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Abstract
PIWI-interacting RNAs (piRNAs), small noncoding RNAs 24–35 nucleotides long, are essential for animal fertility. They play 
critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and 
viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct 
epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to 
post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis 
occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. 
Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. 
Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and 
the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the develop-
ment of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy 
without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that 
are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit 
flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert 
precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. 
We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.

Introduction

PIWI-interacting RNAs (piRNAs) are small non-coding 
RNAs that form 1:1 RNA–protein complexes with PIWI 
(P-element-induced wimpy testis) proteins. The PIWI gene 
was first identified in 1997, the disruption of which leads 
to defects in germ stem cell maintenance in Drosophila 
(Lin and Spradling 1997). Further studies revealed that a 
conserved family of PIWI genes with an essential function 
in germ cells is widely distributed in both vertebrates and 
invertebrates (Chirn et al. 2015; Murchison et al. 2008; 
Wynant et al. 2017). Three PIWI paralogs are found in 

mice, MIWI, MILI, and MIWI2, the deletion of any one of 
which leads to male infertility (Aravin et al. 2007b; Deng 
and Lin 2002; Carmell et al. 2007) (Fig. 1). piRNAs were 
first reported in 2001 in Drosophila as small silencing RNAs 
with distinct features from known microRNAs (miRNAs) 
or small interference RNAs (siRNAs) (Aravin et al. 2001). 
Although research in Tetrahymena in 2002 indicated that 
PIWI proteins bind small RNAs and the RNA–protein com-
plex functions together in genome rearrangement (Box 1), 
the name “piRNA” was not coined until a group of studies 
published in 2006 revealed that a set of germ cell-specific 
small RNAs associate with PIWI proteins in both Drosoph-
ila and mammals(Vagin et al. 2006; Girard et al. 2006; Ara-
vin et al. 2006; Grivna et al. 2006; Lau et al. 2006). These 
studies uncovered the features that distinguish piRNAs from 
other small RNAs: (1) piRNAs have a characteristic length 
of 24–35 nucleotides (nt), which is longer than both miR-
NAs and endogenous siRNAs; (2) 2′-O-methyl modifications 
occur at the 3′-end of piRNAs; and (3) piRNAs associate 
with PIWI proteins, a subclade of Argonaute proteins. While 
later studies have confirmed the distribution of piRNAs 
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across bilateral animals (Grimson et al. 2008; Lewis et al. 
2018), and piRNA biogenesis is believed to be evolutionar-
ily conserved from fruit flies to humans (Czech and Hannon 
2016a; Gainetdinov et al. 2018), recent studies argue for the 
existence of diverse, mammalian-specific RNA-processing 
pathways that convert precursor RNAs into piRNAs, prob-
ably associated with the unique features of mammalian 
piRNAs or germ cell development. Therefore, this review 
focuses primarily on mouse piRNAs, although piRNAs from 
other organisms will be discussed when relevant.

Multi‑faceted piRNAs—classifying piRNAs

In mice, piRNAs are divided into three major classes based 
on their origins (Table 1): transposable element (TE) piR-
NAs from DNA transposons, endogenous retroviruses, long 

interspersed nuclear elements (LINEs), or short interspersed 
nuclear elements (SINEs); intergenic piRNAs from non-
coding regions of the genome; and 3′untranslated region 
(3′UTR) piRNAs that map to the 3´UTRs of protein-coding 
regions in the sense orientation. TE piRNAs protect the ger-
mline genome from TE activation, a function that is evolu-
tionarily conserved in bilateral animals (Kumar and Carmi-
chael 1998; Aravin and Hannon 2008; Farazi et al. 2008; 
Thomson and Lin 2009; Grimson et al. 2008). TE piRNAs 
are the dominant piRNA class in Drosophila and zebrafish, 
whereas intergenic piRNAs are the dominant piRNA class 
in adult mammalian testes. Both 3′UTR piRNAs and inter-
genic piRNAs are mostly uniquely mapped to the genome 
and lack well-identified targets. A small fraction of inter-
genic piRNAs have been shown to base-pair with and trigger 
the decay of mRNAs required for sperm maturation (Goh 
et al. 2015; Gou et al. 2014; Zhang et al. 2015; Wu et al. 

Gonocyte Spermato-
gonia A to B

Spermato-
gonia A

Lepotene/
zygotene
spermatocyte

Pachytene spermatocyte Round
spermatid

Elongating
spermatidearly mid late

4 mitotic divisions 
& differentiation 

Migration to basement 
membrane of tubule

DSB formation
Telomere tether

Synaptonemal complex 
& crossover formation 

G
er

m
 c

el
l

d
ev

el
op

m
en

t
K

ey
ev

en
ts

Spermatocytogenesis SpermiogenesisMeiosis

R
el

at
iv

e 
p

iR
N

A
 a

b
un

d
an

ce
 

(p
p

m
, n

or
m

al
iz

ed
 to

 m
iR

N
A

s)

0

5

10
All piRNAs

mRNA-derived piRNAs (function unknown)

TE-piRNAs (silencing TEs) intergenic
-mappers 
(function 
unknown) 

Condensing
spermatid

Mili

Miwi

Sperm

Histones
Transition Protein 1
Transition Protein 2

Protamine 1
Protamine 2

Condensd
spermatid

Miwi2

Prospermato-
gonia

de novo
DNA methylation

before birth

IMC
piP-body

CB

Fig. 1   Key events in mouse spermatogenesis and their associated 
piRNA and PIWI gene expression. The top two panels show germ 
cell development stages and corresponding key events. The third 
panel from the top shows piRNA expression levels. piRNA abun-
dance is measured by small RNA sequencing based on (Li et  al. 

2013) and unpublished data. The bottom panel shows the expres-
sion profiles of three PIWI genes in mice: Miwi Mili and Miwi2, DSB 
Double-strand break, TE transposable element. Dash line represents 
putative data, IMC intermitochondrial cement, CB chromatoid body

Table 1   Classification of 
piRNAs in mammals

Precursors TE RNA lncRNA 3′UTR RNA

Developmental stage Pre-natal Pachytene Pre-pachytene hybrid
Present Bilateral animals Mammals Drosophila to mice
Function Silence TEs Silence mRNA Fine-tune protein synthesis
Biogenesis Ping-Pong, 

phased biogen-
esis

Phased biogenesis, TDRD5 (Tudor 
Domain Containing 5), and ribo-
somes

Phased biogenesis, 
TDRD5, and ribosomes
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2020). 3′UTR piRNAs have been detected in Drosophila, 
frogs, and diverse mammalian species (Robine et al. 2009; 
Chirn et al. 2015). These 3′UTR piRNAs are derived from 
full-length mRNA precursors rather than cryptic transcripts 
corresponding exclusively to 3′UTRs, and their biogenesis 
is coupled with translation thus fine-tuning protein synthesis 
from their mRNA precursors (Sun et al. 2021).

