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Abstract
Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including 
diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the 
causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of 
WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge 
gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. 
This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview 
of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along 
with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram 
syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential 
therapeutic approaches.

Introduction

Wolfram Syndrome (OMIM 222300) is a rare autosomal 
recessive disease characterized by several symptoms, includ-
ing diabetes mellitus, optic nerve atrophy, diabetes insipidus, 
hearing loss, and neurological dysfunction. Two types of 
Wolfram syndrome have been identified: type 1 and type 2, 
caused by pathogenic variants of WFS1 and CISD2, respec-
tively. Most Wolfram syndrome cases are classified as type 
1, so we will refer to them as “Wolfram syndrome” through-
out this review. Since the discovery of WFS1 as the causa-
tive gene of Wolfram syndrome, several animal and cellular 
models have been established. These disease models are 
indispensable tools in the research on Wolfram syndrome. 
However, a comprehensive summary of the characteristics 
and phenotypes of these experimental models is lacking. 
Therefore, this review aims to fill this gap by providing an 
overview of the animal and cellular models of Wolfram 

syndrome established to date. In this review, we first dis-
cuss (1) the clinical symptoms of Wolfram syndrome, (2) 
the function of WFS1 and the pathophysiology caused by its 
abnormalities, and (3) the characteristics of disease models 
of Wolfram syndrome.

Clinical features of Wolfram syndrome 
and the discovery of WFS1

This section describes the clinical features of Wolfram syn-
drome and the disease concept associated with the causative 
gene WFS1.

Major symptoms of Wolfram syndrome

The first cases of Wolfram syndrome were reported by Wolf-
ram and Wagener (1938). The report described four siblings 
who developed juvenile-onset diabetes mellitus and optic 
nerve atrophy. Subsequently, these patients also developed 
hearing loss and neurogenic bladder (Paley and Tunbridge 
1956). In 1956, Paley and Tunbridge reported two addi-
tional cases of diabetes and optic nerve atrophy, suggesting a 
hereditary component (Paley and Tunbridge 1956). In 1977, 
a comprehensive review of 91 cases by Cremers et al. (1977) 
led to the official designation of this condition as “Wolfram 
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syndrome.” Since then, numerous reports on the clinical 
symptoms of patients have emerged. The first nationwide 
survey was conducted and reported by Barrett et al. (1995), 
revealing a prevalence of Wolfram syndrome at 1 in 770,000. 
Typically, patients with Wolfram syndrome develop diabetes 
mellitus at a median age of 6 years and optic atrophy around 
11 years. Diabetes insipidus and sensorineural hearing loss 
typically manifest in the second decade of life, while renal 
tract abnormalities and neurological complications such as 
cerebellar ataxia appear by the fourth decade. Neurological 
and urinary tract manifestations are the most common causes 
of morbidity and mortality (Kinsley et al. 1995). Wolfram 
syndrome is characterized by a reduced size of intracranial 
volume, particularly in the brainstem and cerebellum, lead-
ing to balance impairment (Hershey et al. 2012; Pickett et al. 
2012). However, the severity of these symptoms can vary 
among individuals with Wolfram syndrome (De Franco et al. 
2017).

Discovery of WFS1

Wolfram syndrome was previously believed to be a mito-
chondrial disease due to the similarities in symptoms and the 
presence of mitochondrial DNA deletions in some patients 
(Bu and Rotter 1993; Bundey et al. 1993; Rötig et al. 1993; 
Vora and Lilleyman 1993). However, subsequent cases dem-
onstrated the absence of mitochondrial DNA abnormalities, 
and the inheritance pattern suggested an abnormality in the 
nuclear genome of patients with Wolfram syndrome. Link-
age analysis suggested the presence of a causative gene for 
Wolfram syndrome on chromosome 4p16 (Polymeropoulos 
et al. 1994). In 1998, Inoue et al., followed soon after by 
Strom et al., identified the WFS1 gene (Inoue et al. 1998; 
Strom et al. 1998) (Fig. 1). Since the discovery of WFS1, 
the understanding of the pathogenesis of Wolfram syndrome 
has remarkably advanced. Approximately 200 WFS1 vari-
ants associated with Wolfram syndrome have been reported, 
mostly found in exon 8 of WFS1 (Smith et al. 2004). WFS1 
encodes the protein WFS1, also known as wolframin, which 
is an endoplasmic reticulum (ER)-membrane protein with 
multiple transmembrane domains comprising 890 amino 

