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Abstract
A low level of inflammation is an integral part of the balance between the immune system and the microbiota in the high 
antigen environment of the gastrointestinal tract and maintains homeostasis. A failure of this balance can lead to chronic 
intestinal inflammation and increase the chances to develop colorectal cancer significantly. The underlying mechanisms that 
link inflammation and carcinogenesis are not clear but the molecular platforms of the inflammasomes have been implicated. 
Inflammasomes are molecule complexes that are assembled in response to microbial components or cellular danger signals 
and facilitate the production of bioactive pro-inflammatory cytokines. One inflammasome in particular, NLRP3, has been 
analysed extensively in its contribution to colitis and has been shown to be associated with the development of colitis-
associated colorectal cancer. This review will summarise the role of NLRP3 in intestinal inflammation, discuss some of the 
triggers of inflammation in the gastrointestinal tract such as diet and introduce some opportunities to use this inflammasome 
as therapeutic target for the treatment of colitis and colitis-associated colorectal cancer.

Introduction

Colorectal cancer (CRC) is the third most common malig-
nancy worldwide (Ferlay et al. 2015) and presents with a 
high mortality rate (Siegel et al. 2016) due to rapid can-
cer progression with late diagnosis at an advanced tumour 
stage (Siegel et al. 2014). An inflammation-associated form 
of CRC, colitis-associated CAC has been recognised as a 
complication of inflammatory bowel disease (IBD) (Par-
ian and Lazarev 2015; Triantafillidis et al. 2009). These 

chronic inflammatory, idiopathic disorders are charac-
terised by significant inflammation of small intestine and 
colon and are becoming more prevalent and more severe 
due to global adoption of western diet, the increasing use of 
nonsteroidal anti-inflammatory medications and an ageing 
population (Taleban et al. 2015). Furthermore, the increas-
ing incidence and prevalence of IBD in children makes it an 
important paediatric chronic disease (Nasiri et al. 2017) with 
an increased risk of developing CAC (Peneau et al. 2013).

The two primary types of IBD are Crohn’s disease (CD) 
and ulcerative colitis (UC). CD commonly affects the small 
intestine or colon, however it can affect all parts of the gas-
trointestinal tract from the oesophagus to the anus involving 
all layers of the intestinal wall. Complications characteristic 
for CD are strictures, fistulae and fissures. UC is character-
ised with inflammation that is limited to the mucosa of the 
colon and presents with bleeding ulcers and that can result 
in the perforation of the colon (Cosnes et al. 2011; Mulder 
et al. 2014).

Innate immunity, IBD and cancer

Crohn and Rosenberg first reported an ulcerative colitis 
case associated with colorectal cancer development in 
1925 (Crohn and Rosenberg 1925). Subsequently, many 
studies have been published indicating gut inflammation 
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as an important factor predisposing the development of 
colorectal cancer (Dupaul-Chicoine et al. 2010; Karin and 
Greten 2005). The cumulative risk of UC-associated can-
cer is estimated to be at 1.6% at 10 years, 8.3% at 20 years 
and 18.4% at 30 years (Eaden et al. 2001) correlating CAC 
directly to the extent and duration of colitis. Nevertheless 
the exact mechanism of how chronic inflammation is con-
nected to the development of colitis-associated colorectal 
cancer (CAC) has yet to be established.

Chronic inflammation in IBD progresses to CAC with 
constant overproduction of pro-inflammatory cytokines 
such as IL-1β, IL-6, TNF-α (Becker et al. 2004; Popiv-
anova et al. 2008), chemokines and DNA damaging reac-
tive oxygen and nitrogen species. These inflammatory 
effector molecules promote aberrant intestinal epithelial 
cell proliferation, survival and angiogenesis and lead to 
epithelial dysplasia and ultimately to a formation of inva-
sive tumours (Grivennikov 2013). Therefore, understand-
ing and modulating the mechanisms of chronic mucosal 
inflammation will be the key to preventing the progression 
to CAC (Foersch and Neurath 2014).

Although the exact aetiology of chronic intestinal 
inflammation is not yet known, recent studies support 
the hypothesis of a defective innate immune response as 
the primary mechanism in chronic mucosal inflammation 
(Asquith and Powrie 2010). The innate immune response 
controls the intestinal microbiota and provides initial 
resistance to invading pathogens whilst maintaining home-
ostasis (Ignacio et al. 2016). Beyond anatomical barriers 
such as the skin and mucosa, various cellular components 
of the innate immune system such as epithelial cells, mac-
rophages, dendritic cells (DC) and neutrophils are located 
in the intestinal wall and intestinal lymphoid organs 
including Peyer’s Patches and mesenteric lymph nodes. 
These cell populations keep the microbial occupants of the 
intestines under surveillance with the help of extracellular 
and cytosolic pattern recognition receptors (PRRs). The 
PRRs comprise the pro-inflammatory membrane-bound 
Toll-like receptors (TLR) and the cytosolic sensory pro-
tein complexes consisting of NOD-like receptors (NLR), 
the RNA sensing retinoic acid-inducible gene-1 receptors 
(RLR) and the pyrin and HIN domain (PYHIN) receptor 
family which includes the AIM2-like receptor (ALR) and 
C-type lectins (Ranson et al. 2017). These receptors rec-
ognise pathogen-associated molecular patterns (PAMPs) 
or host derived danger-associated molecular patterns 
(DAMPs). Receptor engagement causes cellular activation 
of various effector mechanisms ranging from microbicidal 
molecules and phagocytosis to activation of large multi-
protein complexes called inflammasomes.

