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Abstract
Interferon-stimulated genes (ISGs) are the effectors of interferon (IFN) actions and play major roles in innate immune defense 
against microbial infection. During virus infection, ISGs impart antiviral actions to control virus replication and spread but 
can also contribute to disease pathology if their expression is unchecked. Antiviral ISGs have been identified by a variety of 
biochemical, genetic, and virologic methods. New computational approaches are expanding and redefining ISGs as responders 
to a variety of stimuli beyond IFNs, including virus infection, stress, and other events that induce cytokines. These studies 
reveal that the expression of ISG subsets link to interferon regulatory factors (IRF)s, NF-kB, and other transcription factors 
that impart gene expression in specific cell types independently of IFNs, including stem cells and other cell types where ISGs 
are constitutively expressed. Here, we provide a broad overview of ISGs, define virus-induced genes (VSG)s, and discuss the 
application of computational approaches and bioinformatics platforms to evaluate the functional role of ISGs in epigenetics, 
immune programming, and vaccine responses.

Introduction

IFN was first characterized over 50 years ago as a soluble 
factor induced by influenza A virus infection (Isaacs et al. 
2015; Probst et al. 2017). Since then ISGs have been defined 
as those genes whose expression are induced or regulated by 
IFN, including types I–III IFNs (Der et al. 1998; Chow and 
Gale 2015). The classification of IFNs as types I, II, or III 
were made according to their order of discovery. Each uses 
unique receptors; all IFNs signal through the JAK-STAT 
pathway, but each receptor type utilizes discrete and over-
lapping signaling factors to similarly produce intersecting, 
yet distinct cell and tissue type specific ISG profiles (Chow 
and Gale 2015; Henle 1950; Schoggins et al. 2014; Schnei-
der et al. 2014). Today, over 500 ISGs have been defined 
as genes with differential gene expression in response to 
IFNs (de Veer et al. 2001). Advances in biotechnology and 
bioinformatics are allowing us to expand our definition of 
ISGs to better understand their role in infection and immu-
nity. Below we explore the current understanding of ISG 

regulation, and we discuss how bioinformatics approaches 
can be applied to expand our knowledge of ISGs and their 
function.

IFN induction by host innate immune 
responses

During virus infection, IFN is first induced intrinsically in 
infected cells through a process of host cell recognition of 
viral RNA products, or other viral macromolecules called 
pathogen-associated molecular patterns (PAMPs). PAMPs 
are physically recognized as non-self by binding to spe-
cific cellular pathogen recognition receptors (PRRs) such 
as Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), 
NOD-like receptors (Chow and Gale 2015). PAMP binding 
induces PRR-linked signaling cascades that drive antiviral 
activity through activation of latent transcription factors, 
interferon regulator factors (IRF)s, NF-κB, and others to 
induce target gene expression. In various cell types, NF-κB 
and IRFs drive the expression and secretion of Type I and 
III IFNs from the site of infection (Hertzog et al. 2011; Dixit 
et al. 2010) (Fig. 1). Secreted IFN then engages the specific 
IFN receptor on the infected cell and neighboring bystander 
cells within the local tissue to induce ISG expression. More-
over, upon PAMP stimulation of specialized IFN-producing 
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plasmacytoid dendritic cells, IFN is produced systemically 
in the circulation (Webster et al. 2016). Ideally, ISG induc-
tion is a transient event wherein ISG actions suppress virus 
infection and protect cells and tissue from disease. Upon 
resolution of virus infection and subsequent PAMP suppres-
sion, typically the IFN response is shut off by the expres-
sion of a second set of ISGs that negatively regulate innate 
immune actions to resolve the IFN response (Schoggins 
et al. 2014). However, IFNs can be toxic if the response is 
not resolved appropriately. Indeed, constitutive IFN produc-
tion and response are linked with a variety of autoimmune 
diseases labeled as interferonopathies (Crow 2016; Rodero 
and Crow 2016). Thus, ISG induction and resolution are 
equally essential to avoid pathology from virus infection and 
other microbial challenges, and better understanding of these 
regulatory pathways will be essential to developing clinical 
applications that can improve host resistance to infection and 
healthy recovery from infection.

