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Abstract

Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including
diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the
causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of
WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge
gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical.
This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview
of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along
with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram
syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential

therapeutic approaches.

Introduction

Wolfram Syndrome (OMIM 222300) is a rare autosomal
recessive disease characterized by several symptoms, includ-
ing diabetes mellitus, optic nerve atrophy, diabetes insipidus,
hearing loss, and neurological dysfunction. Two types of
Wolfram syndrome have been identified: type 1 and type 2,
caused by pathogenic variants of WFSI and CISD2, respec-
tively. Most Wolfram syndrome cases are classified as type
1, so we will refer to them as “Wolfram syndrome” through-
out this review. Since the discovery of WFSI as the causa-
tive gene of Wolfram syndrome, several animal and cellular
models have been established. These disease models are
indispensable tools in the research on Wolfram syndrome.
However, a comprehensive summary of the characteristics
and phenotypes of these experimental models is lacking.
Therefore, this review aims to fill this gap by providing an
overview of the animal and cellular models of Wolfram
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syndrome established to date. In this review, we first dis-
cuss (1) the clinical symptoms of Wolfram syndrome, (2)
the function of WFS/ and the pathophysiology caused by its
abnormalities, and (3) the characteristics of disease models
of Wolfram syndrome.

Clinical features of Wolfram syndrome
and the discovery of WFS1

This section describes the clinical features of Wolfram syn-
drome and the disease concept associated with the causative
gene WFSI.

Major symptoms of Wolfram syndrome

The first cases of Wolfram syndrome were reported by Wolf-
ram and Wagener (1938). The report described four siblings
who developed juvenile-onset diabetes mellitus and optic
nerve atrophy. Subsequently, these patients also developed
hearing loss and neurogenic bladder (Paley and Tunbridge
1956). In 1956, Paley and Tunbridge reported two addi-
tional cases of diabetes and optic nerve atrophy, suggesting a
hereditary component (Paley and Tunbridge 1956). In 1977,
a comprehensive review of 91 cases by Cremers et al. (1977)
led to the official designation of this condition as “Wolfram
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syndrome.” Since then, numerous reports on the clinical
symptoms of patients have emerged. The first nationwide
survey was conducted and reported by Barrett et al. (1995),
revealing a prevalence of Wolfram syndrome at 1 in 770,000.
Typically, patients with Wolfram syndrome develop diabetes
mellitus at a median age of 6 years and optic atrophy around
11 years. Diabetes insipidus and sensorineural hearing loss
typically manifest in the second decade of life, while renal
tract abnormalities and neurological complications such as
cerebellar ataxia appear by the fourth decade. Neurological
and urinary tract manifestations are the most common causes
of morbidity and mortality (Kinsley et al. 1995). Wolfram
syndrome is characterized by a reduced size of intracranial
volume, particularly in the brainstem and cerebellum, lead-
ing to balance impairment (Hershey et al. 2012; Pickett et al.
2012). However, the severity of these symptoms can vary
among individuals with Wolfram syndrome (De Franco et al.
2017).

Discovery of WFS1

Wolfram syndrome was previously believed to be a mito-
chondrial disease due to the similarities in symptoms and the
presence of mitochondrial DNA deletions in some patients
(Bu and Rotter 1993; Bundey et al. 1993; Rotig et al. 1993;
Vora and Lilleyman 1993). However, subsequent cases dem-
onstrated the absence of mitochondrial DNA abnormalities,
and the inheritance pattern suggested an abnormality in the
nuclear genome of patients with Wolfram syndrome. Link-
age analysis suggested the presence of a causative gene for
Wolfram syndrome on chromosome 4p16 (Polymeropoulos
et al. 1994). In 1998, Inoue et al., followed soon after by
Strom et al., identified the WFSI gene (Inoue et al. 1998;
Strom et al. 1998) (Fig. 1). Since the discovery of WFSI,
the understanding of the pathogenesis of Wolfram syndrome
has remarkably advanced. Approximately 200 WFS/ vari-
ants associated with Wolfram syndrome have been reported,
mostly found in exon 8 of WFSI (Smith et al. 2004). WFS1
encodes the protein WFS1, also known as wolframin, which
is an endoplasmic reticulum (ER)-membrane protein with
multiple transmembrane domains comprising 890 amino