Biology of inflammasomes

Inflammasomes have emerged as a central feature in innate 
immunity (Martinon et al. 2002) and are involved in patho-
gen clearance, maintain tissue homeostasis and stimulate an 
adaptive immune response that removes tumour cells. These 
large cytosolic protein complexes can be divided in the NLR, 
the PYHIN or the ALR family (Fig. 1) and comprise inflam-
matory caspases which undergo autocatalytic activation and 
initiate inflammatory signalling cascades that activate pro-
tease Caspase-1 and releases pro-inflammatory cytokines 
IL-1β and IL-18 (Latz et al. 2013; Ranson and Eri 2013). 
This sequence of activating events is culminating in the 
initiation of pyroptosis, a Gasdermin-D-mediated form of 
inflammatory programmed cell death (Man et al. 2017). The 
functionally most completely characterised family member 
of the NLR is the NOD-like receptor family, pyrin domain 
containing protein 3 (NLRP3) (Table 1).

The association of inflammasomes with intestinal inflam-
mation and CAC has been demonstrated with expression 
analysis of human colon cancer samples which shows lower 
expression levels for NLRP and AIM2 family members (Liu 
et al. 2015; Ranson and Eri 2013). Genetic ablation of these 
inflammasomes in the DSS/AOM CAC murine model sug-
gested that they act to suppress intestinal inflammation-
associated tumourigenesis essentially through inhibiting 
cellular proliferation and driving cell death (Allen et al. 
2010, 2012; Chen et al. 2011; Karki et al. 2017; Normand 
et al. 2011; Wilson et al. 2015; Zaki et al. 2011). Mice 
deficient in inflammasome components such as apoptosis-
associated speck-like protein containing a Caspase activation 
and recruitment domain (ASC), Caspase-1 and Caspase-11, 
IL-18 or IL-18r, exhibit increased colitis and tumorigenesis 
compared to wild-type (WT) mice in the azoxymethane-
dextran sulphate sodium (AOM-DSS) model (Dupaul-Chi-
coine et al. 2010; Salcedo et al. 2010; Williams et al. 2015; 

Fig. 1  PRRs that initiate innate immunity. PRRs can be membrane 
bound like TLRs, or present in the cytoplasm as sensory proteins. 
The families are termed nucleotide-binding domain leucine-rich 
repeat containing receptors (NLRs), RIG-I like receptors and pyrin 
and HIN domain (PYHIN) receptors. PHYIN receptors are further 
subdivided as absent in melanoma (AIM2) receptors and C-type lec-
tins
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Zaki et al. 2010b). These studies highlight the importance 
of inflammasome pathways in the modulation of colitis and 
the suppression of CAC.

Mechanism of action: NLRP3 in the innate 
immune response

Polymorphisms of the NLRP3 gene are associated with poor 
survival in CAC patients and the specific role of NLRP3 in 
the processes leading to tumorigenesis is not well under-
stood (Ungerbäck et al. 2012). Therefore, we will discuss 
the current literature on the specific contribution of NLRP3 
to the modulation of the intestinal microbiota and intestinal 
pathologies of colitis and CAC.

The NLRP3 inflammasome is a multiprotein platform 
comprising the NLRP3 protein, the adaptor protein ASC 
and pro-Caspase-1. The NLRP3 protein itself contains a 
nucleotide-binding and oligomerization domain (NBD 
or NACHT), carboxy-terminal leucine-rich repeat (LRR) 
at the C-terminus and a PYD (Leemans et al. 2011). The 
inflammasome assembly is inhibited by the LRR domain. 
This activity is disabled by the activating signal either from 
PAMPS or DAMPS, whereas the NBD is required for homo- 
or hetero-oligomerization that leads to the activation of Cas-
pase-1 from the inactive zymogen pro-Caspase-1 and the 
subsequent auto-cleavage and secretion of the pro-inflam-
matory cytokines IL-1β and IL-18 (Martinon et al. 2002, 
Schroder and Tschopp 2010).

Triggers for activation of NLRP3 inflammasome include a 
diversified array of unrelated molecular structures (PAMPs) 
such as microbial cell wall components including lipopoly-
saccharide (LPS) and muramyl dipeptide (MDP), nucleic 
acids, pore-forming toxins, DAMPs, ATP and crystalline 
substances such as uric acid, oxidised mitochondrial DNA. 
As the NLRP3 inflammasome assembles in response to these 
molecules, it has been proposed that it responds to a com-
mon cellular distress signal, instead of a direct interaction 
with cognate ligands (Halle et al. 2008; Mariathasan et al. 
2006; Martinon et al. 2006; Shimada et al. 2012) (Fig. 2). 
Three key mechanistic pathways have been suggested for 

triggering the activation of NLRP3 inflammasome. Firstly, 
pore formation and potassium efflux (Petrilli et al. 2007), 
secondly, lysosomal destabilisation (Okada et al. 2014) and 
thirdly, mitochondrial reactive oxygen species (mROS) gen-
eration (Gurung et al. 2015). Importantly, the presence of 
ROS has been implicated in the activation of the NLRP3 
inflammasome and has been linked to cancer promotion 
(Fang et al. 2009).

