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Abstract
Maintaining genome stability is essential to an organism’s health and survival. Breakdown of the mechanisms protecting the 
genome and the resulting genome instability are an important aspect of the aging process and have been linked to diseases 
such as cancer. Thus, a large network of interconnected pathways is responsible for ensuring genome integrity in the face of 
the continuous challenges that induce DNA damage. While these pathways are diverse, epigenetic mechanisms play a central 
role in many of them. DNA modifications, histone variants and modifications, chromatin structure, and non-coding RNAs all 
carry out a variety of functions to ensure that genome stability is maintained. Epigenetic mechanisms ensure the functions of 
centromeres and telomeres that are essential for genome stability. Epigenetic mechanisms also protect the genome from the 
invasion by transposable elements and contribute to various DNA repair pathways. In this review, we highlight the integral 
role of epigenetic mechanisms in the maintenance of genome stability and draw attention to issues in need of further study.

Introduction

Ensuring the integrity of the genome while maintaining the 
flexibility to allow for adaptive change through mutation is 
essential for the long-term survival of a species. Genomes 
are assaulted continuously by various forces impacting their 
integrity, including both internal and external factors (Tubbs 
and Nussenzweig 2017). Examples of external forces include 
DNA damaging ionizing or UV radiation as well as various 
chemicals such as oxidizing agents, DNA intercalators, and 
base analogs (Chatterjee and Walker 2017; Mehta and Haber 
2014). Viruses that can integrate into host genomes, thus 
potentially disrupting vital gene functions, are another exter-
nal factor impacting genome stability (Weitzman and Fradet-
Turcotte 2018). Internal forces affecting genome integrity 
include, among others, the error rate of the DNA replication 
machinery as well as the efficiency of DNA repair pathways, 
reactive oxidant byproducts of metabolism, and active trans-
posable elements (TEs) (Aguilera and Garcia-Muse 2013). 
Thus, to keep their genome intact and ensure genome sta-
bility, organisms have to manage these diverse challenges 
while tolerating the low level of mutation that is the basis of 
evolutionary change.

The importance of genome stability is illustrated further 
by the consequences of its breakdown. Genome instabil-
ity occurs when the genome accumulates mutations at an 
increased rate (Aguilera and Garcia-Muse 2013). It is a 
hallmark of many cancerous tissues, which tend to exhibit 
numerous genetic alterations compared to the genomes of 
matched non-cancerous tissues (Tubbs and Nussenzweig 
2017). The genetic alterations observed in cancers are 
diverse and can include single-base mutations, copy num-
ber changes, chromosomal rearrangements, and abnormal 
chromosome numbers (Sansregret et al. 2018). Genome 
instability also has been associated with the aging process, 
as mutation rates tend to increase in senescent cells and with 
increased organismal age (Vijg and Suh 2013). In addition, 
rates of TE transposition have been reported to increase with 
aging, contributing significantly to genome instability (Li 
et al. 2013; Pal and Tyler 2016). These examples demon-
strate that genome stability is of vital importance to ensure 
organismal health, in addition to being key for the long-term 
survival of a species.

Given the variety of factors able to damage DNA and 
destabilize genomes, maintaining genome integrity is a 
complex problem, and numerous intersecting pathways 
contribute to genome stability. In humans, one example of 
a pathway protecting the genome from external factors is 
the production of melanin in the skin (Brenner and Hearing 
2008). Melanin protects the genome of skin cells from UV 
radiation-induced damage, thus preventing mutations and 
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leading to a lower skin cancer rate in individuals with higher 
levels of melanin (Brenner and Hearing 2008). Another 
example of pathways contributing to genome stability are 
the DNA repair pathways that repair DNA double-strand 
breaks, including the non-homologous end joining (NHEJ) 
pathway and the homologous recombination (HR) pathway 
(Chang et al. 2017; Wright et al. 2018). DNA double-strand 
breaks can be caused by both internal and external factors, 
but the NHEJ repair pathway, for example, is used for their 
repair irrespective of the cause of the DNA double-strand 
break. The use of the NHEJ repair pathway is triggered when 
a DNA double-strand break is detected and the DNA end is 
suitable for repair via this pathway, which uses ligation to 
repair the DNA break without referring to a homologous 
DNA template (Scully et al. 2019). These examples illustrate 
that there are diverse mechanisms contributing to genome 
integrity, which collectively ensure genome stability.

Several of the mechanism and pathways ensuring genome 
stability are linked to epigenetics. Epigenetics encompasses 
a variety of phenomena and molecular systems that are con-
nected by the fact that they involve heritable changes in phe-
notypes or gene expression that are independent of changes 
in DNA sequence (Felsenfeld 2014). Thus, epigenetics 
includes the study of DNA methylation, histone modifica-
tions, chromatin structure, and non-coding RNAs, both large 
and small (Felsenfeld 2014) Interestingly, many of these 
molecular mediators of epigenetic inheritance have been 
linked to genome stability, and they contribute to varying 
degrees to the maintenance of genome integrity (Felsenfeld 
2014; Fischer and Riddle 2018). In contrast, genome insta-
bility often is associated with the breakdown of epigenetic 
mechanisms, an observation which further supports the link 
between epigenetics and genome stability. In this article, we 
review how epigenetic mechanisms impact genome stability 
(Fig. 1). We survey the role of epigenetic mechanisms in 
ensuring centromere and telomere function, their impacts 
on TE activity, and their interaction with DNA repair path-
ways. We discuss histone variants and modifications, DNA 
methylation, and non-coding RNAs and demonstrate the 
importance of these epigenetic systems in ensuring genome 
stability. Finally, we provide an assessment of the current 
gaps in knowledge and the opportunities to address them.

