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Abstract
Studies of gene expression are common in toxicology and provide important clues to mechanistic understanding of adverse 
effects of chemicals. Most prior studies have been performed in a single strain or cell line; however, gene expression is heav-
ily influenced by the genetic background, and these genotype-expression differences may be key drivers of inter-individual 
variation in response to chemical toxicity. In this study, we hypothesized that the genetically diverse Collaborative Cross 
mouse population can be used to gain insight and suggest mechanistic hypotheses for the dose- and genetic background-
dependent effects of chemical exposure. This hypothesis was tested using a model liver toxicant trichloroethylene (TCE). 
Liver transcriptional responses to TCE exposure were evaluated 24 h after dosing. Transcriptomic dose–responses were 
examined for both TCE and its major oxidative metabolite trichloroacetic acid (TCA). As expected, peroxisome- and fatty 
acid metabolism-related pathways were among the most dose–responsive enriched pathways in all strains. However, nearly 
half of the TCE-induced liver transcriptional perturbation was strain-dependent, with abundant evidence of strain/dose 
interaction, including in the peroxisomal signaling-associated pathways. These effects were highly concordant between the 
administered TCE dose and liver levels of TCA. Dose–response analysis of gene expression at the pathway level yielded 
points of departure similar to those derived from the traditional toxicology studies for both non-cancer and cancer effects. 
Mapping of expression–genotype–dose relationships revealed some significant associations; however, the effects of TCE on 
gene expression in liver appear to be highly polygenic traits that are challenging to positionally map. This study highlights the 
usefulness of mouse population-based studies in assessing inter-individual variation in toxicological responses, but cautions 
that genetic mapping may be challenging because of the complexity in gene exposure–dose relationships.

Introduction

Gene expression profiling is widely used in the field of 
toxicology and provides important insights into molecular 
changes and potential mechanisms of adverse health effects 
from chemical exposure (Burczynski et al. 2000; Harrill 
and Rusyn 2008). Transcriptomic signatures of chemical Electronic supplementary material  The online version of this 
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exposures have been widely used in chemical safety evalua-
tion and large reference databases exist to enable compara-
tive analyses and predictive modeling (Fostel 2008; Ganter 
et al. 2005; Uehara et al. 2010). In addition, many stud-
ies demonstrate the value of transcriptomic data-derived 
dose–response information for both hazard identification and 
quantitative risk assessment (Andersen et al. 2008; Thomas 
et al. 2013a) and pathway-based dose–response analysis of 
transcriptomic data displayed concordance with traditional 
apical endpoints (Thomas et al. 2007, 2011, 2013a; Zhou 
et al. 2017). For instance, a key step in deriving exposure 
limits in traditional risk assessments involves estimating a 
“point of departure” (POD) from a chronic experimental 
animal study—e.g., a lifetime dose rate in mg/kg-day esti-
mated to be without a biologically significant, adverse toxic 
effect. These recent studies have demonstrated that “tran-
scriptional” PODs—i.e., acute dose levels at which gene 
expression pathways begin to be perturbed—can serve as 
surrogates for traditional PODs with an accuracy within an 
order of magnitude. Indeed, more broadly, toxicogenomics 
data are making their way into decision-making for both 
drugs and environmental chemicals (Sauer et al. 2017; Xu 
et al. 2016).

The majority of available gene expression data in toxicol-
ogy have been collected in genetically homogenous (e.g., a 
single strain or cell line) or undefined (e.g., outbred strains or 
mixtures of cells from multiple individuals) model systems. 
However, it is well established that gene expression, both 
basal and disease/treatment-perturbed, is heavily impacted 
by genetic variation among individuals (Bradford et al. 2011; 
Bystrykh et al. 2005; Chesler et al. 2003; Gatti et al. 2007; 
Harrill et al. 2009a; Schadt et al. 2008, 2003). Early studies 
of expression quantitative trait loci (eQTL) were conducted 
in panels of inbred mouse strains or human cell lines where 
population stratification was a challenge (Gatti et al. 2009) 
and recent studies in more heterogeneous mouse models 
such as Diversity Outbred (DO) and Collaborative Cross 
(CC) show greater promise of characterizing and replicating 
eQTLs (Crowley et al. 2015).

Studies of chemical effects using population-based 
models, both in vivo and in vitro, are increasingly com-
mon (Abdo et al. 2015; Church et al. 2015; Cichocki et al. 
2017; Eduati et al. 2015; French et al. 2015; Luo et al. 2018; 
Mosedale et al. 2017; Venkatratnam et al. 2017). Powered 
by the balanced genetic diversity represented in the DO 
(Churchill et al. 2012) and CC (Threadgill et al. 2011) pop-
ulations, these mouse models enable exploration of causal 
variants driving molecular variation that result in phenotypic 
differences (Harrill and McAllister 2017). Furthermore, 
characterization of the genetics-dependent and -independ-
ent transcriptional responses to chemical exposure is valu-
able for elucidating the extent of and potential mechanisms 

underlying such variation (Church et al. 2015; Harrill et al. 
2009a; Mosedale et al. 2017).

