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studies in human populations. Aspects of the genetic under-
pinnings of complex traits can be represented as simplified 
gene networks on which human orthologues can be superim-
posed to provide blueprints for subsequent studies on analo-
gous traits in human populations. Fundamental principles of 
the genetic architectures of Drosophila complex traits are 
likely applicable across phyla, from the DGRP to human 
populations.

Genetic studies on human populations: trials 
and tribulations

Understanding the relationship between genotypic varia-
tion and variation in complex and quantitative trait pheno-
types in human populations remains an ongoing challenge 
(Mackay 2014; Boyle et al. 2017). Yet, being able to make 
causal links between DNA variants and variation in organ-
ismal traits will result in a major leap forward to ultimately 
enable predicting both healthy phenotypes (e.g., lifespan, 
body weight) and susceptibility to disease.

Rare diseases that occur with high incidence within fami-
lies or inbred populations and with high penetrance and that 
arise from single mutations with large effects can be sub-
jected to classical linkage analysis in pedigrees to identify 
the causal DNA variant. However, most traits and common 
diseases have a complex genetic basis and their manifes-
tation depends on multiple segregating genes, and interac-
tions between them and environmental factors. Analyses of 
such traits require population-based association mapping 
approaches.

The classic measure that partitions phenotypic varia-
tion in genetic and environmental variance is the herit-
ability (Falconer and Mackay 1996). The narrow sense 
heritability (h2) is the portion of additive genetic variance 
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that contributes to the total phenotypic variance that can 
be transmitted from parents to offspring. This measure of 
heritability is important for animal and plant breeding as it 
can be readily estimated from correlations among relatives 
and predicts response to artificial selection. The broad sense 
heritability (H2) represents the fraction of phenotypic vari-
ance in a population that can be attributed to all sources of 
genetic variation, including both additive and non-additive 
(dominance, epistatic) genetic variance. High values of H2 
provide favorable scenarios for genome-wide association 
(GWA) analyses. However, even when H2 is substantial, 
establishing causality of candidate polymorphisms to the 
phenotype in human GWA studies is challenging due to large 
blocks of linkage disequilibrium (LD)—the correlation in 
allele frequencies between polymorphic sites—in the human 
genome (Reich et al. 2001). Furthermore, genotype by envi-
ronment interactions may result in lack of reproducibility 
between populations, when associations that are significant 
in a population in one environment cannot be resolved in 
a population under different environmental conditions. 
Gene–gene interactions (epistasis) may also result in failure 
to reproduce associations in different populations with dif-
ferent allele frequencies of causal loci (Mackay 2014, 2015). 
Moreover, when GWA analyses on individuals with vastly 
different genetic backgrounds are combined, spurious asso-
ciations may be observed due to admixture (ethnic stratifica-
tion; Pritchard and Rosenberg 1999). In addition, often the 
causal relationship between the trait and genes of unknown 
function or without biological context remains enigmatic.

The structure of the human genome, which contains 
regions of linkage disequilibrium, and differences in devel-
opmental history, lifestyle, and social and physical envi-
ronments, requires phenotyping very large populations to 
resolve significant effects of candidate polymorphisms on 
quantitative traits (e.g., height; Wood et al. 2014) and sus-
ceptibility to common diseases (e.g., Zeggini et al. 2008). 
Such large population studies, often with tens of thousands 
of subjects, have identified many candidate genes that con-
tain single nucleotide polymorphisms (SNPs) associated 
with common diseases, such as diabetes (Gaulton et al. 
2015; Mohlke and Boehnke 2015) or cardiovascular disease 
(CARDIoGRAMplusC4D Consortium et al. 2013) as well 
as a vast number of copy number variants associated with 
schizophrenia (Stefansson et al. 2008, 2009). The concept of 
“common variants for common diseases” (Reich and Lander 
2001), however, needs to be re-evaluated, as many rare vari-
ants with relatively large effects may cumulatively contribute 
to a significant fraction of disease risk within a population 
(Keinan and Clark 2012; Bomba et al. 2017).