Epigenetic mediators are essential for centromere 
function and genome stability

One strong link between epigenetics and genome stability 
is provided by centromeres, which have an essential role in 
maintaining genome stability and are specified by epige-
netic mechanisms. Centromeres are the portions of eukary-
otic chromosomes where the kinetochore assembles and 
microtubules attach during meiosis and mitosis (McKinley 
and Cheeseman 2016). Thus, centromeres ensure proper 

segregation of chromosomes to daughter cells. Dysfunction 
of centromeres has severe consequences: it can lead to chro-
mosome breakage and fusion, as well as chromosome loss 
and aneuploidy (Barra and Fachinetti 2018). In severe cases, 
cytokinesis failure due to lagging chromosomes can lead to 
polyploidy, which has the potential to further destabilize the 
genome (Lens and Medema 2019). Another consequence 
of centromere dysfunction and lagging chromosomes can 
be the formation of micronuclei, which make the enclosed 
DNA susceptible to increased rates of DNA damage, rep-
lication errors, and again, further enhancement in genome 
instability (Chunduri and Storchova 2019). Ultimately, cen-
tromere dysfunction leads to genome instability by several 
mechanisms and, if the appropriate cell cycle checkpoints 
are triggered, cell death [for an example, see (Caneus et al. 
2018)]. Thus, centromeres perform vital functions in ensur-
ing genome stability.

Despite their importance for cell viability and genome 
stability, centromere organization varies widely among spe-
cies. Based on their centromere organization, chromosomes 
can be classified as monocentric, which includes both point 
centromeres and regional centromeres, or as holocentric 
(McKinley and Cheeseman 2016; Steiner and Henikoff 
2015). Monocentric chromosomes have one centromere, 
which coincides with the primary constriction visible in a 
mitotic chromosome; examples of species with monocen-
tric chromosomes include humans as well as several model 

Fig. 1  Complex interactions between epigenetics and genome stabil-
ity. Genome stability is of central importance to organismal survival 
(middle). Here, we highlight four major facets of genome stability 
(telomeres, centromeres, TE regulation, and DNA repair; purple) and 
the epigenetic mechanisms that contribute to these pathways (brown)
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species such as Drosophila melanogaster, Arabidopsis thali-
ana, Schizosaccharomyces pombe, and Saccharomyces cer-
evisiae (point centromeres). In contrast, holocentromeres are 
not restricted to one region of the chromosome, and there is 
no constriction visible in the mitotic chromosome (Steiner 
and Henikoff 2015). Instead of the microtubules attaching 
at just one specific region of the chromosome, they attach at 
sites along the entire length of the chromosome (Steiner and 
Henikoff 2015). Examples of species with holocentromeres 
include the model organism Caenorhabditis elegans and a 
variety of plant species (Cuacos et al. 2015). These examples 
illustrate that there is considerable variation among species 
in how centromeres are organized.

Despite the essential function of centromeres in the regu-
lation of chromosome segregation during cell division, cen-
tromere location is not encoded in the DNA sequence (the 
point centromeres of S. cerevisiae might be considered an 
exception to this rule) (McKinley and Cheeseman 2016). 
This fact is best illustrated by the study of neocentromeres, 
which are centromeres that form at a new location on the 
chromosome that has not acted previously as a centromere 
(Fukagawa and Earnshaw 2014b; Scott and Sullivan 2014). 
Many regional centromeres, such as the ones found in 
humans, are associated with specific repeated sequences. In 
humans, for example, centromeres are formed typically over 
regions containing alpha-satellite repeats. Similarly, regional 
centromeres in the fruit fly model Drosophila melanogaster 
contain various AT-rich repeats such as the 359 bp repeat, 
and centromeres in the plant model system Arabidopsis 
thaliana are composed of arrays of a 180-bp repeat (Plohl 
et al. 2014). When centromere location shifts along the chro-
mosome leading to the formation of a neocentromere, the 
sequences underlying the neocentromeres are diverse, and 
the repeats typically associated with the centromere can still 
be detected at its original location (Amor et al. 2004; Sch-
neider et al. 2016). Neocentromeres have been detected in 
humans on various chromosomes (Fukagawa and Earnshaw 
2014a; Scott and Sullivan 2014; Voullaire et al. 1993), and 
they have been experimentally induced in several species 
including Drosophila melanogaster (Maggert and Karpen 
2001) and chicken (Shang et al. 2013). Thus, neocentromere 
studies support the conclusion that DNA sequence does not 
specify centromere location, but that the centromere is speci-
fied instead epigenetically.

Research over several decades has led to a model which 
suggests that the centromere location is determined by the 
presence of the centromere-specific histone variant CenH3, 
also known as CENP-A (Palmer et al. 1991; Scott and Sul-
livan 2014). In addition to the core histones, H2A, H2B, 
H3, and H4, which typically make up nucleosomes, vari-
ants derived from these histone genes exist in many species 
(Henikoff and Smith 2015; Talbert and Henikoff 2017). Very 
few variants exist for H2B and H4, whereas H3 has two 

major variants: CenH3 and H3.3 discussed below. CenH3 is 
a variant of histone H3 that, under normal conditions, occurs 
exclusively at centromeres (Gambogi and Black 2019; 
Palmer et al. 1991). CenH3 is unusual in that, in contrast 
to the canonical histones, it is undergoing rapid evolution-
ary change, with sequence changes quickly accumulating, 
especially in its amino-terminal tail (Malik and Henikoff 
2003; Rosin and Mellone 2017). CenH3-containing nucle-
osomes are found at the functional centromeres of meta-
centric and holocentric chromosomes, and the S. cerevisiae 
point centromeres consist of a single CenH3(Cse4)-contain-
ing nucleosome (Choy et al. 2012; Furuyama and Biggins 
2007; McKinley and Cheeseman 2016). Neocentromeres 
also contain CenH3 nucleosomes (Henikoff and Furuyama 
2012; Warburton et al. 1997), illustrating the importance 
of this centromeric histone variant, which epigenetically 
specifies the functional centromere and is thus essential for 
genome stability.

Interestingly, as more genome sequences have become 
available, a number of species were identified that lack a 
recognizable copy of CenH3 in their genome (Drinnenberg 
et al. 2016). These species include a group of unicellular 
flagellar eukaryotes related to trypanosomes (Akiyoshi and 
Gull 2014; Berriman et al. 2005) and also a variety of insect 
species, including the Lepidoptera (butterflies) and Odonata 
(dragon flies) (Drinnenberg et al. 2014). In the insect spe-
cies lacking CenH3, most other kinetochore proteins are 
conserved (Drinnenberg et al. 2014), while in the trypano-
somes, the conventional kinetochore proteins are absent as 
well, with novel proteins absorbing their functions (Akiyoshi 
and Gull 2014). As CenH3 typically is required to specify 
the centromere location, these findings raise the question of 
how centromeres form in the species lacking CenH3, and 
how a protein essential for genome stability can be lost over 
evolutionary time.

