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Abstract
Male reproductive anomalies are widely distributed among mammals, and male factors are estimated to contribute to 
approximately 50% of cases of human infertility. The B10.M/Sgn (B10.M) mouse strain exhibits two adverse reproductive 
phenotypes: severe teratospermia and male subfertility. Although teratospermia is known to be heritable, the relationship 
between teratospermia and male subfertility has not been well characterized. The fertility of B10.M male mice is consider-
ably lower (~ 30%) than that of standard laboratory mouse strains (~ 70%). To genetically analyze male subfertility, F2 males 
were produced by intercrossing the F1 progeny of female B10.M and male C3H/HeN mice. The fertility of each F2 male 
mouse was assessed based on the outcomes of matings with five females. Statistical analysis of correlations between the two 
reproductive phenotypes (teratospermia and subfertility) in F2 males (n = 177) revealed that teratospermia is not the cause 
of male subfertility. Quantitative trait loci (QTL) analysis of the male subfertility phenotype (n = 128) using GigaMUGA 
markers mapped one significant QTL peak to chromosome 4 at 62.9 centimorgans (cM) with a logarithm of odds score of 
11.81 (P < 0.05). We named the QTL locus Mfsf1 (male factor subfertility 1). Further genetic analysis using recombinant 
males restricted the physical area to 1.53 megabasepairs (Mbp), encompassing 22 protein-coding genes. In addition, we found 
one significant QTL and one indicative QTL on chromosome 5 and 12, respectively, that interacted with the Mfsf1 locus. 
Our results demonstrate that genetic dissection of male subfertility in the B10.M strain is a useful model for characterizing 
the complex genetic mechanisms underlying reproduction and infertility.

Introduction

Human infertility is a common problem worldwide, and male 
factors are estimated to contribute to 50% of cases (Agarwal 
et al. 2015; Melodie and Christine 2018). The etiology of 
male infertility is highly variable and has been associated 

with endocrinological, immunological, neurogenic, and 
environmental factors (Iammarrone et al. 2003). A correla-
tion between male infertility and emergence of cancer has 
also been reported (Nagirnaja et al. 2018). Although genetic 
contribution to male factor infertility are evident in humans, 
limited associations with chromosomal alterations, such as 
Yq microdeletions and Klinefelter’s syndrome, and muta-
tions in specific genes, such as CFTR, have been reported 
(Neto et al. 2016). Studies in mice have identified 666 genes 
that cause male infertility when disrupted (Nagirnaja et al. 
2018). As genomic information continues to accumulate, 
an increasing number of genetic variations linked to male 
infertility are expected to be identified, and the search for 
novel genetic variations that underlie male factor infertility 
is already underway (Miyamoto et al. 2017; Robay et al. 
2018; Halder et al. 2017).

Subfertility is defined as reproductive efficiency that lies 
between that of infertility and normal reproductive perfor-
mance. This low efficiency is a major concern in agriculture 
and animal production. For example, in dairy cows, a trend 
of declining fertility persists for several decades (LeBlanc 
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2010). Substantial attention has been paid to understand 
the correlation between milk production and cow fertility 
(Jamuna and Chakravarty 2016; Berry et al. 2016). With 
the advent of newly developed technologies in genome sci-
ence, application of genomic information to improve fertility 
has become a promising mechanism to improve unfavorable 
reproductive conditions (Taylor et al. 2018).

Use of model mouse strains to characterize fertility is 
advantageous because the effects of genetic background can 
be assessed in a reproducible manner. For example, the well-
characterized B10.M/Sgn mouse strain is characterized by 
male subfertility and severe teratospermia, with ~ 60% of 
sperm exhibiting abnormal morphology (Gotoh 2010). Pre-
viously, we reported that the teratospermia phenotype is her-
itable (Gotoh et al. 2012) and mapped two of the loci respon-
sible: Shm1 on chromosome 1 and Shm2 on chromosome 4. 
Interactions between these two loci were evident. Homozy-
gosity of the Shm1B10.M allele was required to express ter-
atospermia, and the enhancing effects of the Shm2B10.M/B10.M 
genotype were observed only when the genotype of the ani-
mal was homozygous for the Shm1B10.M allele. However, 
whether a link exists between the teratospermia phenotype 
and male subfertility in this mouse strain has not previously 
been investigated. Therefore, in the present study, we per-
formed genetic analyses on the male subfertility phenotype 
and explored linkage with the teratospermia phenotype.