Canonical activation of NLRP3 occurs in two steps via 
both transcriptional and post-transcriptional processes. 
The first signal (Signal 1) is provided predominantly in a 
PAMPs-dependent manner. A frequently used model is the 
lipopolysaccharide (LPS)-induced activation of the TLR4/
NF-κB pathway. This step is termed “priming” and causes 
a transcriptional up-regulation of the transcription of nlrp3 
mRNA and for pro-il-1β and -il-18 (Latz et al. 2013) (Fig. 2). 
In a second step, intracellular sensing of specific ligands 
(DAMPs) leads to the recruitment and oligomerization of 
the key adaptor protein, ASC, which, through its a Caspase 
activation and recruitment domain (CARD) facilitates the 
subsequent recruitment and activation of Caspase-1. In a 
final activating step this protease catalyses the proteolytic 
cleavage of inactive pro-IL-1β or pro-IL-18 proteins into 
secreted bioactive cytokines which initiate a plethora of 
potent inflammatory responses. Furthermore, activation of 
Caspase-1 induces Gasdermin-D-mediated pyroptosis, a 
form of cell death frequently observed during invasion by 
gram-negative and gram-positive pathogens (Fig. 2).

In addition to canonical inflammasomes comprising 
NLRP3, ASC and Caspase-1, recent studies have identified 
an alternative non-canonical NLRP3 inflammasome which 
consists of Caspase-11 (Caspase-4 and Caspase-5 in human) 
and not Caspase-1. The non-canonical pathway is seen in 
infections with gram-negative bacteria, where Caspase-11 
binds directly to cytosolic LPS. This promotes inflammas-
ome-independent pyroptosis and the assembly of the NLRP3 
inflammasome and activation of Caspase-1 to cleave pro-
IL-1β and pro-IL-18 into secreted bioactive cytokines (Kay-
agaki et al. 2011; Rathinam et al. 2012) (Fig. 2).

IL-1β and IL-18 are important pro-inflammatory media-
tors of the mucosal inflammatory response. The presence of 

Table 1  NLR subfamilies and their functions

Family Subtypes Role in immunity References

NOD 6 subtypes Defence against bacterial and viral infection. NLRC3 is 
associated with Colitis, CAC and CRC. NLRC4 has 
been correlated with melanoma

Janowski et al. (2013), Karki et al. (2016), Kobayashi et al. 
(2005), Loving et al. (2009), Viala et al. (2004), Zhang 
et al. (2014)

IPAF 2 subtypes NAIP–NLRC4 together prevent against bacterial infection Janowski et al. (2013), Zhao and Shao (2015)
NLRP 14 subtypes Associated with defence against various bacterial and 

viral infection. NLRP3, 6 and 12 have been associated 
with colitis and CAC. NLRP3 is associated with various 
manifestations of metabolic syndrome

Allen et al. (2010), Anand et al. (2012), Chavarria-Smith 
and Vance (2015), Janowski et al. (2013), Vladimer et al. 
(2012), Wlodarska et al. (2014)
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IL-1β can induce various cellular activities, including the 
proliferation, differentiation and apoptosis of both immune 
and non-immune cells (Huber et al. 2012; Vela et al. 2002). 
Additionally, IL-1β can co-stimulate IL-6 production which 
acts as a growth factor for B cell proliferation and initiate the 
release of other pro-inflammatory cytokines such as TNF-
α, IL-23 (and IL-6) that can polarise the adaptive immune 
response to a Th2 or a Th17 response depending on the anti-
genic environment (Dinarello 2009).

The importance of IL-1β in the pathogenesis of colitis 
has been well established (Ning et al. 2015). In addition, 
numerous studies have revealed that secretion of IL-1β is 
elevated in the sera of patients with IBD (Sartor 1994) and 
mice subjected to DSS-induced colitis (Bauer et al. 2010). 

Importantly inhibition of IL-1β has shown to alleviate DSS-
induced colitis (Siegmund 2002).

Other studies have indicated that in contrast to IL-1β, IL-18 
plays a major role in suppressing colitis and CAC. Polymor-
phisms of the il-18 gene have confirmed a strong association of 
this cytokine with an increased susceptibility to CD (Tamura 
et al. 2002). This suggests that IL-18 signalling provides pro-
tection against a development of intestinal inflammation. Mice 
deficient for IL-18 and IL-18 receptor were hyper-susceptible 
to DSS-induced colitis, which was associated with higher mor-
tality rates and more severe histopathological changes (Takagi 
et al. 2003). In a similar study, IL-18−/− and  IL18r−/− mice 
also developed severe DSS-induced colitis with high lethal-
ity and more histopathological abnormalities and were more 

