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Abstract In response to the increases in pCO2 projected
in the 21st century, adult coral growth and calciWcation are
expected to decrease signiWcantly. However, no published
studies have investigated the eVect of elevated pCO2 on
earlier life history stages of corals. Porites astreoides larvae
were collected from reefs in Key Largo, Florida, USA, set-
tled and reared in controlled saturation state seawater.
Three saturation states were obtained, using 1 M HCl addi-
tions, corresponding to present (380 ppm) and projected
pCO2 scenarios for the years 2065 (560 ppm) and 2100
(720 ppm). The eVect of saturation state on settlement and
post-settlement growth was evaluated. Saturation state had
no signiWcant eVect on percent settlement; however, skele-
tal extension rate was positively correlated with saturation
state, with »50% and 78% reductions in growth at the mid
and high pCO2 treatments compared to controls, respec-
tively.
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Introduction

Over the past several decades, global degradation of coral
reef ecosystems has resulted in unprecedented loss of adult

corals (Hoegh-Guldberg 1999; Hughes et al. 2003). The
persistence and recovery of coral reefs require that levels of
recruitment keep pace with the loss of adult individuals
(Richmond 1997; Hughes and Tanner 2000). Unfortu-
nately, recently conducted recruitment surveys (Porter and
Meier 1992; Hughes and Tanner 2000) and settlement plate
studies (Shearer and CoVroth 2006) indicate low levels of
sexual recruitment throughout the Florida Keys and the
Caribbean. Low levels of sexual recruitment, in conjunc-
tion with high rates of adult mortality, denote an alarming
trend that is altering the structure and function of coral reefs
as a marine ecosystem. It is therefore important to under-
stand the potential roles of various environmental factors
that may aVect sexual recruitment.

Recruitment is inXuenced by both pre-settlement and
post-settlement processes. Environmental factors known to
inXuence planktonic development and survivorship, as well
as various aspects of settlement, include nutrients (Harrison
and Ward 2001; Bassim et al. 2002), anthropogenic con-
taminants (Negri and Heyward 2001; Negri et al. 2005),
salinity (Vermeij et al. 2006), temperature (Edmunds et al.
2001), and exposure to ultra-violet radiation (UVR) (Wel-
lington and Fitt 2003; Gleason et al. 2006). Post-settlement
survivorship has been shown to be inXuenced by habitat
choice (Miller et al. 2000, Harrington et al. 2004), water
quality (Koop et al. 2001; Villanueva et al. 2006), sedimen-
tation (Hunte and Wittenberg 1992; Babcock and Smith
2002), and indirect (allelopathy, KuVner and Paul 2004;
shading, Box and Mumby 2007) and direct competition
with algae (Box and Mumby 2007) and other sessile organ-
isms. Despite recent eVorts to constrain relationships
between a variety of environmental factors and early life
history stages of corals, no studies to date have investigated
the eVect of increasing levels of ocean acidiWcation on
larval settlement, growth, or survivorship.
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The susceptibility of scleractinian corals to elevated car-
bon dioxide levels has been a central issue in the context of
global climate change. The concentration of carbon dioxide
in the atmosphere is currently increasing at a rate of
approximately 0.5% per year and is projected to increase to
double pre-industrial levels by the year 2065 (IPCC 2007).
This increase will cause ocean surface waters to become
more acidic and result in alterations in the saturation state
of aragonite, �arag (Broecker et al. 1979; Caldeira and
Wickett 2003). The projected changes in tropical surface
seawater involve a reduction in pH from 8.08 to 7.93 (with
a doubling of CO2), and a reduction in �arag from 4.0 § 0.2
(mean § 1 SD) to 3.1 § 0.2 by the year 2065 and 2.8 § 0.2
by 2100 (Kleypas et al. 1999). This reduction in saturation
state will likely cause a global reduction in the rates of reef
accretion, as the deposition of CaCO3 by corals and other
reef organisms is partially controlled by the saturation state
of CaCO3 in seawater (Gattuso et al. 1998; Langdon et al.
2000, 2003; Leclercq et al. 2000, 2002; Marubini et al.
2001, 2002; Reynaud et al. 2003; Langdon and Atkinson
2005; Fine and Tchernov 2007). While recent research
eVorts aim to constrain the mechanisms and eVects (both
physiological and ecological) of elevated pCO2 on adult
scleractinian corals, studies evaluating the response of ear-
lier life history stages are lacking. The objectives of the
present study were to investigate the eVects of aragonite
saturation on the settlement and early post-settlement
growth of a common Caribbean reef coral Porites astreo-
ides.