The ensuing challenge in toxicology and environmen-
tal health is to characterize dose–response relationships 
and gene expression in studies of chemical exposure while 
harnessing the power of genetic variation. The complexity 
and cost of population-based studies that include multiple 
doses and parallel characterization of multiple dimensions 
of toxicokinetics (absorption, distribution, metabolism, and 
excretion of toxic substances), toxicodynamics (biological 
responses elicited at the target tissue site), and inter-indi-
vidual variation present unique challenges and may be best 
addressed using case studies of well-characterized toxicants 
(Rusyn et al. 2010). Thus, we chose trichloroethylene (TCE), 
a ubiquitous contaminant and a known carcinogen in both 
humans and rodents (Rusyn et al. 2014). TCE is a chemi-
cal with known variation in both toxicokinetics (Chiu et al. 
2014) and toxicodynamics (Bradford et al. 2011). The objec-
tive of this study was to evaluate and characterize genetic 
background-, dose-, and interaction effects of TCE on liver 
gene expression, and to determine variation in dose–pathway 
relationships in a large genetically diverse mouse popula-
tion. Liver transcriptomic data from 50 strains of CC mice 
that were treated acutely with one of the four doses of TCE 
were modeled to identify genes and pathways that exhibited 
significant strain, dose, or strain by dose interaction effects. 
In addition, we conducted genome-wide linkage mapping to 
identify loci associated with variation in liver TCA levels.

Materials and methods

Animals and treatments

The in-life portion of the study and tissue collection has 
been detailed in (Venkatratnam et al. 2017). In brief, adult 
male mice (8–12 weeks old) from 50 CC strains were orally 
administered a single dose of 0, 24, 80, 240, or 800 mg/
kg TCE (Sigma Aldrich, St. Louis, MO) in 5% Alkamuls 
EL-620 vehicle (Solvay, Deptford, NJ). Each strain had 5 
mice, with one mouse randomly assigned to each dose group 
to maximize the statistical power of the study by maximiz-
ing the number of strains tested (Kaeppler 1997). Mice were 
sacrificed 24 h after treatment, and tissues were flash frozen 
in liquid nitrogen and stored at − 80 °C until analysis.

TCA level in liver

Analyses were performed by a modification of US EPA 
method 552.2 (Domino et al. 2003) as detailed in (Venkatrat-
nam et al. 2017). Data on TCA levels in liver across all CC 
strains were reported in (Venkatratnam et al. 2017).
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RNA extraction and sequencing

Left-lobe of livers was pulverized with pestle and mortar 
pre-chilled in liquid nitrogen. RNA was extracted from 
~ 20 mg of pulverized tissue using RNeasy Qiagen mini 
Kit (Qiagen, Valencia, CA). Concentration of extracted 
RNA was measured using NanoDrop 2000 (Thermo Fisher 
Scientific, Wilmington, DE). RNA libraries were prepared 
using Illumina TruSeq Stranded Total RNA kit (Illumina, 
San Diego, CA) with Ribo-Zero Gold rRNA removal kit 
(Illumina). The quality of extracted RNA was tested using 
Fragment Analyzer (Advanced Analytical Technologies, 
Ankeny, IA). RNA Quality Number (RQN) equal or greater 
than 7 was used as a cutoff for RNA quality to further pro-
ceed with the preparation of the sequencing libraries. RNA-
Seq of 50 base-pair single-end reads was conducted using 
Illumina HiSeq 2500 instrument (Illumina) at the depth of 
~ 50 million reads/sample. Raw reads were trimmed for any 
sequencing adaptors and low-quality bases using Trimmo-
matic (Bolger et al. 2014). Reference genomes and inferred 
marker founder origin for CC mice were downloaded from 
University of North Carolina Systems Genetics Core Facil-
ity (http://csbio.unc.edu/CCstatus/index.py?run=Pseudo). 
Filtered reads were mapped to each of the corresponding 
CC reference genome using TopHat version 2.0.3 (Kim et al. 
2015). Resulting alignments were re-mapped to reference 
mm10 assembly coordinates using lapels (https://github.
com/shunping/lapels). HTSeq (Anders et al. 2015) was used 
to generate raw read counts per gene using intersection-non-
empty parameter to account for ambiguous read mappings. 
Differential gene expression tests were then performed with 
DESeq2 (Love et al. 2014).

Statistical analyses

Normalized count data on 23,948 genes for 246 combina-
tions for four TCE and one vehicle treatments from CC 
strains were generated with R (version 3.3) package DESeq2 
as detailed above. Genes with < 2 counts across all treat-
ments were removed, leaving 19,870 genes for analysis. The 
“dose” vector was linearized by first replacing the vehicle 
(i.e., zero) TCE dose with 8 (the average distance between 
doses was 1/3 the prior dose) followed by a natural log 
transformation. DESeq2 was used to derive p values and 
adjusted p values for the main effects of dose and strain, as 
well as their interaction. In brief, counts were first modeled 
as counts ~ strain + ln(dose). Genes exhibiting a linear dose 
effect were identified with a likelihood ratio test comparing 
a reduced model of counts ~ strain. Similarly, genes exhibit-
ing a strain effect were identified with a likelihood ratio test 
comparing a reduced model of counts ~ ln(dose) to the full 
model. Lastly, genes with an interaction effect were identi-
fied comparing a reduced model of counts ~ strain + ln(dose) 

to a full model of counts ~ strain + ln(dose) + strain × ln(dos
e). In a similar fashion, these analyses were repeated using 
the natural log of measured liver TCA metabolite concen-
tration in nmol/g (with a + 1 offset to guard against taking 
logarithm of zero) as a predictor instead of TCE dose. Dif-
ferential expression gene results were subjected to multiple 
comparison adjustments by computing Benjamini–Hochberg 
false discovery q values as implement in DESeq2. Due to the 
large number of significant findings, stringent significance 
criteria (q < 0.001) and absolute counts (read counts > 10) 
were used as criteria for further analysis.