Whereas certain human parameters, such as height, can 
be quantified precisely (Wood et al. 2014), many other phe-
notypes are difficult to quantify consistently. For example, 
evaluation of propensity to use alcohol or drugs often relies 

on self-reported questionnaires, and alcohol use and addic-
tion may be confounded by psychiatric disorders or stress 
conditions. In addition, different investigators may use 
different criteria for alcohol use and addiction (Morozova 
et al. 2014). Furthermore, criminalization of illegal drug 
use makes it difficult to recruit subjects for GWA studies to 
explore genetic variants that may predispose to substance 
abuse. Genetic susceptibility to toxic exposure (e.g., heavy 
metals) is also hard to quantify as it is often confounded by 
exposure to multiple toxicants, and toxic effects may become 
evident long after the initial exposure. Similarly, cumulative 
effects of oxidative stress, for example, due to exposure to 
pesticides, which may lead to neurological disorders such as 
Parkinson’s disease (Dardiotis et al. 2013), are challenging 
to quantify. In addition, many human disease phenotypes, 
e.g., autism, are heterogeneous and present a spectrum of 
manifestations and severity, which may not necessarily arise 
from the same genetic risk factors (Chahrour et al. 2016). 
Finally, most human studies on genetic disease risk focus 
on extreme states, i.e., presence of disease, whereas clini-
cal manifestation may result from surpassing a threshold of 
normal trait distribution within the population. For exam-
ple, sociopathic aggression represents an extreme along the 
spectrum from assertiveness to shyness. Where to draw the 
threshold in this case is not unambiguous, but may be influ-
enced by sociocultural boundaries.

Despite significant advances in studies on the genetic 
underpinnings of complex traits in human populations, both 
in health and disease, the challenges and impediments inher-
ent in these studies illustrate a compelling need for com-
parative studies in model organisms. Studies on the genetic 
architectures of complex traits in Drosophila melanogaster 
have provided many insights with translational potential for 
human population genetics.

Drosophila: an advantageous model for the genetic 
dissection of complex traits

Many of the constraints encountered in human population 
studies can be overcome in the D. melanogaster genetic 
model system. We can inbreed flies, thus enabling strict 
control over the genetic background, and we can rear virtu-
ally unlimited numbers of genetically identical individuals. 
Drosophila has a 2-week generation interval under stand-
ard laboratory conditions and can be grown rapidly under 
well-controlled environmental conditions, without regula-
tory restrictions and at relatively low cost. We can readily 
substitute chromosomes, generate transgenic flies, and use 
CRISPR/Cas9 technology for gene editing, which allows 
us to create “designer” genotypes (Bassett and Liu 2014). 
About 75% of human disease-associated genes have a Dros-
ophila ortholog (Reiter et al. 2001); and a wide range of 
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morphological, physiological, behavioral, and life history 
traits, many with relevance to analogous human traits, can 
be quantified precisely. Hence, evolutionary conservation of 
fundamental biological principles empowers translational 
inferences across phyla, including humans.

The genetic architectures of complex traits can be 
explored by large-scale mutational screens, conventional 
quantitative trait locus (QTL) linkage mapping approaches, 
and GWA analyses. Large collections of Drosophila stocks 
with transposon insertions, such as P-element insertions, 
which often target promoter regions, or piggyBac inserts, 
which disrupt genes without promoter bias, are publicly 
available for mutational screens (Zhai et al. 2003; Thibault 
et al. 2004; Bellen et al. 2011). Transposon-based mutagen-
esis screens have shown that complex traits present large 
mutational targets, which are affected by mutations in 
many genes, often representing a substantial fraction of the 
genome, implicating extensive pleiotropy (Sambandan et al. 
2006; Mensch et al. 2008; Magwire et al. 2010; Zwarts et al. 
2011).

Whereas mutational screens identify genes that contrib-
ute to manifestation of the trait under study, linkage and 
association mapping analyses, respectively, identify a subset 
of those genes that harbor polymorphisms that contribute 
to variation in the phenotype. Genome-wide studies can 
identify candidate genes that contribute to phenotypic vari-
ation, while subsequent mutational analyses can provide 
evidence that disruption of the gene indeed affects the trait 
and provide a focus for detailed mechanistic studies. Thus, 
these approaches are complementary. In Drosophila, GWA 
analyses became possible with the development of the D. 
melanogaster Genetic Reference Panel (DGRP; Mackay 
et al. 2012; Huang et al. 2014).

