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Abstract
Ethyl alcohol is a toxin that, when consumed at high levels, produces organ damage and death. One way to prevent or amelio-
rate this damage in humans is to reduce the exposure of organs to alcohol by reducing alcohol ingestion. Both the propensity 
to consume large volumes of alcohol and the susceptibility of human organs to alcohol-induced damage exhibit a strong 
genetic influence. We have developed an integrative genetic/genomic approach to identify transcriptional networks that pre-
dispose complex traits, including propensity for alcohol consumption and propensity for alcohol-induced organ damage. In 
our approach, the phenotype is assessed in a panel of recombinant inbred (RI) rat strains, and quantitative trait locus (QTL) 
analysis is performed. Transcriptome data from tissues/organs of naïve RI rat strains are used to identify transcriptional 
networks using Weighted Gene Coexpression Network Analysis (WGCNA). Correlation of the first principal component of 
transcriptional coexpression modules with the phenotype across the rat strains, and overlap of QTLs for the phenotype and 
the QTLs for the coexpression modules (module eigengene QTL) provide the criteria for identification of the functionally 
related groups of genes that contribute to the phenotype (candidate modules). While we previously identified a brain tran-
scriptional module whose QTL overlapped with a QTL for levels of alcohol consumption in HXB/BXH RI rat strains and 
12 selected rat lines, this module did not account for all of the genetic variation in alcohol consumption. Our search for QTL 
overlap and correlation of coexpression modules with phenotype can, however, be applied to any organ in which the tran-
scriptome has been measured, and this represents a holistic approach in the search for genetic contributors to complex traits. 
Previous work has implicated liver/brain interactions, particularly involving inflammatory/immune processes, as influencing 
alcohol consumption levels. We have now analyzed the liver transcriptome of the HXB/BXH RI rat panel in relation to the 
behavioral trait of alcohol consumption. We used RNA-Seq and microarray data to construct liver transcriptional networks, 
and identified a liver candidate transcriptional coexpression module that explained 24% of the genetic variance in voluntary 
alcohol consumption. The transcripts in this module focus attention on liver secretory products that influence inflammatory 
and immune signaling pathways. We propose that these liver secretory products can interact with brain mechanisms that 
affect alcohol consumption, and targeting these pathways provides a potential approach to reducing high levels of alcohol 
intake and also protecting the integrity of the liver and other organs.

Introduction

Alcohol (ethanol) is an environmental toxin that can have 
adverse effects on organs and tissues (as well as cause 
addiction) in humans. The degree of toxicity caused by 
alcohol ingestion is dependent on the dose (amount) of 

alcohol consumed (Rusyn and Bataller 2013; Szabo and 
Saha 2015). Individuals vary not only in their susceptibility 
to alcohol-induced toxicity, but also in their level of alcohol 
exposure, which can be considered a “host factor” that is, at 
least initially, under partial control by the individual (i.e., is 
part of the individual’s behavior or lifestyle) (Garte 2008). 
However, both susceptibility to alcohol-induced organ dam-
age and the predisposition to consume a particular dose of 
alcohol are also influenced by genetics (Rusyn and Bataller 
2013).

Our work focuses not only on the consequences of alco-
hol ingestion, but also on the genetic basis for the behavior 
that results in differential levels of alcohol exposure. We 
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have taken a “systems genetic” approach to elucidating the 
factors that affect alcohol consumption. Systems genet-
ics has evolved into a process by which one can identify 
functional relationships among gene products (WGCNA, 
Langfelder and Horvath 2008; Zhang and Horvath 2005), 
understand the relationships between these gene expres-
sion networks and physiologic/pathologic processes 
(Obeidat et al. 2017; Saba et al. 2015), and understand the 
relationships between polymorphisms associated with dis-
ease in GWAS analysis and causal mechanisms predispos-
ing or progressing the disease state (Civelek et al. 2017). 
Quantitative trait locus (QTL) analysis of complex traits 
in plants and non-human animals preceded the advent of 
GWAS studies with humans (Lander and Kruglyak 1995; 
Visscher et al. 2012), and was often used to suppose the 
“candidate genes” that were associated with a particular 
trait (Abiola et al. 2003). GWAS and QTL studies, if based 
solely on DNA sequence variants, have a significant draw-
back if there is no evidence regarding the organ in which 
particular “candidate genes” are expressed, or the con-
text (network) in which the “candidate genes” function 
(Civelek and Lusis 2014). In addition, the DNA variants 
identified in QTL and GWAS studies are often located not 
within the coding sequences for genes, but in regions of 
the genome important (but not elucidated) for regulation 
of gene expression (Schaub et al. 2012). The inclusion of 
quantitative transcriptome information in systems genetic 
approaches generates a key intermediate for understand-
ing the relationship between DNA variants and pheno-
typic traits (Albert and Kruglyak 2015; Saba et al. 2015; 
Tabakoff et al. 2009). Many of the current systems genet-
ics approaches to understanding the relationship between 
genomics and biology benefit from the wealth of informa-
tion that has been collected and catalogued on the genome 
and transcriptome sequences of species and individuals 
within those species, and information on the quantitative 
landscape of the transcriptome in various cells and organs 
(Hermsen et al. 2015; https://phenogen.ucdenver.edu; Lap-
palainen et al. 2013).

