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Abstract. Polymorphic markers at bovine gene loci facilitate the
integration of cattle genetic maps with those of humans and mice.
To this end, 31 single nucleotide polymorphism (SNP) markers
were developed for seven bovine chemokine genes. Loci were
amplified from bovine genomic DNA by the polymerase chain
reaction, and candidate amplicons were sequenced to determine
their identity. Amplified loci from 24 founding parents and select
progeny from a beef cattle reference population were sequenced
and analyzed for SNPs. SNP haplotype alleles were determined by
examining segregation patterns and used to establish the locus
position on the bovine linkage map. Loci for growth-related pro-
teins (GRO3, GRO1, and GROX) were clustered with the related
CXC chemokine genes, interleukin (IL) 8, and epithelial cell in-
flammatory protein 1, at 84 cM from the centromeric end of the
bovine chromosome (BTA) 6 linkage group. Bovine loci for a
cluster of IL8 receptors, a stromal cell-derived factor 1, interferon-
g, and tumor necrosis factor-a were mapped at 90, 55, 59, and 34
cM, respectively, from the centromeric ends of the BTA 2, 28, 5,
and 23 linkage groups. The positions of these bovine loci were
compared with those of orthologous loci on the human map to
refine the boundaries of conserved synteny. These seven loci pro-
vide examples of SNP development in which the efficiency was
largely dependent on the availability of bovine genomic or cDNA
sequence. The polymorphic nature of these SNP haplotype mark-
ers suggests that they will be useful for mapping complex traits in
cattle, such as resistance to infectious disease.

Introduction

Infectious diseases are a significant source of economic loss to the
cattle industry (NASS 1996). In addition, cattle infected with food-
borne pathogens such asEscherichia coliO157:H7 andSalmo-
nella typhimuriumDT104 have become an emerging human health
issue (Glynn et al. 1998; Mead and Griffin 1998). A potential
method for reducing the impact of infectious disease is to increase
host genetic resistance to infection. Among the genes likely to
influence the magnitude, duration, and transmission of infection
are those that encode cytokines. This group of proteins plays a
pivotal role in mobilizing inflammatory cells in response to infec-
tious challenges (Krakauer et al. 1999). Moreover, specific allelic
variants of cytokines and their receptors profoundly influence in-
fection phenotypes in humans (Smith et al. 1997; Altare et al.
1998; Martin et al. 1998; Winkler et al. 1998; Knight et al. 1999).

In an effort to identify bovine genes that are modulated during
infection, we previously reported two pro-inflammatory cytokine
transcripts whose abundance increased in epithelial cells upon ex-

posure toE. coli O157:H7 lipopolysaccharide (Heaton et al. 1999).
Both cDNAs encoded members of the CXC (ora) chemokine
subfamily, specifically interleukin (IL)-8 and epithelial cell in-
flammatory protein (ECIP)-1. We hypothesize that allelic variation
in chemokines, cytokines, or their receptors may be associated
with variation in response to infection in beef cattle populations.
Testing this hypothesis requires genetic markers for identifying
allelic variants at each gene locus. In humans, there are 11 known
CXC chemokines and more than 150 cytokines and receptors
(Vaddi et al. 1997; Thomson 1998). This paper describes the iden-
tification of 31 single nucleotide polymorphism (SNP) markers for
a set of seven bovine cytokine loci and their use in linkage map-
ping.

Materials and methods

Primer design and synthesis.Primers (Table 1) were designed from
DNA and protein sequence information available in the National Center for
Biotechnology Information databases (http://www.ncbi.nlm.nih.gov/) and
the Genome Database (http://www.gdb.org/). Sequences were analyzed for
primer design by OLIGO 5.0 (National Biosciences Inc., Plymouth, Minn.)
and were synthesized on a 1000M DNA synthesizer (Beckman Coulter,
Inc., Fullertown, Calif.). Amplification conditions for each locus were
optimized, where possible, to produce single amplicons of the predicted
length. Non-coding gene regions were selected for polymerase chain re-
action (PCR) based on the observation that introns and intergenic regions
tend to have more sequence variation than exon regions (Turker et al. 1993;
Nickerson et al. 1998). In all cases, primers were designed to amplify a
portion of known sequence to help establish the relationship between am-
plicon and gene identity.