acids (Strom et al. 1998; Takeda et al. 2001). WFS1 is 
expressed ubiquitously in various tissues, with the highest 
levels observed in the pancreas, heart, and brain, particularly 
in the hippocampus, amygdaloid area, and olfactory tubercle 
(Hofmann et al. 2003; Takeda et al. 2001). Recent studies 
have reported predominant localization of WFS1 in the ER 
membrane, particularly in the mitochondria-associated ER 
membranes, which serve as contact sites between the ER and 
mitochondria (Angebault et al. 2018; La Morgia et al. 2020).

Wolfram syndrome and WFS1‑related disorders

Wolfram syndrome, a rare disorder caused by recessive 
WFS1 variants, is now recognized to exhibit a phenotypic 
spectrum. Recent findings suggest that its frequency may 
be higher in certain races and populations than previously 
assumed (Bansal et al. 2018; De Franco et al. 2017; Li et al. 
2020; Marchand et al. 2021). Moreover, there are related 
disorders caused by a dominant inheritance form of WFS1, 
known as “WFS1-related disorders” or “Wolfram-like syn-
drome.” These disorders manifest with one or more symp-
toms observed in Wolfram syndrome. The severity and 
symptoms of WFS1-related disorders can vary, ranging from 
mild diabetes mellitus, hearing loss, congenital cataracts, 
and optic atrophy developing independently to severe neo-
natal cases that exhibit all these symptoms (Kobayashi et al. 
2018; Mets et al. 2010; Morikawa et al. 2017). It has also 
been reported that specific heterozygous WFS1 variants can 
lead to nonsyndromic low-frequency sensorineural hearing 
loss (Bespalova et al. 2001; Cryns et al. 2002; Young et al. 
2001).

WFS1 functions and their anomalies

Some WFS1 variants have also been implicated in other 
types of diabetes. Several large-scale genome-wide asso-
ciation studies have reported that several single nucleotide 
polymorphisms (SNPs) in WFS1 are associated with an 
increased genetic risk for type 2 diabetes mellitus (T2DM), 
irrespective of racial differences (Cheurfa et al. 2011; Elek 

Fig. 1  The structure of WFS1. 
WFS1 consists of eight exons, 
with the largest one being exon 
8. The location of reported 
variants is depicted in differ-
ent colors. The image has been 
adapted from Clinvar (https:// 
www. ncbi. nlm. nih. gov/ clinv 
ar/), and the information was 
accessed on July 23, 2023

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
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et al. 2015; Heni et al. 2010; Lee et al. 2008; Long et al. 
2012; Lyssenko et al. 2008; Sandhu et al. 2007; Sparsø 
et al. 2008; van Hoek et al. 2008; Westermark et al. 2010). 
However, a meta-analysis has shown that two specific WFS1 
SNPs, rs734312 and rs10010131, have a significant protec-
tive effect against the risk of developing T2DM (Cheng 
et al. 2013). Accordingly, understanding the pathogenesis 
of Wolfram syndrome and WFS1-related disorders may pro-
vide valuable insights into the pathogenesis of other types of 
diabetes, including T2DM. In this section, we describe the 
known physiological functions of WFS1 and the pathologi-
cal conditions that arise due to its abnormalities.

Interaction between WFS1 and  Ca2+ channels 
or pumps

The ER serves as an intracellular  Ca2+ store, and WFS1 is 
expressed on the ER membrane. Therefore, numerous stud-
ies have explored the relationship between WFS1 and intra-
cellular  Ca2+ homeostasis (La Morgia et al. 2020; Nguyen 
et al. 2020; Osman et al. 2003). The first study to demon-
strate a connection between WFS1 and intracellular  Ca2+ 
was reported by Osman et al. (2003), who showed elevated 
levels of intracellular  Ca2+ in Xenopus oocytes overexpress-
ing WFS1.