Materials and methods

Animals

All experiments were approved by the Institutional Animal 
Care and Use Committee of the Institute of Agrobiologi-
cal Sciences. Animals were housed and cared for according 
to guidelines established by the Committee. C3H/HeNCrl-
Crlj (C3H) mice were purchased from Charles River Japan 
(Yokohama, Japan). C57BL/10J (B10) mice were purchased 
from S. L. C. (Hamamatsu, Japan). B10.M/Sgn (B10.M) 
mice are maintained at our facility. Animals were maintained 
on a cycle of 12 h of light and 12 h of darkness under spe-
cific-pathogen-free conditions. The commercial mouse diet 
CRF-1 (Charles River Japan, Yokohama, Japan) and water 
were provided.　F2 animals were produced by intercross-
ing F1 animals obtained from crossing B10.M females with 
C3H males. Recombinant F2 males in which recombination 
occurred between the D4Mit251, D4Mit54, and D4Mit170 
microsatellite markers were selected for fine mapping of 
the locus responsible for the male subfertility phenotype 
detected by QTL analysis.

Male fertility analysis

Mature, virgin, C3H females ages 8–12 weeks were used 
for the assay. Five female mice were mated with each male 
mouse. Male fertility is assessed according to a standard 
methodology for reproductive toxicological assay (Teramoto 
et al. 1980; Mitchard et al. 2012). Two weeks after the vagi-
nal plug was observed, the female mice were dissected. The 
numbers of corpus luteum (yellow body) on ovaries and the 
numbers of embryos in uterus were counted under a stereo 
microscope (SMZ25; Nikon, Tokyo). Because yellow body 
is the remains of ovarian follicle that has released a mature 
ovum during a previous ovulation, the ratio of the total num-
ber of embryos to the number of yellow bodies was used to 
estimate the fertility percentage for each mating. The fertil-
ity of each male mouse was expressed as the mean fertility 
percentage for the five matings.

Sperm morphology test

Sperm samples were collected from 3- to 5-month-old male 
mice after fertility testing was completed. Sperm morphol-
ogy was analyzed as described earlier (Gotoh 2010). Two 
independent samples, each containing a minimum of 200 
sperm cells, were analyzed under 400 × magnification using 
a differential interference contrast microscope (DMRXA2; 
Leica Microsystems; Cambridge, UK).

Quantitative trait loci (QTL) analysis

Genomic DNA samples were prepared from mouse tail 
snips (~ 5 mm) as previously described (Hirawatari et al. 
2015b). Samples from 128 F2 animals were genotyped using 
GigaMUGA markers (Morgan et al. 2015) at the Genetics 
Laboratory, University of North Carolina, Chapel Hill. QTL 
analysis was performed using R/qtl software (Broman et al. 
2003; Broman and Sen 2009). The scanone function was 
used for single QTL analysis, and the scaonetwo function 
was used to detect epistatic interactions between two loci. 
The threshold for each assay was determined by permutation 
tests (n = 1000). P values less than 0.05 and 0.37 were con-
sidered statistically significant and suggestive, respectively, 
for QTL analyses.

Database search

Information of position, MGI ID, feature type, and sym-
bol of genes is referred to the Mouse Genome Informatics 
(MGI) website (http://www.infor​matic​s.jax.org/marke​r). 
Information of known reproductive phenotype of genes is 
referred to the International Mouse Phenotyping Consor-
tium (IMPC) website (http://www.mouse​.pheno​type.org). 
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Information of expression of genes in testis is referred to 
the Expression Atlas database of the European Bioinfor-
matics Institute website (http://www.ebi.ac.uk/gxa.home). 
Information of single nucleotide polymorphism (SNP) of 
genes among C3H/He, C3H/HeJ, C57BL/10J, C57BL/6, and 
C57BL6J inbred strains is referred to the SNP database of 
the MGI website (http://www.infor​matic​s.jax.org/snp). All 
information was updated on July 31, 2018.

Statistical analyses

Correlations between male subfertility and teratospermia 
phenotypes were analyzed using Spearman’s rank correla-
tion test. Comparisons between groups were analyzed by 
one-way analysis of the variance (ANOVA) using SPSS 16.0 
for Windows (Analytical Software; Chicago, IL, USA).

Results

Male subfertility and teratospermia

Figure 1a shows a representative example of the ovaries and 
a uterus from a C3H female mated with a sub-fertile F2 
male. In this case, nine yellow bodies and two embryos were 
present, resulting in a fertility estimate of 22%. Figure 1b 
presents an example of a sperm spread from an F2 male 
exhibiting severe teratospermia (64% abnormal spermato-
zoa) with a number of morphological abnormalities.