Amplification and sequencing.The standard amplification reaction
contained 200 ng of genomic DNA, 2mM each of sense and antisense
primer, 0.1 mM of each dNTP, 50 mM KCl, 1.5 mM MgCl2, 0.1% vol/vol
Triton X-100, 10 mM TrisHCl (pH 9.0), and 4 U of Taqpolymerase in a
total volume of 50ml. PCR was performed with a PTC-200 DNA engine
(MJ Research, Watertown, Mass.) with temperature ramp times of 2.5°C/s.
Reactions were denatured at 94°C for 2 min and subjected to 35 cycles of
denaturation at 94°C for 30 s, annealing at the appropriate temperature
(Table 1), and a 72°C extension for 1 min. After cycling, an additional
2-min incubation at 72°C was included before storage at 4°C. A portion of
each amplified product was analyzed by agarose gel electrophoresis in
buffer containing 90 mM Tris-borate (pH 8.0), 2 mM ethylenediamine
tetraacetic acid, and 0.1mg/ml ethidium bromide. Unless otherwise indi-
cated, amplification products were purified with silica membrane columns
(QIAGEN Inc., Valencia, Calif.). Sequencing reactions were assembled
according to manufacturer’s instructions with BigDye terminator chemis-
try, and resolved on an ABI PRISM 377 DNA sequencer (PE Applied
Biosystems, Foster City, Calif.).

The 2.5-kb stromal cell-derived factor (SDF1) 1 PCR product that
spanned intron 2 was amplified with high fidelity DNA polymerase (Gibco
BRL, Gaithersburg, Md.). Cycling conditions were 94°C for 1 min fol-
lowed by 34 cycles of 94°C for 15 s, 55°C for 20 s, and 68°C for 10 min.Correspondence to:M.P. Heaton
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After cycling, a final extension step of 68°C for 2 min was added before
storage at 4°C. The 2.5-kb product for SDF1 was gel purified and se-
quenced with the amplification primers. Sufficient sequence information
was obtained from this product to design new primers for amplifying the
603-bp fragment used for SNP identification (Table 1).

SNP identification.The U.S. Meat Animal Research Center (MARC)
reference population (Bishop et al. 1994) was used to identify SNP can-
didates. Loci from founding parents were amplified, sequenced, and com-
pared to identify putative SNPs. Sequences were edited with Factura 2.0.1
(PE Applied Biosystems), and potential heterozygous bases were noted.
Sequences from reference animals were aligned with the Clustal option of
the ABI Sequence Navigator 1.0.1 software (PE Applied Biosystems) to
identify candidate SNPs. These markers were genotyped in reference prog-
eny by DNA sequencing to verify Mendelian inheritance patterns and SNP
haplotypes within the amplicon locus.

Linkage mapping.SNP haplotype markers were placed in linkage
groups based on twopoint LOD scores and ordered within groups by mul-
tipoint analysis with the ALL, TWOPOINT, FIXED, and CHROMPIC
options of CRI-MAP Version 2.4 (Green et al. 1990). Additional marker
information is present in the MARC cattle genome mapping database
(http://www.marc.usda.gov).

Results

SNP markers for bovine GRO genes.The third intron of the bo-
vineGRO3gene, predicted from human sequence, was targeted for
amplification and DNA sequencing (Fig. 1A). Analysis of the
829-bp GRO3 amplification product indicated that the last 26-bp
from the 38 end were 100% identical to those of exon 4 from
GRO3.This combination of 26 nucleotides (nt) inGRO3 is not
found in GRO1, GRO2, ECIP1,or any other GenBank sequence.
Intron 3 of the bovineGRO3amplicon was 803-bp and contained
approximately 265 bp of a 560-bp short interspersed element
(SINE) sequence similar to Bov-2 (Lenstra et al. 1993). By com-
parison, the 874-bp intron 3 ofECIP1contains a complete 188-bp
SINE sequence similar to Bov-t1 (Lenstra et al. 1993). These
results suggest that the 829-bp PCR product was amplified from
the bovineGRO3gene and its intron structure is similar toECIP1.