Pathway analyses

Pathway enrichment analysis was conducted using the Data-
base for Annotation, Visualization, and Integrated Discovery 
(DAVID) (Dennis et al. 2003). The top 3000 or fewer genes 
with Bonferroni-corrected p values (q < 0.001), ordered 
based on the q value significance, were uploaded to DAVID 
to identify pathways influenced by dose-, strain-, or interac-
tion effects.

Comparison of transcriptomic points of departure doses 
with apical data

For dose–response expression studies, the BMDExpress 
software (Yang et al. 2007) has been used to evaluate PODs 
for expression changes of individual genes with exposure. 
Specifically, this software estimates the “benchmark dose” 
(BMD) at which gene expression changes relative to controls 
occur by fitting a parametric model to the dose–expression 
data. Although the current study has a large sample size, the 
sample size of 5 per strain presents a challenge in computing 
strain-specific benchmark doses, and in fact many of the 
models provided in BMDExpress would suffer from extreme 
overfitting with such small sample sizes. To best accord with 
our differential expression analyses and to benefit from the 
variance shrinkage models used in expression analyses, we 
devised the following approach to compute a strain-specific 
pathway BMD analogue. First, we used the strain-specific 
linear modeling routine from DESeq2 as described to obtain 
slope ( 𝛽1 ) and intercept ( 𝛽0 ) estimates from the software’s 
modeling of logarithmic gene expression, as well as the 
Wald-like t statistic (which utilizes variance shrinkage esti-
mation). Next, an artificial model standard deviation 𝜎̂ was 
computed from the model in order to be consistent with the 
reported p value. Specifically, if t* represents the shrunken 
t statistic, 𝜎̂ =

𝛽1

t∗

�

∑

i

(x
i
− x̄)2 for x = ln(dose). Finally, we 

have the per-gene BMD = ln(control dose)+sign
(

𝛽1
)

𝜎̂∕𝛽1 . 
The final BMD reflects the point at which the dose–response 
fit is estimated to exhibit a 1 standard-deviation departure 

http://csbio.unc.edu/CCstatus/index.py?run=Pseudo
https://github.com/shunping/lapels
https://github.com/shunping/lapels
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from control expression, using shrunken estimates of varia-
tion that are obtained from the DESeq2 modeling. To com-
pute a pathway (gene set) BMD, we used the median BMD 
of all genes assigned to the pathway.

As described in the introduction, previous studies have 
suggested that transcriptomic PODs correlated with those 
for apical endpoints, and that therefore transcriptional BMD 
values have the potential to serve as POD for quantitative 
risk assessment (Thomas et al. 2011). We therefore com-
pared transcriptomic BMDs with apical BMDLs used for 
liver effects in the U.S. EPA’s Toxicological Review for TCE 
(U.S. EPA 2011a, b). Specifically, U.S. EPA, in their quanti-
tative evaluation of the effects of TCE on the liver, selected 
increased liver/body weight ratio BMDLs in mice and rats 
for the PODs for liver non-cancer effects, and the BMDL 
for increased carcinomas in mice for the POD for liver can-
cer effects. Because apical endpoint PODs were derived 
from both rats and mice, each with differing toxicokinetics, 
we standardized all dose units to human equivalent doses 
(HEDs) based on equivalent liver oxidative metabolism, 
using the most up-to-date multi-species physiologically 
based pharmacokinetic (PBPK) model (Chiu and Ginsberg 
2011; Chiu et al. 2009). Median estimates of each internal 
dose metric from Chiu et al. (2009) were used. An additional 
reason for this standardization is that margins of exposure 
can be readily computed and compared based on the human 
equivalent dose. Apical endpoint HEDs were then compared 
to median transcriptional BMD values.

Genetic mapping and eQTL analyses

In principle, mapping of traits in CC lines can be performed 
by analysis of variance, using for each locus the ancestral 
origin from each of the 8 founding CC lines as a categori-
cal predictor. In practice, for many loci slight uncertainties 
of CC line origin remain, due to incomplete information 
on crossover events in the CC breeding outcomes. Hidden 
Markov modeling enables probabilistic statements of the 
parental line of origins for each locus, expressed as prob-
abilities (summing to 1.0) for the eight founder lines. For the 
vast majority of loci and CC lines, a very large probability 
(greater than 0.95) is placed on the most likely parental ori-
gin for the locus. We performed regression modeling using 
trait as a response, and the probability vector as a predictor 
for a model with 8 degrees of freedom. Each trait, whether 
a phenotype such as TCA level, or an expression trait, was 
first transformed using rank-inverse normal transformation 
(GTEx Consortium 2015) to ensure robustness to outliers. 
eQTL analysis was performed separately for each dosage 
group using the R package DOQTL1, and results were com-
pared to direct likelihood ratios computed using regression F 
statistics as described below to ensure correct computation. 
Expression traits were used only if they had both a mean 

number of reads ≥ 5 and a non-zero read proportion of at 
least 10%.