Interestingly, a second variant of H3 also contributes to 
centromere function. H3.3 differs from canonical H3 by only 
four to five amino acids, and it is typically found in regions 
of the genome that are actively transcribed (Dion et al. 2007; 
Franklin and Zweidler 1977; Henikoff and Smith 2015; 
Schwartz and Ahmad 2005). Remarkably, genetic studies 
have shown that it is crucial for maintaining genome stabil-
ity during mammalian development (Bush et al. 2013; Jang 
et al. 2015). In mice, complete loss of H3.3 leads to embry-
onic lethality. Loss of H3.3 in embryonic stem cells leads to 
mitotic defects, including chromosome bridges and lagging 
chromosomes in anaphase. These problems during mitosis 
result in abnormal chromosome number, genome instability, 
and cell death, which are likely the cause of the embryonic 
lethality. In addition, H3.3 loss also negatively impacts the 
chromatin structure at the telomeres, centromeres, and peri-
centric regions, which contributes to the observed genome 
instability (Jang et al. 2015). Thus, histone variants are 
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heavily involved in regulating the function of the centromere 
and contribute significantly to genomic stability.

Studies in several species have shown that while the posi-
tion of the centromere is determined epigenetically by the 
presence of CenH3 in most species, the strength of a cen-
tromere and its ability to ensure faithful chromosome segre-
gation are determined by genetic as well as epigenetic fac-
tors. While centromeres are formed at a specific region along 
the chromosome in regional monocentric chromosomes, the 
exact position of where CenH3 localizes is variable among 
individuals, and the CenH3-containing chromatin block can 
shift. These regional shifts in CenH3 location have been 
documented, for example, in the genus Equus by Nergadze 
and colleagues, who find that centromeric epialleles with 
slightly different localization of the CenH3 chromatin are 
quite common (Nergadze et al. 2018). In maize, Gent and 
colleagues find that the exact location of the centromere 
position can shift between generations (Gent et al. 2017). 
In humans, centromeric epialleles have been described for 
chromosome 17, which differ in the composition of the 
underlying alpha-satellite sequence, leading to variability 
in centromere function between the two epialleles (Aldrup-
MacDonald et al. 2016; Maloney et al. 2012). Specifically, 
one of the centromeric epialleles, D17Z1, showed decreased 
CenH3 recruitment and increased levels of aneuploidy for 
this chromosome (Aldrup-MacDonald et al. 2016). These 
studies demonstrate that the centromeric epialleles impact 
centromere function and can differ significantly in their con-
tribution to genome stability.

Another aspect of the epigenetic state of the centromere 
that impacts its ability to ensure genome stability is the 
post-translational modification (PTM) of the histones found 
at the centromere. PTMs of both CenH3 and the canoni-
cal histones present at the centromere are important for its 
function (Bowman and Poirier 2015; Johnson et al. 2004; 
Loyola et al. 2006; McKittrick et al. 2004; Waterborg 1990). 
Canonical histone H3 present at the centromere and inter-
spersed with CenH3 nucleosomes (Blower et al. 2002) is 
methylated at H3K4 (H3K4me2) and lacks H3K9 methyla-
tion (me2 and me3), which is found in the pericentromeric 
regions (Sullivan and Karpen 2004). Using a human arti-
ficial chromosome (HAC) system, Molina and colleagues 
removed H3K4me2 from the centromere and found that seg-
regation errors for this chromosome increased (Molina et al. 
2016). If H3K9me2/me3 chromatin spreads from the peri-
centric regions into CenH3 chromatin, centromere function 
is perturbed also, leading to chromosome segregation defects 
and genome instability (Bergmann et al. 2012; Ohzeki et al. 
2016). In addition, CenH3 is subject to PTM (Srivastava 
and Foltz 2018), and some of the PMTs have been linked 
to centromere function and genome stability. For example, 
on CENP-A, the human CenH3 homology, serine 18 (S18) 
hyperphosphorylation leads to increased genome instability 

(Takada et al. 2017), while CENP-A serine 7 (S7) phospho-
rylation is not essential for centromere function (Barra et al. 
2019). Together, these findings demonstrate that epigenetic 
marks in the form of histone PMTs at the centromere are 
essential for centromere function and the maintenance of 
genome stability.

Non-coding RNAs are another way epigenetic mecha-
nisms contribute to centromere function and genome sta-
bility (Talbert and Henikoff 2018). Volpe and colleagues 
demonstrated that small RNAs derived from the outer cen-
tromeric repeats in S. pombe are required for centromere 
function (Volpe et al. 2003, 2002). Small RNAs since have 
been shown to be derived from centromeres in other species 
as well (Cohen et al. 1973; Hall et al. 2002; Maison et al. 
2002; Perea-Resa and Blower 2018), and the data suggest 
that they are important for centromere function and genome 
stability. In addition to these small RNA classes, there are 
also centromere-derived RNAs that appear to be an integral 
part of the centromere (Ling and Yuen 2019; Talbert and 
Henikoff 2018). These RNAs were observed first in maize 
in 2004 (Topp et al. 2004) and since have been the focus of 
detailed studies. In Drosophila, loss of the long non-coding 
RNAs from the centromeric 359 bp repeat leads to chromo-
some segregation defects (Rošić et al. 2014), and Ling and 
colleagues discovered that in S. cerevisiae both over- and 
underproduction of the long non-coding RNAs from the 
centromere leads to increased levels of aneuploidy (Ling 
and Yuen 2019). Together, the data available suggest that 
non-coding RNAs, both large and small, are required for 
the optimal function of the centromere to ensure genome 
stability.

In summary, centromeres are essential for genome stabil-
ity as they ensure proper chromosome segregation to daugh-
ter cells. Centromere position is epigenetically determined 
by the location of the CenH3 histone variants, and various 
epigenetic mechanisms including non-coding RNAs, his-
tone modification, and chromatin structure components are 
essential for normal centromere function. Thus, studies of 
centromere biology demonstrate unequivocally that epige-
netic mechanisms contribute essential functions to genome 
stability and how disruptions of these mechanisms lead to 
genome instability.