Fig. 2  Canonical and non-canonical activation of NLRP3. The 
canonical pathway needs two signals to initiate NLRP3 inflamma-
some activation. Signal 1 is also termed priming and is triggered by 
pathogen-associated molecular patterns (PAMPs) from extra cellular 
environment. Signal 1 upregulates the availability of NLRP3 pro-
tein, pro-IL-18 and -IL-1β via NF-κβ mediated transcription. Sig-
nal 2 is activated by intracellular danger-associated molecular pat-
terns (DAMPs) of the host. This leads to oligomerization of NLRP3 

proteins and to a recruitment of ASC and Caspase-1 thus complet-
ing the NLRP3 inflammasomes assembly and activation. Activated 
NLRP3 inflammasomes will cleave pro-IL-18 and -IL-1β precursor 
cytokines into bioactive IL-18 and IL-1β and initiate the inflamma-
tory response. The non-canonical pathway does not requires signal 
1 or priming but is activated by intracellular DAMPs such as ROS. 
Upon activation its activity follows the canonical activation pathway
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susceptible to AOM/DSS-induced colon tumorigenesis as 
compared to WT mice, suggesting an essential and protective 
role of IL-18 signalling in colorectal cancer (Salcedo et al. 
2010). MyD88 KO mice, which are defective in both IL-1β 
and IL-18 production and the downstream signalling of their 
respective receptors, showed increased colonic epithelial pro-
liferation and colorectal tumorigenesis (Salcedo et al. 2010). 
The explanation proposed was that the increase in tumorigen-
esis was caused by a decrease in DNA damage response genes 
causing insufficient response to DNA damage. Additionally, 
IL-18 is a key mediator in epithelial regeneration by the up-
regulation of adhesion molecules (Stuyt et al. 2003) during 
the early stages of colitis (Allen et al. 2010; Hirota et al. 2011; 
Nowarski et al. 2015; Zaki et al. 2010a). Besides its indirect 
tumour-suppressive role in CAC, IL-18 has been associated 
with a T helper 1-skewed immune-stimulatory, anti-tumori-
genic response through its ability to induce IFN-γ (Okamura 
et al. 1995) and its effects on enhancing the cytosolic activity 
of cytotoxic T cells and NK cell response (Chaix et al. 2008; 
Novick et al. 2013; Takeda et al. 1998). Furthermore, high 
levels of IL-18 have been detected in lamina propria mononu-
clear cells (LPMCs) and colon epithelial cells of patients with 
Crohn’s disease (Monteleone et al. 1999; Pizarro et al. 1999).

In an experimental T cell-mediated colitis model admin-
istration of a recombinant IL-18 antisense-expressing 
adenoviruses was able to reduce IL-18 and suppress IFN-γ 
thus ameliorating colitis in vivo (Wirtz et al. 2002). The 
connection between IL-18 and IFN-γ was supported by an 
analysis of LPMCs from IL-18−/− mice which featured an 
exacerbated form of DSS colitis and produced a significantly 
higher amount of IFN-γ (Takagi et al. 2003). Furthermore, 
the in murine colitis models neutralisation of IL-18 has 
shown to ameliorate intestinal inflammation (Siegmund et al. 
2001a; Sivakumar et al. 2002) and may therefore an interest-
ing candidate for a targeted immunotherapy of human intes-
tinal inflammatory diseases. These experiments have high-
lighted the dual role of IL-18 in intestinal homeostasis and 

colitis. Early in the mucosal immune response, its expres-
sion by IECs and LPMCs indicates a protective, local role 
through epithelial regeneration and proliferation in response 
to injury. In chronic inflammation its excessive production 
can enhance inflammation, which potentially promotes tum-
origenesis and tumour growth (Reuter and Pizarro 2004).

The role of NLRP3 in colitis‑associated 
and colitis‑associated cancer: lessons 
from mouse models

NLRP3 inflammasome and its activation in intestinal 
pathologies have been investigated predominantly using 
mouse models of chemically induced intestinal inflam-
mation and CAC specifically the 2,4,6-trinitrobenzene 
sulphonic acid (TNBS) and the dextran sulphate sodium 
(DSS) models of inflammation, and the azoxymethane 
(AOM or AOM/DSS) model of CAC induction respec-
tively (Table 2).

In murine of TNBS models the chemical compound is 
administered intrarectally and mediates a T cell-mediated 
immune response, similar to chronic colonic inflamma-
tion as described in CD (Wirtz and Neurath 2007). In the 
DSS colitis model, DSS is dissolved in the drinking water 
and is ingested. The chemical causes significant damage 
to the epithelial barrier by causing acute colonic crypt 
destruction and mucosal ulceration. The compromised epi-
thelial barrier is invaded by gut microflora which enters 
to the lamina propria resulting in massive infiltration of 
inflammatory cells and up-regulation of pro-inflammatory 
cytokines comparable to human ulcerative colitis (Chas-
saing et al. 2014; Ni et al. 1996). Administering DSS in 
weekly cycles alternating it with water results in a con-
dition that is similar to clinically observed conditions 
of active and remission phases of UC. Finally, AOM a 
potent genotoxic carcinogen that causes DNA damage in 

Table 2  Examples of colitis and 
CAC mouse models

Mouse model Trigger Role of NLRP3 References

NLRP3−/− DSS/TNBS Protective Zaki et al. (2010a)
NLRP3−/− DSS Protective Allen et al. (2010)
NLRP3−/− DSS Protective Hirota et al. (2011)
NLRP3−/− DSS Harmful Bauer et al. (2010)
NLRP3−/− DSS Harmful Elinav et al. (2011)
NLRP3−/− Oxazolone Protective Itani et al. (2016)
Nlrp3R258W × Rag1−/− Spontaneous Protective Yao et al. (2017)
NLRP3−/− AOM/DSS Protective Allen et al. (2010), 

Zaki et al. 
(2010b)

NLRP3−/− AOM/DSS None Hu et al. (2011)
Nlrp3R258W AOM/DSS Protective Yao et al. (2017)
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epithelial cells is used in combination with repeated DSS 
administration. The resulting chronic inflammation pro-
motes the development of colorectal cancer in cells car-
rying mutations generated by AOM (Tanaka et al. 2003).