Takei et al. first revealed the relationship between  Ca2+ 
concentration in the ER and the expression level of WFS1 
(Takei et al. 2006). They found that WFS1 regulates ER 
 Ca2+ storage and cytosolic  Ca2+ homeostasis by increas-
ing the  Ca2+ uptake and store-operated  Ca2+ entry (SOCE). 
This regulation involves the modulation of  Ca2+ pumps 
and channels, such as sarcoendoplasmic reticulum ATPase 
(SERCA) and inositol 1,4,5-trisphosphate receptor  (IP3R), 
localized on the ER membrane (Kunnappallil and Hasan 
2022). WFS1 deficiency results in upregulated SERCA 
expression, leading to increased  Ca2+ pumping into the ER 
(Zatyka et al. 2015) (Fig. 2A). Additionally, WFS1 forms a 
complex with neuronal calcium sensor 1 (NCS1) and  IP3R 
to facilitate  Ca2+ transfer between the ER and mitochon-
dria. WFS1 deficiency reduces the expression level of NCS1, 
followed by impaired ER-mitochondrial contact and subse-
quent  Ca2+ uptake into the mitochondria (Angebault et al. 
2018) (Fig. 2B). Therefore, therapeutic approaches targeting 
intracellular  Ca2+ signaling have been explored as potential 
treatments for Wolfram syndrome (Abreu et al. 2021; Akiy-
ama et al. 2009; Clark et al. 2017; Crouzier et al. 2022a; Lu 
et al. 2014; Nguyen et al. 2020). Apart from its interactions 
with  Ca2+ pumps and channels, WFS1 also interacts with the 
 Na+/K+ ATPase beta-1 subunit, the V1A subunit of the H1 
ATPase, and the voltage-dependent anion channel isoform 1 
(VDAC1) (Gharanei et al. 2013; Zatyka et al. 2008; Zatyka 

Fig. 2  Multiple functions of WFS1. A WFS1 regulates  Ca2+ uptake 
in the ER by modulating SERCA activity. WFS1 dysfunction 
increases ER  Ca2+ levels and SOCE. Increased  Ca2+ concentration 
activates Calpain-2, leading to cell death. B WFS1 activates  IP3R 
through NCS1 and stimulates  Ca2+ release from the ER. WFS1 dys-
function impairs  IP3R activity, followed by decreased  Ca2+ release 
from the ER and  Ca2+ uptake into the mitochondria. C WFS1 sta-
bilizes HRD1, an E3 ubiquitin ligase, and degrades ATF6. WFS1 
abnormality induces the hyperactivation of ATF6. D WFS1 plays a 
vital role in maintaining the pH within secretory granules. WFS1 dys-
function leads to impaired granule acidification and insulin exocyto-

sis. E The C-terminal of WFS1 binds to vesicular cargo proteins. The 
N-terminal of WFS1 is recognized by the protein transport protein 
SEC24, a component of coat protein complex II (COPII). WFS1 dys-
function disrupts the generation of mature COPII vesicles and hinders 
intercellular trafficking from the endoplasmic reticulum (ER) to the 
Golgi complex. ATF6 activating transcription factor 6, HRD1 HMG-
CoA reductase degradation 1 homolog, SERCA  sarcoendoplasmic 
reticulum ATPase, SOCE store-operated  Ca2+ entry, IP3R 1,4,5-tri-
sphosphate receptor, NCS1 neuronal calcium sensor 1, GRP75 glu-
cose-regulated protein 75, VDAC1 voltage-dependent anion channel 
1, MCU mitochondrial  Ca2+ uniporter. (Created with BioRender.com)
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et al. 2023). In WFS1-depleted cells, the H1 ATPase V1A 
subunit is degraded more rapidly (Gharanei et al. 2013).