Telomeres rely on epigenetic mechanisms to ensure 
genome stability

In addition to centromeres, telomeres are a second type 
of chromosomal structure that is essential for maintaining 
genome stability and that employs epigenetic mechanisms 
for optimal function. Telomeres are structures at the end 
of linear chromosomes that protect chromosome ends from 
fusion by recombination and from degradation by nucle-
ases (O’Sullivan and Karlseder 2010). Typically, telomeres 
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exhibit a specialized chromatin structure that is similar to 
heterochromatin and imparts transcriptional silencing on 
sequences located in close proximity (Baur et al. 2001; 
Karpen and Spradling 1992; Palladino et al. 1993; Schoeft-
ner and Blasco 2009; Wallrath and Elgin 1995). This unique 
chromatin structure protects the chromosome ends, and loss 
of this capping function can lead to aneuploidy as chromo-
some bridges, chromosome fusions, and lagging chromo-
somes form that will impair mitosis and meiosis (O’Sullivan 
and Karlseder 2010). In addition, telomeres present a solu-
tion to the end-replication problem, which arises because 
DNA polymerases cannot fully replicate the ends of the 
lagging strand during DNA replication (de Lange 2009). 
Ultimately, telomeres perform several functions critical to 
maintaining genomic integrity.

In order to prevent the loss of sequences at the ends of 
linear chromosomes with each cell division (end-replica-
tion problem), telomeres are composed of repetitive DNA 
sequences, and several cellular pathways exist to prevent 
shortening of chromosomes (Jafri et al. 2016). While this 
function of telomeres is evolutionary conserved, the spe-
cific mechanism that maintains telomere length differs 
from species to species. In most eukaryotes, telomerase, a 
ribonucleoprotein complex with reverse transcriptase abil-
ity, can synthesize new telomeric repeats, thus maintain-
ing telomere length (Greider and Blackburn 1987; Wu et al. 
2017a). Saccharomyces cerevisiae also has telomerase activ-
ity, but alongside the telomerase, it uses recombination to 
elongate telomeres (Larrivee and Wellinger 2006; Wellinger 
and Zakian 2012). In Drosophila melanogaster, telomere 
length is maintained by two non-LTR retrotransposons, HeT-
A and TART , that transpose specifically to chromosome ends 
(Pardue et al. 2005). Failure of the mechanisms maintaining 
telomere length leads to shortening telomeres and eventually 
loss of crucial genetic information located adjacent to the 
telomeres and cell death (Muraki et al. 2012). Shortening of 
telomeres is a noteworthy concern in rapidly dividing cells, 
illustrated by the fact that many cancer cells express high 
levels of telomerase, which promotes further cell division 
and growth (Jafri et al. 2016). Thus, telomere maintenance 
is an essential process to ensure genome stability, and epige-
netic mechanisms are required to achieve this goal.

Epigenetic processes can contribute to telomere mainte-
nance by controlling the expression of telomerase in mam-
mals and the expression of the telomeric TEs in insects like 
Drosophila. In addition, epigenetic modifications, specifi-
cally histone modifications, are crucial for controlling tel-
omere length (Counter et al. 1992; Jezek and Green 2019). 
Changes in telomere chromatin state can alter telomere 
length and thus lead to genome instability (O’Sullivan 
and Karlseder 2010). For example, Galán and colleagues 
found that in yeast, Sus1, a protein involved in histone H2B 
deubiquitination, is required for the proper regulation of 

telomere length (Galan et al. 2018). Deletion of Sus1 leads 
to telomere elongation and an increase in histone H2B lysine 
123 (H2BK123) mono-ubiquitination. Thus, the findings by 
Galán and colleagues suggest that Sus1 negatively regulates 
telomere length through its impact on histone ubiquitination, 
linking telomeres, genomic stability, and histone modifica-
tions. In addition, several histone methyltransferases (HMTs) 
have been linked to telomere maintenance as well. Jezek and 
colleagues found that the Saccharomyces cerevisiae HMTs 
Set5 and Set1 are involved in telomere maintenance in yeast, 
and loss of these proteins leads to improper expression of 
genes adjacent to the telomeres (Jezek et al. 2017). Also, 
in yeast, Wu and colleagues found that H2BK123 mono-
ubiquitination mediated by Rad6-Bre1 positively regulates 
telomere replication, leading to lengthened telomeres (Wu 
et al. 2017b). Thus, histone modifications play an important 
role in maintaining telomere function and genome stability.

As noted previously, telomeres contain a variety of his-
tone modifications (Jezek and Green 2019). These modi-
fications include heterochromatic marks that can exert 
their influence beyond the telomeric sequences and silence 
genes nearby through a process known as telomere posi-
tion effect (TPE) (Robin et al. 2014). TPE is thought to 
contribute to the genomic instability that arises as telom-
eres shorten below their critical length (Robin et al. 2014). 
Recently, it has been suggested that telomeres also impact 
gene expression over longer distances, a phenomenon 
named telomere position effects over long distances (TPE-
OLD) (Kim and Shay 2018). In TPE-OLD, telomeres 
cause heterochromatin spreading through chromatin loop-
ing, revealed in a 2013 study by Stadler and colleagues 
examining the regulation of human DUX4, a candidate 
gene for facioscapulohumeral muscular dystrophy (Stadler 
et al. 2013). TPE-OLD was confirmed through 3D-FISH 
(three-dimensional fluorescent in situ hybridization) that 
showed that chromosomal looping occurred between genes 
such as ISG15, DSP, and C1S and their respective telo-
meric ends (Robin et al. 2014). Interestingly, TPE-OLD 
also seems to affect TERT, the gene encoding telomerase. 
Kim and colleagues found that telomere length affected 
expression and nuclear location of the TERT gene (Kim 
et al. 2016). When telomeres are long, a chromatin loop 
formed in the hTERT locus, decreasing its expression. As 
telomeres shortened, for example with age, this loop dis-
engaged and led to increased production of hTERT mRNA. 
Alongside that disengagement, DNA methylation and his-
tone modifications changed in the hTERT promoter region, 
suggesting there is a mechanism for fine-tuning telomer-
ase expression based on telomere length in humans (Kim 
et al. 2016). Thus, TPE-OLD represents another pathway 
by which telomeres contribute to genome stability utilizing 
epigenetic mechanisms to impact the expression levels of 
telomerase and other essential genes.
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There are additional chromatin proteins in play that aid 
in protecting telomere length and function. Shelterin is a 
complex of chromatin proteins found in eukaryotes that is 
essential for the chromosome capping function of telomeres, 
preventing telomeres from fusing with each other (de Lange 
2005). It allows telomeres to be distinguished from damaged 
DNA and specifically binds to chromosome ends, leading 
to the formation of a unique chromatin structure (de Lange 
2005). Eukaryotic shelterin is composed of six core protein 
subunits: TRF1, TRF2, TIN2, Rap1, TPP1, and POT1 (Xin 
et al. 2008). Shelterin protects telomeric sites both by bind-
ing to the telomeric DNA and by remodeling the chromatin 
into a unique, tight nucleoprotein structure (Bandaria et al. 
2016). TIN2 was the most important component for the 
shelterin-mediated chromatin compaction of these telomeric 
sites which prevented the binding of DNA damage response 
protein, illustrating the importance of chromatin structure at 
the telomere (Bandaria et al. 2016). Interestingly, the shel-
terin proteins do not function solely at the telomeres: Loss of 
TRF2 impairs replication fork progression through pericen-
tromeric heterochromatin and destabilizes heterochromatin 
across the genome (Mendez-Bermudez et al. 2018), dem-
onstrating that TRF2 has non-telomeric functions as well. 
Thus, the shelterin protein complex protects telomeres by 
generating a unique local chromatin structure, illustrating the 
importance of epigenetic mechanisms for the maintenance 
of genome stability.