Similar yet distinct IFN signaling pathways

Interferons are named by their order of discovery and are 
further characterized by their genomic location and homol-
ogy to define three classes: type I, type II, and type III 
(Borden et al. 2007) (see Fig. 1). Type I interferons, which 
include IFN-α and β and other minor subtypes (Stark and 
Darnell 2012; Henle 1950; Chow and Gale 2015), bind 
the type I IFN receptor through two subunits, IFNR1 and 
IFNR2. IFNR1 and IFNR2 are expressed on most cells of 
the body, though recent studies indicate that cells in the 
gut express limited type I IFN receptor (Pott et al. 2017). 
Type II IFN, also known as IFN-γ, binds to IFNGR1 and 
IFNGR2 receptors present on most cell types, and serves 
to polarize the immune response toward an inflammatory 
and antiviral/antimicrobial phenotype (Schroder et  al. 
2004). Type II interferons induce receptor-mediated JAK1 

and JAK2 phosphorylation to activate STAT1 by the for-
mation of STAT1 homodimers. Dimerized STAT1 trans-
locates from the cellular cytoplasm to the nucleus, binds 
the gamma activator sequence (GAS) on IFN-γ-inducible 
genes and activates their transcription. Finally, type III 
IFN comprises a four-gene family in humans, IFNL1, 
INFL2, IFNL3 (also known as IL29, IL28A, and IL28B), 
and IFNL4 either generating a mature protein or a non-
functional frameshift variant (Hemann et al. 2017). Their 
corresponding proteins are IFNl1, INFl2, IFNl3, IFNl4. 
The type III IFN receptor comprises IFNλR1 and IL-10R2 
subunits. Both type I and type III IFN receptor signaling 
activate the JAK-STAT pathway through receptor phos-
phorylation directed by receptor-bound JAK1 (Janus 
kinase I) and TYK2 (Tyrosine kinase 2) members of the 
JAK kinase family. The phosphorylation events directed 
by these kinases recruit and activate signal transducer and 
activator of transcription STAT1 and STAT2 proteins, 
leading to their interaction with IRF9 to form the ISGF3 
(Interferon-stimulated effector factor 3) complex that 
moves into the nucleus to trigger ISG expression by bind-
ing to the interferon-stimulated response element (ISRE) 
on target promoters. These mechanisms are well defined 
and have been reviewed for  their role in host defense 
(Schoggins et al. 2011; Raftery and Stevenson 2017).

A subset of ISGs are often induced within the infected 
cell during acute virus infection even without the induction 
IFN and IFN signaling. These genes are induced by virus 
infection through PAMP/PRR signaling pathways that acti-
vate IRFs, and other transcription factors, by IRF binding 
sites within their promotor regions that encode ISRE or GAS 
elements to confer induction by IFN. These classes of ISGs 
are true first responders to virus infection and can be called 
virus stimulated genes (VSGs) (Henle 1950; Schoggins et al. 
2014; Schneider et al. 2014). Many VSGs were defined in 
studies of virus infection in specific gene knockout mice and 
from human genetics studies (Schoggins et al. 2014; Schnei-
der et al. 2014) and summarized in Fig. 2. Importantly, new 
bioinformatics/computational approaches of virus-response 
gene sets are extending our understanding of VSGs (Fig. 3).

The IRF3 transcription factor represents the major node 
for transcription of VSGs induced by PRR signaling as direct 
IRF3-target genes. In a pivotal study, Hiscott and colleagues 
(Grandvaux et al. 2002) revealed the set of IRF3-target genes 
induced or regulated by the inducible expression of a con-
stitutively activated version of IRF3 in cultured cells. This 
study identified genes that were induced (up-regulated) 
or suppressed (down-regulated) upon IRF3 activation 
(Table 1). Several of these target genes are VSGs known for 
their roles in antiviral immunity (for example IFIT1, IFIT2, 
IFIT3, RSAD2, ISG15, and SAMHD1) (Schoggins et al. 
2014). Previous studies (Sarkar and Sen 2004) observed 
genes activated by double-stranded RNA and other viral 

Fig. 1  Interferon signaling. Each of the three interferon types (Type 
I–III) is routed based on their receptor complex. Additional informa-
tion can be found in the text
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products and noted their cellular pressures as viral stress-
inducible genes (VSIG).