To accord with standard linkage mapping, the log10 likeli-
hood ratio (LOD score) for the fitted model vs. the null was 
used to represent mapping evidence. At each locus, a p value 
can be obtained from LOD scores via Chi-square testing and 
standard likelihood ratio theory. However, initial investiga-
tion by permutation showed that p values based on normal 
theory regression F statistics were superior, i.e., were more 
nearly uniform under the null, and so were used for multiple 
comparisons as described below.

To facilitate multiple comparisons and to acknowledge 
that cis-eQTLs are more common than trans-eQTLs, we 
obtained separate cis- and trans p values for each expres-
sion trait as follows. First, 1000 permutations of a normally 
distributed “phenotype” were performed, and the linkage F 
statistics were computed across the genome. As the rank-
inverse normal transformation produces identical trans-
formed values for any trait (provided there are no ties), the 
permutations formed a generic set of sampling outcomes that 
are applicable to any quantitative trait. For each permuta-
tion, the maximum F statistic was recorded for each chromo-
some. Thus, for each chromosome we obtained a set of 1000 
maxima on the chromosome (cis) and 1000 maxima on the 
remaining chromosomes (trans). For each of these 40 sets 
of permutations (20 chromosomes, both cis and trans), the 
maximum F statistic was modeled via maximum likelihood 
fitting to a Gompertz extreme value distribution, providing 
the basis for cis- and trans p values for each expression trait. 
By construction, these p values control for multiple com-
parisons across different loci. In order to control for multiple 
comparisons across different genes, each of the sets of cis 
p values and trans p values were adjusted using the q value 
package in R, resulting in false discovery q values for both 
cis and trans. For non-expression traits such as TCA levels, 
the overall maximum F statistic distribution was used in the 
extreme value modeling to obtain a genome-wide p value.

Results

Dose‑, strain‑, and interaction‑related effects of TCE 
on liver gene expression

Previous studies of inter-strain variation of TCE-induced 
responses demonstrated that liver transcriptomic responses 
are strongly dependent on genetic background and that per-
oxisome proliferator-activated receptor-associated path-
ways represented some of the most pronounced genetic 
background-dependent molecular effects of TCE treatment 
in mouse liver (Bradford et al. 2011). In this study, to eluci-
date how TCE responses differ by genetic background- and 
dose–expression relationships, we used liver gene expression 
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data from 50 CC strains and 4 dose groups (plus vehicle). 
Dose, strain, and interaction effects were modeled for each 
transcript for both TCE dose and liver levels of TCA in 
each mouse. Exemplar plots of genes that were significant 
for one or several of these relationships, and are relevant to 
the effects of TCE, are displayed in Fig. 1. Panel A shows 
the dose–response relationships for the administered dose 

of TCE and panel B for a correlation with liver TCA level 
in each individual mouse. We observed that expression of 
UDP-glucuronosyltransferase family 2 member A3 (Ugt2a3) 
was down-regulated with TCE dose, but this effect on gene 
expression was strain independent, with no dose by strain 
interaction effect. The effects of TCE on UDP-glucurono-
syltransferase enzymes is not well characterized, but it is 

Fig. 1   Examples of genes (Ugt2a3, Adh1, and Acot7) that were 
affected by exposure to TCE in mouse liver in genetic background-, 
dose- or interaction-dependent manner. Top panel a shows correlation 
with administered TCE dose; bottom panel b is correlation with liver 
TCA levels at 24 h after dosing. Each circle represents gene expres-
sion in a CC mouse. Each line represents a linear dose–response fit 

for each CC strain. The y axis represents normalized counts of the 
expression. The x axis in the top panel represents administered TCE 
dose (mg/kg) and in the bottom panel represents liver TCA levels 
(nmol/g) in the CC population. False discovery q values (q ≤ 0.001) 
for dose and strain main effects, as well as their interaction, are dis-
played in each box
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known that glucuronidation of trichloroethanol, a major 
oxidative metabolite of TCE, is a detoxification mechanism 
(Chiu et al. 2007). Baseline expression levels of alcohol 
dehydrogenase 1 (Adh1) varied dramatically by strain but 
did not exhibit a significant dose–response to TCE or a dose 
by strain effect. Alcohol dehydrogenases are involved in the 
biotransformation of TCE metabolites chloral and chloral 
hydrate to trichloroethanol (Lash et al. 2014) and our find-
ing of a high degree of inter-individual variation is consist-
ent with previous observations in both humans and mice 
(Bronley-DeLancey et al. 2006; Venkatratnam et al. 2017). 
In contrast to the Ugt2a3 and Adh1 examples, the expres-
sion of acyl-CoA thioesterase 7 (Acot7) exhibited not only a 
strong baseline strain effect, but also a strain by dose interac-
tion effect. Acot7 is a PPARα-responsive gene (Rakhshan-
dehroo et al. 2010). Indeed, PPARα-signaling plays a critical 
role in the effects of TCE in rodent liver (Rusyn et al. 2014). 
Of note, all three example genes depicted in Fig. 1 exhib-
ited highly significant dose, strain, and interaction effects 
regardless whether TCE dose, or liver TCA concentrations, 
were used as the “dose,” demonstrating that at least for 
these exemplars, that TCA plays a key role in transcriptional 
responses to TCE in mouse liver, likely through its agonism 
to PPARα (Maloney and Waxman 1999).