piRNAs can be categorized into primary piRNAs and sec-
ondary piRNAs based on their biogenesis pathways, which 
are principally distinguished by their mechanisms of 5′end 
formation. Primary piRNAs are produced from long single-
stranded RNA precursors that are synthesized from piRNA 
loci, and their 5′ends are produced during the fragmenta-
tion process, likely involving the MitoPLD endonuclease 
(or PLD6, which has a homolog “Zucchini” in Drosophila) 
located on mitochondrial outer membranes. Secondary piR-
NAs are produced from piRNA-targeted transcripts, and 
their 5′ends are generated by the endonucleolytic activity 
of PIWI proteins, which cleaves between positions 10 and 
11 of the base-pair complementary RNA target relative to 
the piRNA 5′end. These secondary piRNAs can target the 
primary piRNA precursor transcripts to generate more sec-
ondary piRNAs, resulting in a piRNA-specific “Ping-Pong” 
loop. This loop is believed to represent an adaptive immune 
response that enables piRNAs to silence TE transcripts 
post-transcriptionally, as the loop continues to produce TE 
piRNAs until the TE transcripts are diminished (Gunawar-
dane et al. 2007; Brennecke et al. 2007). In Drosophila, 
secondary piRNAs can also trigger a Zucchini-dependent 
“phased” piRNA biogenic mechanism that resembles pri-
mary piRNA biogenesis but only occurs downstream of the 
initial PIWI-catalyzed cleavage event in a 5′-to-3′ stepwise 
manner, generating non-overlapping fragments known as 
pre-piRNAs. After loading onto PIWI proteins, the pre-
piRNAs (23–42 nt) are further trimmed and methylated to 
become mature piRNAs (Mohn et al. 2015; Han et al. 2015; 
Homolka et al. 2015; Ding et al. 2017; Gainetdinov et al. 
2018; Darricarrère et al. 2013; Ishizu et al. 2015).

Based on the dynamics of their expression, mouse piR-
NAs can be further classified into prenatal piRNAs, pre-
pachytene piRNAs, pachytene piRNAs, and hybrid piRNAs. 
Prenatal piRNAs are TE-rich and associated with MILI and 
MIWI2 proteins. MILI-bound prenatal piRNAs silence 
piRNA target transcripts in the cytosol. MIWI2-bound pre-
natal piRNAs are shuttled to the nucleus to recruit epigenetic 
machinery to direct the DNA methylation (Schöpp et al. 
2020) of TEs around 13.5–15.5 days post coitum (dpc) (Ara-
vin et al. 2008; Kuramochi-Miyagawa et al. 2008). Knockout 
of MILI or MIWI2 leads to TE desilencing; however, the 
catalytic activity of MIWI2 is not required(De Fazio et al. 
2011), indicating that MILI-bound piRNAs are sufficient 
to trigger a robust cytosolic Ping-Pong reaction and the 
formation of MIWI2-bound secondary piRNAs. Thus, the 

current data suggest that a subset of MILI cleavage products 
is loaded to MILI staying in the cytosol to trigger a Ping-
Pong loop and another subset of cleavage products is loaded 
to MIWI2, and the MILI cleavage also triggers downstream 
phased piRNA production loading to MIWI2 (Yang et al. 
2016). Pre-pachytene piRNAs, expressed after birth, have 
the lowest abundance among the four groups and are com-
posed of TE piRNAs and 3′UTR piRNAs. They are associ-
ated with MILI and are essential for silencing TEs during 
the mitotic and meiotic stages of adult spermatogenesis (Di 
Giacomo et al. 2013). Pachytene piRNAs, along with MIWI 
proteins, are produced during the pachytene stage of meio-
sis. They, associated with both MILI and MIWI, are gener-
ally poor in TE complementary sequences and are mostly 
derived from long non-coding RNA (lncRNA) precursors 
synthesized in intergenic regions. Pachytene piRNAs repre-
sent the most abundant class of small RNAs in the adult tes-
tis, around 5.7 to 7.2 μM per cell (Gainetdinov et al. 2018). 
Pachytene piRNAs are produced via a Ping-Pong independ-
ent mechanism (Beyret et al. 2012), and, indeed, MIWI 
endonucleolytic cleavage activity is not required for pachy-
tene piRNA production. Hybrid piRNAs are a class of piR-
NAs with features of both pachytene piRNAs (being present 
at increased levels during the pachytene stage and derived 
from lncRNAs) and pre-pachytene piRNAs (which map to 
mRNA 3′UTRs) (Li et al. 2013). Hybrid piRNA activation 
during pachytene stage is driven by the same transcription 
factor A-MYB as pachytene piRNAs, and their 3′UTRs are 
embedded with TE sequences, thus producing TE piRNAs 
that trigger Ping-Pong loops silencing TEs (Sun et al. 2021).

Transcription of piRNA loci

Despite piRNAs being the most heterogenous small non-
coding RNA in animals with > 1 million unique sequences 
detected in individual germlines from most animal species 
that have been studied (Vagin et al. 2006; Aravin et al. 2006; 
Lewis et al. 2018), they are produced from discrete genomic 
loci, historically defined using computational methods and 
named piRNA clusters (Brennecke et al. 2007; Gainetdinov 
et al. 2018). Later work has defined the transcriptional start 
sites, polyA cleavage sites, promoters, and splice sites of 
the transcriptional units in the piRNA loci in mice (Li et al. 
2013). Among all classes of murine piRNAs, we understand 
the transcriptional regulation of pachytene piRNAs in the 
most detail. Unlike convergent transcribed dual-stranded 
piRNA loci in Drosophila and chickens, piRNA loci in 
mammals are unidirectionally or bidirectionally transcribed 
similar to the transcription of protein-coding genes (Gould 
et al. 2012; Sun et al. 2017; Li et al. 2013; Yu et al. 2021). 
The single-strand pachytene piRNA precursors, ranging 
from 500 to 80,000 nt (Betel et al. 2007; Li et al. 2013), 



296	 Y. H. Sun et al.

1 3



297The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved﻿	

1 3

are generated with the activation of the transcription factor 
A-MYB (Li et al. 2013) (Fig. 2). A-MYB-mediated tran-
scriptional regulation of pachytene piRNAs is conserved in 
amniotes (Li et al. 2013), and A-MYB also regulates the 
mRNAs coding for piRNA biogenic proteins, forming a 
feedforward loop to ensure the robust activation of piRNA 
production during pachytene stage. Unlike promoters from 
protein-coding genes, which often have a high CpG content, 
the promoters of pachytene piRNA loci have a low CpG con-
tent and are heavily methylated (Yu et al. 2021). RNA poly-
merase II transcribes these pachytene piRNA genes, and the 
RNAs undergo conventional mRNA processing, including 
5′-capping and polyA tailing. Pachytene piRNA precursors 
often contain introns that are removed by splicing, indicat-
ing that splicing occurs during piRNA precursor synthesis. 
Those precursors that harbor a long first exon require an 
additional biogenic factor, BTBD18 (BTB Domain Contain-
ing 18), to facilitate their transcriptional elongation (Zhou 
et al. 2017; Yu et al. 2021). Pachytene piRNA precursors 
also bind THOC1 and THOC2, THO complex subunits, 
for their nuclear export (Yu et al. 2021) and are eventually 
localized to the surface of mitochondria for primary piRNA 
biogenesis (Li et al. 2013; Murano et al. 2019; Fabry et al. 
2019) (Fig. 2).