The density of SNPs in theGRO3intron 3 was roughly com-
parable to that inECIP1; three variable sites were present in the
first 300 bp. Four heritable sets of SNP haplotype alleles were
determined by examining segregation patterns in progeny (Table

2). Twopoint analysis with 198 informative meioses placed the
GRO3 locus 83.8 cm from the centromeric end of the bovine
chromosome (BTA) 6 linkage group (Fig. 1B). This position was
indistinguishable fromIL8 and ECIP1 with no recombinations
detected in 49 and 46 coinformative meioses, respectively. Al-
though more coinformative meioses are required for ordering these
loci, these results suggested that theGRO3locus is tightly linked
to IL8 and ECIP1 on BTA6 (LOD scores of 12.03 and 12.64,
respectively).

To obtain similar markers for other bovine GRO genes, a 456-
bp portion of theGRO1putative exon 4 was selected for ampli-
fication (Fig. 1A). Comparison of the amplified bovine DNA se-
quence with the 38 untranslated region (UTR) of bovineGRO1
(Accession No. U95812) revealed 99% sequence identity (three
conflicting sites). The 456-bp amplicon sequence did not display
significant homology with the 38 UTR of bovineGRO3or ECIP1
(BLAST search E value > 0.5). The 38 UTR sequence for bovine
GRO2(Accession No. U95813) was not available for comparison.
The high degree of identity with the 38 UTR of bovine GRO1
suggested that the 456-bp amplicon was from theGRO1gene.

SNP analysis of the 456-bpGRO1amplicon revealed the pres-
ence of two polymorphisms in this exon region (Fig. 1A), neither
of which corresponded to the sites conflicting with bovineGRO1
(Accession No. U95812). Three SNP haplotype alleles were de-
fined for theGRO1amplicon and used in twopoint linkage analy-
sis with 149 informative meioses to place theGRO1locus 83.8 cM
from the centromeric end of the BTA 6 linkage group (Table 2).
Multipoint analysis showed that theGRO1map position was in-
distinguishable from that ofIL8, ECIP1,andGRO3,with no re-
combinations detected in 10, 26, and 84 coinformative meioses,
respectively (Fig. 1B). These results indicated that the putative
bovineGRO1gene was tightly linked to the CXC chemokine gene
cluster on BTA 6.

After bovine SNP markers were developed forGRO3 and
GRO1,efforts were directed towardsGRO2.The high degree of
similarity between bovineGRO1andGRO2cDNA sequences pre-
sented a significant challenge in designing primers to amplify a
single gene. Among the 363-bp of sequence available forGRO2,
there were only four nt positions and one amino acid residue that
differed when compared withGRO1.To circumvent this difficulty,
the aim was to amplify across intron 3 from bothGRO1andGRO2
and clone individual loci for sequencing. Sequence from cloned
products would then be used for designing new sets of intron-

Table 1. Oligonucleotide primers, annealing temperatures, and amplicon lengths.

Locus
Primer
orientation Amplification primer sequencesa

Annealing
temperature (°C)

Amplicon
length
(bp) Amplicon

Amplicon
haplotype
accession
numbersb

Reference
sequence

GRO3 Sense CCCATGGTTAAGAAAATCATC 60 829 bGRO3DS3 AF140644-647 U95811
Antisense GTTTTCCACCTGGTCAGTTAG

GRO1 Sense TGCCAACTGATCAAGAGAG 60 456 bGRO1DS2 AF140641-643 U95812
Antisense CATTCCCTACATTAACAGTG

GROX Sense CCCATGGTTAAGAAAATCATC 60 912 bGROXDS1 AF140660-664 U95813
Antisense CCATCTCTCTTGATCAGTTGG

IL8R Sense ACGCACGCTGACCCAGAA 60 523 bIL8RABDS1 AF140648-652 U19947
Antisense GAGGAGTCCGTGGCGAAACT

SDF1 Sense CAACACTCCAAACTGTGCCCTTCAGA 55 2500 bSDF1DS1 nac U16752
Antisense AACAAATTTCGAAAGAGGTCCATGAG