Besides the shelterin proteins, other aspects of chromatin 
structure also impact the ability of the telomere to carry out 
its functions. Because the telomeric chromatin is typically 
considered heterochromatic, Chow and colleagues investi-
gated the effect of increasing the level of the heterochro-
matin protein HP1α specifically at the telomeres (Chow 
et al. 2018). To achieve this goal, they fused HP1α with the 
shelterin protein TRF1, thus altering the telomere chromatin 
composition. Recruiting TRF1-HP1α fusion protein to the 
telomere increased heterochromatin formation, altered the 
3D structure of the telomere, and prevented access by telom-
erase, suggesting both positive and negative impacts on tel-
omere function (Chow et al. 2018). This study illustrates the 
importance of chromatin structure for telomere function and 
again links an epigenetic system with genome instability.

All in all, the data available today demonstrate that tel-
omeres are unique chromatin structures maintained through 
epigenetic modifications, which serve to protect the ends of 
linear chromosomes, thus ensuring genome stability. Loss 
of telomere function or shortening of telomeres in healthy 
cells can lead to genome instability, and this loss is regulated 
by epigenetic pathways including the shelterin chromatin 
complex (de Lange 2005) and various histone modifications 
(Jezek and Green 2019). The telomere itself can contrib-
ute epigenetically to genome stability—or instability once 
shortened—through TPE (Robin et al. 2014; Stadler et al. 

2013) and the TPE-OLD effect (Kim et al. 2016; Kim and 
Shay 2018). Interestingly, maintenance of telomere length 
in cancerous cells through epigenetic alterations leads to 
telomerase activity that lengthens and maintains telomere 
length in cancerous cells, aiding in the proliferation of these 
unstable cells (Jafri et al. 2016; Maciejowski and de Lange 
2017). In conclusion, there are various epigenetic factors 
ensuring functional telomeres that can contribute to genome 
stability in complex ways.

Epigenetic mechanisms curb TE activity to prevent 
genome instability

TEs are another common source of genome instability 
(Klein and O’Neill 2018). TEs are mobile genetic elements 
that are classified based on the mechanism used for transpo-
sition: DNA transposons utilize a DNA intermediate, while 
RNA transposons or retrotransposons utilize an RNA inter-
mediate (Mc 1950; Padeken et al. 2015). Together, various 
classes of TEs contribute large amounts of DNA to eukary-
otic genomes. For example, TE-derived sequences make up 
approximately 50% of the human genome (Platt et al. 2018), 
they contribute approximately 20% to the Drosophila mela-
nogaster genome (McCullers and Steiniger 2017), and in 
maize, an estimated 85% of the genome sequence is derived 
from TEs (Jiao et al. 2017; Schnable et al. 2009). While TEs 
are found throughout the genome, often they are concen-
trated in specific regions of genomes such as the centromeric 
and telomeric regions, where they contribute to the function 
of these domains (see above). Given the large number of TEs 
in eukaryotes, they are an important facet of these genomes, 
and epigenetic mechanisms control their activity to ensure 
genome stability.

Because TEs are able to move, either from location to 
location or by inserting additional copies of themselves at 
new locations, they can be a major source of genome insta-
bility. With every move, TEs potentially can disrupt genes 
or gene regulatory pathways. For example, in their review 
from 2012, Hancks and Kazazian identify 96 retrotransposon 
insertions that lead to genetic diseases in humans, including 
cases of hemophilia A and B and cystic fibrosis (Hancks and 
Kazazian 2012). Given the large number of TEs in many 
genomes, the mutation rate due to TE transposition can be 
magnitudes higher than the mutation rate due to mistakes 
during DNA replication. In addition, TE-encoded endonu-
cleases can cause DNA double-strand breaks without TE 
insertions, thus potentially causing mutations due to imper-
fect break repair (Gasior et al. 2006). Finally, TEs contribute 
to genome instability by facilitating ectopic recombination/
unequal crossovers between non-homologous sites due to the 
presence of identical sequences at various locations in the 
genome (Cordaux and Batzer 2009). These ectopic recom-
bination events can lead to local deletions or duplications, 
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chromosomal translocations, and inversions. These events 
have been reported in patients [as in a 2017 case of mesome-
lia-synostosis syndrome (Kohmoto et al. 2017)] as well as in 
model organisms. For example, in Drosophila melanogaster, 
when a DNA transposon-derived reporter gene (P element) 
is mobilized, local sequence duplications and deletions as 
well as more complex rearrangements result (Berg et al. 
1980; Riddle et al. 2008; Sun et al. 2004). These examples 
illustrate how TEs contribute to genome instability and why 
they are targeted for silencing to keep their activity in check.

Given the challenge to genome stability provided by the 
large number of TEs present in typical eukaryotic genomes, 
it is not surprising that a variety of mechanisms are in place 
to curb TE activity (Klein and O’Neill 2018; Molaro and 
Malik 2016). Several of the TE silencing mechanisms are 
epigenetic in nature, and both DNA and histone modifica-
tions are involved in the transcriptional silencing of TEs, 
while a number of small RNA pathways are involved in the 
transcriptional and post-transcriptional silencing of TEs 
(Dumesic and Madhani 2014). In addition, there are sev-
eral other pathways, including one linked to p53 (Levine 
et al. 2016; Tiwari et al. 2018) and one linked to the KAP1 
and ZNF transcription factors (Friedli and Trono 2015) that 
have been implicated in TE silencing. This variety of parallel 
silencing mechanism hints at the importance of TE silencing 
for an organism’s survival.