Post‑transcriptional processing of piRNA 
precursors

The post-transcriptional processing of all primary piRNA 
precursors can be simplified to three steps: 5′end formation, 
PIWI loading, and 3′end formation (Fig. 2). The 5′ends of 
primary piRNAs are formed when piRNA precursors are 
fragmented, likely by the MitoPLD endonuclease in mice 
based on structural and biochemical studies on its homologs 
in Drosophila (Gao and Frohman 2012; Kabayama et al. 
2017) and silkworm (Izumi et al. 2020). In mice, MitoPLD, 
previously shown to be a phospholipid-hydrolyzing enzyme, 

contains an N-terminal mitochondrial targeting signal and 
is located on the outer membrane of mitochondria (Gao and 
Frohman 2012; Kabayama et al. 2017). However, structural 
studies of Drosophila ZUCCHINI suggests that its active 
site resembles the bacterial endonuclease Nuc, and Zuc-
chini displays endonuclease activities in vivo (Voigt et al. 
2012). During Drosophila phased piRNA biogenesis, ZUC-
CHINI continuously cleaves the single-stranded RNAs and 
simultaneously generates the 3′end of the pre-piRNA (before 
3′-trimming occurs) and the 5′-end of the next, immediately 
adjacent pre-pre-piRNA. The cleaved piRNA intermediates, 
pre-pre-piRNAs, are loaded onto PIWI proteins to trigger the 
next ZUCCHINI-dependent cleavages between the 3′end of 
the pre-piRNAs and 5′end of the pre-pre-piRNAs. Recently, 
the cleavage of single-stranded RNAs by silkworm ZUC-
CHINI has been recapitulated in vivo (Izumi et al. 2020). 
MOV10L1 is an RNA helicase required for piRNA biogen-
esis. It interacts with PIWI proteins stably, while its interac-
tion with pachytene piRNA precursors is transient, requiring 
crosslink to be detected (Zheng et al. 2010; Vourekas et al. 
2015). MOV10L1 is thought to load PIWI proteins onto the 
pre-pre-piRNAs. The 3′ends of pre-piRNAs undergo trim-
ming by an exonuclease (Trimmer in Drosophila, PNLDC1 
in mice) and 2′-O-methylation by HENMT1 (Hayashi et al. 
2016; Kirino and Mourelatos 2007; Ohara et al. 2007).

Substrate recognition of piRNA precursors

The mechanisms that identify an RNA for piRNA process-
ing in mice are currently unknown. As 5′end formation is 
upstream of PIWI loading and 3′end formation, the main 
question is what specifies the initial cleavages on the piRNA 
precursors. Based on the current model from Drosophila, 
the initiation of ZUCCHINI-dependent phased piRNA 
processing requires an initiator piRNA that has base-pair 
complementarity to the piRNA precursors. In Drosophila, 
the initiator piRNAs are provided maternally to the eggs in 
the germplasm and the cells with germplasm differentiate 
into germ cells. The maternally deposited initiator RNAs 
are the secondary piRNAs of the previous (F0) generation, 
which target the primary piRNA precursors in the germ 
cells of F1 generation and initiate primary piRNA produc-
tion in a phased manner. The secondary piRNAs generated 
from the primary piRNAs will be deposited for primary 
piRNA production in the following generation (F2) and so 
on. However, unlike Drosophila germ cells, whose fates are 
pre-determined by the presence of germplasm where the 
piRNAs are deposited (Santos and Lehmann 2004), mam-
malian germ cells are induced de novo from somatic cells 
during embryogenesis (Nicholls et al. 2019). Thus, the bio-
genesis of pre-natal piRNAs in mice must have been initi-
ated de novo. Similarly, de novo phased piRNA biogenesis 

Fig. 2   Current model of pachytene piRNA biogenesis in mouse tes-
tis. Facilitated by A-MYB and BTBD18, pachytene piRNA precur-
sor transcripts are synthesized by RNA polymerase II, containing a 
5′-cap and a poly(A) tail. Introns of these precursors are spliced out, 
and then these precursors are transported from the nucleus to the 
cytoplasm and further located to the IMC. Presumably, endonucle-
ase PLD6 on the outer membrane of mitochondria cleaves the piRNA 
precursors and generates the 5′ ends of future piRNAs. In the first 
phase of piRNA biogenesis, ribosomes translate the uORF region 
and piRNAs  are produced in a TDRD5-independent manner. In the 
second phase, ribosomes translocate to the UDR region, facilitated 
by MOV10L1, and guide piRNA production in a TDRD5-dependent 
manner. Finally, these cleaved products will be loaded onto MILI or 
MIWI protein for further 3′ end maturations that PNLDC1 trims and 
HEN1 adds the 2′-O-methyl group to the end of piRNAs. Moreover, 
MOV10L1 and TDRD5 bind directly to pachytene piRNA precursors. 
Figure created with BioRender.com

◂
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through unknown mechanisms occurs in somatic cells of 
Drosophila, where piRNAs do not display Ping-Pong signa-
tures (Homolka et al. 2015). Although it has been proposed 
that pre-pachytene piRNAs could serve as initiator piRNAs 
for pachytene piRNA biogenesis (Gainetdinov et al. 2018; 
Czech and Hannon 2016a), PIWI protein is below the detec-
tion limit in spermatocytes before pachytene piRNA produc-
tion commences (Di Giacomo et al. 2013), arguing against 
the existence of abundant initiator piRNAs for pachytene 
piRNA biogenesis being provided from the pre-pachytene 
stage. Thus, it remains unclear whether the phased biogen-
esis of pachytene piRNAs is initiated by initiator piRNAs or 
by a de novo mechanism.

Other than the presence or source of initiator piRNAs, 
two major biogenic differences between mouse pachytene 
piRNAs and Drosophila germline piRNAs lie with their 
precursors. First, mouse pachytene piRNA precursors are 
long and continuous transcripts. Although both types of 
precursors are single-stranded RNAs, Drosophila ger-
mline piRNA precursors are cryptic transcripts that are 
synthesized in a heterochromatin-dependent and promoter-
independent mechanism (Andersen et al. 2017), whereas 
pachytene piRNA precursors have defined transcriptional 
initiation sites and polyA cleavage sites and are long con-
tinuous RNAs up to 80,000 nt in length. Drosophila ger-
mline piRNA precursors are derived from highly repetitive 
regions, whereas mouse pachytene piRNA precursors are 
depleted of TE sequences in comparison to the rest of the 
genome. Given that downstream phased piRNA production 
declines with distance (Mohn et al. 2015; Han et al. 2015), 
which may be due to the instability of cleavage products 
prior to PIWI loading, more frequent cleavage promoted by 
initiator piRNAs would be required to produce more phased 
piRNAs in Drosophila (Mohn et al. 2015). However, the 
lack of repetitive elements and low abundance of piRNA 
prior to the pachytene stage argue against frequent initiator 
piRNA-mediated cleavage on pachytene piRNA precursors. 
Because of the low number of cleavages, if any, promoted by 
initiator piRNAs, phased pachytene piRNA biogenesis must 
be highly processive, as single-stranded RNAs are known 
to form secondary structures and bind to RNA-binding pro-
teins. This requirement for high processivity of phased pro-
duction may explain why ribosomes are involved in piRNA 
biogenesis in vertebrates, as elongating ribosomes are strong 
helicases (Takyar et al. 2005; Qu et al. 2011), unwinding 
secondary structures or stripping RNA-binding proteins off 
the precursors.