Tools to distinguish VSGs and ISGs 
into functional categories

Bioinformatic approaches categorizing genes into functional 
classes have expanded in recent years (Fig. 4). Traditionally, 
genes are grouped and scored by their representation and con-
nections with biological functions in public data bases. These 
approaches include gene ontology (GO) terms, (KEGG), 
Gene Set Enrichment (GSEA), Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING), BIOGRID, Ingenu-
ity Pathway Analysis (IPA), The Database for Annotation, 
Visualization and Integrated Discovery (DAVID), and other 
databases and computational tools. A common analytical pro-
cess is to define genes by over-representation analysis (ORA) 
within known functional categories that count how many com-
mon genes are represented within a defined set and calculate a 
statistical cut off or overlap. GSEA (Hung et al. 2012) operates 
in a similar manner but without the statistical cutoff, ranking 

all the genes in the genome and testing whether a user’s input 
genes are over-represented compared to all genes. GSEA is 
powerful, but it is highly sensitive to non-categorical gene 
“noise” and data may not always be applicable toward defin-
ing gene function (Liu et al. 2017). These functional tools 
(GSEA, GO, etc.) can be underpowered in the detection of 
ISGs because their descriptive outputs like “response to virus” 
and “interferon signaling” do not distinguish between the dis-
tinct interferon driven and antiviral mechanisms driving ISGs 
activation. Additional approaches such as gene co-expression 
analysis, gene network analysis, and protein–protein interac-
tion network analysis consider the concept of shared behavior 
between genes that can also identify gene response networks 
driven by VSGs and ISGs.

Using databases to define VSG and ISG 
function

Functional tools can vary in how they group genes to func-
tion, including using computational-derived gene signatures 
(wherein a literature-mining algorithm associates gene with 

Fig. 2  VSG network. A network of viral-stimulated genes (VSG) and their viral triggers. The nodes represent a VSG (pink) or a virus (green). 
Each hubs’ size indicates its level of connectivity. The network also illustrates which VSGs are unique and which ones are common hubs
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function), as well as application of manually curated data 
bases (in which a human reads a manuscript and documents 
the findings of gene function into said database). Over the 
years, the largest contribution to these approaches has been 
the increase in publically available data sets. Beyond GSEA, 
alternate approaches leveraging publicly available data pro-
vide greater statistic power while identifying information on 
new genes and transcriptional regulators. Recent work by 
(Shaw et al. 2017) focused on cross species response to type 
I interferons. The authors identified unique ancestral includ-
ing genes not previously associated with IFN and produced 
a database to query expression signatures. Broader efforts to 
categorize VSGs and ISGs through publicly available data 
are underway. Below we feature a few databases that are 
increasingly useful in defining VSG/ISG function.

Interferome (http://www.inter ferom e.org) is a large 
curated database of interferon-stimulated genes produced 
from published microarray experiments (Samarajiwa et al. 
2009; Hertzog et al. 2011; Rusinova et al. 2013). This data-
base has catalogued over six thousand ISGs in human studies 
and over five thousand ISGs in mouse studies. The system 

also has curated genes according to interferon type, noting 
3553 type I ISGs in human and 3704 in mice. The web portal 
allows users to query their own gene signatures against an 
IFN database. This is a valuable resource for researchers in 
mining public microarray data. Interferome can summarize 
ISGs that share common transcriptional regulators like IRF 
and NF-κB. One limitation is that Interferome’s database 
is built from microarray data and has not yet been updated 
with sequencing data. In contrast, the ARCHS4 database 
was recently published in an attempt to leverage all RNA-seq 
and ChIP-seq data (Lachmann et al. 2018). This approach 
uses all the human and mouse genomics sequencing data 
from public repositories SRA (sequence read archive) and 
GEO (gene expression omnibus) and provides web-based 
analysis and visualization tools. In ARCHS4, the user can 
search for their genes of interest within RNAseq datasets. 
The results are derived from genes and pathways that share 
co-expression patterns. Downstream analytics tools pro-
vide predicted biological functions, transcription factors, 
protein–protein interactions, and expression within tissue 
types. As an alternative approach, users can also perform 

Fig. 3  An overview of strategies 
and platforms in ISG discovery. 
A break down of conventional, 
emerging, and future methods to 
deciphering ISGs

http://www.interferome.org
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metadata searches and simplistically download the raw data 
from SRA and GEO. Overall, ARCHS4 houses 137,792 
samples (72,363 mice and 65,429 human) along with sim-
plistic web tools.