SDF1 Sense CTCCCATCCCCCAGACTA 65 605 bSDF1DS2 AF140665-671 bSDF1DS1
Antisense TGTTCTTCAGCCTTGCCCTGTC

IFNG Sense CGGGAGATTGCTTTCATTTC 65 892 bIFNGDS3 AF140653-655 Z54144
Antisense GGTTAGATTTTGGCGACAGGT

TNFA Sense CTGGAGAAGTGGGGGTCA 60 639 bTNFADS1 AF140656-659 Z14137
Antisense TTAGAAATGGGAGGGGCTTTAT

a Sequences listed 58 to 38. Primers used for DNA sequencing are bold and italicized.
b Each haplotype sequence has been submitted to GenBank.
c The full sequence of this amplicon was not determined.
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specific amplification primers. However, the amplification reac-
tion generated a single 912-bp product (designatedGROX). Se-
quence analysis of GROX showed no sites with 100% heterozy-
gosity in the reference population, as would be expected if two
closely related genes were simultaneously amplified. Moreover,
GROXcontained 66 of 67-bp of sequence from the putative exons
3 and 4 that were identical toGRO1andGRO2.The site in GROX
conflicting with bothGRO1andGRO2was identical in 24 refer-
ence parents and corresponded to a substitution of asparagine for
lysine at position 96. This substitution is significant because the
lysine 96 residue is conserved in 25 other GRO-like genes from
various mammalian species (data not shown). TheGROXampli-
con contained a 846-bp intron, including a partial (54-bp) Bov-t1
SINE sequence (Fig. 1A). When a BLAST search against the
non-redundant GenBank database was performed with theGROX
intron (non-SINE portion), the lowest E value returned was 2.5.
These results suggest that theGROXproduct was amplified from
a single gene or pseudogene that is distinct from the known GRO-
like bovine genes.

The 58 portion of theGROXamplicon was analyzed for SNPs,
and six polymorphisms were identified in the first 500 bp in the
reference population (Table 2). Five SNP haplotype alleles were
defined and used in twopoint linkage analysis with 122 informa-
tive meioses to place theGROXlocus in the BTA 6 linkage group.
Multipoint analysis showed that theGROXposition was indistin-
guishable from that ofECIP1, GRO3,andGRO1,with no recom-
binations detected in 26, 56, and 96 coinformative meioses, re-
spectively (Fig. 1B). There were no coinformative meioses with
IL8. Taken together, these results indicate that theGROXlocus is
clustered with the CXC chemokines on BTA 6.

SNP markers for a cluster of IL8 receptor genes from bovine
cDNA sequence.The identification of multiple SNPs in each of
the GRO loci analyzed indicated that the reference population was
highly suitable for SNP marker development and linkage mapping
of bovine chemokine genes. A query of the publicly available
databases for other bovine genes in the CXC chemokine family
revealed a sequence for only IL8 receptor B (GenBank Accession
No. U19947). The IL8 receptors A and B (CXCR1 and CXCR2,
respectively) are two distinct seven-transmembrane, G-protein
coupled receptors that interact directly with a variety of CXC
chemokines to induce neutrophil chemotaxis and margination
(Murphy 1997). In humans, both receptors and several pseudo-
genes have been mapped to human chromosome (HSA) 2q33-2q36
(Holmes et al. 1991; Morris et al. 1992; Lloyd et al. 1993; Mol-
lereau et al. 1993; Sprenger et al. 1994). The cDNA sequence for
bovine IL8RB was used for designing several primer pairs. The
most robust amplification yielded a 523-bp fragment that was
nested within the coding sequence of the predicted third exon (Fig.
2A). Sequence analysis of the 523-bp product revealed 16 sites that
were heterozygous in all cattle tested (70 parents and progeny),
suggesting that multiple IL8R-like loci were present in the ampli-
fied product.

In addition to the 16 invariant heterozygous sites, there were
four sites that varied only in certain parents, and their alleles
segregated in progeny according to Mendelian patterns. When
compared with bovine IL8RB, three of the sites corresponded to
silent mutations in codons, whereas the fourth site variant corre-
sponded to a glutamine substitution for the histidine residue at
position 245. Because the IL8R loci were clustered in the human
genome, we hypothesized that the four SNPs might be useful for