WFS1 as a component of unfolded protein response

The link between WFS1 and ER stress was first described 
by Ueda et al. (2005). They demonstrated that the WFS1 
expression level increased in response to ER stress. The gene 
expression levels of Wfs1 are considered ER stress mark-
ers (Lipson et al. 2006) due to the presence of a conserved 
sequence in the promoter region similar to the ER stress 
response element (Kakiuchi et al. 2006). ER stress-induced 
WFS1 upregulation requires the activation of inositol requir-
ing 1 and PKR-like endoplasmic reticulum kinase, which 
are key regulators of the unfolded protein response (UPR) 
(Fonseca et al. 2005). Another UPR regulator, activating 
transcription factor (ATF) 6β, binds to the Wfs1 gene pro-
moter and induces both gene and protein expression (Odisho 
et al. 2015).

WFS1 has additional roles in the regulation of ER stress 
and protein degradation. It stabilizes the E3 ubiquitin ligase 
HRD1 and regulates the degradation of ATF6α by facili-
tating ATF6 transport to the proteasome (Fonseca et al. 
2010) (Fig. 2C). This means WFS1 acts as a UPR regula-
tor; its deficiency in pancreatic β-cells induces pathogenic 
ER stress, leading to impaired cell cycle and accelerated 
cell apoptosis (Yamada et al. 2006). However, consider-
ing their close interaction, both ER stress and intracellular 
 Ca2+ homeostasis may be involved in the pathogenesis of 
Wolfram syndrome. In fact, WFS1 deficiency induces ER 
stress, resulting in  IP3R dysfunction and disturbed cyto-
solic  Ca2+ homeostasis, which subsequently affects mito-
chondrial dynamics (Blackstone et al. 2016). This leads to 
inhibited mitochondrial fusion and trafficking, as well as 
augmented mitophagy, contributing to delayed neuronal 
development. ER stress is recognized for disrupting intra-
cellular  Ca2+ homeostasis and inducing cellular inflamma-
tion. The concept of “sterilized inflammation,” which refers 
to non-infectious inflammation triggered by pathogenic ER 
stress (Lerner et al. 2012; Oslowski et al. 2012), has recently 
emerged. In line with these observations, ER stress-induced 
sterilized inflammation caused by WFS1 dysfunction accel-
erates disease progression in Wolfram syndrome (Morikawa 
et al. 2022; Panfili et al. 2021).

WFS1 function in intracellular trafficking

WFS1 localization extends beyond the ER to include secre-
tory granules (Hatanaka et al. 2011). In WFS1-deficient 
pancreatic β-cells, insulin secretory granule acidification 
becomes impaired, leading to impaired insulin exocytosis 
(Hatanaka et al. 2011) (Fig. 2D). The acidification of insu-
lin granule is necessary for efficient proinsulin processing 

because endopeptidase PC1/3 and PC2 activate with a low 
pH optimum. While the precise interaction between WFS1 
expressed on the insulin granule membrane and impaired 
insulin granule acidification has not been elucidated, it is 
speculated that WFS1 regulates the activities of V-type 
 H+-ATPase and CLC-3Cl− channels expressed on the insulin 
granule membrane (Hatanaka et al. 2011). More recently, it 
was demonstrated that WFS1 serves as a vesicular cargo pro-
tein involved in intracellular trafficking (Wang et al. 2021). 
Specifically, the C-terminus of WFS1 directly binds to trans-
ported proteins within the ER lumen, while the N-terminus 
of WFS1 interacts with SEC24, a subunit of the coat protein 
complex II (COPII) located in the cytoplasm. This interac-
tion allows for vesicular transport from the ER to the Golgi 
(Fig. 2E). This function of WFS1 has been shown to be nec-
essary for the transportation of proteins such as proinsulin 
from the ER to the Golgi in pancreatic β-cells (Wang et al. 
2021).

Experimental models of Wolfram syndrome

Experimental models are indispensable tools for conducting 
research to understand the pathogenesis of Wolfram syn-
drome and to develop therapeutic strategies. Over the years, 
several disease models have been established to study this 
condition. In the 2000s, Wfs1 knockout mice were gener-
ated as an early animal model. Subsequently, in the 2010s, 
disease models were extended to include rats, flies, and 
zebrafish. Recently, a Wfs1 pathogenic variant knock-in 
mouse model has also been reported. In this section, we 
summarize the phenotypic characteristics observed in these 
Wolfram syndrome animal models and also include informa-
tion on induced pluripotent stem cell (iPSC)-derived cellular 
models (Table 1).