Interferome and ARCHS4 are great resources with 
very broad capabilities; however, other researchers have 
built tools with a focus on the unique expression signa-
tures found in immune cells. The Immunological Genome 
Project (http://www.Immge n.org) is a public resource of 
expression data disseminated from mouse immune cells, 
and has been a valuable resource for immunologists and 
computational biologists, providing insights into cell dif-
ferentiation and immune regulatory pathways. Utilizing 
Immgen’s database, a group of researchers (Mostafavi 
et al. 2016) identified ISG modules and built a regulatory 

network they tested across species (human and mouse) 
using external data sets. After identifying gene modules, 
Mostafavi et al. used ATACseq to verify the start sites 
during ISG induction. ATAC-seq (Assay for Transposase-
Accessible Chromatin using sequencing) is an approach 
that uncovers chromatin accessible regions. Their analy-
sis identified regulatory genes by known factors (STAT 
1/2, IRF9, ISRE) and other non-canonical and not STAT-
dependent ones. This study is an excellent example of 
combining previous techniques (microarray, data from 
Immgen) and new approaches (data mining, co-expres-
sion analysis, ATACseq). Their results distinguished ISGs 
by kinetics and cell-type specificity, while also targeting 
ISGs specific to JAK inhibition. Public data efforts like 
Interferome and Immgen allow users to cross reference 

Table 1  IRF3 target genes 
Reproduced with permission 
from Grandvaux et al. 2002

Gene symbol Description Direction

IFIT3 Interferon-induced protein with tetratricopeptide repeats 3 Up
OAS2 2′-5′-Oligoadenylate synthetase 2, 69/71 kDa Up
IFIT1 Interferon-induced protein with tetratricopeptide repeats 1 Up
RSAD2 Radical S-adenosyl methionine domain containing 2 Up
IFI44 Interferon-induced protein 44 Up
ISG15 ISG15 ubiquitin-like modifier Up
PMAIP1 Phorbol-12-myristate-13-acetate-induced protein 1 Up
GBP1 Guanylate binding protein 1, interferon-inducible Up
IFIT2 Interferon-induced protein with tetratricopeptide repeats 2 Up
B4GALT5 UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 5 Up
ARG2 Arginase, type II Up
NR3C1 Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) Up
AHNAK AHNAK nucleoprotein Up
F13B Coagulation factor XIII, B polypeptide Up
PLCG2 Phospholipase C, gamma 2 (phosphatidylinositol-specific) Up
PPP2R3A Protein phosphatase 2, regulatory subunit B″, alpha Down
TIMP3 TIMP metallopeptidase inhibitor 3 Down
CD1B CD1b molecule Down
CDH11 Cadherin 11, type 2, OB-cadherin (osteoblast) Down
ANXA4 Annexin A4 Down
ADAM9 ADAM metallopeptidase domain 9 Down
CD58 CD58 molecule Down
GEM GTP binding protein overexpressed in skeletal muscle Down
TMPO Thymopoietin Down
STK17B Serine/threonine kinase 17b Down
SORL1 Sortilin-related receptor, L(DLR class) A repeats containing Down
PAH Phenylalanine hydroxylase Down
TYRP1 Tyrosinase-related protein 1 Down
RASA1 RAS p21 protein activator (GTPase activating protein) 1 Down
MFAP5 Microfibrillar associated protein 5 Down
PLAG1 Pleiomorphic adenoma gene 1 Down
RPS7 Ribosomal protein S7 Down
PIK3C3 Phosphoinositide-3-kinase, class 3 Down
FGF1 Fibroblast growth factor 1 (acidic) Down

http://www.Immgen.org
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their findings with published experimental data, but 
these approaches have not adopted newer sequence-based 
approaches.