The D. melanogaster Genetic Reference Panel (DGRP)

The DGRP is a population of 205 inbred wild-derived lines, 
which were generated by subjecting the offspring of indi-
vidual gravid females collected from the Farmer’s Market 
in Raleigh, North Carolina, to 20 generations of full sib 
inbreeding (Mackay et al. 2012; Huang et al. 2014). Inbreed-
ing minimizes genetic variation among individuals within 
each line, while genetic variation between the lines reflects 
the variation in the population from which they were derived 
(Fig. 1a). The lines were sequenced to high coverage (aver-
age ~ 27-fold) and a total of 4,565,215 naturally occurring 
molecular variants were identified, including 3,976,011 
high-quality single or multiple nucleotide polymorphisms; 
169,053 polymorphic insertions; 293,363 polymorphic dele-
tions; and 125,788 polymorphic microsatellites. The vast 
majority of the DGRP lines are genetically unrelated, except 
for a few lines which may have resulted from random sam-
pling of related individuals from the population (Fig. 1b). 

Residual heterozygosity in the lines is largely due to segre-
gating polymorphic inversions, which represent islands of 
diversity within otherwise homozygous genomes. In addi-
tion, 53% of the DGRP lines are infected with the maternally 
transmitted endosymbiotic bacterium, Wolbachia pipientis 
(Huang et al. 2014).

It should be noted that lines that survived inbreeding 
have been purged of highly deleterious alleles and selection 
may have occurred for epistatic interactions among vari-
ants that protect fitness during inbreeding. Also, long-term 
maintenance in the laboratory may give rise to adaptation 
to the laboratory environment. Despite these limitations, the 
DGRP provides a rich collection of natural variants that have 
survived the sieve of natural selection and are a treasure 
trove of genetic variation that can be harnessed for GWA 
studies. All traits measured in the DGRP to date show exten-
sive phenotypic variation that far exceeds variation observed 
among standard laboratory inbred strains or recombinant 
inbred lines. Since individuals within each line are geneti-
cally virtually identical, the same genotypes can be meas-
ured repeatedly, which enables accurate quantification of 
phenotypes. Since phenotypic measurements can be spread 
over time, environmental noise can be randomized, further 
minimizing error in phenotypic estimates. Furthermore, 
since the DGRP is a publicly available resource, different 
laboratories can measure and correlate phenotypes on the 
same genotypes. Table 1 lists GWA analyses performed to 
date using the DGRP.

One example of the translational potential between flies 
and humans is a study which examined genome-wide varia-
tion in gene expression with phenotypic variation in alcohol 
sensitivity across 40 DGRP lines followed by validation of 
candidate genes through transposon-mediated mutagenesis 
(Morozova et al. 2009). One gene that emerged as a particu-
larly interesting candidate gene was Men, which encodes 
malic enzyme. Malic enzyme represents a metabolic switch 
between energy production and lipid biosynthesis. Since 
excessive alcohol consumption in people results in fatty 
liver syndrome, a subsequent study in the Framingham Heart 
Study Offspring Cohort population focused on the cytoplas-
mic Malic Enzyme 1 (ME1) gene and identified polymor-
phisms associated with variation in alcohol consumption, 
which would not have been otherwise detected in a GWA 
study in this limited size population (Morozova et al. 2009).

Another example of how studies on the DGRP can guide 
investigations on human disease-associated genes is the 
recent identification of candidate modifier genes in a Dros-
ophila model for retinitis pigmentosa (Chow et al. 2016).

Statistical considerations for GWA analyses

Large LD blocks in the human genome enable the use of 
tagging SNPs for GWA studies (Reich et al. 2001; Ke et al. 
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2004). In contrast to the human genome, LD in the D. mel-
anogaster genome decays rapidly with physical distance, 
on average within a few hundred base pairs (Fig. 1c; Mac-
kay et al. 2012). The advantage of low LD is that associ-
ated SNPs are likely causal or very near the causal variant. 