We and others have employed an integrative genomic 
approach that takes advantage of the availability of transcrip-
tional coexpression network and genomic data to identify 
genetic determinants of complex physiological/behavioral 
traits (Hasin et al. 2017; Saba et al. 2015; Tabakoff et al. 
2009). The concept behind these approaches is that if expres-
sion levels of the related transcripts in the network influence 
a phenotype, then the genomic region that regulates the net-
work transcript expression levels (eQTL) should coincide with 
the genomic region that regulates the phenotype (QTL). To 
implement this approach in the present study, the phenotype 

of voluntary alcohol consumption was assessed in a panel 
of recombinant inbred rat strains. It should be noted, that 
the rank order of behavioral phenotypes that have a strong 
genetic determinant (for alcohol consumption in our rat panel 
h2 = 0.46) can be reproduced over many generations in inbred 
rodents (Wahlsten et al. 2006). Whole transcriptome informa-
tion was gathered from tissues of naive rats of the same HXB/
BXH RI panel using RNA-Seq and exon array technology 
[the reproducibility of such information is discussed in Mari-
oni et al. (2008)], and transcriptional coexpression networks 
were generated using Weighted Gene Coexpression Network 
Analysis (WGCNA) (Langfelder and Horvath 2008; Zhang 
and Horvath 2005). All raw and processed data are publically 
available on https://PhenoGen.ucdenver.edu.

While it seems appropriate to assess brain transcriptional 
coexpression networks when investigating the genetic influ-
ence on the predisposition to consume alcohol, the approach 
that we have developed and implemented does not have to 
be limited to an organ or tissue that is a priori thought to 
determine a complex trait. Because a phenotype QTL analysis 
simply identifies genomic regions associated with a quantita-
tive trait, it is feasible that the identified area of the genome 
can regulate transcriptional activity in or from any organ. 
The continued growth of evidence regarding functional con-
sequences of interactions of metabolic processes and products 
of various organs (liver and brain, GI system and brain, and 
vice-versa, brown adipose tissue and heart and brain, etc.) 
dictates the use of a holistic approach when considering the 
possible predisposing or causal genetic factors contributing to 
a trait of interest. When alcohol is consumed, it enters the gut, 
is absorbed, passes through the liver, and is then distributed 
to brain, heart, and other organs. Alcohol can alter the gut 
microbiome and disrupt the intestinal epithelial barrier, result-
ing in increased intestinal permeability. This effect allows for 
translocation of microbially derived products such as LPS into 
the circulation, to produce inflammatory responses (Szabo 
2015). The brain is also exposed to these products, as well 
as to peripherally generated hormones, cytokines, activated 
immune cells, and other molecules secreted by the liver, 
gut, adipose tissue, and other organs in response to alcohol 
consumption.

To investigate a possible peripheral organ–brain inter-
action that can affect alcohol drinking, we used RNA-Seq 
and microarray data on transcript expression from liver of 
non-alcohol-exposed rats of the HXB/BXH RI rat panel to 
generate liver transcriptional networks associated with the 
predisposition to alcohol consumption. Our results suggest 
that liver secretion products, including pro- and anti-inflam-
matory cytokines, can affect the level of voluntary alcohol 
consumption by rats.

https://phenogen.ucdenver.edu
https://PhenoGen.ucdenver.edu
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Materials and methods

Alcohol consumption and alcohol consumption 
quantitative trait loci (QTL) (all data are publically 
available on https://Phenogen.ucdenver.edu)

We have previously reported data on alcohol consump-
tion levels by male rats of the HXB/BXH RI panel (23 
RI strains and progenitor strains) (Tabakoff et al. 2009). 
The rats were given 10% alcohol as their only choice of 
fluid for one week, and were then given a choice between 
10% alcohol and water. Alcohol consumption data (daily 
average of grams of ethanol consumed per kilogram of 
body weight) for the second week of the two-bottle choice 
paradigm were used to identify QTLs for voluntary alcohol 
consumption in this model (Saba et al. 2015; Tabakoff 
et al. 2009). QTLs, including genome-wide p values via 
permutation, and Bayesian credible intervals, were iden-
tified using marker regression with alcohol consumption 
data represented as strain means (21 RI strains with both 
alcohol consumption and genotype information, Online 
Resource 1). A genetic marker set (specifically SNPs) from 
the STAR consortium (http://www.snp-star.eu/; STAR 
Consortium 2008) was used for QTL analyses. Probes 
from the original arrays that determined this marker set 
were aligned to the RN6 version of the rat genome using 
BLAT (Kent 2002). Markers were retained for QTL analy-
sis if (1) their probe sequence aligned both perfectly and 
uniquely to the genome, (2) genotypes differed between 
the progenitor strains (BN-Lx/Cub and SHR/Ola/pcv), (3) 
neither progenitor had a heterozygous genotype, and (4) 
< 5% of the RI strains had a missing or heterozygous geno-
type call. Markers with large genetic distances compared 
to physical distance (improbable recombination rates, 
flanked by 10 cm on each side) as well as double recom-
binant markers were removed. Genetic distances were 
estimated using the R/qtl package in R (version 1.40-8, 
Broman et al. 2003).

Many of the adjacent markers (SNPs) display the same 
genotype pattern among all the RI strains (i.e., no recom-
bination events for any strain between SNPs), which would 
result in the same level of statistical significance (p value) 
for all of these SNPs when performing QTL analysis. 
Therefore, we reduced the number of association tests, 
without losing information, by identifying unique strain 
distribution patterns (SDPs; i.e., the genotypes for all 
strains at a particular SNP) for the 30 RI strains. Alcohol 
consumption QTLs were identified with marker regres-
sion of the strain means using the R/qtl package in R. 
Genome-wide p values were determined using permuta-
tion (Churchill and Doerge 1994) and Bayesian credible 
intervals (Sen and Churchill 2001) were estimated for 

significant (genome-wide p value < 0.05) and suggestive 
(genome-wide p value < 0.63, Lander and Kruglyak 1995) 
QTLs.