Emerging technologies for ISG discovery

Technologies like RNAseq, CHIPseq, ATACseq, and 
Clipseq have expanded our understanding of viral-induced 
ISGs and produce results faster and cheaper than previ-
ous methods. RNAseq has the advantage of studying viral 
sequences and host VSG expression synergistically. As new 
annotation and reference sequences become available, data 
can be realigned and reanalyzed. This approach is differ-
ent from earlier microarray approaches where reference 
sequences were fixed onto arrays. If a reference sequence is 
not available then approaches like de novo assembly (Sohn 
and Nam 2018) can identify a consensus reference sequence.

RNAseq broadens the genomic landscape by observing 
more than just gene expression; it also allows one to observe 
differential isoforms, non-coding, and un-annotated regions 
not seen in previous platforms. An example of this type of 
discovery is the use of single cell sequencing (SC-seq) which 
revealed a non-IFN dependent role of IFNB1 in early viral 
recognition (Doganay et al. 2017). In this study, researchers 
applied a single cell approach to determine what ISGs are 
early RLR activators and act independently of IFN signal-
ing. They performed smFISH (single molecule fluorescence 
in situ hybridization) in fixed cells that had been infected 
with Sendai virus and evaluated host and viral mRNA 
expression. To prevent ISG activation, Vero cells were used. 
Due to a genetic defect, Vero cells cannot produce any type 

of IFN, but have IFNAR and a functional JAK-STAT path-
way, so they are still capable of triggering ISGs in response 
to IFN-B. This work verified the dependence of IRF3/IRF7 
on early ISGs (RIG-I, MDA5, LGP2, IFIT1, and OASL) 
and also calculated the post-infection kinetics of IFN signal-
ing independent gene expression, which occurred as early 
as three hours post-infection. Furthermore, Doganay et al. 
correlated ISGs with IFNB1 and each other at the onset of 
infection. The findings of this study were validated using 
Nanostring technology using a custom panel of 49 innate 
immune genes. The validation confirmed that 8 of the 49 
innate immune genes were up-regulated (twofold increase) 
6-h post-infection without IFNB1 (DDx60, ISG15, IFIT1, 
LGP2, MDA5, OASL, RIG-I, and Viperin). To validate 
the dependence of IRF3 on RIG-I and ISG induction, the 
authors used a siRNA knockout approach on IRF3 and/or 
IRF7 and qPCR analysis and revealed that RIG-I mRNA was 
depleted for 9 h post-Sendai virus infection.

The Nanostring platform deployed in Doganay et  al. 
used a digital barcode method that directly hybridizes with 
user-defined genes with high accuracy and sensitivity. This 
targeted approach has been employed in other studies to vali-
date novel ISGs in mice (Green et al. 2016; van de Garde 
et al. 2017) and humans (Chang et al. 2013). Nanostring 
is a non-amplification-based system that can quantitate 
expression of roughly 800 genes per sample. This technol-
ogy competes with traditional qPCR in validating associated 
ISGs during infection and can function with low yield and 
degraded RNA.

Computational approaches to deciphering 
ISG regulation: a transcription factor 
binding sites approach

In contrast to the above featured studies, alternate studies 
have focused deciphering the patterns in ISG regulation 
through transcription binding studies. Understanding the 
linkage between IRF3 and NFκB is essential to informing 
us how ISGs relate to disease outcome. Preliminary studies 
have shown that NFκB production has been tied to TRIF 
and TNF-α receptor through IRF3 production. Furthermore, 
NFκB response appears to be dependent on Type I Interferon 
response (Moschonas et al. 2012) and IFN’s feedback loop 
through STAT and IRFs (Bertolusso et al. 2014). Iwanaszko 
et al. used a bioinformatics approach to understand how 
IRF3 and NF-κB affect each other by identifying overlap-
ping regulatory promoter regions with TFBS (Transcription 
Factor Binding Sites) (Iwanaszko and Kimmel 2015). Fur-
thermore, the study also looked at the binding site of IFN-ß, 
identified two ISREs in the promoter region, and found two 
new co-regulators involved in IRF3 and NF-κB crosstalk: 
AP-1 (also involved in TLR signaling) and SP1 (involved 

