorded on the reef crest or

reef slope, whereas mean densities of C. novaeguineae on

the reef flat were 0.46 (±0.08 SE) per 200 m2 and did vary

significantly among years.

The only known occurrence of mass bleaching during

this study occurred in late summer (March–April) 2007.

Surveys conducted in May 2007 revealed that 26.7%

(1,113/4,173) of coral colonies were bleached or partially

bleached. A further 2.0% of colonies (85/4,173) had

recently died (Fig. 4), though this was not necessarily due

to bleaching. The incidence of bleaching was highest

among Acropora; 59.4% (518/871) of Acropora colonies

were either partly or completely bleached. In contrast, only

12.5% of Pocillopora colonies, and 17.3% of Porites col-

onies exhibited any bleaching. Similarly, the incidence of

recent mortality was much higher for Acropora, compared

Table 1 ANOVA to test for variation in (a) percentage cover of all

scleractinian corals (arcsine-squareroot transformed), (b) mean

abundance of A. planci (log10 transformed), and (c) mean abundance

of C. novaeguineae (raw data), among years (July 2003, May 2007,

March 2009), between locations (Tiahura and Viapahu), and among

zones (1–6)

Source df Coral cover A. planci C. novaeguineae

MS F MS F MS F

Year (Y) 2 5.77 442.37*** 0.45 24.26***0.07 0.37

Location (L) 1 0.16 12.09** 0.08 4.10 0.14 0.77

Zone (Z) 5 0.04 2.91* 0.29 15.48***1.70 9.43***

Y 9 L 2 0.01 0.07 0.06 30.6 0.09 0.49

Y 9 Z 10 0.06 4.74*** 0.08 4.53***0.20 1.11

L 9 Z 5 0.10 7.92*** 0.08 5.38** 0.20 1.21

Y 9 L 9 Z 10 0.06 4.66*** 0.06 3.39** 0.09 0.50

Error 144 0.01 0.02 0.18

* P \ 0.05; ** P \ 0.01; *** P \ 0.001
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to any other genera (Fig. 4) and was most pronounced

(22.0%) on the deep slope (zone 6).

Juvenile corals

A total of 1,570 juvenile corals were recorded during sur-

veys conducted on the reef crest and reef slope (zones 3–6)

in March 2009, corresponding with a mean of 39.25 (±2.28

SE) juveniles per transect (10 m2). Assemblages of juvenile

corals were dominated by Pocillopora and Porites, which

together accounted for 58.0% (910/1,570) of juvenile cor-

als counted (30.4 and 27.6%, respectively). Pocillopora

dominated juvenile assemblages on the reef crest and

shallow reef slope (zone 4), but Porites was more or

equally abundant in the deeper zones (zones 5 and 6).

Acropora were much better represented in the juvenile

assemblages than they were in adult assemblages, espe-

cially on the outer reef slope; Acropora comprised \1.0%

of adult assemblages across zones 4–6, but comprised

9.1–12.2% of recruits recorded in these zones. However,

Acropora accounted for only 10.1% of juvenile corals

surveyed and were much less abundant compared to

Pocillopora and Porites (Fig. 5).

Discussion

This study revealed significant declines in coral cover, as

well as significant changes in coral composition, on the

north coast of Moorea in the 6 years to March 2009. Recent

coral loss and changes in coral communities at these study

sites follow a long history of disturbances, including at

least one major outbreak of A. planci, a severe cyclone, and

recurrent bleaching, which have already greatly altered

coral communities, if not necessarily reducing overall coral

cover (Adjeroud et al. 2002, 2009; Berumen and Pratchett

2006; Penin et al. 2007). In 2003, average coral cover at

Tiahura was close to the highest recorded (35%)
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throughout the last 25 years, but coral communities had

shifted from being Acropora-dominated (in 1979) to

Pocillopora-dominated (Berumen and Pratchett 2006).

This shift was caused and appears to be maintained, by the

selective removal of Acropora corals during recurrent

disturbances (Berumen and Pratchett 2006). Similarly,

recent coral loss was not equally apportioned among dif-

ferent coral genera, and there was greater loss of Acropora

compared to Pocillopora. Consequently, Pocillopora has

become even more dominant, accounting for over 38.7% of

live coral cover in March 2009, compared to 32.4% in July

2003.

Coral bleaching is widely considered as the major

contributor to coral loss and coral reef degradation in many

parts of the world (e.g., in the Indian Ocean, Graham et al.

2008), but recent bleaching events have caused relatively

little coral mortality in Moorea (Penin et al. 2007; Adje-

roud et al. 2009). Mass bleaching has been recorded in

Moorea in 1984, 1987, 1991, 1994, 2002, and 2003, based

on appearance of unusually pale or white corals across a

range of different taxa (Hoegh-Guldberg 1999; Penin et al.