Liver RNA coexpression networks (data available 
on https://Phenogen.ucdenver.edu)

RNA sequencing and processing

Total RNA isolated from whole liver of three alcohol naive 
biological replicates (males) of each of the two progenitor 
strains of the HXB/BXH RI panel was previously sequenced 
(2 × 100 paired-end reads) (Harrall et al. 2016). For the cur-
rent study, prior to alignment, reads were demultiplexed and 
trimmed for adaptors and for quality using Cutadapt (version 
1.9.1; Martin 2011). Reads were eliminated if the trimmed 
length of either read fragment was < 20 nucleotides. Reads 
were then aligned to the RN6 version of their respective 
strain-specific genomes derived from our DNA sequenc-
ing (Saba et al. 2015) using Bowtie 2/TopHat suite of tools 
(version 2.1.0, Langmead et al. 2009) with the default set-
tings. A genome- and transcriptome-guided reconstruction 
was executed for each progenitor strain separately using the 
Cufflinks algorithm and software (version 2.2.1, Trapnell 
et al. 2010) and the Ensembl Rat Transcriptome (RGSC 
6.0) to guide the reconstruction process. Strain-specific 
transcriptomes were merged by first limiting to high con-
fidence transcripts [defined as transcripts that were at least 
200 nucleotides long and had an average read depth of 10 
within a strain (total reads including all biological repli-
cates)]. Transcripts were merged across strain-specific tran-
scriptomes if their exon junctions matched precisely or if 
they were one-exon transcripts that had transcription start 
sites within 100 bp of each other and transcription stop sites 
within 100 bp of each other. Each of the six parental strain 
samples was re-quantified using the merged transcriptome 
and RSEM (Li and Dewey 2011). Transcripts were retained 
in the final merged transcriptome if they had an average read 
depth of at least 18 reads (total reads including all biological 
replicates).

Exon arrays

Gene expression data were generated from whole liver tissue 
of naïve 10-week-old male rats using Affymetrix Rat Exon 
Arrays 1.0 ST (Affymetrix, Santa Clara, CA). Transcript 
expression was measured in rats from 21 HXB/BXH RI 
strains (Online Resource 1). Two to four rats per strain were 
used and RNA from each rat was hybridized to a separate 
array, resulting in a total of 108 individual arrays (Harrall 
et al. 2016).

Prior to normalization, individual probes on the array 
were removed from consideration if their nucleotide 

https://Phenogen.ucdenver.edu
http://www.snp-star.eu/
https://Phenogen.ucdenver.edu
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sequence did not uniquely map to a region in the BN rat 
reference genome (RN6) or if the probe contained a known 
SNP or indel between the two HXB/BXH RI progenitor 
strains (Saba et al. 2015). Entire probe sets were removed 
if < 3 probes remained after filtering. The genomic regions 
where probe sets aligned were compared to the liver recon-
structed transcriptome generated from the RNA-Seq data. 
Probe sets were combined into a gene cluster if the entire 
probe set was contained within the transcribed region of a 
single gene identified in the reconstructed transcriptome. 
Expression values were normalized and summarized into 
gene level transcripts using robust multichip analysis (RMA) 
(Irizarry RA, 2003) implemented in Affymetrix Power Tools 
(version 1.18.0) (http://www.affymetrix.com/partners_pro-
grams/programs/developer/tools/powertools.affx) and Com-
Bat was used to adjust for batch effects (sva version 3.20.0, 
Johnson et al. 2007). The coefficient of determination (R2) 
from a one-way ANOVA was used to estimate broad-sense 
heritability for each transcript. Those with low heritability 
(R2 < 0.20) were not included in further analyses. ComBat 
batch adjustment, heritability, and all further statistical anal-
yses were executed in R (version 3.3.1) unless otherwise 
specified.

Liver RNA coexpression networks (data available 
on https://Phenogen.ucdenver.edu)

An unsigned weighted gene coexpression network analy-
sis (WGCNA) was performed on the HXB/BXH RI strain 
mean expression values of the whole liver expression data 
to identify coexpression modules using the WGCNA pack-
age in R (version 1.51, Zhang and Horvath 2005). Data 
from parental strains were excluded to avoid confounding 
due to population structure. A bi-weight mid-correlation 
coefficient (robust to outliers) as well as a soft threshold-
ing parameter (β) of 9 (default value suggested based on 
sample size; https://labs.genetics.ucla.edu/horvath/Coex-
pressionNetwork/Rpackages/WGCNA/faq.html) was used 
to construct the adjacency and connectivity matrices. The 
minimum module size (set to 5) and the deepSplit param-
eter (set to 4) were altered from the default values to allow 
for the identification of smaller modules. Intramodular con-
nectivity of a gene was calculated as the sum of pairwise 
connectivity measures between a gene and all other genes 
within the module. The nomenclature, hub gene, is used 
for the gene within the module with the highest intramodu-
lar connectivity. We used the eigengene, the first principal 
component of the module, to represent the gene expression 
profile across strains for each module for correlation and 
mapping analyses. The quantitative nature of the eigengene 
allows for the use of QTL analysis, and the module eigen-
gene QTLs (meQTLs) were identified as described earlier 
for the alcohol consumption QTLs. The meQTL analysis 

was performed using data from 19 rat strains for which both 
genotype and liver transcriptome information were available 
(Online Resource 1).