Animal models of Wolfram syndrome

The first animal model, Wolfram syndrome, was established 
by Ishihara et al. (2004). The whole-body Wfs1-deficient 
B6 background mice exhibited decreased pancreatic insu-
lin content at 2 weeks old, impaired glucose homeostasis, 
and decreased insulin secretion around 17 weeks old. The 
diabetic phenotype in these mice resulted from ER stress-
induced pancreatic β-cell death and was accelerated by 
crossing with agouti lethal yellow mice, a model that devel-
ops obesity, insulin resistance, and pancreatic β-cell hyper-
plasia (Akiyama et al. 2009). Similar to Wolfram syndrome 
patients, these mice also exhibited symptoms of central 
diabetes insipidus due to arginine vasopressin (AVP) defi-
ciency (Kurimoto et al. 2021), impaired retinal functions 
(Bonnet Wersinger et al. 2014), and psychiatric symptoms 
observed in behavioral studies (Kato et al. 2008). In addition 
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to the B6 strain, another whole-body Wfs1 knockout mouse 
model on the 129S6 background was developed (Kõks et al. 
2009; Luuk et al. 2008). These 129S6 mice, in which LacZ 
replaces exon 8 of Wfs1, showed an earlier onset of diabetes 
compared to the B6 strain (Abreu et al. 2020). Interestingly, 
males were found to be at higher risk of developing diabetes 
than females (Noormets et al. 2011). The phenotype of this 
129S6-background mouse model is well studied, and besides 
the diabetic phenotype, this mouse model recapitulates 
many of the symptoms observed in patients with Wolfram 
syndrome (Blackstone et al. 2016; Ivask et al. 2021; Luuk 
et al. 2009; Noormets et al. 2009, 2014; Richard et al. 2023; 
Visnapuu et al. 2013a, b; Waszczykowska et al. 2020). The 
only Wfs1-conditional knockout mouse model was reported 
by Riggs et al. These B6 background mice, with specifi-
cally knocked out Wfs1 in pancreatic β-cells, develop glu-
cose intolerance and insulin deficiency by 12 weeks of age 
(Riggs et al. 2005). Most recently, a Wfs1 E864K knock-
in mouse model was reported (Richard et al. 2023). These 
Wfs1 E864K knock-in mice develop an early onset of severe 
vestibular dysfunction besides hearing loss. Human patients 
with Wolfram syndrome carrying the WFS1 p.E864K vari-
ant develop low-frequency sensorineural hearing loss, optic 
atrophy, and impaired glucose tolerance. However, no ves-
tibular neuropathy has been reported. These facts suggest 
that the role of WFS1 in the human vestibular system may 
not be as crucial as in rodents.

Besides the mouse model, the Wfs1-deficient rat is a well-
established animal model for Wolfram syndrome (Plaas et al. 
2017). This model involves whole-body Wfs1 knockout in 
Sprague–Dawley background rats, which show impaired 
glucose homeostasis starting at 3 months of age. At 15 
months of age, these rats exhibit retinal gliosis, optic nerve 
atrophy, and reduced medullary volume. Although the onset 
age of each symptom is older than that in the mouse mod-
els, the larger body size of rats makes it advantageous for 
conducting therapeutic interventions and sample collection. 
Recently, the drosophila and zebrafish models with WFS1 
homolog knockout have been reported as additional models 
for Wolfram syndrome. Optical transparency of the zebrafish 
embryo enables the observation of neural development 
in vivo. Drosophila has a short generation time and a small 
body size, making it possible to test many potential thera-
peutic molecules. Using these Wolfram syndrome zebrafish 
and Drosophila models, phenotypes caused by WFS1 defi-
ciency, including neurodegeneration, visual dysfunction, and 
mitochondrial dysfunction, have been well studied (Cairns 
et al. 2021; Crouzier et al. 2022b; Kunnappallil and Hasan 
2022; Sakakibara et al. 2018).