DNA modifications are one level of epigenetic control 
involved in the control of TE activity (Deniz et al. 2019). 
DNA methylation in the form of cytosine methylation, in 
most eukaryotes, is considered a silencing mark, and high 
levels of cytosine methylation in promoter regions lead to 
gene silencing and the recruitment of additional silencing 
chromatin marks in the form of histone modifications (Jones 
2012). The majority of TEs show high levels of cytosine 
methylation and are typically transcriptionally inactive other 
than in specific tissues where silencing mechanisms are sus-
pended temporarily (Deniz et al. 2019). The importance of 
DNA methylation for TE silencing and genome stability is 
illustrated best by what happens if the DNA methylation 
pathway is impaired. In this case, TE activity, including TE 
expression levels as well as transpositions, increases. For 
example, in Arabidopsis thaliana, loss of the SWI2/SNF2 
chromatin remodeling factor DDM1 (Jeddeloh et al. 1999), 
which is required for wildtype levels of cytosine methyla-
tion, leads to the reactivation of TEs such as the CAC  family 
(Miura et al. 2001), with increased expression and transposi-
tion rate. In maize, with its more than 85% of the genome 
being derived from TEs, loss of its two DDM1 orthologs 
is lethal, suggesting that loss of control of a large number 
of TEs leads to fatal genome instability (Li et al. 2014). 
In mice with impaired function of the DNA methyltrans-
ferase DNMT1, hypomethylation leads to increased somatic 
transposition of the retroviral-like intracisternal A particle 

(IAP) (Howard et al. 2008). A 2018 study from Arabidopsis 
thaliana directly demonstrated that targeted demethylation 
of the CACTA1 transposon via a CRISPR/dCas9 derived 
TET1 fusion enzyme increased expression from this TE sig-
nificantly (Gallego-Bartolome et al. 2018). Together, these 
studies demonstrate the importance of DNA modifications 
such as cytosine methylation in ensuring eukaryotic genome 
stability by silencing TEs.

Along with DNA methylation, histone modifications and 
chromatin structure, specifically heterochromatin, also con-
tribute to the maintenance of genome stability by silencing 
TEs (Janssen et al. 2018). Many TEs are found in heterochro-
matic regions of the genome, typically the centromeres and 
telomeres, which are characterized by methylation of histone 
3 lysine 9 (H3K9me2 and me3) and heterochromatin pro-
teins such as those of the Heterochromatin Protein 1 (HP1) 
family (Janssen et al. 2018). The chromatin structure in het-
erochromatin is such that it often suppresses gene expres-
sion, leading to the silencing of TEs present in this genomic 
domain. Biochemical marks of heterochromatin are found 
also at many TEs within broader euchromatic regions of 
genomes, which again promote their transcriptional silenc-
ing. In Drosophila melanogaster, ~ 30% of euchromatic TEs 
are associated with silencing marks, and at many of these 
sites, heterochromatin spreads to neighboring sequences 
(Lee and Karpen 2017; Riddle et al. 2011). A 2018 screen 
in human cell lines revealed that transposition of LINE-1 
(long interspersed element-1) was controlled in part by the 
human silencing hub (HUSH) complex, a silencing complex 
that functions through H3K9 methylation (Liu et al. 2018). 
The SETDB1 H3K9 methyltransferase was another hit in 
this screen (Liu et al. 2018), confirming the important role 
of histone modifications and particularly H3K9 methylation 
in the silencing of TEs. When He and colleagues screen 41 
chromatin modifiers for their impact on TE expression, 29 of 
the modifiers impacted the expression levels of at least one 
TE class, and six modifiers, including SETDB1, impacted 
most TEs (He et al. 2019). Thus, the available data regarding 
histone modifications and TE activity suggest that repressive 
histone marks and heterochromatin formation are targeted 
purposefully to TEs to decrease their expression and ensure 
genome stability.

In addition, small RNA pathways play an important role 
in controlling TE activity, as these pathways are involved in 
targeting specific sequences for DNA modifications and/or 
heterochromatin formation (Dumesic et al. 2013) (Fig. 2). 
In plants, the RNA-directed DNA methylation (RdDM) 
pathway functions via small RNAs to target specific DNA 
sequences, including TEs, for modification by DNA meth-
yltransferases (Cuerda-Gil and Slotkin 2016; Matzke and 
Mosher 2014). This pathway relies on a specialized Argo-
naute protein as well as two plant-specific homologs of RNA 
pol II (Pol IV and Pol V) to produce small RNAs (siRNAs) 
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complementary to the sequences targeted for DNA meth-
ylation (Wendte and Pikaard 2017; Zhou and Law 2015). 
Defects in this pathway, which has several subtypes, lead 
to altered chromatin structure and loss of TE silencing 
(Cuerda-Gil and Slotkin 2016). For example, in Arabidopsis 
thaliana, HDA6 and PolIV/V cooperatively silence TEs, and 
the loss of either component leads to TE reactivation, albeit 
with slightly different effects (Blevins et al. 2014). In ani-
mals, piRNAs are the main non-coding RNA type involved 
in TE control (for a review of their role in mammals, see 
Ernst et al. (2017); Fig. 2b). The main function of piRNAs 
is in the germline, where several downstream pathways are 
important for the TE silencing. piRNAs are derived from 

long transcripts of so-called piRNA cluster, which can be 
considered “graveyards” of TEs. The piRNAs then interact 
with a Piwi-class Argonaute protein, and they are reported to 
mediate both transcriptional and post-transcriptional silenc-
ing of TEs (Czech et al. 2018; Ernst et al. 2017; Hirakata and 
Siomi 2019; Huang et al. 2017; Ozata et al. 2019; Sentmanat 
et al. 2013). Failure of the piRNA pathway to silence TEs is 
illustrated well by the phenomenon of hybrid dysgenesis in 
Drosophila (Castro and Carareto 2004; Malone et al. 2015). 
If a strain with the P element (P strain), a DNA transposon 
which invaded wild Drosophila after the collection of most 
laboratory strains, is crossed to a laboratory strain lacking P 
elements (M strain), the P elements are activated in the F1 