Liver modules associated with voluntary alcohol 
consumption

For a liver module to be associated with voluntary alco-
hol consumption, it was required to meet several criteria: 
(1) its module eigengene had to be significantly correlated 
with voluntary alcohol consumption (g/kg/day) across the 
RI strains (Pearson correlation, unadjusted p value < 0.05, 
using data from the 19 RI strains with genotype and liver 
transcriptome information); (2) the module eigengene had to 
explain at least 50% of module variance; (3) the module had 
to have a significant (genome-wide p value < 0.05) meQTL; 
and (4) the peak position of the module’s maximum meQTL 
had to fall within the 90% Bayesian credible interval of an 
alcohol consumption QTL (Saba et al. 2015). These crite-
ria ensured that module eigengene values were genetically 
driven, were associated with alcohol consumption, and that 
the module eigengene values were regulated from the same 
region(s) of the genome as alcohol consumption.

Further characterization of candidate liver modules

The UCSC Genome Browser (https://genome.ucsc.edu/) was 
used to annotate genes that were not previously annotated by 
the Ensembl-guided transcriptome reconstruction. This was 
accomplished by comparing isoforms from the transcrip-
tome reconstruction to Ensembl and RefSeq-predicted genes 
in the same genomic location. To protect against associations 
due solely to co-localization, we examined partial correla-
tions for genes in coexpression modules controlling for the 
module eigengene QTL using the ppcor package (Version 
1.0) in R (Kim 2015). For purposes of examining connectiv-
ity between genes both prior to and after partial correlation, 
an edge represents a pairwise correlation between two genes 
that is either > 0.5 (0.3 for partial correlations) or < − 0.5 
(− 0.3 for partial correlations). The number of edges in a 
candidate module after partial correlation had to be at least 
50% of the number of edges in the original module.

Liver cell type‑specific transcriptome analysis

Liver cells (hepatocytes, hepatic stellate cells, sinusoidal 
endothelial cells, Kupffer cells) were isolated from livers of 
alcohol-naïve adult male BN-Lx/CubPrin and SHR/OlaPrin 
rats (parental strains of the HXB/BXH RI panel) as previ-
ously described (Harrall et al. 2016). RNA from four rats per 
strain and cell type was extracted and hybridized to separate 
Affymetrix Rat Exon Arrays 1.0 ST, and data were analyzed 
in the same manner as described for whole liver. Expression 

http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
https://Phenogen.ucdenver.edu
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
https://genome.ucsc.edu/
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values were normalized and summarized into genes using 
RMA, and ComBat was used to adjust for batch effects. The 
results of this analysis are shown in Online Resource 2.

Results

Identification of candidate liver modules

A total of 735 transcriptional coexpression modules were 
identified from the liver data. The eigengene values of 29 
of these modules were significantly correlated (p < 0.05) 
with the phenotype of alcohol consumption. One of these 
modules (“module 86,” correlation coefficient 0.49, p 
value = 0.032) had a significant meQTL genome-wide LOD 
score, and a maximum meQTL that overlapped the Bayes-
ian credible interval of a previously identified alcohol con-
sumption QTL on chromosome 1 (Module 86, Fig. 1). Sixty 
percent of the variance in this module was explained by the 
module eigengene. The chromosome 1 alcohol consumption 
QTL included two peaks within the 90% Bayesian credible 
interval (Sen and Churchill 2001) (Fig. 1). To determine if 
this region represented two independent QTLs, the QTLs 
were recalculated after adjustment for their respective maxi-
mum peaks. This analysis indicated that the two peaks in the 
chromosome 1 QTL are likely due to linkage disequilibrium 
between the markers (Online Resource 3). Independently, 
the liver module eigengene explained 24% of the genetic 
variance in alcohol consumption and the previously identi-
fied brain module eigengene (Saba et al. 2015) explained 
35% of the genetic variance, calculated using linear regres-
sion of strain means.

Characterization of the liver candidate module 
(module 86)

The module contained 15 transcripts that are listed in 
Table 1. A network diagram of the module was generated 
using gene connectivity and pairwise correlations between 
genes within the module (https://www.ncbi.nlm.nih.gov/
pubmed/14597658) (Fig. 2). Ten transcripts in the module 
were co-localized to chromosome 1 (Table 1), so a partial 
correlation analysis was performed (see “Materials and 
methods”) to determine if the correlation among transcripts 
was only a result of independent causal loci in linkage dis-
equilibrium. After the partial correlation analysis, there were 
41 edges in the module, compared with 74 edges in the origi-
nal module. Thirty-three of the edges after the partial corre-
lation were also in the original network, and eight new edges 
were detected after the partial correlation (Online Resource 
4). These results strongly suggest that, although linkage dis-
equilibrium may significantly contribute to the coexpression 
of transcripts in the module, the coexpression relationships 
that are retained within the module after accounting for this 
linkage disequilibrium (i.e., partial correlation) likely repre-
sent biological relationships (Dobrin et al. 2009; Doss et al. 
2005), that go beyond simple linkage disequilibrium.

Sample size and statistical considerations 
and caveats

When calculating the voluntary alcohol consumption 
QTL, we used all strains with both genotype and pheno-
type information (21 strains), and we mapped strain means 
rather than phenotypic measures from individual animals. 