Materials and methods

Collection of larvae

Adult colonies of the brooding species P. astreoides were
collected from The Rocks, an inshore patch reef near
Tavernier, Florida (FL, USA), several days prior to the new
moon in May and June 2007 and maintained in a closed re-
circulating seawater system for approximately 1 week
during the predicted period of larval release. Colonies were
stored in mesh-lined containers during the nights of release.
Following release, larvae were transferred to sterile con-
tainers with Wltered seawater and transported to the Univer-
sity of Miami’s Rosenstiel School of Marine and
Atmospheric Science (RSMAS). Approximately 700 larvae
were collected in May and 400 in June.

Experimental set-up

A Xow-through seawater system was used to create and
maintain three aragonite saturation states: �arag = 3.2 (con-
trol), �arag = 2.6 (mid), and �arag = 2.2 (low) (based on pro-

jected pCO2 scenarios for the years 2065 and 2100,
respectively, as determined by the Intergovernmental Panel
on Climate Change (IPCC) 3rd Assessment Report (IPCC
2001). Seawater was pumped into a 240,000 l settling tank,
Wltered through sand to remove particulate matter, and
piped to three tanks where the carbonate system was
manipulated. Total alkalinity (TA) and pH were adjusted
via constant-drip 1 M HCl additions and control of seawa-
ter Xow rates. Treated water was then introduced to experi-
mental aquaria (18 l) at a constant rate. Duplicate aquaria
were used for each treatment, and the treatment water was
used for both settlement and growth experiments. Water
temperature was maintained at 26.6 § 0.8°C (mean § 1
SD) and 25.4 § 0.3°C during May and June experiments,
respectively. Ambient lighting was not artiWcially supple-
mented in order to discourage algal overgrowth of juvenile
corals. Light intensity ranged from 1 to 191 �mol m¡2 s¡1,
averaging less than 10 �mol m¡2 s¡1 over the course of
12.5 h of daily illumination. Water samples from treatment
aquaria were analyzed for TA and pH. TA was determined
in duplicate using an automated Gran titration (Dickson
et al. 2007, SOP3b), and accuracy was checked against cer-
tiWed seawater reference material (A. Dickson, Scripps
Institute of Oceanography). pH was determined using an
Orion Ross combination pH electrode. Concentrations of
CO3

2¡, Ca2+, and �arag were computed from TA, pH, tem-
perature, and salinity using the program CO2SYS (E.
Lewis, Brookhaven National Laboratory), and dissociation
constants for carbonate determined by Mehrbach et al.
(1973) as reWt by Dickson and Millero (1987), and dissoci-
ation constant for boric acid determined by Dickson (1990).
pH is reported on the seawater scale, the scale on which K1
and K2 were determined in the Gran functions.

Settlement experiments

Settlement experiments were conducted in 300 ml plastic
solo cups, maintained in a water bath at a constant tempera-
ture of 25°C. Each cup contained three 1 cm2 limestone
tiles that were pre-conditioned for approximately 1 month
in situ. Tiles were nested in clean, baked silica sand to force
larvae to settle on the Xat, upper surface of the tile, ensuring
accurate growth measurements. Silica sand was used to
avoid the potential buVering eVects of limestone sediments.
Cups were randomly assigned to treatments, 250 ml of
treatment water and a known number of larvae were added
to each cup, and larvae were allowed 1 week to settle. Set-
tlement cups were un-aerated and tightly covered with a
sheet of Plexiglas to prevent gas exchange. Water was
exchanged every 48 h taking care not to disturb larvae. In
May, 12 settlement cups were prepared for each treatment,
with 20 larvae introduced into each cup. In June, eight cups
were used, with 15 larvae per cup. Settlement was
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conWrmed by examining juveniles under a dissecting
microscope.