Fig. 1. Genetic maps of GRO-family genes and BTA 6. Panel A: Physical
maps of human GRO1 genomic DNA, bovine GRO-like cDNA, and bo-
vine GRO-like amplicons. The symbol legend is as follows: shaded rect-
angles, genomic exon regions; lines connecting shaded rectangles, introns;
open rectangles, cDNA sequence; dashed vertical lines, ends of partial
cDNA sequences; solid arrows, coding sequence; hatched rectangles, SINE
elements. These SNP marker names in the MARC cattle database (http://
sol.marc.usda.gov) begin with an “AH” prefix and their relative position is
indicated by vertical lines within the amplicon. The physical map of ECIP1
(Heaton et al. 1999) is presented for comparison. Panel B: Linkage map
and ideograms of BTA 6 (Kappes et al. 1997) and comparison with HSA
4 (Francke 1994). Physical assignment of loci to chromosomes is indicated

with vertical lines adjacent to assigned region. For simplicity, the linkage
map includes only terminal markers, gene markers, and markers adjacent to
GRO-loci. A more detailed and interactive map may be accessed at http://
sol.marc.usda.gov/genome/cattle/htmls/chromosome_list.html. No recom-
binations were observed between markers within a box; thus, their order is
arbitrary. The relative order ofECIP1, GRO3, GRO1,and GROX with
respect to ALB and BM1236 was determined by a recombination detected
in one calf. The remaining loci in the box (IL8, GC,andBMSB4049) were
not informative in this animal. The hatched vertical rectangle indicates the
region of HSA4 known to correspond to BTA 6 (Solinas-Toldo et al. 1995;
Chowdhary et al. 1996).
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Table 2. Summary of SNP and haplotype linkage information.

Locus
(Chr, cMa) Amplicon Marker

Informative
meioses Allele definitionb

Linked markers with LOD scores >3

Number Range
Nearest
markerc

GRO3(6, 83.8) bGRO3DS3 GRO3-1 198 1 ATT 50 3.22 to 47.89 BMSB4049
2 GTT
3 ATG
4 ACT

AH5-1 85 CTAGG-R-TTTAG
AH5-2 78 TAAAC-Y-GCTTT
AH5-3 82 TTCAT-K-AAAAT

GRO1(6, 83.8) bGRO1DS2 GRO1-1 149 1 AT 50 3.01 to 32.39 BMSB4049
2 GA
3 AA

AH4-1 71 ACTTA-W-AGTTA
AH4-2 138 TTCAA-R-GTTTA

GROX(6, 83.8) bGROXDS1 GROX-1 122 1 TCG(T)dCA
2 TAA(T)dCA
3 GCA(T)dGA
4 TCG(T)dCC
5 GCA( )dGA

38 3.01 to 24.38 GRO3-1

AH3-1 88 GACTA-K-AGTCA
AH3-2 50 AAGGT-M-ATTAR
AH3-3 74 MATTA-R-TCCGC
AH3-4 63 TGGTG-(T)d-CAAAA
AH3-5 27 CTCCT-S-GCTCT
AH3-6 8 GAAGC-M-GAGTT

IL8R (2, 90.3) bIL8RDS1 IL8R-1 71 1 GCCC
2 GCCA
3 AGCC
4 ACCC
5 GCAA

18 3.61 to 16.39 TEXAN-4

AH6-1 37 CTGAT-M-GYRGA
AH6-2 13 AGCAC-M-GGGCC
AH6-3 50 GGGCA-S-AAGCA
AH6-4 57 CCACC-R-TATTC

SDF1 (28, 54.9) bSDF1DS2 SDF1-1 92 1 CTCC( )eC
2 CCCC(C)eC
3 CTCG( )eC
4 GTCC( )eC
5 CCCC( )eC
6 CCTC( )eC
7 CCTC( )eT

18 3.16 to 22.58 BM2515

AH11-1 52 TCCAT-S-AAAAT
AH11-2 62 CCCTC-Y-GGTTC
AH11-3 49 CTGGC-Y-GCAGG
AH11-4 28 CACCC-S-CC*f( )eTGG
AH11-5 13 CCSCC*f-(C)e-TGGAG
AH11-6 37 GCCCA-Y-TCCTA

IFNG (5, 59.3) bIFNGDS3 IFNG-1 81 2 C(ACT)gCCCTA
3 T(ACT)gATTCG
4 C( )gCCCTA

19 3.79 to 12.40 BMS1617

AH7-1 71 AGATC-Y-GTGTT
AH7-3 10 AAAST-(ACT)g-GAACC
AH7-6 64 GATAG-M-AGTGA
AH7-7 64 AGTGA-Y-GGAGA
AH7-8 64 AGAGC-Y-TCAGT
AH7-9 64 AGTGG-Y-AAATT
AH7-10 64 ATTAC-R-TATTA