Male subfertility is not correlated 
with teratospermia in mice

The correlation between male fertility and sperm morpho-
logical abnormalities in F2 males is shown in Fig. 2. The 
horizontal dotted line at 58.7% represents the statistical 
mean fertility minus the standard deviation (SD) for B10 
males (n = 10). The vertical-dotted line at 9.9% represents 
the statistical mean percentage of sperm shape abnormali-
ties plus the SD for B10 males (n = 10). These lines define 
approximate boundaries between high and low values for 
each phenotype. A considerable number of individuals 
are found in both the upper-right square and the lower-left 
quadrants. Males plotted in the upper-right quadrant exhibit 
normal fertility with teratospermia. Males plotted in the 
lower-left quadrant exhibit subfertility with normal sperm 
morphology. Statistical analysis of F2 males (n = 177) con-
firmed the lack of a correlation between the two phenotypes 
(P > 0.05).

QTL mapping of a male factor subfertility locus

The scanone function of the R/qtl package revealed one 
significant QTL peak on chromosome 4 at 62.94 cM with 
an LOD score of 11.81 (Fig. 3a). We tentatively named 
this locus male factor subfertility 1 (Mfsf1). These results 
confirmed that male subfertility is heritable in the B10.M 
strain. The marker nearest the QTL peak is UNC8352858. 
The effects of the UNC8352858 genotype on male fertility 
are shown in Fig. 3b. Chromosome interval mapping using 
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Fig. 1   Abnormal male reproductive phenotypes present in the B10.M 
strain. a A representative example of the fertility assay used in this 
study showing subfertility of an F2 male. Upper photos show a pair of 
ovaries. The right (R) ovary contains eight yellow bodies, and the left 
(L) ovary contains one yellow body. Horizontal bar, 100 μm. Lower 
photo shows a uterus containing fetuses on 13th day of pregnancy. 
Each side of the uterus contains one fetus, respectively. The fertil-
ity was calculated to be 22% in this case. Horizontal bar, 10 mm. b 
An example of teratospermia of an F2 male. Abnormal sperm head 
morphology is shown. n represents a normal spermatozoon; a shows 
ectopic attachment of the flagellum; a shows a spermatozoon with 
amorphous head, and l shows the lack of the usual hook
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the R/qtl package estimated that the Mfsf1 locus mapped 
between the UNCHS013009 (59.84 cM) and UNCHS013136 
(63.47 cM) markers (P < 0.05).

Genetic mapping of the Mfsf1 locus

Genetic mapping of the Mfsf1 locus was performed 
using conventional microsatellite markers and recom-
binant males to narrow the mapping region obtained by 
QTL analysis. QTL results indicated that homozygosity 
of the Mfsf1B10.M allele was required to express the sub-
fertility phenotype, although the fertility values of the 
Mfsf1B10.M/B10.M homozygotes varied widely (Fig.  3b). 
Three informative recombinant males were obtained. 
The Mfsf1 locus was mapped between the D4Mit251 and 
D4Mit170 markers by this analysis (Fig. 4a). Together 
with QTL mapping results, these results indicate that the 
Mfsf1 locus is restricted to a 1.53 Mbp region containing 
22 protein-coding genes (Fig. 4b). Known information of 
candidate genes within the mapped interval is listed in 
Supplemental Table S1.

Epistatic interactions with the Mfsf1 locus

The wide distribution of fertility in Mfsf1B10.M/B10.M 
homozygotes could not be explained by Mfsf1 genotype 
alone. No significant QTL peaks showing additive effects 
were found. Therefore, we next searched for other factors 
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that could interact with the Mfsf1 locus using the scantwo 
function of the R/qtl package. One significant interact-
ing QTL peak was found on chromosome 5 at 40.13 cM; 
this locus had a suppressive effect on fertility (Fig. 5a). In 
addition, one QTL peak with an enhancing effect on fertil-
ity was found on chromosome 12 at 20.89 cM. The LOD 
score for this single QTL peak (2.72) was slightly below 
the suggestive level (Fig. 5b). No significant interaction of 
this factor with the Mfsf1 locus was found.

Discussion

This study revealed that male subfertility in the B10.M 
mouse strain is heritable. The Mfsf1 locus responsible for 
subfertility is mapped to chromosome 4. It is different from 
the major locus (Shm1) responsible for teratospermia on 
chromosome 1 (Hirawatari et al. 2015b). We also found 
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that the subfertility phenotype was not associated with the 
previously reported sperm shape abnormality phenotype in 
B10.M strain. Similarly, analysis of the TEN1 mouse strain 
also reported that teratospermia was not associated with 
male subfertility (Hirawatari et al. 2015a). Male subfertility 
is often attributed to teratospermia. The results of this study 
clearly show that sperm shape abnormality phenotype and 
male subfertility phenotype are not always linked.