Fig.1 The structure of WFS]. WFs1

acids (Strom et al. 1998; Takeda et al. 2001). WFS1 is
expressed ubiquitously in various tissues, with the highest
levels observed in the pancreas, heart, and brain, particularly
in the hippocampus, amygdaloid area, and olfactory tubercle
(Hofmann et al. 2003; Takeda et al. 2001). Recent studies
have reported predominant localization of WFS1 in the ER
membrane, particularly in the mitochondria-associated ER
membranes, which serve as contact sites between the ER and
mitochondria (Angebault et al. 2018; La Morgia et al. 2020).

Wolfram syndrome and WFS1-related disorders

Wolfram syndrome, a rare disorder caused by recessive
WFS1 variants, is now recognized to exhibit a phenotypic
spectrum. Recent findings suggest that its frequency may
be higher in certain races and populations than previously
assumed (Bansal et al. 2018; De Franco et al. 2017, Li et al.
2020; Marchand et al. 2021). Moreover, there are related
disorders caused by a dominant inheritance form of WFS]I,
known as “WFSI-related disorders” or “Wolfram-like syn-
drome.” These disorders manifest with one or more symp-
toms observed in Wolfram syndrome. The severity and
symptoms of WFS/-related disorders can vary, ranging from
mild diabetes mellitus, hearing loss, congenital cataracts,
and optic atrophy developing independently to severe neo-
natal cases that exhibit all these symptoms (Kobayashi et al.
2018; Mets et al. 2010; Morikawa et al. 2017). It has also
been reported that specific heterozygous WFSI variants can
lead to nonsyndromic low-frequency sensorineural hearing
loss (Bespalova et al. 2001; Cryns et al. 2002; Young et al.
2001).

WFS1 functions and their anomalies

Some WFS1 variants have also been implicated in other
types of diabetes. Several large-scale genome-wide asso-
ciation studies have reported that several single nucleotide
polymorphisms (SNPs) in WFSI are associated with an
increased genetic risk for type 2 diabetes mellitus (T2DM),
irrespective of racial differences (Cheurfa et al. 2011; Elek
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et al. 2015; Heni et al. 2010; Lee et al. 2008; Long et al.
2012; Lyssenko et al. 2008; Sandhu et al. 2007; Sparsg
et al. 2008; van Hoek et al. 2008; Westermark et al. 2010).
However, a meta-analysis has shown that two specific WFS]
SNPs, 15734312 and rs10010131, have a significant protec-
tive effect against the risk of developing T2DM (Cheng
et al. 2013). Accordingly, understanding the pathogenesis
of Wolfram syndrome and WFS1-related disorders may pro-
vide valuable insights into the pathogenesis of other types of
diabetes, including T2DM. In this section, we describe the
known physiological functions of WFS/I and the pathologi-
cal conditions that arise due to its abnormalities.

Interaction between WFS1 and Ca2* channels
or pumps

The ER serves as an intracellular Ca2* store, and WFS1 is
expressed on the ER membrane. Therefore, numerous stud-
ies have explored the relationship between WFS1 and intra-
cellular Ca>* homeostasis (La Morgia et al. 2020; Nguyen
et al. 2020; Osman et al. 2003). The first study to demon-
strate a connection between WFS1 and intracellular Ca**
was reported by Osman et al. (2003), who showed elevated
levels of intracellular Ca** in Xenopus oocytes overexpress-
ing WFS1.