Overall, we found that 5285 transcripts were significant 
(after multiple testing correction as described) for the effect 
of TCE dose, 11,820 for the effect of strain, and 2140 for 
the interaction between the two (Fig. 2, left column of Venn 
diagrams). When liver TCA was used as an input into the 
model, 4769 transcripts were significant for TCA, 13,920 
for strain, and 2242 for interaction (Fig. 2, right column). 
Interestingly, a very small number of transcripts were purely 
dose-dependent, without an effect of strain or interaction, 
which is less than 1% of the transcriptome. In contrast, 
the effect of strain on the transcriptome was a major fac-
tor, which is greater than 50% of all transcripts that were 
mapped. This observation is consistent with the dominant 
effect of genetic variation on transcription in the liver (Gatti 
et al. 2007; Schadt et al. 2008), and general findings on the 
impact of genetic variation in gene expression regulation 
(GTEx Consortium 2013, 2015).

Whether analyzing the effects of TCE dose on expres-
sion in liver, or the relationship between liver TCA 
concentration and liver expression, we found signifi-
cant overlap in expression signatures. This finding is 
not completely unexpected, as there is strong correla-
tion (r = 0.78, ρ = 0.86) between TCE dose and liver 
TCA levels (Fig. 3a). The importance of including the 
dose–response considerations in the analysis of the pop-
ulation-wide transcriptional response to toxicity is illus-
trated in Fig. 3b. While there is a significant positive 
correlation (r = 0.49, p < 0.001) between the number of 
significantly perturbed transcripts and liver TCA at the 

highest TCE dose level, this relationship is highly strain-
variable whereby many strains with the highest liver TCA 
were not the most “responsive” transcriptionally.

Dose‑, strain‑, and interaction‑related effects of TCE 
on liver pathways

Next, we examined the molecular pathways perturbed by 
TCE in mouse liver in a dose-, strain-, or interaction-depend-
ent manner. To examine concordance in pathways among 
TCE dose and liver TCA, significant Gene Ontology and 
KEGG pathways/category enrichment was examined using 
DAVID/EASE (q value < 0.001), for lists of transcripts 
with significant dose (Fig. 3c), strain (Fig. 3d), or interac-
tion (Fig. 3e) effects. Most pathways for the dose and strain 

Fig. 2   Venn diagrams representing total number of transcripts from 
the transcriptome that are strongly influenced by genetic background-, 
dose-, or interaction effects with administered TCE dose (left panel) 
or liver TCA (right panel) as dose inputs. Numbers within each sector 
of circles represent either unique or common transcripts. Percentages 
represent the total percent of transcripts from the liver transcriptome 
that are common between TCE dose and TCA level analyses
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effects were shared between TCE dose and liver TCA analy-
ses (marked in green), and their level of significance was 
highly concordant (slopes close to 1).

A complete list of pathways from significant dose-related 
transcripts is provided in Supplemental Tables 1–5. Path-
ways with strong TCE dose–response relationships included 

Fig. 3   Concordance between TCE dose and liver TCA levels based 
on gene- and pathway-based analyses. a Scatter plot showing indi-
vidual animal’s liver TCA (nmol/g) as compared to the administered 
TCE dose (mg/kg). The inset shows the results of the correlation 
analysis of these data. b A relationship between liver TCA levels and 
the number of significantly (q < 0.05) perturbed transcripts by the 
TCE (800 mg/kg) in each CC strain. The inset shows the results of 

the correlation analysis of these data. c Concordance in pathways that 
were significantly (q < 0.01) associated with dose (top), strain (mid-
dle), or interaction (bottom) for the analyses where TCE dose (x axis) 
or liver TCA (y axis) were used as dose inputs. Each dot is a KEGG 
or GO pathway/category. Pathways that were significant only for TCE 
are colored black, only for liver TCA are colored red, and pathways 
that were significant for both are colored green. (Color figure online)
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lipid and fatty acid metabolism. Most of these were also 
significant for the strain effect and they are closely related 
to PPARα signaling, a finding consistent with our under-
standing of the major molecular effects of TCE in the 
rodent liver (Rusyn et al. 2014). Another prominent group 
of dose–responsive pathways was the effect on cell–cell 
adhesion and gap junctional intracellular communication, 
also consistent with previous findings that exposure to TCE 
and TCA inhibits gap junctional communications in mouse 
hepatocytes (Klaunig et al. 1989).

While there was a greater number of genes that exhib-
ited strain-specific changes in gene expression, enrichment 
analysis yielded fewer discernable significantly enriched 
pathways. Two translation-related pathways were significant 
for strain alone and not dose or interaction. Pathways that 
were both strain- and dose-dependent showed that the large 
part of TCE dose–response response is highly dependent on 
the genetic background.