TNFA (23, 33.5) bTNFADS1 TNF-1 91 1 GTG
2 GTC
3 ACG
4 GCG

31 3.60 to 21.98 BMS2275

AH9-1 42 ACAGG-R-GCTCT
AH9-2 54 GGAAA-Y-TGGAG
AH9-3 59 CTGCT-S-TGCTG

a Distance of locus from centromere. Total linkage group sizes for BTA 6, 2, 28, 5, and 23 were 130.3, 122.2, 54.9, 122.9 and 67.0 cM, respectively.
b The haplotype allele definition is presented as a set of sequential SNP alleles in the same order as shown in Figs. 1A through 5A. The MARC haplotype allele definition code
is listed to left of each haplotype allele. The SNP alleles are defined by five flanking nucleotides on either side.
c Marker with highest LOD score and zero recombination frequency.
d Site of thymine nucleotide deletion.
e Site of cytosine nucleotide insertion.
f The “C*” nucleotide has only been observed by mass spectrometry analysis and is not polymorphic in this population (data not shown).
g Site of ACT-nucleotide deletion.
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linkage mapping in spite of the amplicon heterogeneity. Five SNP
haplotypes were defined for this locus (tentatively namedIL8R)
and used in twopoint linkage analysis with 63 informative meioses
to placeIL8R 90.3 cM from the centromere of BTA 2 (Table 2).
This result indicated that the genes or pseudogenes amplified at
this locus are tightly linked. Multipoint analysis suggested that the
IL8R locus is 0.7 and 1.3 cM telomeric from transition protein
(TNP) 1 and natural resistance-associated macrophage protein
(NRAMP) 1, respectively (Fig. 2B).

SNP markers for a bovine SDF1 gene from human DNA se-
quence.Because there were no orthologous bovine sequences
available for the remaining known human CXC chemokines [PF4,
NAP2, IP10, ENA78, GCP2, MIG, and SDF1 (Vaddi et al. 1997)],
a different strategy was used to develop markers for a member of
this gene family. The human SDF1 gene (Accession No. U16752)
was selected to test this strategy because allelic variants in SDF1
have been implicated in resistance to infectious disease (Ma-
gierowska et al. 1998; Winkler et al. 1998). Primers were designed
to amplify across exons 2 and 3 of the human sequence (Fig. 3A),
and the annealing temperature of the PCR was lowered to stabilize
imperfect duplex formations. Amplification of bovine genomic
DNA produced multiple fragments including one that was close in
size to the 2.5-kb human SDF1 amplification product. Sequence
analysis of the 38 end revealed that 39 of 41 bp were identical to
human SDF1 exon 3 (BLAST search E value 3e-10). The 58 end
of the 2.5-kb fragment did not contain enough exon sequence for
comparison with the human SDF1 exon 2. Based on these results,
it was concluded that the 2.5-kb bovine amplicon was from an
SDF1 gene.

To facilitate the search for SNPs, a more robust pair of bovine-
specific amplification primers were developed to produce a 605-bp
amplicon that was nested within the 2.5-kb SDF1 intron 2 (Fig.
3A). Six variable sites were observed in this 605-bp region when
sequences from 24 founding parents of the reference population
were compared (Table 2). Seven SNP haplotype alleles were de-
fined and used in twopoint linkage analysis with 92 informative
meioses to place the SDF1 locus on the telomeric end of the BTA
28 linkage group (Fig. 3B). Multipoint analysis suggested that
SDF1 is currently the endmost telomeric marker on BTA 28, ex-
tending this linkage group 2.9 cM beyond the marker for retinol-
binding protein [RBP3 (Crawford et al. 1995)]. In humans, SDF1

and RBP3 have been mapped to HSA 10q11.1 and 10q11.2, re-
spectively (Farrer et al. 1988; Nakamura et al. 1988; Shirozu et al.
1995). Thus, SDF1 and RBP3 define the location and orientation
of a 2.9-cM syntenic region conserved between cattle and humans.