The role of NLRP3 in colitis and CAC is still controver-
sial with some studies showing a protective role while other 
studies demonstrate a detrimental effect of NLRP3 activa-
tion (Fig. 2; Table 2). Studies of individual inflammasome 
components in colitis models before the inflammasome was 
identified as complex molecular platform questioned the 
role of Caspase-1 (Dupaul-Chicoine et al. 2010; Siegmund 
et al. 2001b). The phenotype of Caspase-1−/− DSS colitis 
mice showed reduced acute and chronic colitis (Siegmund 
et al. 2001b). Both Caspase-1−/− and  ASC−/− mice showed 
an increased susceptibility to DSS colitis and disease sever-
ity was linked to reduced IL-18 production. Conversely, 
the administration of exogenous IL-18 completely reversed 
severity of colitis (Dupaul-Chicoine et al. 2010). Intestinal 
epithelial cells rather than lamina propria cells were shown 
to be the source of IL-18 that was needed for early induction 
of tissue repair and epithelial cell regeneration.

The discrepancy in the above studies was explained by 
the novel discovery of two confounding aspects of the Cas-
pase-1−/− mouse model. First, Caspase-1−/− mice addition-
ally lacked Caspase-11 (Kayagaki et al. 2011). Therefore 
all results based on previous studies of this mouse model 
during DSS colitis is complicated by the contribution of 
Caspase-11 to disease pathogenesis.

The second controversy revolves around the fact that the 
Caspase-1−/− Caspase-11129mt/129mt mice harbour colitogenic 
microbiota that have shown to enhance the severity of DSS 
colitis (Elinav et al. 2011). A recent study characterised the 
intrinsic functions of Caspase-1 in vivo. The study generated 
Caspase-1−/− and Caspase-11−/− mice on a pure C57BL/6N 
genetic background with a non-dysbiotic intestinal micro-
biota. Using these gut microbiota it could be shown that that 
canonical Caspase-1 activation, not Caspase-11, is responsi-
ble for exacerbating DSS-induced colitis (Blazejewski et al. 
2017).

The protective role of NLRP3 in colitis was suggested by 
experiments that showed enhanced colitis in  NLRP3−/− mice 
mediated by a loss of epithelial barrier integrity and reduc-
tion of IL-18 (Zaki et al. 2010a), defective antimicrobial 
mechanism leading to bacterial dysbiosis and increased sus-
ceptibility to DSS- and TNBS-induced colitis (Hirota et al. 
2011).

The role of the NLRP3 inflammasome in the pathogenesis 
of UC was analysed in an oxazolone-induced murine colitis 
model. Intrarectal delivery of oxazolone (OXA) created a 
relevant UC pathogenesis model mediated by Th2 cytokines. 
In this model a reduction of mature IL-1β and IL-18 pro-
duction induced a higher severity of colitis in OXA-treated 
 NLRP3−/− mice when compared to WT mice. Conversely 

this increase in severity could be prevented by exogenous 
administration of IL-1β or IL-18. This study shows that 
NLRP3 inflammasome-derived IL-1β and IL-18 may play 
a protective role against OXA-induced colitis (Itani et al. 
2016).

Controversially, competing studies showed that DSS-
induced colitis was attenuated in  NLRP3−/− mice potentially 
mediated by a local reduction of pro-inflammatory cytokines 
IL-1β, TNF-α and IFN-γ (Bauer et al. 2010). Exposure to 
DSS and concurrent treatment with the Caspase-1 inhibi-
tor Pralnacasan ameliorated colitis (Bauer et al. 2007). An 
attenuation of colitis in NLRP3-deficient mice has been 
confirmed by others supporting the function of NLRP3 as a 
negative regulator of the inflammatory process (Elinav et al. 
2011).

Genetic models of  NLRP3−/−, Caspase-1−/− and 
 ASC−/− mice exposed to AOM/DSS have an increased 
tumour burden (Allen et al. 2010). Using bone marrow 
chimaeras, it was demonstrated that tumorigenesis sup-
pressive signalling by NLRP3 was located in the hemat-
opoietic and not in the epithelial compartment. This 
correlated colitis-associated tumours with a defective 
production of IL-18 during the initiation of inflammation 
in the AOM/DSS model. Consequently, the role of NLRP3 
in CAC has mainly been reported as a negative regulator 
in colitis-associated tumorigenesis (Allen et al. 2010; Zaki 
et al. 2010b).

Consistent with a protective role of NLRP3 in tumorigen-
esis  NLRP3−/− mice were highly susceptible to AOM/DSS-
induced inflammation and the treatment caused increased 
tumours in the colon The mechanism proposed was that 
NLRP3-dependent IL-18 secretion is required for STAT1 
activation and IFN-γ induction leading to decreased immune 
tumour surveillance in the absence of IL-18. This phenotype 
was reduced with administration of recombinant IL-18 (Zaki 
et al. 2010b).