Second, mouse pachytene piRNA precursors are trans-
lated. In Drosophila, the RNA granules where piRNA pre-
cursors are processed are in close proximity to the nucleus, 
allowing direct channeling of the precursors. However, such 
attachment between the nucleus and RNA granules is not 
observed in mice. This may cause increased dwell time for 

piRNA precursors in the cytosol and can promote ribosome 
translation of the upstream open reading frame (uORF) of 
piRNA precursors, which are nonetheless annotated as lncR-
NAs (without long or conserved ORFs) (Sun et al. 2020). 
After translation of the uORFs, MOV10L1 facilitates the 
translocation of 80S ribosomes into the uORF downstream 
regions that produce the majority of piRNAs (Yabuta et al. 
2011; Zheng and Wang 2012; Sun et al. 2018; Ding et al. 
2018; Guan et al. 2021). Endonucleolytic cleavage occurs 
on ribosome-bound piRNA precursors near the ribosome E 
site, generating the pre-pre-piRNAs with ribosomes bound 
at their 5′-extremities(Sun et al. 2020) (Fig. 2). Given that 
ribosomes are actively moving along the UDR, based on 
runoff assays after translation inhibition, the current model 
proposes that once the ribosomes translocate downstream, 
PIWI proteins are loaded onto the 5′P end of pre-pre-piR-
NAs and trigger MitoPLD-dependent cleavage between 
the ribosomes and PIWI proteins. Although this ribosome-
guided piRNA biogenesis mechanism is detected in chick-
ens and lizards, it does not appear to exist in invertebrates 
(Izumi et al. 2020), nor does it function for regions of uORFs 
and 5′UTRs of pachytene piRNA precursors in mice. The 
phenotype of Tdrd5 mutant mice demonstrates the distinct 
biogenesis pathways that operate 5′ (upstream) and 3′ (down-
stream) of the stop codon of uORFs, as only the produc-
tion of piRNAs from uORF downstream regions requires 
TDRD5, a Tudor domain protein that binds to pachytene 
piRNA precursors (Ding et al. 2018) (Fig. 2). Thus, it is pos-
sible that the ribosome-guided, TDRD5-dependent mecha-
nism has specifically evolved for long continuous piRNA 
precursors. The differences between mice and Drosophila 
piRNA precursors suggest that more mammalian-specific 
biogenic factors involved in substrate recognition and coor-
dination of substrate processing with ribosome translocation 
have yet to be discovered.

Summary of piRNA biogenic factors

Mouse piRNA biogenic factors, along with their homologs 
in Drosophila, include transcription factors (A-MYB, 
BTBD18), PIWI proteins (MIWI2, MILI, MIWI), multiple 
Tudor domain-containing proteins, ribosomes, endonu-
cleases (MitoPLD), 3′end maturation enzymes (PNLDC1, 
HENMT1), and other co-factors (MOV10L1, DDX4, 
GTSF1, MAEL, etc.) (Table  2). Some factors perform 
functions that are highly conserved between Drosophila 
to mammalians, such as MitoPLD (PLD6, or Zucchini in 
Drosophila) and S-adenosylmethionine (SAM)-dependent 
methyltransferase (Hen1 in Drosophila; HENMT1 in mice) 
(Table 2). On the other hand, some factors, representing 
homologous proteins between Drosophila and mice, have 
gained novel functions through gene duplication, such as 
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Table 2   piRNA biogenesis factors in mice

Mouse Drosophila Function

A-MYB
(MYBL1)

Myb A-MYB is a transcription factor of mouse pachytene piRNAs. It binds to the promoter regions 
and drives the transcription of both pachytene piRNA precursors, hybrid piRNA precursors, 
and the mRNAs for core piRNA biogenesis factors including MIWI(Sun et al. 2021; Li et al. 
2013)

BTBD18 – As a nuclear protein, BTBD18 occupies a subset of pachytene piRNA-producing loci and facili-
tates their transcriptional elongation mediated by RNA polymerase II(Zhou et al. 2017)

MIWI
(PIWIL1)

Aubergine (Aub) Pachytene-expressed MIWI binds to piRNAs with a typical length of ~ 29–31 nt. In adult mouse 
testes, piRNAs are loaded to MILI and MIWI. MIWI’s PIWI domain has slicer activity which 
is responsible for TE silencing(Deng and Lin, 2002; Reuter et al. 2011)

MILI
(PIWIL2)

Aubergine (Aub) In primordial germ cells, mouse MILI forms Ping-Pong with MIWI2 to silence TEs. In adult 
mouse testes, piRNAs are loaded to MILI and MIWI. MILI’s PIWI domain has slicer activity 
which is responsible for TE silencing(De Fazio et al. 2011; Kuramochi-Miyagawa et al. 2008)

MIWI2
(PIWIL4)

Piwi In primordial germ cells, mouse MILI forms a Ping-Pong loop with MIWI2 to silence trans-
posons. MIWI2 performs transcriptional silencing with nuclear function(Aravin et al. 2008; 
Kuramochi-Miyagawa et al. 2008; Darricarrère et al. 2013; Carmo-Fonseca et al. 1991)

GTSF1
(CUE110)

Asterix (Arx) GTSF1 is an essential factor for secondary piRNA production through MILI-MIWI2 Ping-Pong 
amplification in mice(Yoshimura et al. 2009, 2018)

MAEL Maelstrom (Mael) MAEL localizes predominantly at perinuclear nuage of mouse spermatocytes with a small 
subset clustered at nucleus and nuclear pores, and is critical for transcriptional repression of 
TEs(Matsumoto et al. 2015; Findley et al. 2003; Aravin et al. 2009; Sienski et al. 2012; Soper 
et al. 2008; Castaneda et al. 2014)

MitoPLD (PLD6) Zucchini (Zuc) MitoPLD is a mitochondrial outer membrane protein with endonuclease activity. It cleaves the 
piRNA precursors, which is required to generate the 5′-end of mature piRNAs. So far, no 
sequence specificity has been reported for MitoPLD’s cleavage activity in vitro(Haase, 2016; 
Nishimasu et al. 2012; Ipsaro et al. 2012)

GPAT2 Minotaur (Mino) GPAT2 is a structural component of IMC required for phased piRNA biogenesis. It binds to 
MILI and plays a critical role in primary processing during piRNA production(Shiromoto et al. 
2013; Vagin et al. 2013)

GASZ (ASZ1) Gasz (CG2183) GASZ is a mitochondrial outer membrane protein required for phased piRNA biogenesis. It is 
involved in the silencing of retrotransposons by stabilizing MILI in the nuage(Czech et al. 
2013; Ma et al. 2009)

MOV10L1 Armitage (Armi) MOV10L1 is an RNA helicase required for phased piRNA biogenesis. It unwinds secondary 
structures such as G quadruplexes on piRNA precursors and promotes phased piRNA biogen-
esis by facilitating ribosome binding on the uORF downstream regions (UDRs) (Zheng et al. 
2010; Frost et al. 2010; Vourekas et al. 2015)

MVH
(mouse VASA 

homolog, 
DDX4)

Vasa (Vas) MVH is a DEAD box containing protein with ATP-dependent RNA helicase activity. It is 
required for the handover of PIWI-cleaved piRNA intermediates, which allows successful 
secondary piRNA biogenesis(Wenda et al. 2017; Kuramochi-Miyagawa et al. 2010; Xiol et al. 
2014)

TDRD1 Vreteno (Vret) TDRD1 is a Tudor domain-containing protein. In mice, it is localized in the nuage (intermi-
tochondrial cement and chromatoid body) of mouse germ cells and binds to the arginine-
methylated MILI protein, serving as a scaffold for piRNA biogenesis(Chuma et al. 2006). In 
Drosophila, it is localized to the nuage and Yb body(Zamparini et al. 2011)

TDRKH
(TDRD2)

Papi TDRKH is a Tudor domain-containing mitochondrial protein involved in piRNA 3′ end process-
ing by tethering PNLDC1 to the mitochondria. It is required for primary piRNA biogenesis but 
not for the Ping-Pong cycle. It partners with MIWI and MIWI2 via symmetrically dimethylated 
arginine residues(Chen et al. 2009; Ding et al. 2019; Saxe et al. 2013; Honda et al. 2013)

RNF17
(TDRD4)

Qin RNF17 is a Tudor domain-containing protein. In mouse testes, RNF17 blocks promiscuous 
activity of PIWI proteins, and RNF17 mutants show inappropriate Ping-Pong targeting protein-
coding genes and long noncoding RNAs. In Drosophila, it is localized to the nuage and sup-
presses homotypic Aub:Aub Ping-Pong(Wasik et al. 2015; Zhang et al. 2014; Pan et al. 2005)