Takei et al. first revealed the relationship between Ca**
concentration in the ER and the expression level of WFS1
(Takei et al. 2006). They found that WFS1 regulates ER
Ca?* storage and cytosolic Ca** homeostasis by increas-
ing the Ca”* uptake and store-operated Ca>* entry (SOCE).
This regulation involves the modulation of Ca?* pumps
and channels, such as sarcoendoplasmic reticulum ATPase
(SERCA) and inositol 1,4,5-trisphosphate receptor (IP;R),
localized on the ER membrane (Kunnappallil and Hasan
2022). WFS1 deficiency results in upregulated SERCA
expression, leading to increased Ca** pumping into the ER
(Zatyka et al. 2015) (Fig. 2A). Additionally, WFS1 forms a
complex with neuronal calcium sensor 1 (NCS1) and IP;R
to facilitate Ca®* transfer between the ER and mitochon-
dria. WES|1 deficiency reduces the expression level of NCS1,
followed by impaired ER-mitochondrial contact and subse-
quent Ca®* uptake into the mitochondria (Angebault et al.
2018) (Fig. 2B). Therefore, therapeutic approaches targeting
intracellular Ca®* signaling have been explored as potential
treatments for Wolfram syndrome (Abreu et al. 2021; Akiy-
ama et al. 2009; Clark et al. 2017; Crouzier et al. 2022a; Lu
et al. 2014; Nguyen et al. 2020). Apart from its interactions
with Ca?" pumps and channels, WFS1 also interacts with the
Na*/K*™ ATPase beta-1 subunit, the V1A subunit of the H1
ATPase, and the voltage-dependent anion channel isoform 1
(VDAC1) (Gharanei et al. 2013; Zatyka et al. 2008; Zatyka
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Fig.2 Multiple functions of WFS1. A WFSI regulates Ca** uptake
in the ER by modulating SERCA activity. WFSI dysfunction
increases ER Ca®* levels and SOCE. Increased Ca’* concentration
activates Calpain-2, leading to cell death. B WFS1 activates IP;R
through NCS1 and stimulates Ca>* release from the ER. WFS1 dys-
function impairs IP;R activity, followed by decreased Ca* release
from the ER and Ca®" uptake into the mitochondria. C WFS1 sta-
bilizes HRD1, an E3 ubiquitin ligase, and degrades ATF6. WFS1
abnormality induces the hyperactivation of ATF6. D WFSI plays a
vital role in maintaining the pH within secretory granules. WFS1 dys-
function leads to impaired granule acidification and insulin exocyto-

sis. E The C-terminal of WFS1 binds to vesicular cargo proteins. The
N-terminal of WFS1 is recognized by the protein transport protein
SEC24, a component of coat protein complex II (COPII). WES1 dys-
function disrupts the generation of mature COPII vesicles and hinders
intercellular trafficking from the endoplasmic reticulum (ER) to the
Golgi complex. ATF6 activating transcription factor 6, HRD! HMG-
CoA reductase degradation 1 homolog, SERCA sarcoendoplasmic
reticulum ATPase, SOCE store-operated Ca%* entry, IP;R 1,4,5-tri-
sphosphate receptor, NCSI neuronal calcium sensor 1, GRP75 glu-
cose-regulated protein 75, VDACI voltage-dependent anion channel
1, MCU mitochondrial Ca%* uniporter. (Created with BioRender.com)
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et al. 2023). In WFSI-depleted cells, the Hl ATPase V1A
subunit is degraded more rapidly (Gharanei et al. 2013).

WFS1 as a component of unfolded protein response

The link between WFS1 and ER stress was first described
by Ueda et al. (2005). They demonstrated that the WFS/
expression level increased in response to ER stress. The gene
expression levels of WfsI are considered ER stress mark-
ers (Lipson et al. 2006) due to the presence of a conserved
sequence in the promoter region similar to the ER stress
response element (Kakiuchi et al. 2006). ER stress-induced
WFS1 upregulation requires the activation of inositol requir-
ing 1 and PKR-like endoplasmic reticulum kinase, which
are key regulators of the unfolded protein response (UPR)
(Fonseca et al. 2005). Another UPR regulator, activating
transcription factor (ATF) 6, binds to the Wfs/ gene pro-
moter and induces both gene and protein expression (Odisho
et al. 2015).