However, low LD prevents the use of tagging SNPs and 
mandates whole genome sequences for GWA analyses. 
Because the X chromosome experiences a lower effective 
population size, LD decays more slowly on the X chromo-
some than on the autosomes, and LD is notably increased 

Fig. 1  The Drosophila 
melanogaster Genetic Refer-
ence Panel. a Diagram of the 
derivation of DGRP lines from 
a natural population. b Genomic 
relatedness among DGRP lines. 
The distribution of the relation-
ship between all DGRP lines 
and the reference sequence is 
displayed as a box plot. From 
Huang et al. (2014). c Decay of 
LD (average R-squared) in bp as 
a function of physical distance.   
Modified from Mackay et al. 
(2012) 
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Table 1  Genome-wide association studies in the DGRP

Trait Number of 
DGRP lines

H2 Number of signifi-
cant variants/genes

References

α-Amanitin resistance 180 ND NA/11 Mitchell et al. (2017)
Alcohol sensitivity 205 0.38–0.42 947/535 Morozova et al. (2015)
Aggression 200 0.69 74/39 Shorter et al. (2015)
Boric acid toxicity 163 ND 5/3 Najarro et al. (2017)
Chill coma recovery 159 0.36 235/149 Mackay et al. (2012)
Courtship behavior 166 0.03–0.09 48/24 Gaertner et al. (2015)
Courtship song 168 0.46 142/42 Turner et al. (2013)
Cuticular hydrocarbon composition 157–169 0.22–0.98 822/478 Dembeck et al. (2015a)
Death following traumatic brain injury 179 ND 216/98 Katzenberger et al. (2015)
Developmental time 43 0.89 46/27 Horváth et al. (2016)
Electrical shock avoidance 38 ND 607/169 Appel et al. (2015)
Endoplasmic reticulum stress 114 ND 106/46 Chow et al. (2013a)
Fecundity, mated life span 135–189 0.15–0.36 1031/549 Durham et al. (2014)
Genome size 205 ND 90/55 Huang et al. (2014)
Genotype by social environment interaction for aggression 87 0.12–0.14 24/17 Rohde et al. (2017)
Food intake 182 0.45 74/54 Garlapow et al. (2015)
Hybrid dysgenesis 33 NA NA/NA Srivastav and Kelleher (2017)
Insecticide resistance 178 ND 59/5 Battlay et al. (2016)
Lead toxicity 200 0.76–0.80 216/123 Zhou et al. (2016)
Leg patterning 117 ND 56/68 Grubbs et al. (2013)
Male genital size and shape 155 0.25–0.62 44/NA Takahara and Takahashi (2015)
Methylmercury tolerance 173 0.80 589/251 Montgomery et al. (2014)
Microbiota composition and nutritional indices 79 ND 7/6 Chaston et al. (2016)
Microbiota-dependent nutrition 108 0.31–0.73 NA/436 Dobson et al. (2015)
Microenvironmental plasticity 174–201 0.36–0.75 232/120 Morgante et al. (2015)
Mitochondrial function 40 0.15–0.20 69/77 Jumbo-Lucioni et al. (2012)
Mushroom body size 40 0.12–0.38 357/139 Zwarts et al. (2015)
Nutritional indices 172 ND 48/23 Unckless et al. (2015a)
Olfactory behavior 157 0.02–0.14 1370/NA Brown et al. (2013)
Olfactory behavior 164 0.45 184/176 Swarup et al. (2013)
Olfactory behavior 186 0.14–0.33 3540/2154 Arya et al. (2015)
Oxidative stress resistance 167 0.36–0.48 452/395 Weber et al. (2012)
P-element and hobo element dosage 52 NA NA/NA Srivastav and Kelleher (2017)
Phenotypic variability of locomotion 159 ND 36/22 Ayroles et al. (2015)
Phototaxis 191 0.27–0.33 3319/1387 Carbone et al. (2016)
Pigmentation 175 0.66–0.88 155/84 Dembeck et al. (2015b)
Radiation resistance 154 > 0.80 32/24 Vaisnav et al. (2014)
Recombination rate 205 0.12–0.41 160–688/NA Hunter et al. (2016)
Resistance and tolerance to bacterial infection 172 ND 118/94 Howick and Lazzaro (2017)
Resistance to bacterial infection 172 ND 37/27 Unckless et al. (2015b)
Resistance to fungal infection 188 0.23–0.47 161/120 Wang et al. (2017)
Resistance to viral infection 185 0.07–0.34 NA/3 Magwire et al. (2012)
Sensitivity to oxidative stress 192 0.14–0.41 1230/898 Jordan et al. (2012)
Sleep 168 0.19–0.54 2427/1551 Harbison et al. (2013)
Startle response 167 0.44 90/39 Mackay et al. (2012)
Starvation resistance 166 0.54 203/80 Mackay et al. (2012)
Starvation resistance, body mass, and body composition 171–181 ND 17/12 Nelson et al. (2016)
Sperm competition 39 ND NA/33 Chow et al. (2013b)
Susceptibility to enteric infection 140 0.61 27/8 Bou Sleiman et al. (2015)
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in areas of reduced recombination, i.e., in the vicinity of 
autosomal telomeres and centromeres, and in polymorphic 
inversions, where recombination is suppressed (Mackay 
et al. 2012). Furthermore, due to the restricted population 
size of the DGRP, variants with minor allele frequencies 
of less than 5% may exhibit elevated long-range LD, since 
such rare variants will be in perfect LD with all variants 
that are private to a particular DGRP line. Thus, polymor-
phisms with minor allele frequencies of less than 5% should 
be excluded from GWA analyses.