Categoriza�on
through public 

data

• Public data sets (GEO/GEO2R, SRA)
• Enrichment Tools: Gene Set Enrichment (GSEA)
• Interferome
• ENCODE
• ARCHS4
• Orthologous Clusters of Interferon-Stimulated Genes

Func�onal Analysis

• Database for Annotation, Visualization and Integrated 
Discovery (DAVID)

• GO (Gene ontology)
• IPA (Ingenuity Pathway Analysis)
• BIOGRID
• STRING
• Kyoto Encyclopedia of Genes and Genomes (KEGG)
• PANTHER
• EnrichR

Sta�s�cal 
Modeling, 

classifica�on, and 
co-expression

• Statistical (linear) modeling
• Partial and sparse partial least squares analysis (mixomics)
• Co-expression Analysis
• Correlation analysis
• Network Analysis
• Protein-protein Interaction Networks (PPI)

Fig. 4  An overview of tools for classification and functional analysis
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in NF-κB signaling). Many of the computationally identi-
fied binding sites were validated with public ChIPseq data 
provided through the ENCODE project. During viral infec-
tion, the authors determined that NF-κB negatively regulates 
IRF3, and positively regulates NF-ΚB1, NF-ΚB2, RELA, 
and REL. They also confirmed regulation in NF-ΚB1, 
NF-ΚB2, RELA, and AP-1 by NF-κB. This is an elegant 
example of computational exploratory approach to a prob-
lem that could be validated with public data.

Computational approaches to deciphering 
ISG regulation: an epigenetics approach

In contrast to transcription binding studies, a newer tactic 
is to study heritable changes surrounding VSG/ISG activa-
tion. Downstream of IRF3 and NF-κB activation, research-
ers are studying the epigenetics of ISG regulation and the 
mechanisms of chromosomal opening, and the unraveling of 
gene regulation. Chromatin reorganization has been shown 
to contribute to the magnitude of IFN induction during virus 
infection (Huang et al. 2002; Cui et al. 2004; Ni et al. 2005; 
Yan et al. 2005). As nucleosomes begin remodeling to acti-
vate and deactivate genes, they manipulate the chromatin 
structure, making it either more relaxed or more constricted. 
This process greatly influences the breadth and overall cov-
erage of VSG or ISG transcription and regulation that occurs 
during virus infection and response to IFN. Computational 
approaches linking chromatin modification to gene regula-
tion have been applied to defining VSG and ISG network 
regulation (Mostafavi et al. 2016; Zhang et al. 1998; Zhu 
et al. 1999; DaFonseca et al. 2001; Lau et al. 2003).

Machine learning approaches to VSG 
and ISG discovery

Modern machine learning and deep learning approaches 
present powerful new platforms to reveal gene regulation 
where conventional methodologies have limited capacity to 
define co-regulated VSG or ISG networks. Deep learning 
(also referred to as neural network analysis) is a compu-
tationally intensive form of a machine learning. With the 
recent advances in cloud computing, and reduction in com-
puter prices, deep learning is now being implemented in 
bioinformatics and is highly applicable to VSG/ISG stud-
ies. Machine learning approaches allow scientists to take 
advantage of highly complex, multi-dimensional data sets, 
and visualize patterns and predictions that were impos-
sible with previous tools. Deep learning tools have been 
utilized in the areas of regulatory genomics (Montgomery 
et al. 2010; Pickrell et al. 2010), DNA methylation (Gibbs 
et al. 2010), and epigenetics (Grubert et al. 2015; Waszak 

et al. 2015), and are fully applicable to describing VSG and 
ISG regulation. Machine learning also has a strong applica-
tion in genetic studies whereby an algorithm can be trained 
to predict loci that influence phenotypic responses to IFN 
treatment and/or viral infection, thus identifying quantitative 
trait loci (QTL) that impart gene regulation and define co-
expression networks of VSGs and ISGs. QTL studies have 
been successfully performed in machine learning and deep 
learning models to identify gene response networks (Kang 
et al. 2008; Stegle et al. 2010; Parts et al. 2011; Rakitsch 
and Stegle 2016).