Juvenile growth rates

Once settlement was assessed; limestone tiles were intro-
duced to treatment aquaria containing water corresponding
to the treatment in which they were settled. Juvenile growth
rates were determined by measuring the change in surface
area over the course of 21 days in May and 28 days in June.
Juveniles were photographed under a dissecting micro-
scope at the start and end of each experiment. SPOT©

software was used to measure total surface area (deWned
as the outermost extent of visible skeleton). Growth rates
were calculated as the rate of change in surface area
(mm2 month¡1). Data were square root transformed to meet
assumptions and analyzed using a One-Way ANOVA.

Results and discussion

Chemical conditions

The chemical conditions in each of the treatments are sum-
marized in Table 1.

Settlement

Saturation state did not signiWcantly aVect the settlement
rates of P. astreoides larvae (Table 2); however, the high
within-treatment variance meant that the power to detect sub-
tle treatment eVects was limited. Although other environ-
mental factors (e.g., salinity, UVR, nutrients, temperature)
have been shown to negatively impact early life history
stages of corals, the lack of a signiWcant treatment eVect in
the present study suggests that saturation state did not
directly inXuence larval development, settlement, and meta-
morphosis. These Wndings are consistent with observations

from earlier studies, indicating that while the positive corre-
lation between coral calciWcation and saturation state is
well-documented, other physiological processes such as
tissue growth (i.e., increase in biomass) (Fine and Tchernov
2007) and photosynthesis (Leclercq et al. 2002; Reynaud
et al. 2003; Langdon and Atkinson 2005) remain unaVected
or may even be augmented. As coral larvae are not actively
calcifying while in the plankton, it seems unlikely that satu-
ration state would aVect pre-settlement physiology. Should
an eVect of aragonite saturation on settlement exist, the
mechanism of this eVect would likely be indirect.

Substrata quality and benthic community composition
are known to be critically important in determining settle-
ment. Studies indicate that settlement and metamorphosis
of some coral species are induced by chemicals associated
with microbial bioWlms and/or crustose coralline algae
(CCA) (Morse et al. 1988; Negri et al. 2001; Webster et al.
2004). CCA precipitates high-magnesium calcite 13–15%
MgCO3 (Agegian and Mackenzie 1989), a mineral phase of
calcium carbonate that is 1.2–5 times as soluble as arago-
nite (Plummer and Mackenzie 1974; Morse et al. 2006).
Recent work showed a 78% reduction in CCA recruitment
associated with conditions mimicking a doubling of atmo-
spheric CO2 (KuVner et al. 2008). Such changes in sub-
strate community composition may aVect the settlement
and sexual recruitment of coral larvae.

Table 1 Physical and chemical conditions during settlement and growth experimentsa

a Mean § 1 SD
b Calculated based on 10.28 mmol kg¡1 of Ca2+ at a salinity of 35

Salinity Temperature 
(°C)

TA 
(�mol kg¡1)

pHSWS CO3
2¡ 

(�mol kg¡1)

bCa2+ 
(mmol kg¡1)

�arag

May

Control 36 § 1 26.6 § 0.8 2348 § 4 7.95 § 0.02 198 § 7 10.6 § 0.3 3.1 § 0.1

Mid 36 § 1 26.6 § 0.8 2206 § 34 7.88 § 0.02 165 § 6 10.6 § 0.3 2.61 § 0.09

Low 36 § 1 26.6 § 0.8 2138 § 44 7.80 § 0.02 135 § 7 10.6 § 0.3 2.2 § 0.1

June

Control 34 § 1 25.4 § 0.3 2422 § 14 7.99 § 0.02 202 § 8 10.0 § 0.3 3.2 § 0.1

Mid 35 § 1 25.4 § 0.3 2224 § 55 7.91 § 0.01 166 § 3 10.3 § 0.3 2.62 § 0.04

Low 35 § 1 25.4 § 0.3 2181 § 9 7.84 § 0.02 141 § 4 10.3 § 0.3 2.23 § 0.08

Table 2 Percent larval settlement and juvenile growth rate
(mm2 month¡1) of Porites astreoidesa

a Mean § 1 SE (n)