SNP markers for interferon (IFN)-g from bovine genomic DNA
sequence. IFN-g represents a cytokine gene for which bovine ge-
nomic sequence is publicly available (Table 1). A primer pair was
designed to amplify a 892-bp fragment consisting of sequence
from intron 3 and exon 4 of bovine IFN-g (Fig. 4A). Sequence
comparison of this product identified six SNPs and one 3-bp in-
sertion/deletion site. All seven of these polymorphisms segregated
according to Mendelian inheritance patterns in the reference popu-
lation. Although seven polymorphic sites were observed, only
three SNP haplotypes were present (Table 2). Twopoint linkage
analysis with 81 informative meioses placed theIFN-g locus 59.3
cM from the centromere of BTA 5 (Fig. 4B). Multipoint analysis
refined theIFN-g position to give the most likely marker order:
RM084, IFN-g, MAF23. The IFN-g locus is currently the only
locus linked to BTA 5 and physically assigned to both cattle
(Chaudhary et al. 1993) and human chromosomes (Zimonjic et al.
1995). The nearest gene markers flanking IFN-g are myogenic
factor (MYF) 5 and insulin-like growth factor(IGF)-1. Both
MYF5 and IGF-1 lie distal to IFN-g on the human physical map
(Morton et al. 1986; Cupelli et al. 1996), indicating a potential
rearrangement of gene order between these segments of BTA 5
and HSA 12.

SNP markers for the tumor necrosis factor (TNF)-a locus from
bovine genomic DNA sequence. TNF-a represents a cytokine gene
for which multiple bovine genomic sequences were available.
Three 4.3-kb segments of genomic sequence from twoBos taurus
animals (Accession No. Z14137 and AF011926) and oneBos in-
dicusanimal (Accession No. AF011927) were compared to iden-
tify 37 potential SNPs (data not shown). A primer pair was de-
signed to amplify a 639-bp region 58 to TNF-a, which contained
nine of the 37 predicted nucleotide differences (Fig. 5A). Sequence
analysis of the reference population revealed three SNPs that were
inherited according to the expected patterns. However, only one
polymorphism corresponded to the set of nine predicted SNPs. The
other two polymorphisms were not predicted from the comparison

Fig. 2. Genetic maps ofIL8R genes and BTA2. The
symbol legends are described in Fig. 1. Panel A:
Physical maps of human IL8RA and IL8RB geno-
mic DNA, partial bovineIL8RB cDNA, and bovine
IL8R cluster amplicon. Panel B: Linkage and physi-
cal maps of BTA 2 and comparison with HSA 2.
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of TNF-a sequences in GenBank. Four SNP haplotype alleles were
defined and used in twopoint linkage analysis with 91 informative
meioses to place theTNF-a locus 33.5 cM from the centromere on
the BTA 23 linkage group (Table 2). Multipoint analysis indicated
that the most likely marker order was:RM002, TNF-a, BoLA-
DRB2 (Fig. 5B).

Discussion

Members of the CXC chemokine family are among those genes
modulated in the early phase of bovine epithelial cell exposure to
E. coli endotoxin (Heaton et al. 1999). The chemokines, their
receptors, and other members of the cytokine superfamily repre-
sent rational gene targets for developing genetic markers to study
their association with infection phenotypes. The present results
show that comparing bovine DNA sequences from 24 reference
animals is an efficient means for discovering SNPs in bovine cy-
tokine loci, as all seven amplicons selected contained sequence
variation in the reference population. Searching for bovine SNPs in
the public sequences did not increase the SNP discovery rate for

the TNF-a locus in the reference population. This is in contrast to
the success reported with human expressed sequence tag and ge-
nomic DNA data sets (Gu et al. 1998; Buetow et al. 1999). The
variable sites identified in public bovine TNF sequences were
either artifacts of conflicting sequence information or the SNPs
were not present in this reference population.