The role of VSGs and ISGs in innate immune 
programming

Stimulus-induced differentiation of innate and adaptive 
immune cells leads to a process of immune polarization that 
defines the direction and breadth of the immune response. 
Much attention is placed on understanding the dynamics 
of gene expression that direct immune polarization in spe-
cific cell types. For example, transcriptional studies have 
focused on the segregation of macrophages into functional 
classifications according to their activation of STAT1 (M1 
phenotype) or STAT6 (M2 phenotype), which is important 
in determining their role in pro-inflammatory (M1) or anti-
inflammatory/wound healing (M2) responses directed by 
macrophages during times of virus infection.

VSGs and ISGs play key roles in the macrophage polari-
zation process (Chistiakov et al. 2018). Early work in mac-
rophage polarization using transcriptional analysis defined 
a monocyte-macrophage differentiation signature (Becker 
et al. 2015). This analysis used public datasets to address 
clinical conditions with two predefined predictive signa-
tures. The signatures were defined by genes induced by 
IFNγ+LPS, TNFα as a pro-inflammatory, or IL-4 and IL-13 
expression signatures. The authors applied these signatures 
across multiple data sets using different bioinformatics 
tools (GEO2R, GSEA) using publically available data sets, 
including gene expression data sets from virus infection and 
inflammatory responses. Results were then validated with 
qPCR analyses of gene expression within in vitro experi-
ments. Among those genes identified in the polarization sig-
natures, the first group (IFNγ+LPS, TNFα) contained many 
known VSGs and ISGs, including OAS, IFITs, IRFs and 
IFITM1, and IFITM2. Thus, VSGs and ISGs feature roles in 
innate immune polarization to direct cell effector functions.

In an effort to refine this polarization signature, recent 
computational studies were performed on gene expression 
data sets produced from mouse models of macrophage acti-
vation. In these studies, researchers performed bioinformat-
ics analysis to examine immune polarization gene signatures 
in BALB/c murine macrophages undergoing inflammatory 
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responses. Their results identified polarization pathways and 
gene networks (Jiang et al. 2017) that included VSGs and 
ISGs, including differentially regulated genes linked with 
M1 or M2 polarization of macrophages. Suppressors of 
cytokine signaling (SOC) were among the identified genes. 
SOCs are ISGs that generate transcriptional programs known 
to suppress JAK-STAT signaling through the expression of 
proteins that suppress STAT and JAK activities controlling 
IFN signaling (Jiang et al. 2017). The study also revealed 
that SOC genes play a role in governing macrophage pheno-
type through regulation of ISG expression during the inflam-
matory response. Similar approaches should be applied to 
studies of innate and adaptive immune cell subsets to define 
VSG and ISG signatures that contribute to immune polariza-
tion and immune programming.

Computational studies defining ISGs 
in vaccine response

Understanding how VSGs and ISGs function in immune 
polarization and programming is paramount for understand-
ing the response to vaccines. Vaccines are the most power-
ful tool we have for protection against microbial infection, 
yet the basis of how specific vaccines program the immune 
response for long-term protection against infection is not 
understood. Defining the transcriptome and the role of VSG 
and ISGs in directing the vaccine response is essential for 
guiding the rationale design of vaccines and vaccine adju-
vants. The application of “computational vaccinology” 
can thus provide valuable insights toward developing well 
designed vaccines.

Pulendran and colleagues (Querec et al. 2009) applied a 
systems biology and computational vaccinology approach 
to define the gene signatures of protection underlying the 
highly effective yellow fever virus (YFV) vaccine in humans, 
based on immunization with the YFV YF-17D vaccine. The 
authors focused on defining innate immune signaling net-
works and ISG correlates of vaccine protection, wherein they 
used a variety of bioinformatics tools (DAVID, Transcrip-
tion factor binding analysis, IPA, and others). To perform 
a system level analysis, they combined various data types 
(blood cell gene expression data, cytokines and chemokine 
profiles, and flow cytometry data sets of lymphocyte subset 
frequency). Their computational analyses then identified 
specific genes, including VSGs and ISGs, whose expression 
linked with a protective vaccine response. To validate these 
findings, the authors performed a second independent study 
with different subjects a year later and were able to predict 
their protective gene signature, using the previous data with 
90% accuracy. This was the first major computational vac-
cinology study, such that subsequent studies now use these 
approaches as a springboard to define gene and gene network 

correlates of vaccine protection, thus expanding the role of 
VSGs and ISGs in immune protection.