Control �arag = 3.2 Mid �arag = 2.6 Low �arag = 2.2

Percent settlement

May 34.72 § 7.29 (12) 41.94 § 8.82 (12) 26.39 § 5.83 (12)

June 12.50 § 4.95 (8) 16.67 § 4.88 (8) 13.33 § 3.56 (8)

Growth rate

May 0.32 § 0.03 (58) 0.14 § 0.03 (73) 0.09 § 0.05 (30)

June 0.44 § 0.08 (14) 0.24 § 0.03 (16) 0.07 § 0.02 (10)
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Growth and survivorship

Saturation state exhibited a signiWcant treatment eVect on
growth rates of P. astreoides juveniles (May: ANOVA,
F2,159 = 8.61, P < 0.001; paired comparisons by Tukey
HSD, signiWcant diVerences, P < 0.05; June: ANOVA,
F2,38 = 10.46, P < 0.001; paired comparisons by Tukey
HSD, signiWcant diVerences, P < 0.05). Growth, as mea-
sured by lateral skeletal extension, was positively corre-
lated with saturation state (P = 0.007) (Fig. 1). Juveniles
reared in the mid saturation state treatment grew an average
of 45% (June) to 56% (May) slower than controls, while
those reared in low saturation state treatments grew an
average of 72% (May) to 84% (June) slower than controls.
These Wndings are consistent with the hypothesis that satu-
ration state controls calciWcation and, ultimately, growth, as
has been documented for several adult scleractinians and an
experimental reef community (Gattuso et al. 1998; Lang-
don et al. 2000, 2003; Leclercq et al. 2000, 2002; Marubini
et al. 2001, 2002; Reynaud et al. 2003; Langdon and Atkin-
son 2005; Fine and Tchernov 2007).

Declining growth rates may have implications for rates
of juvenile mortality. Risk of mortality has been shown to
be inversely proportional to juvenile growth rate and col-
ony size (Hughes and Jackson 1985; Babcock 1991; Bab-
cock and Mundy 1996) with up to a 20% increase in
survivorship associated with a 0.5-mm increase in diameter
of 4-month-old juveniles of certain species (Babcock and
Mundy 1996). Although post-settlement mortality was not
observed in either the present or other laboratory studies
that have mimicked ocean acidiWcation (Fine and Tchernov
2007), it is important to note that mortality rates observed
in this study do not approximate survivorship of juveniles
in situ. Under laboratory conditions, factors known to aVect
early survivorship on the reef (e.g., competition with algae
and other benthic organisms, sedimentation eVects, preda-
tion) were controlled or eliminated in order to minimize

inXuences on growth other than the desired treatment eVect.
Therefore, survivorship in this study likely overestimates
survivorship that would be expected on the reef.

In addition to potential increases in juvenile mortality,
both the onset of sexual maturity (Chornesky and Peters
1987; Szmant 1991) and fecundity (McGuire 1998; Bab-
cock 1991; De Barros and Pires 2006) of reef-building cor-
als are known to be a function of colony size. Therefore,
depressed growth would likely result in longer time spent in
juvenile (non-reproductive) life stages, which, in combina-
tion with adult loss, would shift population structures
toward dominance by smaller size classes, ultimately
reducing eVective population sizes, population fecundity,
and the resilience of reef-building corals.

This study indicates that increasing atmospheric carbon
dioxide and the associated reductions in aragonite satura-
tion of tropical surface waters have the potential to acceler-
ate the degradation of coral reefs by aVecting multiple life
history stages and ecological processes critical to reef per-
sistence and resilience. These eVects may occur via both
direct (e.g., depressed calciWcation) and indirect (e.g.,
changes in substrate conditions that favor settlement) path-
ways. Slowed growth may trigger numerous other repercus-
sions, including, but not limited to: elevated juvenile
mortality and reduced recruitment success; and shifts in
population size structure and lower reproductive output.
There is a need to further investigate the ability of corals to
acclimatize and/or adapt to elevated pCO2 given prolonged
exposure, as well as the possibility of taxonomic diVerences
in sensitivity. Focusing eVorts on the protection and culti-
vation of more adaptable species may improve the eVec-
tiveness of coral preservation and restoration eVorts.
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