Prediction of gene identity for the GRO3, GRO1, GROX,
IL8R, and SDF1 amplicon sequences was based on their compari-
son with public exon sequence and synteny inferred from human
maps. In one example, sequence comparison showed that neither
of the two target genes were amplified and, thus, a new designa-
tion, GROX, was tentatively assigned. The predictions are provi-
sional because the relationship between amplicon identity and
gene identity is ambiguous when only exon sequence is available
for primer design. Exon sequences may be highly conserved
among gene family members and pseudogenes and, thus, a com-
plete set of sequences for related genes and pseudogene in the
mapped region may be required for conclusive identification of
some amplicons. Another strategy for increasing the accuracy of
assigning amplicon identity is to target known intron/intergenic

Fig. 3. Genetic maps of SDF1 genes and BTA28.
The symbol legends are described in Fig. 1. Panel A:
Physical maps of human SDF1 genomic and cDNA,
and nested bovine SDF1 amplicons. Panel B: Link-
age and physical maps of BTA 28 and comparison
with HSA 10.

Fig. 4. Genetic maps of the bovineIFN-g gene and
BTA5. The symbol legends are described in Fig. 1.
Panel A: Physical maps of bovineIFN-g genomic,
cDNA, and amplicon from intron 3. Panel B: Link-
age and physical maps of BTA 5 and comparison
with HSA 12.
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sequences like those ofIFN-g andTNF-a. These regions are less
conserved among gene families and therefore likely to be unique
within the genome.

A recent report demonstrated that SNPs were present in the
bovine CXC chemokine genesIL8 andECIP1and mapped to BTA
6 (Heaton et al. 1999). Linkage analysis for GRO-like genes pre-
sented here indicate that a significant portion of the CXC chemo-
kine cluster appears to be conserved between cattle and humans.
The human GRO genes are tightly linked to IL8 on HSA 4 in a
nine-gene cluster of CXC chemokines (Modi and Chen 1998). Our
results were also consistent with somatic cell hybrids mapping
results in which two bovine GRO genes were localized to BTA 6
(Modi et al. 1998). The placement of SDF1 on the telomeric end
of BTA 28 represents a new bovine assignment, extends the link-
age group, and defines a small syntenic region conserved between
cattle and human genomes. These loci, together with IL8 and
ECIP1, comprise 30 SNPs and 29 SNP haplotype alleles for 6
CXC chemokine genes.

Because developing bovine amplification primers from human
sequence was sometimes difficult, bovine genomic DNA sequence
made available via public databases (e.g.,IFN-g andTNF-a) was
an important resource in the SNP discovery process. IFN-g is a
potent activator of macrophages and monocytes and greatly aug-
ments their antibacterial activities (Boehm et al. 1997). Though the
IFN-g gene has been localized to BTA 5q22-5q24 by fluorescence
in situ hybridization (Chaudhary et al. 1993), genetic markers for
linkage analysis have not been described. TNF-a is considered a
major inflammatory mediator and, in humans, variation in the
TNF-a gene promoter has been associated with several infectious
diseases (Hill 1998; Knight et al. 1999). SNP markers for these
genes may be useful for evaluating whether variants are associated
with similar traits in cattle.

In addition to determining linkage map position and marker
order, analysis of SNP segregation patterns in reference families
provided three important results. First, it allowed definition of SNP
haplotype alleles within an amplicon. Unlike the individual SNPs
that are biallelic, the set of SNP alleles constituting a haplotype is
not limited to two alleles. The SDF1 amplicon, for example, con-
tained six SNP haplotypes in the reference population. The use of
SNP haplotypes in linkage analysis typically reduced the number
of cases in which parents and progeny had identical heterozygous
genotypes. These cases (termed “switches”) present computational
difficulties for linkage analysis algorithms like CRI-MAP. A sec-
ond advantage of analyzing segregation patterns in reference fami-

lies was the detection of apparent heterozygous sites that result
from sequencing “artifacts”. These artifacts were occasionally ap-
parent even when a high-quality sequence was obtained from both
DNA strands. The artifacts were revealed when non-Mendelian
inheritance patterns were observed in reference progeny. A third
benefit of segregation analysis was the discovery of unamplified
alleles in certain families. This phenomenon caused animals with
heterozygous haplotypes to appear homozygous. Unamplified al-
leles are postulated to occur when SNPs were present in the primer
binding region. Mismatches between the primer and template may
destabilize DNA duplex formation and reduce the amplification of
specific haplotype alleles. For these reasons, it is imperative that
SNP haplotype loci be extensively evaluated in families with de-
fined pedigrees prior to their application in populations with
poorly defined genetic backgrounds.
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