Although male subfertility and teratospermia are not 
associated in B10.M mice, this does not necessarily imply 
that there is no association between the genes responsible 
for these two phenotypes. With respect to the teratospermia 
phenotype in B10.M mice, the two loci responsible, Shm1 
on chromosome 1 and Shm2 on chromosome 4, have been 
shown to interact (Gotoh et al. 2012). Homozygosity of the 
Shm1B10.M allele is required for expression of the sperm 
shape phenotype, and the Shm2B10.M allele enhances the fre-
quency of morphologically abnormal sperm in a recessive 
manner. The Shm2B10.M allele alone does not cause terato-
spermia. The Shm2 locus has been mapped to chromosome 
4 between the D4Mit148 (69.48 cM, 137148689 bp) and 
D4Mit170 (70.47 cM, 138615338 bp) markers. Thus, the 
two mapped regions, the Shm2 locus in the teratospermia 
study and the Mfsf1 locus in this study, are nearly identical, 
and the genes encoded by the Shm2 locus and the Mfsf1 
locus could possibly be identical. Only 22 protein-coding 
genes are located within the restricted mapped area (Sup-
plemental Table S1).

Because the B10.M strain is an h2-congenic strain pos-
sessing the h2-complex on chromosome 17 in a genetic 
background derived 75% from C57BL/6 (B6) and 25% 
from B10 strains (Gotoh 2010), genes on chromosome 4 
have originated from either B6 or B10. By searching SNP 
database, several non-synonymous SNP variants between 
C57BL/6J and C3H/HeJ strains are found within the coding 
sequences of the candidate genes (Supplemental Table S2). 
SNP information of B10 strain for these genes is not avail-
able. Because neither B10 males nor C3H males show sub-
fertile phenotype (Hirawatari et al. 2015b), the listed SNP 
variation is unlikely to cause subfertility of B10.M. A novel 
mutation appears to have emerged during or after establish-
ment of the B10.M inbred strain. With recent advances in 
technology, whole genome DNA sequencing is now avail-
able for mouse, and genome editing technology has become 
convenient. These techniques will be required to find genetic 
variations within the mapped region and then show that 
the subfertility phenotype can be induced by the identified 
mutation.

Epistasis, or interaction between genes, was observed in 
this study. Homozygosity of the Mfsf1B10.M allele appears to 
be required to express male subfertility in the B10.M strain, 
as the other two genotypes, heterozygotes and wild-type 
homozygotes, exhibit normal fertility. However, less than 

half of the Mfsf1B10.M/B10.M homozygous males displayed 
the subfertility phenotype (Fig. 3b). The QTL analysis in 
this study indicated two bidirectional factors present on 
chromosomes 5 and 12 that interacted with the Mfsf1 locus. 
The locus on chromosome 12 was the only factor found to 
enhance fertility. Likely due to the limited sample size in this 
study, the interacting effect of the QTL on chromosome 12 
was not statistically significant.

Results from this study demonstrate that genetic 
approaches can be a powerful tool to analyze mechanisms 
underlying the complexity of the reproductive system. 
These approaches are useful as a large number of the 
3000 genes expressed in male germ cells may contrib-
ute to male infertility (Schultz et al. 2003). In fact, gene 
knockout studies in mice have already identified 666 genes 
associated with male infertility (Nagirnaja et al. 2018). In 
addition, genetic interactions associated with reproductive 
phenotypes are common. Over the course of evolution-
ary history, each mammalian species or subspecies has 
acquired complex mechanisms to regulate normal repro-
duction. Haldane’s rule in mammals (Coyne 1985) and 
the hybrid sterility observed between two Mus musculus 
(house mouse) subspecies (Storchova et  al. 2004) are 
two examples of these types of regulatory mechanisms. 
Another is typified by the frequent appearance of infertile 
animals among the hybrid descendants of two reproduc-
tively normal, inbred mouse strains (Nishimura et al. 1995; 
Shorter et al. 2017). However, reproductive regulatory 
mechanisms are not only defined by the extreme condition 
of infertility, as a wide variety of male reproductive phe-
notypes has been observed among F2 hybrid males pro-
duced by reproductively normal B6 and C3H strains in the 
absence of a novel mutation (Gotoh and Aoyama 2012). 
In the genetic study of teratospermia in the TEN1 mouse 
strain, at least three interacting loci, Shm3 on chromosome 
1, Shm4 on X chromosome, and Shm5 on chromosome 6, 
have been identified (Hirawatari et al. 2015b). In cases in 
which a single genetic variation causes infertility, genomic 
methods can be powerful tools for finding the causative 
gene. However, male reproductive system is supposed to 
be composed of multiple interactions of genes.
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