TDRD5 Tejas (Tej) TDRD5 is a Tudor domain-containing protein localized to the nuage. It is required for 
UDR piRNA biogenesis in mice but dispensable for piRNA production at the uORF 
region(Smith et al. 2004; Yabuta et al. 2011; Ding et al. 2018)

TDRD6 Tudor TDRD6 is a Tudor domain-containing protein. It interacts with MILI and MIWI and is critical 
for the architecture of chromatoid bodies in mice(Nishida et al. 2009; Vasileva et al. 2009)
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MOV10 and MOV10L1, both of which are mouse homologs 
of Drosophila Armitage. A-MYB, BTBD18, and ribosomes 
represent factors specific to amniote (including mammals 
and birds) piRNA biogenesis (Li et al. 2013; Zhou et al. 
2017; Sun et al. 2020). Tudor domain-containing proteins 
(Gan et al. 2019) are essential for piRNA biogenesis in 
both Drosophila and mice, including TDRD1, TDRD2 
(TDRKH), TDRD4 (RNF17), TDRD5, TDRD6, TDRD7, 
TDRD9, and TDRD12 (ECAT8) (Table 2). The 3′end trim-
ming protein in mice is a poly(A)-specific ribonuclease-like 
domain-containing 1 (PNLDC1), an ortholog protein miss-
ing in Drosophila but present as PARN-1 in C. elegans and 
silkworm. Drosophila instead uses the miRNA-trimming 
enzyme Nibbler to shorten piRNAs (Liu et al. 2011; Han 
et al. 2011; Feltzin et al. 2015), indicating the existence of 
diverse mechanisms for piRNA 3′end formation (Czech and 
Hannon 2016b).

Location for piRNA biogenesis and function: 
RNA granules

Key piRNA biogenic factors, such as PNLDC1, TDRKH, 
MitoPLD, GASZ, and GPAT2, are found on the outer mem-
brane of mitochondria (Honda et al. 2013; Czech et al. 2013; 
Ma et al. 2009; Shiromoto et al. 2013; Vagin et al. 2013; 

Nishimasu et al. 2012; Ipsaro et al. 2012; Haase et al. 2010) 
where specific RNA granules are located between adjacent 
mitochondria, called intermitochondrial cement (IMC). A 
more general term for these RNA- and protein-rich struc-
tures in germ cells are germinal granules (or germline 
granules, or germ granules) (Meikar et al. 2011). These 
germinal granules are also referred to as a “nuage” (French 
for “cloud”) due to their amorphous shape, the absence of 
surrounding membranes, and the abundance of RNA and 
proteins (Nishida et al. 2007; Seto et al. 2007; Harris and 
Macdonald 2001; Gunawardane et al. 2007; Brennecke et al. 
2007; Meikar et al. 2011). So far, nuages have been found in 
the germ cells of both vertebrates and invertebrates (Eddy 
1975). Nuage morphology, localization, and/or biochemi-
cal properties change as germ cells develop (Eddy 1974, 
1975; Aravin et al. 2009; Chuma et al. 2009). In mammals, 
before birth, two types of germinal granules exist: IMC and 
piP-bodies (Aravin et al. 2009). piP-bodies harbor MIWI2, 
TDRD9, and MAEL, which are required for secondary piR-
NAs that will shuttle from the cytosol to nucleus for de novo 
DNA methylation. piP-bodies are lost after birth, but IMC 
structures remain until the pachytene stage. Multiple pro-
teins are associated with IMC structures, including MILI, 
MIWI, TDRD1, TDRD6, TDRD7, TDRD9, MVH (DDX4), 
and MAEL (Meikar et al. 2011; Castaneda et al. 2014; Soper 
et al. 2008; Sienski et al. 2012; Aravin et al. 2009; Findley 

Table 2   (continued)

Mouse Drosophila Function

TDRD7 Tapas TDRD7 is a Tudor domain-containing protein. It is localized to the nuage and functions together 
with TDRD6 in the initial assembly of chromatoid bodies in mice(Patil et al. 2014; Tanaka 
et al. 2011; Hosokawa et al. 2007)

TDRD9 Spindle-E
(Spn-E)

TDRD9 is a Tudor domain-containing protein. It is localized to the nuage (piP body and chroma-
toid body) and required for Ping-Pong(Wenda et al. 2017; Shoji et al. 2009)

TDRD12
(ECAT8)

Yb, Brother of Yb 
(BoYb), and Sister of 
Yb (SoYb)

TDRD12 is a Tudor domain-containing protein. It does not co-localize with DDX4, but it is 
co-localized to an acrosome structure protein lectin-PNA in round spermatids. It is required for 
MIWI2-bound secondary piRNA formation(Handler et al. 2011; Pandey et al. 2013; Kim et al. 
2016). Its function is facilitated by its interaction partner Exonuclease domain-containing 1 
(EXD1)(Pandey et al. 2018)

Ribosome - Ribosomes guide the 5′ end formation of pachytene piRNAs in mouse germ cells, mainly from 
the UDRs of pachytene piRNA precursors, and may act as a strong helicase to sustain phased 
biogenesis(Mao and Qian 2020; Sun et al. 2021, 2020)

FKBP6 Shutdown (Shu) FKBP6 is a co-chaperone protein functioning with HSP90 to facilitate piRNA loading onto 
MIWI2(Olivieri et al. 2012; Preall et al. 2012; Xiol et al. 2012)

HSP90 Hsp83 HSP90 is a co-chaperone protein functioning with FKBP6 to facilitate piRNA loading onto 
MIWI2(Specchia et al. 2010; Xiol et al. 2012; Olivieri et al. 2012)

PNLDC1 Nibbler* PNLDC1 is the pre-piRNA 3′ trimming exonuclease which shortens the pre-piRNA 3′ end 
to allow it to fit into the PIWI protein(Feltzin et al. 2015; Liu et al. 2011; Han et al. 2011; 
Nishimura et al. 2018; Zhang et al. 2017; Ding et al. 2017)

HENMT1 Hen1 HENMT1 is an S-adenosylmethionine (SAM)-dependent methyltransferase that catalyzes 
2′-O-methylation formation at the piRNA 3′ end(Lim et al. 2015; Saito et al. 2007; Wang et al. 
2016; Hayashi et al. 2016; Kirino and Mourelatos, 2007; Ohara et al. 2007; Horwich et al. 
2007)

* Nibbler is not an ortholog of PNLDC1 but also trims the pre-piRNAs from their 3′ ends
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et al. 2003; Matsumoto et al. 2015; Kuramochi-Miyagawa 
et al. 2010; Xiol et al. 2014; Wenda et al. 2017; Shoji et al. 
2009; Tanaka et al. 2011; Patil et al. 2014; Hosokawa et al. 
2007; Vasileva et al. 2009; Nishida et al. 2009; Zamparini 
et al. 2011; Kuramochi-Miyagawa et al. 2004; Deng and 
Lin 2002). During early pachytene stage, pachytene piRNA 
precursors are transported to the IMC for piRNA process-
ing. In late pachytene stage, the IMC disappears, and its 
components diffuse throughout the cytosol (Onohara and 
Yokota 2012). However, soon after meiosis the components 
from previous IMC structures aggregate into a single large 
(∼1 μm) perinuclear granule called a chromatoid body (CB) 
in haploid round spermatids, which can be clearly observed 
under the microscope (Meikar et al. 2011).