Fig. 1  Alcohol consumption QTLs and liver module 86 eigengene 
QTL (meQTL). Strain means and R/qtl were used to calculate both 
the QTLs for voluntary alcohol consumption (Saba et  al. 2015), 
and meQTL for module 86. The horizontal lines represent genome-

wide significant (p < 0.05, solid line) and genome-wide suggestive 
(p < 0.63) LOD scores (Lander and Kruglyak 1995). The location and 
significance of the module 86 meQTL (red) and the alcohol consump-
tion QTLs (black) are shown

https://www.ncbi.nlm.nih.gov/pubmed/14597658
https://www.ncbi.nlm.nih.gov/pubmed/14597658
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The use of strain means significantly reduces the influence 
of non-genetic variance on our phenotype estimates. With 
an RI panel, fewer loci are expected to contribute a higher 
proportion of genetic variance than with an outbred popu-
lation. Both factors increase power to detect QTL. Tran-
scriptome data were also available on 21 strains and this 
information was used to identify modules by WGCNA. 

The significant caveat is that the same 21 strains were 
not available for both phenotypic QTL calculations and 
WGCNA. When examining the association between the 
module and the phenotype, and performing meQTL analy-
sis, we used data from the 19 strains that had genotype, 
phenotype, and RNA expression information. If we lim-
ited our phenotypic QTL analysis to these 19 strains, we 

Table 1  Transcripts in the liver coexpression module

Gene symbol Gene name Location Connectivity 
within module 
86

Cyp2r1 Cytochrome P450, family 2, subfamily r, polypeptide 1 Chr1:184.1 Mb 1.006
Rnf141 Ring finger protein 141 Chr1:175.6 Mb 0.925
Lyve1 Lymphatic vessel endothelial hyaluronan receptor 1 Chr1:175.7 Mb 0.823
Tmem9b TMEM9 domain family, member B Chr1:174.4 Mb 0.803
Capn5 Calpain 5 Chr1:163.1 Mb 0.793
Serpinh1 Serpin family H member 1 (Hsp47) Chr1:164.3 Mb 0.600
Ripply1 Ripply transcriptional repressor 1 ChrX:111.1 Mb 0.458
Tmc3 Transmembrane channel-like 3 Chr1:145.7 Mb 0.422
Acer3 Alkaline ceramidase 3 Chr1:163.1 Mb 0.421
Prcp Prolylcarboxypeptidase Chr1:157.7 Mb 0.365
LOC100910710 NADH dehydrogenase [ubiquinone]

1 alpha subcomplex 12-like
Chr6:192.9 Mb 0.215

Galnt18 Polypeptide N-acetylgalactosaminyl-transferase 18 Chr1:176.3 Mb 0.151
Unannotated2 0.183
Unannotated1 0.070
Aida (intronic) Axin interactor, dorsalization associated Chr13:101.7 Mb 0.057

Fig. 2  Liver transcriptional 
coexpression module associated 
with alcohol consumption. The 
figure shows pairwise connec-
tions between gene products 
in module 86. A green edge 
represents a negative correla-
tion between two nodes, and a 
red edge represents a positive 
correlation between two nodes. 
The thickness of each edge rep-
resents the strength of each cor-
relation (i.e., a correlation with 
a larger magnitude has a thicker 
line), and edges are only visible 
if their associated correlation 
coefficient is > |0.50|. Cyp2r1 is 
the hub (most connected) gene 
product and its expression levels 
are positively correlated with 
alcohol consumption
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retained both phenotypic QTLs and did not identify any 
additional phenotypic QTLs.

The standard recommendation for a minimum sam-
ple size for identifying robust modules in WGCNA is 20 
(https://labs.genetics.ucla.edu/horvath/CoexpressionNet-
work/Rpackages/WGCNA/faq.html), with a similar recom-
mendation for coexpression networks in general (Ballouz 
et al. 2015). In our WGCNA analysis, we used within-strain 
means from the 21 strains of the HXB/BXH RI panel that 
had transcriptome data. Again, by using strain means, we 
reduced the non-genetic variance that often contributes to 
spurious correlations and reduces robustness of coexpression 
networks. In our experience, 20 strains, with multiple bio-
logical replicates within each strain, is the minimum number 
of strains needed for our approach (e.g., Saba et al. 2015). 
An increase in sample size used for WGCNA has not pro-
duced a systematic difference in the number of coexpression 
modules identified.

With regard to statistical significance of correlations and 
associations in our analysis, a formal strategy for multiple 
testing correction is not as straightforward as in other types 
of analyses. This is a function of the fact that we require 
the convergence of evidence across several different analy-
ses (correlation between module and phenotype; significant 
module eigengene QTL; overlap of phenotypic QTL and 
module eigengene QTL; retention of connections after par-
tial correlation), where each of these analyses is not neces-
sarily independent. The application of this series of filters 
to our data provides confidence that the resulting genetically 
controlled gene expression module is functionally relevant 
to the genetically controlled phenotype.