The ability of NLRP3 to release bioactive IL18 is a 
potential mechanism explaining the protective role of this 
cytokine against CAC development. However, another study 
found no difference in CAC between NLRP3-deficient and 
WT mice in a AOM/DSS model (Hu et al. 2011). The rea-
son for these discrepancies observed in the  Nlrp3−/− colitis 
or CAC model phenotype is not clear, but could be due to 
differences in length and concentration of DSS treatment or 
to baseline differences in the composition of the intestinal 
microbiota in experimental mouse colitis.

Human and murine studies suggest that bacterial dysbio-
sis promotes inflammation in human and mouse colitis and 
CAC models (Kitajima et al. 2001; Richard et al. 2018). 
Studies in mice deficient in inflammasome genes have pro-
vided evidence that specific inflammasomes like NLRP6 
and NLRP3 are major regulators of commensal microbiota. 
A study in Nlrp3−/− mice suggested that the NLRP6/ASC 
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inflammasome acts as a crucial regulator of the gut micro-
biota (Elinav et al. 2011). Another study that observed a 
significant increase in bacterial counts in stool, colon, mes-
enteric lymph node and liver in DSS colitis of Nlrp3−/− mice 
compared to DSS colitis in wild-type mice demonstrated that 
NLRP3 plays a role in controlling commensal overgrowth 
and bacteraemia (Zaki et al. 2010a).

How NLRP3 regulates the microbial composition in the 
intestines is not clear. This question was addressed by com-
paring faecal microbiota of  Nlrp3−/− deficient mice to their 
WT littermates (Hirota et al. 2011). Only  NLRP3−/− mice 
were shown to carry a specific bacterial composition with 
potentially pathogenic members of the family Enterobac-
teriaceae including the species Citrobacter, Proteus and 
Shigella (Hirota et al. 2011). Furthermore, the unique gen-
era Mycobacterium, Collinsella, Clostridium and Ralstonia 
were identified which were not detectable in WT littermates. 
Additionally, it could be shown that colon crypt secretions 
obtained from  NLRP3−/− mice ex  vivo had decreased 
bactericidal activity against E. coli. The significant dif-
ference in composition of the intestinal microbiota in the 
 NLRP3−/− mice could explain the increased susceptibility to 
DSS- and TNBS-induced colitis (Hirota et al. 2011).

Further studies have demonstrated that the distinct com-
mensal bacterial species Proteus mirabilis induces a robust 
Il-1β secretion via NLRP3 inflammasome activation in 
newly recruited intestinal  Ly6Chigh monocytes during DSS 
colitis. This could be linked to an increased severity of dis-
ease (Seo et al. 2015). However, the molecular pathways 
by which intestinal bacterial populations in NLRP3 inflam-
masome-deficient mice promote intestinal inflammation are 
still elusive. It has been speculated that this could be due to 
their ability to upregulate the generation of pro-inflamma-
tory chemokines and cytokines such as CCL5 (Elinav et al. 
2011), IL-6 and TNF-α (Hu et al. 2013).

NLRP3−/− mice show a more severe colitis when com-
pared to WT mice after infection with the intestinal patho-
gen Citrobacter rodentium (Song-Zhao et al. 2013). This 
could be due to a lack of downstream cytokines IL-1β and 
IL-18 in the gene-deficient mice and allows the conclusion 
that activation of the NLRP3 inflammasome is necessary 
for an attenuation of Citrobacter rodentium driven intestinal 
inflammation.

In contrast to gene-deficient models, the  NLRPp3R258W 
mouse model displays an enhanced NLRP3 inflamma-
some signalling. These mice develop an auto-inflammatory 
response in the skin (Meng et al. 2009). In the intestine they 
maintain homeostasis and remain strongly resistant to exper-
imental colitis and subsequently, colorectal cancer. This 
due to a distinct microbiota in  NLRP3R258W mice with an 
increased presence of bacterial species such as Clostridium 
XIVa and Lactobacillus murinus and also a significant reduc-
tion of colitogenic bacteria such as Akkermensia muciniphila 

which promote the local differentiation of  Tregs, that con-
tribute to homeostasis in the gut (Yao et al. 2017). Further 
work needs to be done to elucidate the signalling pathways 
by which resident bacteria stimulate the NLRP3 inflamma-
some to induce colitis in IBD.

Diet, microbiota and the activation 
of NLRP3: bowel cancer as an end stage 
of inflammation