The CB is recognized by immunofluorescence staining 
using MVH (DDX4), MILI, and MIWI (Kotaja and Sassone-
Corsi 2007; Wang et al. 2009; Meikar et al. 2014, 2011). 
During spermiogenesis, the CB is initially located near the 
acrosome and is closely associated with the nuclear envelope 
(Fawcett et al. 1970). The CB then migrates from the acro-
somal region to the caudal pole on the other side of the cell, 
where it dissociates from the nuclear envelope and remains 
near the newly grown flagellum (Fawcett et al. 1970). As 
the sperm flagellum grows, the CB forms a ring structure 
close to the annulus of flagellum and moves with the annu-
lus, encircling the flagellum (Parvinen 2005; Fawcett et al. 
1970). During this process, the CB gradually decreases in 
size and undergoes progressive disaggregation (Fawcett 
et al. 1970). In addition to piRNA pathway proteins, the CB 
also harbors machinery for the miRNA pathway and non-
sense mediated mRNA-decay (NMD) pathway (Kotaja and 
Sassone-Corsi 2007). In sum, for the three types of germinal 
granules, we propose that IMC is specific for piRNA biogen-
esis, piP-bodies generate MIWI2-piRNAs in preparation for 
their nuclear function, and the CB is specific for post-meio-
sis piRNA function. The functional relevance of processing 
piRNAs near mitochondria remains unclear, as well as the 
mechanisms that localize the piRNA precursors to IMC and 
the significance of CB formation for piRNA function.

Developmental timing for piRNA production

Over 90% of the piRNAs in the adult testis are expressed 
during the pachytene stage of meiosis. Since these pachy-
tene piRNAs are not required for the completion of meiosis, 
production at the pachytene stage, rather than a functional 
necessity, is more likely to be a biogenesis requirement, 
with the pachytene stage likely providing optimal condi-
tions for the massive production of piRNAs. Meiosis pro-
phase I can be divided into five phases based on chromo-
some behavior: leptotene, zygotene, pachytene, diplotene, 
and diakinesis. The pachytene stage, when paternal and 

maternal chromosomes undergo synapsis and pair with each 
other, takes the longest time, lasting over a week in mice. 
The formation of the synaptonemal complex, a ladder-like 
series of parallel threads that form between homologous 
chromosomes, is a hallmark of the pachytene stage(Li and 
Schimenti 2007; Reynolds et al. 2007). Synapsis in mice is 
coupled with double-strand break repair, resulting in cross-
ing-over. Because male mammals are the heterogametic sex 
and thus have sex chromosomes of different sizes, the sex 
chromosomes in male spermatocytes cannot be completely 
synapsed. A process known as meiotic silencing of unsyn-
apsed chromatin (MSUC) (Turner et al. 2006; Khalil et al. 
2004) results in entire sex chromosomes in male spermato-
cytes being transcriptionally inactive during the pachytene 
stage. MSUC has two consequences for piRNA biogenesis. 
First, none of the pachytene piRNA loci reside on sex chro-
mosomes (Li et al. 2013). Second, transcriptional inacti-
vation during synapsis leads to a decoupling of translation 
and transcription. For example, phosphoglycerate kinase 2 
(PGK-2) is transcribed at pachytene stage and is temporally 
translationally suppressed until the round spermatid stage 
(Geisinger et al. 2021; Fine et al. 2019; Jamsai et al. 2015; 
Gold et al. 1983). Thus, piRNA biogenesis factor mRNAs 
that are translated at the pachytene stage need to be sorted 
separately from mRNAs experiencing translation repres-
sion. While most meiosis research focuses on chromosomal 
behavior during meiosis prophase, little is known about 
how transcription, splicing, polyadenylation, RNA exporta-
tion, and translation of mRNAs are orchestrated to initiate, 
promote, and exit meiosis. Our recent studies indicates that 
ribosome recycling factors as well as NMD pathways are 
specifically inhibited at pachytene stage. Otherwise, these 
pathways would compete the substrates with the ribosome-
guided piRNA biogenesis (Sun et al. 2021; Shum et al. 
2016). It is thus possible the sophisticated temporospatial 
mRNA regulation that enables pachytene progression also 
facilitates pachytene piRNA production.

Sexual dimorphism of piRNA pathways

In contrast to flies and zebrafish, where defective piRNA 
pathways results in sterility in both sexes (Ketting 2011), 
piRNA pathway disruption in mice only leads to sterile 
males, whereas females remain fertile (Carmell et al. 2007; 
Kuramochi-Miyagawa et al. 2004). This sexual dimorphism 
could be due to oocytes having a silencing mechanism medi-
ated by endogenous siRNAs, which prevents TE activation 
(Tam et  al. 2008; Watanabe et  al. 2008). However, the 
activation of siRNAs in oocytes is rodent specific and not 
found in bovines nor humans, suggesting that this piRNA-
independent defense mechanism is not present in oocytes 
of other mammalian species (Flemr et al. 2013; Rosenkranz 
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et al. 2015). Moreover, compared to most other mammals 
with 4 PIWI genes, rodents lack Piwil3, which has been 
shown to be specifically expressed in oocytes in hamsters, 
bovines, and humans (Yang et al. 2019; Tan et al. 2020; 
Ishino et al. 2021), suggesting that the Piwil3-piRNA path-
way is specifically missing in the rodent lineage. To test 
whether the sexual dimorphic requirement for a piRNA 
pathway is specific for the rodent lineage, three independent 
groups have disrupted the piRNA pathways in hamsters and 
revealed that piRNA pathways are indeed required for main-
taining germline genome integrity in both sexes (Zhang et al. 
2021; Hasuwa et al. 2021; Loubalova et al. 2021). Thus, 
rodents are likely to be an outlier with the siRNAs replac-
ing the Piwil3-piRNAs in oocytes, and piRNA pathways are 
generally required for germ cells of both sexes in animals.

Nonetheless, piRNA pathways in the ovaries of humans, 
bovines, hamster, and macaques do show distinct differ-
ences from those in testes with regards to piRNA abundance, 
piRNA size, modification, piRNA-associated PIWI proteins, 
and the genomic origins of piRNA species (Rosenkranz et al. 
2015; Ishino et al. 2021; Hasuwa et al. 2021; Zhang et al. 
2021; Loubalova et al. 2021; Yang et al. 2019; Tan et al. 
2020), arguing that piRNA pathways are influenced by the 
sex of the cell lineage. For instance, in hamsters, compared 
to testis piRNAs, oocyte piRNAs come from a distinct 
set of intergenic genomic loci whose transcription are not 
driven by A-MYB. Piwil3 in hamster oocytes bind to ~ 19 
nt piRNAs without 2′-O-methyl modification, and the bind-
ing depends on the phosphorylation of Piwil3. In hamsters, 
while Piwil1 binds to ~ 29 nt piRNAs in testes, they bind to 
~ 23 nt and ~ 29 nt piRNA in oocytes, and they only bind 
to ~ 23 nt piRNAs in 2-cell embryos. The developmentally 
dependent regulation of piRNA size contradicts the notion 
that the size of piRNAs is determined by the footprints of 
the PIWI protein. Therefore, further understanding the route 
of sexual dimorphism of piRNA pathways, either due to sex 
chromosome or sex hormone differences, will help to under-
stand sex-dependent biogenic regulation and its impact on 
piRNA functions.