The pursuit of novel therapeutic approaches to combat 
Wolfram syndrome is actively underway. One promising 
strategy involves repurposing existing diabetic medica-
tions for the treatment of Wolfram syndrome, such as GLP1 

receptor agonists (Panfili et al. 2023). Notably, exenatide and 
dulaglutide have been reported to improve glucose tolerance 
in Wolfram syndrome mouse models (Gorgogietas et al. 
2023; Kondo et al. 2018; Sedman et al. 2016). Similarly, 
another GLP-1 receptor agonist, liraglutide, was found to 
prevent the development of glucose intolerance, reduce neu-
roinflammation, protect against retinal ganglion cell death, 
and delay the progression of hearing and vision loss in Wfs1 
mutant rat models (Jagomäe et al. 2021; Seppa et al. 2019, 
2021; Toots et al. 2018).

iPSC‑derived models of Wolfram syndrome

The first successfully developed insulin-producing cells 
from patients with Wolfram syndrome were reported by 
Shang et al. (2014). In their study, the authors generated 
insulin-producing cells from skin fibroblast-derived iPSCs 
of Wolfram syndrome patients. These patient-derived 
insulin-producing cells showed lower insulin content and 
reduced tolerance to ER stress compared to controls. This 
cellular model provided crucial insights into ER stress-
related diseases derived from human patients. Maxwell 
et al. improved the differential protocol for iPSC-derived 
β-cells (SC-β-cells) and used CRISPR/Cas9 techniques to 
explore the potential of gene therapy and personalized cell 
therapy for Wolfram syndrome (Maxwell et al. 2020). In 
their study, they successfully restored insulin secretion in 
patient-derived SC-β-cells through the correction of WFS1. 
Transplanting the gene-edited SC-β-cells into diabetic mice 
resulted in improved blood glucose profile. In addition, they 
found that SC-β-cells differentiated from Wolfram syndrome 
patients with mild WFS1 variants retained their insulin 
secretory capacity (Kitamura et al. 2022). This indicates that 
these SC-β-cell models exhibit phenotypes consistent with 
the symptoms observed in patients. Using these SC-β-cell 
models, a combination treatment of 4-phenylbutyric acid 
and tauroursodeoxycholic acid has been demonstrated to 
effectively address the diabetic phenotype in Wolfram syn-
drome patients with the WFS1 p.R558C variant (Kitamura 
et al. 2022). Besides pancreatic β-cells, neural cells have also 
been developed as a disease model from Wolfram syndrome 
patient iPSCs. Impaired neurite outgrowth was observed in 
neurons derived from Wolfram syndrome patients, and this 
morphological change was prevented by treatment with val-
proic acid (Pourtoy-Brasselet et al. 2021). Valproic acid has 
been reported to reduce ER stress and act as a histone dea-
cetylase inhibitor for neurons. It is not clear how valproic 
acid promotes neurite outgrowth in the neuronal cell model 
of Wolfram syndrome. However, valproic acid may exert 
neuroprotective effects by reducing ER stress and through 
pleiotropic mechanisms. Zatyka et al. demonstrated that 
the interaction between WFS1 and VDAC1 is essential for 
mitochondrial function and dynamics in iPSC-derived neural 
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cells (Zatyka et al. 2023). These models could prove useful 
for studying the pathogenesis of brainstem atrophy and neu-
rodegeneration observed in Wolfram syndrome.

Future expectations

Numerous clinical and basic studies have significantly con-
tributed to understanding the function of WFS1 and advanc-
ing toward a cure for Wolfram syndrome. In future, further 
research is expected to uncover the unknown pathogene-
sis, particularly regarding the development of optic nerve 
atrophy and neurological symptoms associated with WFS1 
dysfunction. Furthermore, the development of therapeutic 
agents against Wolfram syndrome necessitates the use of 
patient-derived disease models. In addition to pancreatic 
β-cells and neural cells, the development of retinal ganglion, 
inner ear, and AVP-producing neural cells is important. 
These patient-derived cellular models can serve as invalu-
able tools for developing preclinical and personalized thera-
peutic reagents against visual impairment, hearing loss, and 
central diabetes insipidus in Wolfram syndrome. Research 
on Wolfram syndrome, including the development of various 
disease models, continues to serve as a prototype for study-
ing ER stress-related diseases.
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