WFS1 has additional roles in the regulation of ER stress
and protein degradation. It stabilizes the E3 ubiquitin ligase
HRDI1 and regulates the degradation of ATF6a by facili-
tating ATF6 transport to the proteasome (Fonseca et al.
2010) (Fig. 2C). This means WFST1 acts as a UPR regula-
tor; its deficiency in pancreatic p-cells induces pathogenic
ER stress, leading to impaired cell cycle and accelerated
cell apoptosis (Yamada et al. 2006). However, consider-
ing their close interaction, both ER stress and intracellular
Ca”* homeostasis may be involved in the pathogenesis of
Wolfram syndrome. In fact, WFSI deficiency induces ER
stress, resulting in IP;R dysfunction and disturbed cyto-
solic Ca** homeostasis, which subsequently affects mito-
chondrial dynamics (Blackstone et al. 2016). This leads to
inhibited mitochondrial fusion and trafficking, as well as
augmented mitophagy, contributing to delayed neuronal
development. ER stress is recognized for disrupting intra-
cellular Ca** homeostasis and inducing cellular inflamma-
tion. The concept of “sterilized inflammation,” which refers
to non-infectious inflammation triggered by pathogenic ER
stress (Lerner et al. 2012; Oslowski et al. 2012), has recently
emerged. In line with these observations, ER stress-induced
sterilized inflammation caused by WFS1 dysfunction accel-
erates disease progression in Wolfram syndrome (Morikawa
et al. 2022; Panfili et al. 2021).

WFS1 function in intracellular trafficking

WESI1 localization extends beyond the ER to include secre-
tory granules (Hatanaka et al. 2011). In WFSI-deficient
pancreatic p-cells, insulin secretory granule acidification
becomes impaired, leading to impaired insulin exocytosis
(Hatanaka et al. 2011) (Fig. 2D). The acidification of insu-
lin granule is necessary for efficient proinsulin processing
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because endopeptidase PC1/3 and PC2 activate with a low
pH optimum. While the precise interaction between WFS1
expressed on the insulin granule membrane and impaired
insulin granule acidification has not been elucidated, it is
speculated that WFS1 regulates the activities of V-type
H*-ATPase and CLC-3CI~ channels expressed on the insulin
granule membrane (Hatanaka et al. 2011). More recently, it
was demonstrated that WFS1 serves as a vesicular cargo pro-
tein involved in intracellular trafficking (Wang et al. 2021).
Specifically, the C-terminus of WFS1 directly binds to trans-
ported proteins within the ER lumen, while the N-terminus
of WFS1 interacts with SEC24, a subunit of the coat protein
complex II (COPII) located in the cytoplasm. This interac-
tion allows for vesicular transport from the ER to the Golgi
(Fig. 2E). This function of WFS1 has been shown to be nec-
essary for the transportation of proteins such as proinsulin
from the ER to the Golgi in pancreatic p-cells (Wang et al.
2021).

Experimental models of Wolfram syndrome

Experimental models are indispensable tools for conducting
research to understand the pathogenesis of Wolfram syn-
drome and to develop therapeutic strategies. Over the years,
several disease models have been established to study this
condition. In the 2000s, WfsI knockout mice were gener-
ated as an early animal model. Subsequently, in the 2010s,
disease models were extended to include rats, flies, and
zebrafish. Recently, a WfsI pathogenic variant knock-in
mouse model has also been reported. In this section, we
summarize the phenotypic characteristics observed in these
Wolfram syndrome animal models and also include informa-
tion on induced pluripotent stem cell (iPSC)-derived cellular
models (Table 1).