The evolution of piRNA pathways

Pervasive adaptive evolution among piRNA pathway 
proteins has been reported in both insect and vertebrate 
lineages (Yi et al. 2014; Levine et al. 2016, 2012; Sim-
kin et al. 2013; Palmer and Whybrow 2007; Obbard et al. 
2009; Kolaczkowski et al. 2011). Two hypotheses have 
been proposed to explain the force driving this positive 
selection. The first hypothesis, an arms race with TEs, has 
been proposed since the discovery of piRNAs (Malone and 
Hanno 2009; Aravin et al. 2007a). As a prime embodiment 
of the Red Queen’s race, which originated from studies 

of host virus battles (Daugherty and Malik 2012), this 
hypothesis successfully explains why piRNA sequences 
need to rapidly adapt to keep up with ever-changing TE 
sequences but fails to provide a satisfactory explanation 
for the necessity of continuously changing the piRNA 
pathway proteins. While it is possible that piRNA biogen-
esis proteins have to constantly adapt to the life history of 
each recently invaded TE, such as driving the transcription 
of new piRNA precursors embedded with TEs or targeting 
new TE transcripts in a different subcellular location, as 
unlikely viruses, the TEs cannot “fight back” to repress 
piRNA machinery (Blumenstiel et al. 2016). The second 
hypothesis is adaptive evolution driven by the ongoing ten-
sion between TE silencing and off-target effects (known as 
genomic autoimmunity) (Blumenstiel et al. 2016). Similar 
tension has been observed between phage and CRISPR 
systems (Koonin and Yutin 2020). As the piRNAs have 
been shown to target mRNAs, off-targeting is the cost 
for robust TE suppression. The selection for specific-
ity and sensitivity of TE suppression varies at different 
stages of TE invasion, with high TE activation favoring 
high specificity, while low TE expression favors sensi-
tivity. Although most studies on the evolution of piRNA 
pathway proteins were performed on Drosophila, the same 
principles to suppress TEs and avoid autoimmunity would 
hold true for mammalians, as TE piRNAs share biogenic 
protein factors with pachytene piRNAs.

Pachytene piRNA sequences show poor conservation 
across species, and only 29 of 89 human piRNA loci share 
synteny conservation (the flanking genes surrounding 
piRNA clusters are conserved) outside of primates (Özata 
et al. 2020; Chirn et al. 2015). Despite being essential for 
male fertility, the function of pachytene piRNAs remains 
largely unknown. Although some pachytene piRNAs have 
been shown to trigger the decay of mRNAs required for mei-
osis or sperm maturation (Wu et al. 2020; Zhang et al. 2015; 
Gou et al. 2014; Goh et al. 2015), most pachytene piRNAs 
lack obvious complementary targets. It has also been pro-
posed that PIWI proteins function without piRNAs (Voure-
kas et al. 2012), and piRNAs may exist to stabilize the PIWI 
protein without providing any specificity. Several models 
have been proposed to explain the rapid divergence of pachy-
tene piRNA sequences. One hypothesis proposes that pachy-
tene piRNA evolution drives reproductive isolation (Özata 
et al. 2020). Another suggests that existing piRNA clusters 
(Kawaoka et al. 2012) serve as landing pads for TE transpo-
sition ‘trapping’ new TE sequences in the cluster (Yamanaka 
et al. 2014; Zhang et al. 2020) (Fig. 3, middle), a mechanism 
reminiscent of the acquisition of new sequences in CRISPR 
loci. While it is known that piRNA loci can autonomously 
process transcripts harboring insertion sequences into new 
piRNAs (Muerdter et al. 2012), there is only limited evi-
dence that TE transposition, or other insertion mechanisms, 
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display a preference for targeting piRNA loci. Thus, the 
adaptive force underlying the rapid divergence of pachytene 
piRNA sequences currently remains unclear.

Two mutational modes are known to give rise to the 
birth of new piRNA loci. The first mode is copy number 
duplication or deletion of existing piRNA loci (Assis and 
Kondrashov 2009; Chirn et al. 2015) (Fig. 3, left). For exam-
ple, mammalian piRNA loci have been reported to display 
elevated rates of copy number variation (Gould et al. 2012). 
However, it remains unclear what is the mutational mecha-
nism leading to the copy number variations of piRNA loci. 
The second mode is activation of novel TE insertions into 
piRNA loci (Sun et al. 2017; Yu et al. 2019). For example, 
in koalas and chickens, proviruses that recently invaded the 
germline gained the ability to produce piRNAs. In koalas, 
piRNAs that target the KoRV-A retrovirus were originally 
produced from the sense strand of KoRV-A but then, through 
an unknown mechanism, shifted toward the production of 
piRNAs antisense to the retrovirus (Yu et al. 2019) (Fig. 3, 
right). Domesticated chickens were found to activate piRNA 
production from a truncated proviral locus against avian leu-
kosis viruses, whereas undomesticated chickens did not pro-
duce piRNAs from the same locus (Sun et al. 2017). Accord-
ing to the “out of testis” hypothesis (Kaessmann 2010), the 
permissive chromatin state of spermatocytes and spermatids 
makes testes an ideal tissue for the emergence of new genes. 
Thus, it is not surprising that proviral loci are transcribed in 

testes, but it remains unclear what genomic and/or epigenetic 
mechanisms led to their ability to produce piRNAs.

Perspective

piRNAs constitute a unique and rapidly evolving class of 
small non-coding RNAs with a wide diversity of func-
tions and various biogenesis pathways. Developments in 
genetics and sequencing techniques have advanced piRNA 
research through the identification of multiple key players 
during the various phases of piRNA processing; however, 
the absence of cell culture systems, or in vitro systems, 
that can recapitulate mammalian piRNA production has 
hindered the mechanistic studies of piRNA biogenic path-
ways. Furthermore, studying mammalian piRNA function, 
especially pachytene piRNAs, using conventional genet-
ics remains a challenge. As pachytene piRNAs share key 
piRNA biogenic factors with pre-pachytene piRNAs, ani-
mals with defective piRNA biogenesis exhibit de-silenced 
TEs that trigger arrest during early spermatogenesis, 
which consequently masks their function during spermio-
genesis. Furthermore, A-MYB, the key pachytene piRNA 
transcription factor, also regulates the expression of (pro-
tein-coding) mRNAs such that A-Myb mutants also display 
early meiotic arrest (Li et al. 2013). Pachytene piRNAs 
are primarily derived from 100 intergenic genomic loci 
(Li et al. 2013) that are likely functionally redundant. As 

Fig. 3   Current models of new piRNA acquisition. (1) Duplication of 
piRNA loci. piRNA clusters are duplicated or deleted in the genome 
and generate more piRNAs. (2) Insertion into pre-existing piRNA 
loci. New piRNAs can be generated by inserting sequences into pre-
existing piRNA clusters. (3) Activation of a provirus for piRNA pro-

duction. A provirus was first activated for piRNA production with 
sense orientation, and then the transcription template of the piRNA 
locus was switched. The direction of piRNA cluster transcription may 
change, and piRNAs can be generated from antisense piRNA loci. 
Figure created with BioRender.com
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a result, deleting a single piRNA-producing locus often 
has no obvious phenotype (Wu et al. 2020; Homolka et al. 
2015). Recently, sperm maturation defects were observed 
upon knockout of the promoter of a pair of piRNA clusters 
with only subtle changes of the entire transcriptome (Choi 
et al. 2021; Wu et al. 2020). In conclusion, significant 
advances have been made in our understanding of piRNA 
biology over the past several years; however, a number 
of key questions surrounding piRNA biogenesis remain:

(1)	 Why are some transcripts processed to piRNAs while 
others are not? piRNA precursors could be either 
marked epigenetically during transcription or rec-
ognized post-transcriptionally in the cytosol. Unlike 
Drosophila germline piRNA loci, which are marked 
with the chromatin-bound protein Rhino (Klattenhoff 
et al. 2009), currently no epigenetic factors have been 
identified that specially bind piRNA loci in mammals. 
It is also unlikely that there would be unique splicing 
structures in mammals, as has been proposed for Dros-
ophila piRNA biogenesis, because mammalian piRNA 
precursors are canonically spliced (Li et al. 2013; Sun 
et al. 2021). Whether pachytene piRNA precursors have 
unique secondary or tertiary structures, RNA modifica-
tions, or translation intermediates remains to be deter-
mined.