2007). However, there has not been any systematic sam-

pling of physiological variables (e.g., zooxanthellae den-

sities; Brown et al. 1994) to assess the severity of coral

bleaching in Moorea, nor has there been any systematic
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Table 2 MANOVA to test for variation in the relative abundance of

major coral genera (Acropora, Montipora, Porites, Pocillopora, and

‘‘others’’)

Effect Pillai’s trace Hypothesis df Error df F

Year (Y) 0.68 10 282 14.44***

Location (L) 0.05 5 140 1.44

Zone (Z) 1.72 25 720 15.05***

Y 9 L 0.20 10 282 3.20***

Y 9 Z 1.13 50 720 4.23***

L 9 Z 0.74 25 720 4.97***

Y 9 L 9 Z 0.46 50 720 1.45*

Data were arcsine-squareroot transformed

* P \ 0.05; *** P \ 0.001
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monitoring of individual coral colonies, which is necessary

to assess the fate of bleached corals (e.g., Baird and

Marshall 2002). Overall, there appears to have been very

limited change in coral cover associated with these epi-

sodic disturbances, suggesting that while corals bleached,

they probably did not die. Coral bleaching observed during

this study (in May 2007) affected 16–34% of colonies

across all reef zones, but bleaching incidence and corre-

sponding loss of live coral were most pronounced on the

outer reef slope and tended to increase with increasing

depth. Increased incidence and severity of bleaching with

depth have been reported in several oceanic locations and

is attributable to disproportionate effects of solar radiation

(e.g., Gleason and Wellington 1993) for corals in deeper

water. Whereas shallow water corals are regularly exposed

to high levels of solar radiation, prolonged periods of calm

weather can significantly increase the amount of solar

radiation affecting corals in deep water (up to 24 m depth).

The 2007 mass bleaching corresponds with an extended

period (43 days) during which sea-surface temperatures

remained above 29.2�C, regarded as the local bleaching

threshold (Hoegh-Guldberg 1999). This situation may have

been exacerbated by calm sea conditions and associated

increases in solar exposure, especially in deeper habitats. It

is more likely, however, that higher levels of coral loss on

the reef slope compared to the reef flat relate to differences

in the abundance of A. planci, which were much more

abundant on the reef slope. Acanthaster planci were almost

never recorded within the lagoon (zones 1 and 2) at Moorea

(see also Pratchett 2005).

Prior to 2006, the only known outbreak of A. planci in

Moorea occurred in 1980–1981 (Bouchon 1985), and while

there is limited data on the actual densities of A. planci that

occurred during this previous outbreak, coral loss recorded

at Tiahura and Viapahu was both rapid and very pro-

nounced (Berumen and Pratchett 2006). In 2007, mean
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based on surveys of 594–892

colonies per zone, pooled across

two study sites (Viapahu and

Tiahura) on the northern coast

of Moorea
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densities of A. planci exceeded threshold densities (0.3–0.8

starfish per 200 m2) used to define outbreaks on Australia’s

Great Barrier Reef (Moran and De’ath 1992; Pratchett

2005). However, the maximum density recorded during

this study was only 3.6 starfish (±1.12 SE) per 200 m2,

which is substantially lower than has been recorded during

major outbreaks elsewhere in the Pacific (Moran 1986).

Accordingly, coral loss was fairly moderate. There was,

however, significant loss of Acropora and Montipora,

which is consistent with reported feeding preferences of

A. planci (Keesing 1992; De’ath and Moran 1998; Pratchett

2001, 2007). Recent coral loss was also most pronounced

on the outer reef slopes (zones 4–6), corresponding with

zones where A. planci tended to be most abundant (Fig. 2).

The relative contribution of coral bleaching versus

infestations of A. planci, as well as other possible agents of

coral mortality, in localised coral depletion in Moorea is

difficult to discern. However, it is clear that coral depletion

in zones 5 and 6 commenced in 2003–2007, before the

occurrence of mass bleaching. Also, there was compara-

tively little change in coral cover in zones (reef flat and reef

crest) where A. planci were rarely, if ever, recorded.

Declines in coral cover that were apparent on the reef flat

were caused by persistent reductions (before and after the

bleaching) in the abundance of Pocillopora, Acropora, and

Montipora, potentially caused by C. novaeguineae. In

laboratory experiments, C. novaeguineae exhibits strong

preference for Pocillopora (Glynn and Krupp 1986), and

Quinn and Kojis (2003) reported that they were commonly

found feeding on Pocillopora corals around Rota, in the

western Pacific. These starfish are widespread throughout

the lagoon in French Polynesia, and though found in low

abundance (B1 individual per 200 m2), their continual

removal of live coral (*28 cm2 of coral tissue each day;

Glynn and Krupp 1986) is likely to have a significant

selective effect on coral composition, if not coral cover.

However, coral loss recorded in zones 1 and 2 may have

also resulted from coral bleaching (Fig. 2). Most notably,

declines in the cover of both Acropora and Montipora

occurred between 2007 and 2009, especially in zone 2,

where 74.0% of Acropora and 24.5% of Montipora were at

least partially bleached.