A later example of computational vaccinology comes 
from studies with the Ebola virus outbreak of 2014. 
Researchers applied bioinformatics approaches to analyze 
transcriptional data sets generated from studies from non-
human primates undergoing vaccination with a Vesicular 
stomatitis virus-based Zaire Ebola virus (EBOV) glyco-
protein (VSVΔG/EBOVgp) vaccine (Barrenas et al. 2015). 
Their objective was to assess the vaccine efficacy and iden-
tify VSGs and ISGs that play a role in vaccine protection 
after virus challenge. Peripheral blood mononuclear cells 
(PBMCs) were recovered from cynomolgus macaques 
(CMs) at different time points pre- and post-immunization 
with VSVΔG/EBOVgp, before and after EBOV challenge. 
The authors quantified VSGs and ISGs within the host 
response to vaccination and EBOV infection, using RNA 
sequencing (RNAseq). The resulting gene expression data 
sets were compared back to baseline (no vaccine/no EBOV). 
Animals that were not administered the VSVΔG/EBOVgp 
succumbed to infection, but those receiving the vaccine 
were protected against EBOV infection. The investigators 
performed differential expression as well as functional and 
network analysis of gene expression on the PBMCs from 
vaccinated and infected animals. Several ISGs stayed active 
throughout the time course (DDX58, IFNAR1, IFIT1, IFI27, 
RSAD2). Their network analysis also revealed the expres-
sion of several VSGs and ISGs correlated with vaccine-
induced immune activation and immune protection against 
EBOV. Interestingly, several VSGs and ISGs followed a pat-
tern of vaccine protection, thus linking specific VSGs and 
ISGs to the VSVΔG/EBOVgp vaccine response.

Other bioinformatics studies have evaluated VSG and ISG 
expression in vaccination to identify protective gene signa-
tures for sustaining vaccine efficacy as a guide to vaccine 
design. Forero et al. 2017 evaluated transcriptional differ-
ences in human nasal epithelial cultures 24 and 36 h after 
an exposure to either H3N2 influenza virus (WT) or live 
attenuated influenza vaccine (LAIV). To identify the pro-
tective gene signatures, multiple bioinformatics tools were 
applied to analyses of the gene expression data set (GSEA, 
transcriptional factor prediction, microarrays, RNAseq, 
and correlation analysis). Interestingly, the VSGs and ISGs 
identified from both groups were influenced by type III IFN 
induction. Unique to the live attenuated treatment group, 
the ISG profile linked with enrichment of ISGs in pathways 
of antigen presentation and effector actions of leukocytes 
and T lymphocytes. In the LAIV treatment group at 36 h, 
key VSGs and ISGs (IFI6, IFIT3, ISG15, IFIT1, IFITM1, 
MX1, IFI35, IRF9, IFITM3, IFITM2, IRF1) were elevated 
and linked with innate immune protection against infec-
tion spread. This study noted the importance of VSGs and 
type III IFN induction of ISGs in innate immune actions for 
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effective viral control. Together, the studies noted here each 
reveal that VSGs and ISGs are important contributors to 
vaccine efficacy and antiviral defense. Approaches to engage 
specific VSGs and ISGs within rational design of vaccines 
and vaccine adjuvants hold great promise for the future in 
generating long-term effective vaccine protection against 
microbial infection, including emerging viral infection.

Conclusion

Since the discovery of IFN over 60 years ago, IFN actions in 
infection and immunity are still not fully defined. Identifica-
tion and validation of VSGs, ISGs, and new classes of ISGs 
will help advance the immunological field and the design 
and application of targeted therapeutics. Recent computa-
tional and biological advances offer new perspectives that 
allow us to link transcriptomic profiling, genome analyses, 
immune programming, and polarization with vaccinology to 
generate a complete understanding of VSG and ISG func-
tion. These resources should include new data driven com-
putational tools for bioinformatics, and the expansion and 
creation of specialized data set repositories.
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