(2)	 How are piRNA precursors recruited to mitochondria? 
What is the significance of the connection between 
piRNA biogenesis and mitochondrial biology? Either 
the piRNA precursors are channeled directly to the 
IMC from the nucleus without interacting with ribo-
somes prior to IMC localization or they are translated 
first, and the precursor translation intermediates are 
then transported to mitochondria. Given that the IMC 
is not close to the nucleus, if the former is the case, 
a special mechanism, such as packing piRNA precur-
sors using RNA-binding proteins, would be required 
to prevent ribosome access prior to IMC localization. 
Alternatively, specific precursor translation interme-
diates could be recognized by the piRNA-processing 
machinery, or the translation products could be recog-
nized by mitochondrion-localizing chaperones.

(3)	 Is phased piRNA biogenesis initiated de novo or by 
initiator piRNAs? If phased biogenesis is triggered 
by base-pair complementary initiator piRNAs, the 
pairing rules between piRNAs and targets are likely 
to tolerant mismatches to allow sufficient cleavage 
events on the long single-stranded piRNA precursors. 
Alternatively, piRNA precursors may recruit an endo-
nuclease or the conventional RNA decay machinery 
for de novo piRNA processing. One possibility is that 
piRNA biogenesis may be initiated by an endonuclease 
that specifically targets ribosomes outside of ORFs, as 

translation-mediated RNA decay is common, involving 
mechanisms such as NMD, no-go decay, no-stop decay, 
or co-translational Exo1-mediated decay (Shoemaker 
and Green 2012; Graille and Séraphin 2012; Kervestin 
and Jacobson 2012; Schoenberg and Maquat 2012).

(4)	  How does the first nucleotide uridine (1U) bias arise? 
1U bias is the most noticeable sequence signature on 
primary piRNAs. Crystal structures of the silkworm 
PIWI protein Siwi(Matsumoto et al. 2016) and Dros-
ophila Piwi (Yamaguchi et al. 2020), as well as in vitro 
biochemical assays from silkworm(Matsumoto et al. 
2016), revealed that the 5′-uridine fits well into the 
PIWI/Siwi MID domain. However, in Pnldc1 mutant 
mice, the un-trimmed piRNAs form a head-to-tail pat-
tern with no gaps between them, indicating that the 
fragmentation process must generate the 1U bias prior 
to PIWI loading. Since MitoPLD/ZUCCHINI does 
not show any preference for cleaving before uridines 
in vitro, nor do ribosomes display any binding bias, 
either MitoPLD is not the main endonuclease fragment-
ing the pachytene piRNA precursors (that show a 1U 
bias) or another co-factor exists that works coordinately 
with MitoPLD and ribosomes to generate the 1U bias.

(5)	 Why are large quantities of piRNAs produced at the 
pachytene stage? We are yet to understand the biologi-
cal significance of the burst of piRNA production at 
the pachytene stage. This production is due either to 
a functional or biogenic requirement. As discussed 
previously, while a biogenic requirement seems more 
likely, the disruption of pachytene piRNA biogenesis 
in hamsters leads to pachytene arrest (Hasuwa et al. 
2021; Loubalova et al. 2021; Zhang et al. 2021), dis-
tinct from round spermatid arrest in mice, suggesting 
that pachytene piRNAs may be generally required for 
meiosis progression with rodent as an outlier. As most 
studies on meiosis have focused on chromosome behav-
ior or epigenetic regulation, we know little about how 
RNA metabolism, such as translation and RNA granule 
movement, coordinates with the complex choreography 
occurring in nuclei. Such studies may shed light on 
the biogenic requirements that facilitate the coordinate 
production of 3.8–8.4 million piRNA molecules in each 
spermatocyte during the pachytene stage (Gainetdinov 
et al. 2018).

(6)	 How is a new piRNA locus born and how does it die 
during evolution? Pachytene piRNA loci can rise and 
disappear rapidly over short evolutionary timescales 
(80 million years between mice and humans) in mam-
mals. This rapid divergence could be due to elevated 
mutation rates and/or adaptive selection. The cur-
rent notion that pachytene piRNAs function to target 
mRNAs required for sperm maturation does not seem 
sufficient to provide such a selective force. The idea 
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that pachytene piRNAs and their mRNA targets behave 
like a toxicant and anti-toxicant is an attractive model 
that needs further investigation (Aravin 2020). The 
possibilities that piRNA loci exhibit elevated mutation 
rates or that piRNA loci represent preferential TE land-
ing sites have also not been fully explored.

(7)	 Are there somatic piRNAs in vertebrates? The notion 
is that somatic piRNA pathways widely exist in inver-
tebrates, but was lost in vertebrates (Lewis et al. 2018). 
However, there are a number of reports in vertebrates 
regarding the existence of piRNA-like molecules or 
the expression of PIWI proteins (Galton et al. 2021; 
Mai et al. 2020; Moyano and Stefani 2015; Keam et al. 
2014; Yan et al. 2011; Mei et al. 2015; Zhao et al. 2015; 
Nandi et al. 2016; Perera et al. 2019; Sharma et al. 
2001; Freedman et al. 2016; Martinez et al. 2015; Lee 
et al. 2011; Cheng et al. 2014). These reports failed to 
provide a satisfactory answer as to why there is no phe-
notype beyond reproduction when disrupting piRNA 
pathways in mice. It is an interesting area for further 
investigation: either somaticpiRNAs exist in low abun-
dance with under-explored function, or mice are not a 
good model to study somatic piRNAs.

Here, we have provided an overview of piRNA biogen-
esis in mice and have referenced a range of other organ-
isms where relevant. We discuss the current progress in 
our understanding of piRNA conservation and evolution. 
Finally, we outline several key questions in the field regard-
ing piRNA biogenesis. With the rapid advances in sequenc-
ing technologies and development of new techniques and 
model organisms for multi-omics and comparative studies, 
we envision that significant strides will be made in the next 
few years. A complete understanding of piRNA biogenesis, 
evolution, and function may facilitate the development and 
application of artificial piRNAs as tools for epigenetic regu-
lation and a wide variety of other possible uses.

Box 1

In 2002, well before piRNAs were discovered to bind to 
PIWI proteins and function as part of an RNA–protein 
complex, the Tetrahymena PIWI protein (Twi1p) was dis-
covered to associate with small ~ 28 nt RNAs(Mochizuki 
et al. 2002) that were necessary for the elimination of 
internal eliminated sequences (IES) (Mochizuki et al. 
2002), leading to the rearrangement of the Tetrahymena 
macronucleus genome (Jahn and Klobutcher 2002; Yao 
et al. 2003). In the absence of Twi1p (Twi1p knockout), 
cells failed to produce small RNAs and did not complete 
IES elimination. Mechanistically, these small RNAs 
function together with Twi1p to direct the elimination 
of IESs through both homology scanning and epigenetic 

regulation (Mochizuki and Gorovsky 2004; Mochizuki 
et al. 2002; Yao et al. 2003). Although these small RNAs 
are produced from double-strand RNAs via a Dicer-
dependent pathway rather than from single-stranded 
RNA precursors, this RNAi-like mechanism provided 
the first hint that PIWI proteins function together with 
small RNAs now known as piRNAs. It also suggests that 
diverse RNA-processing mechanisms may converge on 
piRNAs.
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