Discussion

Using the criteria that we have established to identify mod-
ules of coexpressed groups of genes that are associated 
with a phenotype, we have identified a liver transcriptional 
module associated with a predisposition to consume varying 
levels of alcohol. It is important to reiterate that the tran-
scriptional coexpression module and the transcripts included 
in the module were identified by an analysis with no input 
about behavioral phenotype, i.e., this module is an inherent 
characteristic of the rat liver. It is the overlap of the module 
eigengene QTL with the phenotypic QTL, and the corre-
lation of the module eigengene with the phenotype across 
the strains of the RI rat panel, that allows us to propose a 
functional relationship between transcript expression levels 
and phenotype. The analysis performed for this study rep-
resents a “data mining” experiment, in which we used our 
database of rat liver transcriptional modules to discover the 
association of a liver coexpression module with the pheno-
type of voluntary alcohol consumption. These results well 

illustrate how, using catalogued genome and transcriptome 
data, one can uncover novel possibilities for functional rela-
tionships between genome, transcriptome, and a complex 
trait phenotype.

We used a modified version of the Formal Concept 
Analysis (Saba et al. 2015) to investigate the functional 
relationships among the coexpressed gene products, and 
how these relationships may influence the phenotype of 
voluntary alcohol consumption (Fig. 3). The function of the 
transcripts in this module can be primarily related to inflam-
matory processes. The most connected transcript (hub gene) 
in the module is Cyp2r1, with expression levels positively 
correlated with alcohol consumption. This gene codes for a 
cytochrome P450 enzyme that converts cholecalciferol to 
25-OH vitamin D3, the major circulating form of the vita-
min. This intermediate is then converted to the biologically 
active calcitriol in various organs and cells, including brain 
and immune cells (Schuster 2011). Calcitriol can be formed 
in macrophages, and interacts with the vitamin D receptor 
to produce complex effects on the inflammatory responses 
of monocytes and macrophages, with an anti-inflammatory 
effect in mature macrophages (Di Rosa et al. 2012). In these 
macrophages, calcitriol delays activation of IL-6, TNFα, and 
toll-like receptors (TLRs) during the inflammatory process 
(Di Rosa et al. 2012). The activity of calcitriol depends on 
the dimerization of the vitamin D receptor with the retinoid 
receptor (RXR) (Haussler et al. 1997), and the product of 
another transcript in the module, Capn5 (Calpain 5), cleaves 
the amino terminus of RXRα, reducing its nuclear localiza-
tion (Casas et al. 2003), thus modifying the biologic impact 
of calcitriol. Calcitriol can also act in the hypothalamus to 
lower food intake (Sisley et al. 2016). Thus calcitriol repre-
sents a secretory product of liver that can affect both appetite 
and inflammation. Very recently, it has been reported that 
vitamin D levels are low in alcohol-dependent subjects, and 
this difference was suggested to contribute to alcohol “crav-
ing” (Schuster et al. 2017).

Prcp codes for an enzyme in endothelial cells (prolylcar-
boxypeptidase) that regulates the levels of various hormones 
by cleaving a C-terminal Pro-X bond (Wang et al. 2014). 
Plasma prekallikrein is a glycoprotein that is mainly synthe-
sized in liver (Bjorkqvist et al. 2013). Prekallikrein circu-
lates bound to high molecular weight kininogen (HK), and 
prekallikrein is brought to the surface of endothelial cells 
when they bind HK (Joseph and Kaplan 2005). Prolylcar-
boxypeptidase (the protein product of Prcp) activates prekal-
likrein when it is bound to HK on endothelial cells (Shariat-
Madar et al. 2004). The kallikrein formed from this reaction 
activates Factor XII to Factor XIIa, which further increases 
activation of prekallikrein. Kallikrein also cleaves HK to 
release bradykinin, an inflammatory mediator that activates 
constitutive bradykinin BK2 receptors and the inducible 
BK1 receptors to release nitric oxide and prostaglandins, as 

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
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well as activate the MAPK and NFκB pathways (Bjorkqvist 
et al. 2013; Dutra 2017). Bradykinin, when administered 
in combination with the angiotensin-converting inhibitor, 
captopril (which increases bradykinin levels by inhibition 
of kininase II), has been reported to reduce alcohol intake 
and increase water intake by rats (Robertson et al. 1993). 
It is also of particular interest that bradykinin can disrupt 
the function of the blood–brain barrier (Easton and Abbott 
2002). Therefore, bradykinin derived from prekallikrein via 
an initial action of the prolylcarboxypeptidase can poten-
tially affect alcohol consumption by its own central actions, 
and/or by increasing inflammation and enhancing the ability 
of cytokines and hormones released from the liver to enter 
the brain. The BK1 receptor has also been implicated in 
regulation of energy balance and food intake (Mori et al. 
2008). These findings suggest that bradykinin, like calcitriol, 
can influence both inflammatory processes and appetite/food 
intake.

Some of the other correlated transcripts in the module 
can also be related to prekallikrein metabolism. The prod-
uct of Galnt18 (polypeptide N-acetylgalactosaminyltrans-
ferase 18) is one of a large family of enzymes that control 
mucin-type O-glycosylation, the step where the first gly-
can is attached to a serine or threonine residue in a protein, 
forming an N-acetylgalactosamine (GalNAc) α1-O-serine/
threonine linkage in O-glycoproteins (Bennett et al. 2012; 
Kong et al. 2015). These reactions take place in the Golgi 
apparatus (Bennett et al. 2012). There are up to 20 Gal-
NAc-Ts that all catalyze the initiation step where GalNAc 
is attached to serine and threonine residues. These enzymes 

have been divided into nine families based on phylogenetic 
and genomic analysis (Bennett et al. 2012), and they have 
different, but overlapping substrate specificities (Schjold-
ager and Clausen 2012). It appears that the in vivo GalNAc 
O-glycosylation of proteins may be more dependent on the 
enzymes that are expressed in a particular cell than on sub-
strate specificity of the enzymes as assessed in vitro (Kong 
et al. 2015). Our data show that Galnt18 is expressed at 
the highest level in liver sinusoidal endothelial cells, similar 
to Prcp (Online Resource 2). There is little or no informa-
tion available regarding substrate specificity of GalNAc-
T18 (Kong et al. 2015); however, this enzyme does have 
an identified activity (Raman et al. 2012), and it has been 
characterized as a chaperone-like protein that can modu-
late the activity of GalNAc-T2, which is highly expressed 
in liver (Bennett et al. 2012). Factor XII, which is involved 
in the formation of bradykinin from prekallikrein, is subject 
to mucin-type Threonine 309 glycosylation, and could be a 
substrate of GalNAc-T2 and/or -T18.