Fig. 2  Examples of small RNA-mediated TE silencing. a RdDM 
pathway in Arabidopsis thaliana. RNA Polymerase IV (Pol IV) 
produces a single-stranded transcript from a transposon (i). RNA-
dependent RNA Polymerase 2 (RDR2) uses this single-stranded RNA 
as a template to produce a double-stranded RNA (ii). This double-
stranded RNA is diced into 24-nt small interfering RNAs (siRNAs) 
by Dicer-like 3 (DCL3) (iii). AGO4 binds the 24-nt siRNA. Next, 
this complex binds to matching Pol V-generated transcripts, still 
associated with their transcription unit (iv). This binding recruits 
the domains of rearranged methyltransferase 2 (DRM2), which pro-
duces cytosine methylation and silences the targeted transposon. Pol 
IV continues to produce transposon transcripts at a low level, feed-
ing back into the siRNA producing pathway (v). b The piRNA path-
way in Drosophila melanogaster. A piRNA precursor is transcribed 
from a piRNA cluster containing TE sequences and exported from 
the nucleus to the cytoplasm (i). The piRNA precursor then is pro-

cessed into small, ~ 24  bp-length piRNAs by the Zucchini protein 
(Zuc, red) at the mitochondria (ii), which can be bound to PIWI and 
translocated into the nucleus to transcriptionally silence homologous 
TEs (iii). Alternatively, piRNA precursor transcripts also can be pro-
cessed by the ping-pong cycle (v). In the ping-pong amplification 
cycle, a mature piRNA bound to the argonaute protein Aubergine 
(AUB) (iv) directs slicing of a matching transposon transcript bound 
to AGO3, which will be processed into a mature piRNA. The newly 
formed AGO3-piRNA complex can then slice additional matching 
sequences, either precursor piRNAs or transposon transcripts, which 
will bind to AUB (v). Continuation of this cycle leads to amplifica-
tion of piRNAs, which can either be utilized in the ping-pong cycle 
to post-transcriptionally degrade transposon transcripts or bound to 
PIWI and translocated into the nucleus to transcriptionally silence 
homologous TEs (III)



189Epigenetics and genome stability  

1 3

germline, and the animals exhibit various defects including 
sterility (Kidwell et al. 1977). This sterility can be prevented 
by the presence of piRNAs to the TE in the F1 germline, 
which occurs naturally in the reciprocal cross, which does 
not lead to dysgenesis (Brennecke et al. 2008). Mutants in 
the piRNA pathways generally lead to sterility and problems 
in the germline, and in many aspects, these animals resem-
ble dysgenic animals (Kelleher et al. 2012). Together, the 
experiments investigating small RNA pathways in animals 
and plants illustrate the importance of these pathways for 
the formation of silent chromatin, the control of TEs, and 
genome stability.

In summary, while having some beneficial functions at 
the centromere, telomere, and in generating evolutionary 
novelty, TEs are a major source of genome instability due to 
their ability to jump from locus to locus and due to the con-
sequences of the presence of numerous identical sequences 
at non-homologous locations for other nuclear processes 
(DNA repair, replication, etc.). Thus, epigenetic processes 
working through DNA modifications, histone modifications, 
chromatin structure, and small RNAs are essential to pro-
moting genome stability by ensuring the suppression of TE 
expression and transposition. Failure of these pathways to 
suppress TEs has severe consequences, including sterility 
and even death in species with high levels of TEs, highlight-
ing the importance of the epigenetic processes involved for 
genome stability.

Epigenetic modifications in DNA repair pathways 
impact genome stability

As noted in the section on TEs, DNA repair is an impor-
tant aspect of genome stability (Lombard et al. 2005). The 
genome is experiencing constant assault from both inter-
nal sources such as TEs and from external factors such as 
chemical mutagens, UV radiation, and more (Chatterjee 
and Walker 2017). Different DNA damage repair pathways 
exist to deal with different types of damage. One of the most 
common forms of DNA damage are DNA double-stranded 
breaks (DSB), such as the breaks introduced by the trans-
position of TEs (for example, see Liu and Wessler 2017). 
DSBs can be repaired through mechanisms such as non-
homologous end joining (NHEJ) and homologous recombi-
nation (HR), which uses homologous sequences as a repair 
template (Brandsma and van Gent 2012). Abnormal bases 
or pyrimidine dimers created for example by UV radiation 
are corrected through the nucleotide excision repair (NER) 
or base excision repair (BER) pathways (Melis et al. 2013). 
The DNA mismatch repair pathway typically corrects mis-
takes introduced during DNA replication, and direct rever-
sal repair pathways are available for some altered bases 
(Chatterjee and Walker 2017). In many cancers, increased 
genome instability is seen, which has been traced back to the 

inactivation of genes involved in various DNA repair path-
ways (Lahtz and Pfeifer 2011). This finding illustrates that 
DNA repair pathways are crucial for maintaining genomic 
stability by preventing DNA damage from accumulating and 
negatively impacting cell functions.

Of the four core histones, H2A has the largest number of 
variants studied to date, and one of these variants, H2AX 
is linked to DNA repair and genome stability (Georgoulis 
et al. 2017). In mammalian cells, H2AX is a histone variant 
of H2A that is rapidly phosphorylated with high specific-
ity in response to DSBs, yielding γ-H2AX (Firsanov et al. 
2011; Kinner et al. 2008; Rogakou et al. 1998). Phospho-
rylation is removed from H2AX after the DSB has been 
repaired and chromatin integrity has been restored. Celeste 
and colleagues investigated cells with reduced H2AX levels 
and found that H2AX is not crucial for initial recognition 
of the DSBs; however, cells without H2AX were less effec-
tive at recruiting DNA damage response proteins later in the 
repair process (Celeste et al. 2003). Ultimately, γ-H2AX’s 
function appears to be to modify the chromatin structure, 
to increase DNA accessibility, and to recruit DNA damage 
response proteins to the appropriate regions in the genome 
(Celeste et al. 2002). Consequently, γ-H2AX has become 
a noteworthy molecular marker for DNA damage and is a 
hallmark of genomic instability. Thus, γ-H2AX might serve 
as a prognostic biomarker for various cancers, such as breast 
(Nagelkerke et al. 2011; Varvara et al. 2019; Wang et al. 
2019), lung (Chatzimichail et al. 2014; Matthaios et al. 
2012; Ochola et al. 2019), and bladder cancers (Fernández 
et al. 2013). Together, the available data demonstrate that 
γ-H2AX is critical for genome integrity due to its role in 
the DNA DSB repair pathway, highlighting another route by 
which epigenetics contributes to genome stability.