Environmental factors, together with the individual genetic 
make -up and the innate immune response play role in devel-
opment of IBD (Marion-Letellier et al. 2016). Two central 
environmental factors are diet and the composition of sym-
biotic microorganisms that live in our gastrointestinal tract 
(GI), the so-called microbiome. Microbiota composition has 
been shown to modulate metabolism-associated conditions 
like obesity and inflammatory diseases of the bowel like 
IBD and associated cancers such as CAC and CRC (Requena 
et al. 2018). A healthy diet helps to maintain a balanced and 
healthy microbiota and consequently, immune homeostasis 
in the gut. Unbalanced consumption of nutrients can lead to 
a dysbiosis of the microbiota and inflammation (Geuking 
et al. 2014; Marion-Letellier et al. 2016). Chronic insults 
from dietary metabolites activate NLRP3 and IL-1β produc-
tion and thus progress disease pathogenesis (Camell et al. 
2015). Consequently, diet has been identified as an impor-
tant driver of the development a large percentage (50–90%) 
of tumours of the bowel (Kasdagly et al. 2014). For exam-
ple, diet rich in fat increases the amount of bile acid which 
consists to 58% of deoxycholic acid (DCA). DCA has been 
found to disrupt epithelial integrity due to Cathepsin B acti-
vation of NLRP3 and leads to barrier disruption observed 
in DSS-induced colitis. In mice deficient for NLRP3 or Cas-
pase 1 DSS-induced colitis could not be established which 
underlines the role of NLPR3 in the development of colitis 
in a high fat environment (Zhao et al. 2016). Another chronic 
insult by the ingested diet is the presence of dietary choles-
terol in the intestines. In an AOM-treated mouse model this 
has been associated with a hyperactivity of NLRP3 resulting 
in an increase in IL-1β (Du et al. 2016). In general, saturated 
lipids, ceramide (Vandanmagsar et al. 2011) and uric acid 
can act as DAMPs that induce unwanted NLRP3 activation 
by initiating the production of ROS (Camell et al. 2015). 
On the other hand, some metabolites like omega-fatty acids 
prevent activation of NLRP3 and thus have an anti-inflam-
matory effect (Yan et al. 2013). These examples allow an 
insight how inflammation, colitis and CAC can be supported 
by various dietary parameters.

Under normal physiological conditions the symbiotic 
microbiota support the host by breaking down complex 
polysaccharides in dietary fibre into short chain fatty acids 
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(SCFA) with less than six carbon atoms (Nieuwdorp et al. 
2014). The predominant forms are acetate (C2), propionate 
(C3) and butyrate (C4). SCFA are the major products of 
bacterial fermentation and important as energy source for 
colonic epithelial cells (Huycke and Gaskins 2004). SCFA 
induce a favourable intestinal environment in a variety of 
ways and high fibre diet boosts bacterial species which pro-
duce SCFA (Desai et al. 2016; Kelly et al. 2015). The pres-
ence of dietary fibre and SCFA also protects in DSS directly 
through activation of NLRP3 possibly in colonic epithelial 
cells (Macia et al. 2015). While the molecular pathways of 
this interaction are still elusive it demonstrates the important 
role of diet in intestinal homeostasis.

Furthermore, butyrate as one of the main SCFA 
induces functional Tregs via intrinsic up-regulation of 
the Foxp3 gene (Furusawa et al. 2013). The extrathymic 
differentiation of  Tregs in the periphery is enhanced via 
the conserved non-coding sequence 1 (CNS-1)-depend-
ent pathway in the presence of butyrate and propionate 
(Arpaia et  al. 2013). Butyrate activates the intestinal 
butyrate GPR109A receptor which drives the differen-
tiation of  Tregs and modulates immune responses by up-
regulation of the production of IL-10, suppressing colonic 
inflammation and carcinogenesis in a mouse model of 
intestinal inflammation associated with CAC (Singh 
et al. 2014). Increased  Treg initiate an anti-inflammatory 

response and act as antagonist to NLRP3 thus maintain-
ing the homeostasis in experimental colitis and CAC (Yao 
et al. 2017).

Future directions of CAC therapy 
by intervention with NLRP3 activation

An improved understanding of the mechanistic interactions 
between diet and microbiota, and inflammasomes such as 
NLRP3 will reveal new potential therapies that target these 
pathways (Fig. 3). Here we outline some opportunities for 
interventions (Table 3).

Diet/metabolic immunomodulators

Metabolite targeted therapy can be used to modulate the 
hyper activation/blockage of NLRP3. Metabolic product-
induced inflammatory mediators like plasminogen activator 
inhibitor (PA)-1, sphingosine-1-phosphate and ceramide-
1-phosphate constitute a link that allows modulation of 
NLRP3 activity. Targeting these mediators results in a ther-
apy of colitis. Lipoxygenase is needed to recruit monoso-
dium urate which activates NLRP3 in gout. This mechanism 
needs to be investigated in colitis and CAC models (Amaral 
et al. 2012). A further interesting possibility is the inhibition 

Fig. 3  Different therapeutic interventions targeting NLRP3 assembly 
or activation. Small molecule inhibitors modify or prevent NLRP3 
assembly. Associated target therapy targets NLRP3 activation through 

changes in diet and microbiota, or modulation of macrophages. Ther-
apy against novel stimulation of NLRP3 such as activation by mito-
chondria
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of ceramide synthesis by increasing fatty acid oxidation to 
reduce fatty acid inflammation (Schilling et al. 2013).

Inhibition of de novo activation of NLRP3

The cytoskeleton protein α-microtubulin is an activator of 
NLRP3. This protein supports NLRP3 assembly by recruit-
ing ASC from mitochondria. This supporting role of NLRP3 
activation requires an assistance from dynein (Akira et al. 
2013). The microtubules have to undergo post-translational 
modification by acetylation by the Mec17 gene product in 
order to activate NLRP3 (Akira et al. 2013). An activation of 
the enzyme SIRT2 which is α-tubulin deacetylase is required 
by DAMPs in order to activate NLRP3. A targeted therapy 
against this mechanism of NLRP3 assembly could offer an 
interesting treatment opportunity.