Comparison of PODs for transcriptional and apical 
effects of TCE in mouse liver

Next, we sought to compare transcriptomics-derived 
dose–response effects of TCE in this acute exposure study 
in genetically diverse CC mice to the traditional apical end-
point-derived PODs for the same tissue but in other ani-
mal models. Specifically, we based these comparisons on 
the effects of TCE on liver transcriptome in B6C3F1 strain 
(Zhou et al. 2017) and the liver non-cancer and cancer end-
points used by U.S. EPA to derive toxicity values (U.S. EPA 
2011a, b). For this comparison, we converted both types 
of PODs to human equivalent doses using a multi-species 
PBPK models, as described in “Materials and methods”, 
and the results are shown in Fig. 4a. Because of the lack 
of PBPK models specifically for CC mice, we used the 
median estimates for mice from the previous multi-species 
PBPK model, which was calibrated using data from Swiss 
and B6C3F1 mice (Chiu et al. 2014; Evans et al. 2009), 
along with the corresponding human PBPK model. The tran-
scriptional PODs covered the same range of human equiva-
lent doses as the apical endpoints, with the most sensitive 
median BMDL (KEGG_mmu00071, fatty acid degradation) 
being nearly the same as the most sensitive apical endpoint-
derived BMDL (B6C3F1 mouse liver carcinomas). Overall, 
the median transcriptional BMDLs across all pathways in 
CC mice were within 10-fold of the apical PODs for TCE 
effects in the liver.

A corollary of this analysis is a question of whether data 
from the CC population are more informative as compared to 
the analysis of the dose–response gene and pathway effects 
of TCE in B6C3F1 hybrid strain. Thus, we constructed 
strain-specific distributions using the data for the same path-
ways (Fig. 4b). We find that B6C3F1 strain-derived data fall 

into the upper tertile of the overall population variation dis-
tribution, above the apical data-derived PODs. Furthermore, 
the analysis of strain-specific effects of TCE on mouse liver 
transcriptome that is afforded by the CC population shows 
that certain strains are more sensitive (e.g., CC004/TauUnc) 
or resistant (e.g., CC039/Unc, CC023/GeniUnc, and CC018/
Unc) and may be selected for further studies in sub-chronic 
and chronic exposure scenarios. Interestingly, although the 
most sensitive strain CC004/TauUnc had transcriptional 
PODs that were 10-fold lower than those of B6C3F1 mice, 
the median transcriptional POD for this strain was within 
twofold of the most sensitive apical POD.

Genetic mapping of the transcriptional effects 
of TCE in mouse liver

To further elucidate whether the CC model provides suffi-
cient resolution to dissect the genetic underpinnings of TCE 
susceptibility, we conducted genome-wide linkage mapping 
to identify loci associated with variation in liver TCA lev-
els for the highest TCE dose group. As reported previously 
(Venkatratnam et al. 2017), we identified a significant QTL 
on distal chromosome 2 (Fig. 5a) associated with variation 
in liver TCA levels, although the robust mapping methods 
used here differ from the previous report. The previous study 
also reported that expression of PPARα-response gene fat 
storage inducing transmembrane protein-2 (Fitm2) which 
resides in this locus (red arrowhead) was positively corre-
lated with liver TCA levels for the highest TCE dose expo-
sure group.

In the current study, the availability of whole-transcrip-
tomic expression data enabled a more comprehensive exami-
nation of this locus for the potential association between 
genetic polymorphisms and gene expression. A linkage 
scan for expression of Fitm2 co-localizes with the TCA 
peak region (Fig. 5b) and indicates a strong eQTL. Among 
the 128 genes in a 1.5-LOD support interval for this locus 
from 157.7 to 180.1 Mb, Fitm2 (r = 0.475, p = 8.4 × 10−8) 
had the highest correlation with TCA levels (Fig. 5c). Fur-
ther, effects of CC founder alleles in this region revealed 
that presence of M.m.castaneous alleles in this region was 
associated with higher expression of Fitm2 (Fig. 5c). How-
ever, TCA levels and Fitm2 expression were substantially 
correlated within sets of CC strains sharing regional diplo-
types, indicating possible additional sources of positive cor-
relation and signaling potential additional complexities with 
confidently pointing to the genetic underpinnings of inter-
individual variation in liver TCA levels.

To conduct a more comprehensive analysis of the genetic 
underpinnings of variation in response to TCE, we addi-
tionally performed an analysis using, for each gene and 
CC strain, the slope of the expression response (β1 in a 
dose–response linear model) to TCE as a trait for linkage 
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Fig. 4   Comparison of point of 
departures (PODs) across sig-
nificantly (q < 0.001) perturbed 
pathways due to genetic back-
ground-, dose-, and interaction 
effects in the CC model with 
apical endpoints from sub-
chronic or chronic TCE studies 
in B6C3F1. Box plots represent 
PODs, converted to human 
equivalent dose (mg/kg-day) 
using mouse and human physio-
logically based pharmacokinetic 
models, for the following: apical 
endpoints (black); transcrip-
tional PODs for B6C3F1 mice 
from Zhou et al. (2017) (green); 
transcriptional PODs for CC 
mice aggregated across path-
ways and strains (blue, panel a 
only); transcriptional PODs for 
individual pathways, aggregated 
across CC strains (red, panel a); 
or transcriptional PODs for indi-
vidual CC strains, aggregated 
across pathways (red, panel 
b). See Supplemental Table 6 
for full listing of abbreviations 
used. Vertical gray lines identify 
human equivalent doses cor-
responding to each administered 
dose. (Color figure online)
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mapping. To be comprehensive, we performed the analysis 
using β1 values from both simple linear regression of expres-
sion vs. ln(dose), as well as β1 values from the DESeq2 anal-
yses. Separate cis and trans p values and corresponding false 
discovery q values were obtained as described in “Materials 
and methods”. In terms of q values (which are corrected for 
multiple comparisons), none of the results were significant.