Selectivity of major disturbances is a major determinant

of community structure for coral assemblages (Jackson and

Hughes 1985) and also has a significant influence on other

reef-associated species (Pratchett et al. 2008). Acropora,

for example, is extremely vulnerable to most major epi-

sodic disturbances, including bleaching (Loya et al. 2001;

Baird and Marshall 2002), storms (Jackson and Hughes

1985; Madin and Connolly 2006), and outbreaks of
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March 2009. Data pooled across
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Tiahura) on the northern coast

of Moorea (n = 10 transects per
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A. planci (Pratchett 2010), but is also the favoured coral for

many coral-dwelling and corallivorous fishes (Pratchett

et al. 2008). Accordingly, Berumen and Pratchett (2006)

have documented significant changes in the relative abun-

dance of corallivorous butterflyfishes associated with shifts

in the structure of coral assemblages. Replacement of erect

branching corals (e.g., Acropora) with encrusting and/or or

massive corals (e.g., Porites) will also greatly reduce

habitat availability and topographical complexity of coral

reef environments, thereby reducing biodiversity and pro-

ductivity. Reefs with low habitat complexity and topo-

graphical relief support far fewer fishes (e.g., Sano et al.

1987, Graham et al. 2006), owing to the critical role of

topographical complexity in moderating recruitment,

competition, and predation (Coker et al. 2009). Thus, the

interplay between Acropora and other major coral genera is

of key importance for contemporary and future ecology of

tropical coral reefs.

Recent disturbances have further augmented shifts in the

structure of coral assemblages in Moorea, which have been

ongoing since the early 1980s (Berumen and Pratchett

2006). However, the key question is whether the current

dominance of Pocillopora and Porites represents either: (1)

a transitional community state, indicative of either

continuing degradation or recovery (Aronson et al. 2004),

or (2) an entirely new, stable, and resilient community

structure that will endure until there is a fundamental

change in local conditions. In Guam, outbreaks of A. planci

caused similar shifts in species composition of corals (from

Montipora and Acropora to Porites and Leptastrea), but it

took\12 years for coral cover and composition to return to

pre-disturbance levels (Colgan 1987). In Moorea, however,

there was limited recovery of Acropora[20 years after the

first recorded outbreak of A. planci (Berumen and Pratchett

2006), and the current coral assemblages (dominated by

Pocillopora or Porites) are likely to persist.

One indicator that a shift has occurred from one per-

sistent assemblage of species to another is the existence of

positive feedback mechanisms, which reinforce and sustain

the altered community structure (Knowlton 1992; Nyström

et al. 2008). Differences in the abundance juvenile corals

among major coral taxa were strongly reflective of patterns

of adult abundance and will therefore reinforce and further

advance observed shifts in community structure. Although

Acropora were relatively more abundant in juvenile

assemblages compared to adult assemblages, juvenile Ac-

ropora were much less abundant than either Pocillopora or

Porites. Further, Penin et al. (2010) showed that taxonomic

differences in juvenile abundance (cf. patterns of settle-

ment) are often reflected in subsequent patterns of abun-

dance of adult abundance at sites around Moorea, thereby

suggesting that the observed dominance of Pocillopora

and/or Porites is likely to persist.

This study demonstrates that recent disturbances have

compounded previous disturbances in Moorea (Berumen

and Pratchett 2006), further augmenting community shifts

in coral assemblages. Moreover, episodic disturbances,

such as those associated with ongoing climate change, are

expected to become both more frequent and more severe in

coming decades (e.g., Hoegh-Guldberg 1999). It is likely,

therefore, that changes in community structure of coral

assemblages will become increasingly apparent throughout

the world. The extent to which disturbances favour those

species that are most resistant to disturbances (e.g., Porites

and Favia, Riegl and Purkis 2009) versus those species that

recover rapidly in the aftermath of each disturbance (e.g.,

Acropora: Pratchett et al. 2008; Kayanne et al. 2002)

appears to depend upon the overall frequency of different

disturbances (Riegl and Purkis 2009). Whereas infrequent

disturbances may promote increased abundance of corals

capable of rapid recolonisation and recovery (e.g., Pratchett

et al. 2008), recurrent disturbances lead to shifts in com-

munity structure towards robust coral species that are more

resistant to most major disturbances (Riegl and Purkis

2009). Locations where the latter has occurred, such as the

Persian or Arabian Gulf (Sheppard et al. 2010) and Moorea

(Berumen and Pratchett 2006; this study), tend to be sub-

ject to a diversity of different disturbances, suggesting that

reductions in incidence and/or severity of more manage-

able disturbances may provide the effective tool to reduce

(or at least delay) the effects of ongoing climate change,

following Hughes et al. (2003). It is also possible that

resilience of coral assemblages varies regionally due to

differences in population and community dynamics.
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