Small molecule targeted therapy

Novel small molecule specific inhibitors such as MCC950, 
CY-09, BHB has been used to pharmacologically tar-
get NLRP3 activation and successfully treat a variety 
of inflammatory disorders (Coll et al. 2015; Jiang et al. 
2017; Youm et al. 2015). These inhibitory molecules target 
various protein components such as ASC or Caspase-1 or 
inhibit production of NLRP3-mediated effector cytokines 
such as IL-1β (Mangan et al. 2018). At present there are 
no specific NLRP3 inhibitors used in clinical IBD therapy. 
However a few compounds that show inhibition of NLRP3 
activity have emerged as potential therapeutics for IBD 
(Perera et al. 2017). Most of these are nonspecific with 
unknown mechanisms, limiting their progression to clini-
cal usage for long term application in chronic IBD but spe-
cific NLRP3 inhibitors have shown promise in IBD patient 
tissues and colitis mouse models. A recent study using 
specific inhibitor MCC950 in the spontaneous chronic 
IBD mouse model Winnie, illustrated the potent thera-
peutic effect of NLRP3 blockade. Established colitis was 
ameliorated by a 3 week treatment of orally administered 
MCC950 (Perera et al. 2018). Another study used Gly-
buride alleviating colitis and preventing disease onset in 
 IL10−/− mice. This drug also inhibited pro-inflammatory 

cytokines in mucosal explants from Crohn’s patients (Liu 
et al. 2016). Furthermore, the benzimidazole-containing 
synthetic small molecule inhibitor Fc11a-2 alleviated 
colitis in a DSS-induced colitis mouse model (Liu et al. 
2013). In this study the mechanism of action was found 
to be inhibition of cleavage of pro-Caspase-1 following a 
reduction in production of IL-1β and IL-18 suppressing 
the activation of NLRP3 inflammasome. Finally, a non-
cytotoxic, novel acrylate derivative inhibitor INF39 which 
does not block Caspase 1. Oral administration of INF39 
in a TNBS-induced rat colitis model attenuated intestinal 
inflammation (Cocco et al. 2017). The use of small mol-
ecule inflammasome inhibitors also shows promise when 
it comes to prevention of CAC. A study on the small mol-
ecule andrographolide (Andro) shows that it is protective 
against AOM/DSS induced colon carcinogenesis in mice 
by inducing mitophagy in macrophages which leads to a 
reversed mitochondrial membrane potential collapse that 
inactivates the NLRP3 inflammasome and prevents the 
development of CAC (Guo et al. 2014). A further exam-
ple is the small-molecule AMPK activator GL-V9 which 
resolves colitis and is protective against tumorigenesis in 
colitis-associated colorectal cancer. GL-V9 acts by trigger-
ing autophagy in cells leading to activation of the NLRP3 
inflammasome (Zhao et al. 2018). In summary the regu-
lation of chronic inflammation in the intestines through 
pharmacological intervention of small molecule NLRP3 
inhibitors in IBD patients could be a potential therapeutic 
option for preventing CAC.

Combination therapy

Combination of small molecule therapy along with diet 
modulators could be tried to increase effectiveness. For 
example various combinations of diet modulators can be 
used such as 5-aminosalicylic acid together with fish oil. 
This combination lowered the inflammatory score compared 
to treatment with 5-aminosalicylic acid alone in rats with 
TNBS-induced colitis (Mbodji et al. 2013). In human tissues 
the combination of glutamine and arginine have been shown 
to reduce TNF-α production in colonic biopsies of colitis 
patients (Lecleire et al. 2008).

Table 3  Opportunities for interventions with colitis and CAC 

Potential NLRP3-mediated interventions to 
treat colitis and CAC 

Therapeutic approach

Immunomodulators Various dietary molecules which can help to reduce only detrimental activity of NLRP3
Stimulation therapy Targeting the various activating mechanism of NLRP3
Inhibitory molecules Designing inhibitory small molecules against activation, assembly or various subunits of NLRP3
Associated target therapy Chemokines, cytokines, signalling cascade and immune cells like macrophage’s which support 

in negative activity of NLRP3
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Conclusion

There is clear evidence supporting the NLRP3 inflamma-
some as key player in the inflammatory response in coli-
tis (Schoultz et al. 2009; Villani et al. 2009) with ultimate 
implications for CAC development (Allen et al. 2010). 
However, it is also clear from the conflicting evidence out-
lined in this review that involvement of the NLRP3 inflam-
masome in inflammatory processes leading to tumour 
development is complex and may be context dependent. 
Therefore carefully designed follow up experiments are 
warranted, where conditions for the induction of colitis 
including controlled intestinal microbiota, are carefully 
controlled. Unravelling the role of the NLRP3 inflamma-
some in intestinal inflammation will provide insights for 
the role of NLRP3 in intestinal epithelial cells and the path-
ways employed by the mucosal immune system to modu-
late the microbiota and integrate with the adaptive immune 
response to defend the integrity of the gut mucosa. Under-
standing the mechanisms that underpin these interactions 
also more broadly builds on the current strong interest in 
understanding the immune pathways underpinning chronic 
inflammation in tumourigenesis.
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