Finally, to identify genetic loci driving variation in 
transcriptomic responses, we performed expression quan-
titative trait locus (eQTL) analysis at each dose group. 
We observed suggestive trans-bands (or instances where 

expression of several genes is driven by a common locus) 
in chromosomes 3, 11, and 12 in the vehicle treatment 
group. Here “suggestive” indicates that nominally signifi-
cant (trans p < 0.05) findings were observed, before mul-
tiple testing corrections. No trans-bands were observed at 
lower dose groups, but few trans-bands were observed at 
higher dose groups (data not shown). Figure 5d reports 
the numbers of significant local (cis) eQTLs at each dose 
group in a Venn diagram, illustrating variation by dose, 
and also considerable commonality, with 2285 genes sig-
nificant at q < 0.05 for all doses.

Fig. 5   a A genome-wide linkage scan for liver TCA levels at the 
highest TCE dose (800  mg/kg) in 50 CC lines identifies a signifi-
cant QTL on chromosome 2. Location of a candidate gene Fitm2 is 
marked with a red arrowhead. b Genome-wide linkage scan of Fitm2 
gene expression shows a cis-eQTL localizing in the same region as 

for (a). c Scatter plot representing normalized liver TCA levels vs. 
normalized Fitm2 expression, with dots representing CC founder 
alleles in the peak region. d Venn diagrams displaying unique local 
eQTLs by administered TCE dose. (Color figure online)
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Discussion

It is widely acknowledged in the fields of toxicology and 
risk assessment that population variation is one of the key 
challenges that begets uncertainty in human health assess-
ments of environmental chemicals (Zeise et al. 2013). 
Drug safety evaluation is usually more informed through 
studies in humans at various phases of the clinical tri-
als, still the challenge of idiosyncratic adverse drug reac-
tions is also prominent and subject to active investigations 
(Atienzar et al. 2016). Solutions to these challenges are 
currently few, despite the abundance of experimental mod-
els from cells, to animals, to human studies. For instance, 
the tools for studies of genetics in experimental model 
systems have been originally developed by geneticists 
(Churchill et al. 2012; The International HapMap Consor-
tium 2003; Threadgill et al. 2011) and only recently have 
these models been used in studies of acute and repeat-
dose exposure to drugs and chemicals (French et al. 2015; 
Harrill and McAllister 2017). The potential for how these 
new animal models can inform risk assessment is great, 
though example applications of incorporating these data 
into decision-making remain small in number (Chiu and 
Rusyn 2018). For instance, evaluation of toxicity using 
population-based in vitro and in vivo models can poten-
tially reduce both false positive and false negative sig-
nals and improve hazard identification. Enhanced ability 
to perform genetic mapping allows for the identification 
of key biological pathways and mechanisms that may be 
involved in toxicity and/or susceptibility. In addition, pop-
ulation-based experimental data can serve as a surrogate 
for human variation, and thus be used to quantitatively 
estimate the degree of human toxicokinetic/toxicody-
namic variation and thereby increase confidence in the 
dose–response step of risk assessment that sets health-
protective exposure limits.

The difficulty in translating the data from studies in pop-
ulation-wide experimental models to real decisions is due 
not only to the complexities of the relationships between 
genotypes and phenotypes, but also because of impediments 
resulting from “cultural” differences between the research 
questions in genetics, decades-old “standard practices” in 
toxicology studies, and the needs of decision-makers. Spe-
cifically, there appears to be a chasm in what constitutes 
the most valuable outcome(s) of a toxicology study in a 
population model. Is it a susceptibly locus, the molecular 
determinant(s) of inter-individual variation that may be used 
as a biomarker, a quantitative estimate of the extent of inter-
individual variation, a better “model” (i.e., strain or cell line) 
for susceptible humans, or all of the above?

This study takes the “all of the above” point of view. It 
adds to the body of knowledge on the utility of the mouse 

population-based experimental models in toxicology and 
risk assessment by examining transcriptomic data obtained 
from a study in CC mice for characterization of strain-
dependent and strain-independent mechanisms of TCE 
toxicity, discovery of the potential susceptibility loci, as 
well as dose–response assessment and derivation of POD 
values. This study also provides further evidence of the 
relative impact of dose and strain variation on transcrip-
tion, and is among the largest studies to date that have 
combined large populations, transcriptomics, and toxicity 
phenotyping.