Animal models of Wolfram syndrome

The first animal model, Wolfram syndrome, was established
by Ishihara et al. (2004). The whole-body WfsI-deficient
B6 background mice exhibited decreased pancreatic insu-
lin content at 2 weeks old, impaired glucose homeostasis,
and decreased insulin secretion around 17 weeks old. The
diabetic phenotype in these mice resulted from ER stress-
induced pancreatic B-cell death and was accelerated by
crossing with agouti lethal yellow mice, a model that devel-
ops obesity, insulin resistance, and pancreatic p-cell hyper-
plasia (Akiyama et al. 2009). Similar to Wolfram syndrome
patients, these mice also exhibited symptoms of central
diabetes insipidus due to arginine vasopressin (AVP) defi-
ciency (Kurimoto et al. 2021), impaired retinal functions
(Bonnet Wersinger et al. 2014), and psychiatric symptoms
observed in behavioral studies (Kato et al. 2008). In addition
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to the B6 strain, another whole-body WfsI knockout mouse
model on the 12956 background was developed (Koks et al.
2009; Luuk et al. 2008). These 129S6 mice, in which LacZ
replaces exon 8 of Wfsl, showed an earlier onset of diabetes
compared to the B6 strain (Abreu et al. 2020). Interestingly,
males were found to be at higher risk of developing diabetes
than females (Noormets et al. 2011). The phenotype of this
129S6-background mouse model is well studied, and besides
the diabetic phenotype, this mouse model recapitulates
many of the symptoms observed in patients with Wolfram
syndrome (Blackstone et al. 2016; Ivask et al. 2021; Luuk
et al. 2009; Noormets et al. 2009, 2014; Richard et al. 2023;
Visnapuu et al. 2013a, b; Waszczykowska et al. 2020). The
only WfsI-conditional knockout mouse model was reported
by Riggs et al. These B6 background mice, with specifi-
cally knocked out WfsI in pancreatic -cells, develop glu-
cose intolerance and insulin deficiency by 12 weeks of age
(Riggs et al. 2005). Most recently, a WfsI E864K knock-
in mouse model was reported (Richard et al. 2023). These
Wfs1 E864K knock-in mice develop an early onset of severe
vestibular dysfunction besides hearing loss. Human patients
with Wolfram syndrome carrying the WFS1 p.E864K vari-
ant develop low-frequency sensorineural hearing loss, optic
atrophy, and impaired glucose tolerance. However, no ves-
tibular neuropathy has been reported. These facts suggest
that the role of WFSI in the human vestibular system may
not be as crucial as in rodents.

Besides the mouse model, the Wfs/-deficient rat is a well-
established animal model for Wolfram syndrome (Plaas et al.
2017). This model involves whole-body Wfs/ knockout in
Sprague—Dawley background rats, which show impaired
glucose homeostasis starting at 3 months of age. At 15
months of age, these rats exhibit retinal gliosis, optic nerve
atrophy, and reduced medullary volume. Although the onset
age of each symptom is older than that in the mouse mod-
els, the larger body size of rats makes it advantageous for
conducting therapeutic interventions and sample collection.
Recently, the drosophila and zebrafish models with WFS1
homolog knockout have been reported as additional models
for Wolfram syndrome. Optical transparency of the zebrafish
embryo enables the observation of neural development
in vivo. Drosophila has a short generation time and a small
body size, making it possible to test many potential thera-
peutic molecules. Using these Wolfram syndrome zebrafish
and Drosophila models, phenotypes caused by WFS/ defi-
ciency, including neurodegeneration, visual dysfunction, and
mitochondrial dysfunction, have been well studied (Cairns
et al. 2021; Crouzier et al. 2022b; Kunnappallil and Hasan
2022; Sakakibara et al. 2018).