Another member of the module, Serpinh1, also known 
as Hsp47, is an endoplasmic reticulum (ER)-resident colla-
gen-specific chaperone that binds to procollagen in the ER, 
and is involved in the transport of procollagen to the Golgi 
apparatus (Miyata et al. 2013). Our data show a high level of 
Hsp47 expression in hepatic stellate cells (Online Resource 
2), and increased expression of Hsp47 in hepatic stellate 
cells, has been implicated in liver fibrosis (Ishida and Nagata 
2011). Inflammation and cell death are key processes in the 
development of liver fibrosis, involving the inflammasome 
response and activation of hepatic stellate cells (Alegre et al. 

Fig. 3  Functional relationships 
among transcripts in the liver 
transcriptional coexpression 
module associated with alcohol 
consumption (module 86). 
Each of the transcripts in the 
coexpression module is circled 
in blue. The ⊕ and ⊖ signs 
indicate the effects of the tran-
script products on the activity 
of the indicated pathway. The 
module eigengene is positively 
correlated with the phenotype 
of alcohol consumption across 
the HXB/BXH RI strains, as 
indicated by the arrow on the 
left. The correlations among 
the transcripts are indicated 
in Fig. 2. ↑BBB increase in 
permeability of the blood–brain 
barrier, PreK prekallikrein, 
K kallikrein, BK bradykinin, 
BK1R and BK2R bradykinin 1 
and 2 receptors, respectively
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2017). Expression levels of Hsp47 may therefore reflect the 
baseline degree of liver inflammation (and predisposition 
to the development of fibrosis) in the rats of the RI panel. 
Hsp47 expression levels are also affected by the level of 
O-glycosylation in the Golgi apparatus, where O-glycosyla-
tion is associated with procollagen maturation and is neces-
sary for glycoprotein trafficking (Miyata et al. 2013). This 
relationship suggests a functional interaction between Hsp47 
and Galnt18, which is also expressed in hepatic stellate cells 
(Online Resource 2).

Several of the other transcripts in the module can be 
linked to inflammatory processes through the activity of 
TNFα. Tmem9b is a highly connected transcript that codes 
for a lysosomal transmembrane protein that is required for 
activation of the NFκB and MAPK pathways by TNFα 
(Dodeller et al. 2008). This activation leads to the production 
of the cytokine IL-6, which has context-dependent pro- and 
anti-inflammatory effects, and the inflammatory chemokine, 
IL-8 (Dodeller et al. 2008; Dong and Zheng 2015; Rothaug 
et al. 2016). Lyve1 (lymphatic vessel endothelial hyaluronan 
receptor 1) is another highly connected transcript associated 
with TNFα activity. This transcript codes for a hyaluronan-
binding protein that is expressed in liver sinusoidal endothe-
lial cells (Online Resource 2) and in activated macrophages 
(Arimoto et al. 2010; Pinto et al. 2012). The high molecular 
weight forms of the hyaluronan polymer are anti-inflamma-
tory, while the lower molecular weight forms are pro-inflam-
matory and lead to the release of TNFα (Jackson 2009). The 
conversion of the longer forms of hyaluronan to the shorter 
forms depends on internalization of hyaluronan into lym-
phatic endothelial cells, and Lyve1 is the likely protein that 
mediates this internalization (Jackson 2009). Expression of 
Lyve1 is positively correlated with expression of Tmem9b, 
suggesting a cooperative interaction in regulating the activ-
ity of TNFα.

Ripply1 [ripply1 homolog (zebrafish)] codes for a protein 
that associates with a family of proteins that act as transcrip-
tional repressors, the Groucho/Transducin-Like Enhancer 
of split (Gro/TLE) co-repressor proteins (Kaul et al. 2015; 
Kawamura et al. 2008). These proteins do not directly bind 
DNA, but are recruited by DNA-bound repressor proteins. 
Ripply family proteins act as specific adaptors that recruit 
the global Gro/TLE proteins and can convert transcription 
factors from activators to repressors (Kawamura et al. 2008). 
TLE1 is highly expressed in macrophages, and inhibits LPS 
induction of TNFα, i.e., has anti-inflammatory effects (De 
Paoli et al. 2016). In addition to the full-length Gro/TLE 
proteins, mouse and human AES (amino terminal enhancer 
of split) and ESG (enhancer of split groucho) proteins have 
been identified, and protein–protein interactions between 
AES and the p65 subunit of NFκB have been identified (Tet-
suka et al. 2000). This interaction inhibited TNFα-dependent 
activation of the NFκB and MAPK pathways. The positive 

correlation of Ripply and Tmem9b expression levels suggests 
that the products of these transcripts can generate a feedback 
loop to control the activity of TNFα.