An additional group of epigenetic regulators of DNA 
repair pathways is represented by the sirtuin protein family. 
Sirtuins are highly conserved proteins with histone deacety-
lase functions, occurring in species from bacteria to yeast 
to humans (Greiss and Gartner 2009; Imai et al. 2000). Sir2 
from budding yeast was the first sirtuin to be described, and 
in this species, it is essential for gene silencing in heterochro-
matin regions including the telomeres (Aparicio et al. 1991; 
Rine and Herskowitz 1987; Wierman and Smith 2014). Sir-
tuins have been linked to a variety of biological processes, 
including aging, transcription, and stress response, and it is 
often their role in DNA repair mechanisms that influences 
these processes (Choi and Mostoslavsky 2014). Among the 
mammalian sirtuins, SIRT1 is the most well studied, and 
SIRT1 has been linked to DNA repair pathways including 
the HR DNA repair pathway, the NHEJ DNA repair path-
way, and the NER pathway (Fan and Luo 2010; Li et al. 
2008; Yamamori et al. 2010). Lin and colleagues recently 
found that SIRT1 is involved in the choice between the HR 
and NHEJ repair pathways for DNA DSBs (Lin et al. 2015). 
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They demonstrated that KAP1, a transcriptional corepres-
sor, inhibits HR- and promotes NHEJ-mediated repair of 
DSBs, but that this process depends on the KAP1 acetylation 
state. Deacetylation of KAP1 is regulated by SIRT1, and it 
is this deacetylation that promotes NHEJ-mediated repair 
(Lin et al. 2015). In addition to KAP1, SIRT1 also deacety-
lates KU70, a DNA damage repair protein that is essential 
to the NHEJ pathway (Fell and Schild-Poulter 2012). Zhang 
et al. found that SIRT1 enhances NHEJ activity in chronic 
myeloid leukemia (CML) cells, likely through its role in dea-
cetylating KU70 (Zhang et al. 2016). In addition, Roth and 
colleagues found that SIRT1 and the LSD1 lysine demethy-
lase competitively bind to KU70 in cancer cells responding 
to stress, having different effects on NHEJ repair efficiency 
(Roth et al. 2016). Thus, SIRT1 is an example of an epige-
netic modifier which impacts the NHEJ repair pathway, thus 
contributing to the control of genome stability.

The roles of histone variants like H2AX and epigenetic 
modifiers like SIRT1 and LSD1 in DNA repair pathways 
illustrate another important link between epigenetics and 
genome stability. These examples show that DNA repair 
pathways utilize a variety of epigenetic mechanisms com-
bating DNA damage to ensure genome stability, preventing 
aging and cancer. All in all, these are just a few of the epige-
netic mechanisms of note that impact DNA repair pathways 
and genomic stability.

Conclusions and outlook

As illustrated in this review, various epigenetic mechanisms 
are at work in maintaining genome stability. Epigenetic 
systems regulate centromere organization to ensure proper 
chromosome segregation during cell division, and their loss 
can upset genomic integrity and lead to chromosomal abnor-
malities and cell death (Barra and Fachinetti 2018). Without 
the correct epigenetic mediators, telomeres can shorten, or 
lose their ability to protect chromosome ends (Booth and 
Brunet 2016; Maciejowski and de Lange 2017; O’Sullivan 
and Karlseder 2010). Without the epigenetic mechanisms 
controlling their activity, TEs can cause genomic instabil-
ity by disrupting essential genes, introducing DNA DSBs, 
and promoting errors during DNA replication, DNA repair, 
and homologous recombination (Klein and O’Neill 2018). 
Epigenetic mechanisms also are essential regulators of the 
DNA repair pathways that are core to maintaining genome 
stability in the face of DNA damage, and likely contribute 
to other pathways contributing to genome stability as well 
(Dabin et al. 2016). Thus, epigenetic mechanisms are an 
integral part of the complex web of pathways used to ensure 
genome stability.

While the basic fact of the involvement of epigenetic sys-
tems in the regulation of genome stability is well-established, 

details for many pathways are still lacking and are areas of 
active research. Epigenetic mechanisms likely will play many 
additional roles in the gene regulatory pathways that control 
the expression of the large variety of proteins and transcripts 
that contribute to genome stability. In addition, there is an 
interesting but currently limited body of research looking into 
the question of how the epigenome, in particular, chromatin 
structure influences the mutational landscape. These stud-
ies indicate that mutation rates differ between regions of the 
genome with well-positioned nucleosomes and regions that 
are nucleosome-free, with nucleosomal DNA surprisingly 
showing higher levels of substitutions and regions of DNA 
typically found in the linker between nucleosomes (Warnecke 
et al. 2008; Washietl et al. 2008). Additionally, there is some 
data suggesting that not all nucleosomes impact substitution 
rates equally and that the histone modifications present on a 
particular nucleosome might affect mutation rates (Prendergast 
and Semple 2011; Tolstorukov et al. 2011). The question of 
how chromatin structure impacts the mutations that occur and 
the efficiency of the DNA repair pathways is highly relevant 
and ripe for further exploration.

In addition, studies using a comparative approach are likely 
to shed more light onto the connections between epigenetic 
mechanisms and genome stability. The progress in sequencing 
technologies and the drop in cost have made genomics and epi-
genomics studies possible in any species of interest. The result-
ing increase in datasets from a large variety of species has led, 
for example, to the realization that not all species use CenH3 
to determine centromere identity (Akiyoshi and Gull 2014; 
Berriman et al. 2005; Drinnenberg et al. 2014) and raises the 
question of how the centromere works in these species. Expe-
riences like this one suggest that there are many more novel 
links between epigenetics and genome stability awaiting their 
discovery. Especially histone variants, telomere structure, and 
centromeres are promising areas of further research, because 
the variation present among well-characterized species sug-
gests that more is likely to be found once a wider range of 
species is considered.
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