The pursuit of novel therapeutic approaches to combat
Wolfram syndrome is actively underway. One promising
strategy involves repurposing existing diabetic medica-
tions for the treatment of Wolfram syndrome, such as GLP1

receptor agonists (Panfili et al. 2023). Notably, exenatide and
dulaglutide have been reported to improve glucose tolerance
in Wolfram syndrome mouse models (Gorgogietas et al.
2023; Kondo et al. 2018; Sedman et al. 2016). Similarly,
another GLP-1 receptor agonist, liraglutide, was found to
prevent the development of glucose intolerance, reduce neu-
roinflammation, protect against retinal ganglion cell death,
and delay the progression of hearing and vision loss in Wfs/
mutant rat models (Jagomée et al. 2021; Seppa et al. 2019,
2021; Toots et al. 2018).

iPSC-derived models of Wolfram syndrome

The first successfully developed insulin-producing cells
from patients with Wolfram syndrome were reported by
Shang et al. (2014). In their study, the authors generated
insulin-producing cells from skin fibroblast-derived iPSCs
of Wolfram syndrome patients. These patient-derived
insulin-producing cells showed lower insulin content and
reduced tolerance to ER stress compared to controls. This
cellular model provided crucial insights into ER stress-
related diseases derived from human patients. Maxwell
et al. improved the differential protocol for iPSC-derived
p-cells (SC-pB-cells) and used CRISPR/Cas9 techniques to
explore the potential of gene therapy and personalized cell
therapy for Wolfram syndrome (Maxwell et al. 2020). In
their study, they successfully restored insulin secretion in
patient-derived SC-f-cells through the correction of WFS].
Transplanting the gene-edited SC-f-cells into diabetic mice
resulted in improved blood glucose profile. In addition, they
found that SC-f-cells differentiated from Wolfram syndrome
patients with mild WFS/ variants retained their insulin
secretory capacity (Kitamura et al. 2022). This indicates that
these SC-B-cell models exhibit phenotypes consistent with
the symptoms observed in patients. Using these SC--cell
models, a combination treatment of 4-phenylbutyric acid
and tauroursodeoxycholic acid has been demonstrated to
effectively address the diabetic phenotype in Wolfram syn-
drome patients with the WFS1 p.R558C variant (Kitamura
et al. 2022). Besides pancreatic p-cells, neural cells have also
been developed as a disease model from Wolfram syndrome
patient iPSCs. Impaired neurite outgrowth was observed in
neurons derived from Wolfram syndrome patients, and this
morphological change was prevented by treatment with val-
proic acid (Pourtoy-Brasselet et al. 2021). Valproic acid has
been reported to reduce ER stress and act as a histone dea-
cetylase inhibitor for neurons. It is not clear how valproic
acid promotes neurite outgrowth in the neuronal cell model
of Wolfram syndrome. However, valproic acid may exert
neuroprotective effects by reducing ER stress and through
pleiotropic mechanisms. Zatyka et al. demonstrated that
the interaction between WFS1 and VDACI is essential for
mitochondrial function and dynamics in iPSC-derived neural
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cells (Zatyka et al. 2023). These models could prove useful
for studying the pathogenesis of brainstem atrophy and neu-
rodegeneration observed in Wolfram syndrome.

Future expectations

Numerous clinical and basic studies have significantly con-
tributed to understanding the function of WFS! and advanc-
ing toward a cure for Wolfram syndrome. In future, further
research is expected to uncover the unknown pathogene-
sis, particularly regarding the development of optic nerve
atrophy and neurological symptoms associated with WFS1
dysfunction. Furthermore, the development of therapeutic
agents against Wolfram syndrome necessitates the use of
patient-derived disease models. In addition to pancreatic
[B-cells and neural cells, the development of retinal ganglion,
inner ear, and AVP-producing neural cells is important.
These patient-derived cellular models can serve as invalu-
able tools for developing preclinical and personalized thera-
peutic reagents against visual impairment, hearing loss, and
central diabetes insipidus in Wolfram syndrome. Research
on Wolfram syndrome, including the development of various
disease models, continues to serve as a prototype for study-
ing ER stress-related diseases.
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