The module also contains Acer3 (alkaline ceramidase 
3), which is one of a heterogeneous family of ceramidases, 
with the major function of hydrolyzing ceramides to gener-
ate sphingosine which is phosphorylated to sphingosine-1 
phosphate. Ceramides are bioactive lipids that mediate 
many cellular processes, and are increased in cells exposed 
to cytokines [TNFα, IL-1β (Hanna et al. 2001; Rolz et al. 
2003), and vitamin D (Mao and Obeid 2008)], among other 
stresses. Acer3 is active under alkaline conditions and its 
activity is stimulated by  Ca2+. The enzyme efficiently hydro-
lyzes long-chain unsaturated ceramides, phytoceramides, or 
dihydroceramide (Mao and Obeid 2008). It has been shown 
that Acer3 affects the immune response by regulating the 
levels of C18:1 ceramide in macrophages and other cells 
of the innate immune system. In response to LPS, expres-
sion of Acer3 is downregulated, leading to increased lev-
els of C18:1 ceramide and expression of pro-inflammatory 
cytokines (Wang et al. 2016). These findings demonstrate 
that the enzyme encoded by Acer3 per se can have an anti-
inflammatory effect in macrophages, and interestingly, Acer3 
expression is strongly negatively correlated with Tmem9b, 
Lyve1, Serpinh1, and Prcp, the products of which are associ-
ated with pro-inflammatory effects.

The function of the remaining annotated transcripts in the 
module (Tmc3, rnf141, LOC100910710) is, at this time, less 
clear, but their presence in the liver coexpression module 
(module 86) may suggest “guilt by association” for their 
involvement in inflammatory processes in the liver and/or 
liver/brain communication.

The functions of the products of the transcripts in Module 
86 indicate that this module is a component of inflammatory 
processes active in liver. There is a plethora of information 
available regarding ethanol potentiating or suppressing liver 
inflammation (Lowe et al. 2017). The role of inflammation 
and innate immune signaling in alcohol consumption has 
also recently been the subject of investigation. Several stud-
ies with mice have demonstrated that various chemokines, 
chemokine receptors, cytokines, and inflammatory path-
ways have effects on alcohol intake (Karlsson et al. 2016; 
Robinson et al. 2014; Truitt et al. 2016). It is particularly 
noteworthy that many of the transcripts and signaling path-
ways represented in our candidate coexpression module 
have opposing effects, i.e., they are pro- or anti-inflamma-
tory. This result suggests that it is the balance among these 
opposing forces (e.g., differences in level of expression of 
the “opposing” transcripts) in each rat strain that influences 
the variation in predisposition to consume alcohol and may, 
as well, influence liver inflammation in response to alcohol 
ingestion. The products of two of the transcripts, Cyp2r1 and 
Prcp, also implicate module 86 in pathways related to food 
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intake and energy metabolism. We and others have noted 
that the caloric content of alcohol is an important contribu-
tor to alcohol intake by rats, and that peripherally produced 
peptides that regulate appetite and consummatory behavior 
also influence the intake of alcohol and other drugs (Engel 
and Jerlhag 2014; Tabakoff et al. 2009).

The central nervous system is usually considered as the 
source of motivation to consume alcohol. However, there is 
evidence that cytokines can mediate communication between 
the periphery and brain (D’Mello and Swain 2014). Such 
communication has been invoked to explain how peripheral 
activation of TL4 by LPS can influence alcohol consump-
tion (Mayfield et al. 2013). The production of cytokines in 
the brain (microglia) can be induced by peripheral immune 
or inflammatory signals, including bradykinin, which can 
generate neuroinflammation through interaction with the 
BK1 receptor (Asraf et al. 2017; D’Mello and Swain 2011). 
Our systems genetic approach provides evidence for how 
peripheral inflammation, as well as liver secretory products 
that may affect appetite and energy metabolism, can influ-
ence brain function and alcohol consumption. These results 
emphasize the importance of considering the whole body to 
understand the genetic factors that affect the predisposition 
to consume alcohol, and potentially the effects of alcohol 
exposure that contribute to organ (liver) damage.

It has to be noted that, for the current analysis, both tran-
scriptome and behavioral phenotype data are from adult 
male rats. The age range and gender were chosen to reflect 
these parameters used in a majority of phenotypic studies 
with rats. This may, however, limit the generality of the 
results, for instance, it is known that female rodents have 
QTLs for alcohol consumption that differ from males (Van-
derlinden et al. 2015; Vendruscolo et al. 2006), and rats of 
different ages also exhibit differences in drinking behavior 
(Wang et al. 2003). Nevertheless, because of the nature of 
the RI panel (genetically identical animals over generations), 
and the fact that we identify genetically controlled transcrip-
tional networks that are associated with the predisposition to 
consume alcohol in sexually mature males, the current data 
could be used as the foundation to compare and contrast 
the genetically mediated networks that predispose voluntary 
alcohol consumption across characteristics such as sex and 
age, as well as the influence that environmental factors may 
have on the modulation of the alcohol drinking phenotype.

In summary, while many studies have been performed 
that implicate alcohol-induced inflammation as leading to 
organ damage, particularly alcoholic liver disease (Lowe 
et al. 2017), less emphasis has been placed on the role of 
individual differences in immunity or inflammation that may 
contribute to an individual’s predisposition to consume alco-
hol. Our findings suggest that targeting inflammatory pro-
cesses in the periphery may be a novel approach to reducing 
alcohol consumption and alcohol-induced organ damage.
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