We found that all known pathways of liver toxicity of 
TCE (Cichocki et al. 2016; Rusyn et al. 2014) are perturbed 
in both strain- and dose-dependent manner. Even though 
strain effects were predominant in terms of liver transcrip-
tome among CC strains, TCE effects were prominent and 
largely dependent on the formation of TCA. However, 
despite high concordance in dose-, strain-, and interaction 
effects between TCE dose and liver TCA levels, inter-indi-
vidual variation likely depends on factors other than metabo-
lism to TCA. This finding is highly informative with respect 
to not only the interpretation of the strain differences in the 
mouse, but also more generally to the extrapolation of exper-
imental animal data to humans. Specifically, the diversity 
of the pathways involved and the complexity of the signal-
ing mechanisms that were largely strain-dependent caution 
against assuming that studies in knockout and/or transgenic 
animals are any more informative, or human-like, models 
than traditional rodent models. This study also supports the 
utility of the information on the molecular pathways, rather 
than individual genes, for cross-species translation and bio-
marker discovery, similar to the conclusions of the study of 
tolvaptan-induced liver injury in CC population (Mosedale 
et al. 2017).

Additionally, studies in genetically defined population-
wide models enable discovery of the susceptibility loci 
through genetic mapping. There are a number of published 
examples when susceptibility loci and candidate genes were 
successfully identified for drug and chemical-associated tox-
icity phenotypes (French et al. 2015; Harrill et al. 2009b; 
Mosedale et al. 2017; Venkatratnam et al. 2017). Despite 
some success, these studies have pointed out that chemical-
induced toxicities are highly complex traits and thus are 
polygenic in nature. Our study confirms this sentiment by 
also exploring the gene expression dimension. We found 
that TCE-mediated transcriptional responses in mouse liver 
may be highly polygenic in nature, so that mapping multiple 
susceptibility loci may be difficult with the sample size of 50 
CC strains. One possible solution is to increase the number 
of strains (Kaeppler 1997), or replicates per strain in future 
studies; however, the cost and complexity of these studies 
is likely prohibitive and not proportionate to the value of 
information that may be obtained. While the knowledge of 
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the exact susceptibility genes/loci may be of use for drugs 
in the context of “precision medicine,” even if such are dis-
covered they are likely to be less informative in the context 
of human health assessment of TCE and other chemicals for 
which genetic testing prior to exposure is highly improbable.

An outcome of this study that is most likely to be of 
use for human health risk assessment is the exploration 
of dose–response relationships in response to TCE at the 
transcriptomic and population levels. The paper by French 
and co-workers (French et al. 2015) was the first to demon-
strate the value of mouse population studies for quantitative 
dose–response modeling that is directly applicable for risk 
assessment. Similarly, we have showed previously for TCE 
that population-based estimates of toxicokinetic parameters 
from a study in mice are concordant to those for data from 
humans (Chiu et al. 2014). Hence, our study explored the 
quantitative aspects of molecular sequelae of exposure to 
TCE in a mouse population and used gene expression to 
derive PODs for various pathways and strains. Thomas and 
co-workers have demonstrated that pathway-based PODs 
based on gene expression data from short-term exposure 
studies are well correlated with the POD on the apical end-
points derived from traditional 90-day and 2-year animal 
studies (Farmahin et al. 2017; Thomas et al. 2011, 2013b).

We recently reported that in B6C3F1 mice, transcrip-
tional PODs for TCE correlated well with PODs for apical 
endpoints, after correcting for toxicokinetics (Zhou et al. 
2017). Here, we found a similar correspondence to apical 
endpoint PODs using transcriptomic data from a genetically 
diverse mouse population. Previously, it was found that the 
transcriptional PODs were more conservative, generally 
within one order of magnitude (Thomas et al. 2011). In our 
earlier study in B6C3F1 mice, transcriptional PODs for TCE 
were also within 10-fold of apical PODs, but the differences 
were in both directions, i.e., not consistently conservative. 
Here, in CC mice, the transcriptional and apical endpoint 
PODs for TCE substantially overlapped, a large number of 
transcriptional pathways, including the most sensitive falling 
within the range of the apical endpoint PODs. This greater 
apparent correlation suggests that using CC mice may 
provide a more robust transcriptional POD because of the 
incorporation of genetic diversity that reduces the potential 
impact of outliers, but this hypothesis needs to be tested for 
additional chemicals and target tissues. Moreover, as was the 
case with Zhou et al. (2017), conversion to human equivalent 
doses has the additional utility of being directly comparable 
to human exposure estimates and derivation of the margins 
of exposure. These results provide further evidence that tran-
scriptomic data can be used as surrogates for in vivo PODs, 
and suggest that a population-based approach might be more 
robust than using a single strain.

In sum, our study is among the first to explore the link-
ages between gene expression and genetic polymorphisms 

in a toxicological context. This innovative approach extends 
the common method to analyzing toxicity pathway perturba-
tions to the population level, allowing for an exploration of 
gene–environment interactions, which are thought to be the 
basis of phenotypic variation across the population. Using 
the CC population and TCE liver effects as a prototypical 
example, we have demonstrated that adding the dimension 
of genetic diversity has multiple potential benefits. First, 
by identifying pathways that are dependent on strain, treat-
ment, or their interaction, we obtain deeper insights into 
toxicological mechanisms. Second, it enables the possibility 
of genetic mapping to identify susceptibility loci, although 
this may be challenging for polygenic traits such as TCE-
induced liver effects. Finally, at least in this case example, 
conducting gene expression dose–response analysis across 
a population appears to be more robust than using a single 
strain in terms of the correlation between transcriptional and 
apical PODs. Overall, our study demonstrates the utility of 
mouse population-based studies in addressing the key issue 
of inter-individual variation in the human health risk assess-
ment of chemical exposures.
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