The gold standard for genome-wide statistical signifi-
cance in human GWA studies is a Bonferroni-adjusted 
threshold for multiple testing. GWA analyses in the DGRP 
are confined to only 205 lines with several million tests. 
Consequently, we seldom observe SNPs that show associa-
tions with P values that exceed a strict Bonferroni-corrected 
threshold. However, quantile–quantile plots (Q–Q plots) can 
indicate deviations from linearity between the distributions 
of observed and predicted values, indicating enrichment of 
true positive associations at P values which are orders of 
magnitude below the Bonferroni threshold. For most GWA 
analyses in the DGRP, we can identify approximately several 
hundred polymorphisms associated with phenotypic varia-
tion at an empirical threshold of P < 10− 5, supported by Q–Q 
plots (Weber et al. 2012; Swarup et al. 2013; Harbison et al. 
2013; Morozova et al. 2015; Shorter et al. 2015; Garlapow 
et al. 2015; Carbone et al. 2016). Since all polymorphisms 
in the DGRP are known, those polymorphisms represent the 
top SNPs and/or insertions–deletions, which are associated 
with variation in the trait under study.

Mutational analyses or targeted RNAi experiments can 
be used to assess whether candidate genes that harbor such 
associated polymorphisms themselves affect the trait when 
their expression is disrupted. Such validation on a sample 
of candidate genes for which viable mutants are available 
establishes an empirical false discovery rate at the gene 
level, albeit not at the level of molecular variants. Previ-
ous studies have shown that we can validate about 60–80% 
of candidate genes using this approach (Weber et al. 2012; 
Swarup et al. 2013; Harbison et al. 2013; Morozova et al. 
2015; Shorter et al. 2015; Garlapow et al. 2015; Carbone 

et al. 2016). Within pleiotropic genes different SNPs can be 
associated with variation in specific organismal traits (Car-
bone et al. 2006; Wang et al. 2010).

We can assess to what extent candidate genes with asso-
ciated polymorphisms can be organized in interaction net-
works based on known genetic or physical interactions, and 
we can estimate the likelihood that a similar size network 
would emerge if the same number of genes were chosen at 
random. Here, the P value for significance of the network 
is not encumbered by multiple test considerations. Moreo-
ver, genes that form networks show very low empirical false 
discovery rates and validate at a high rate when subjected 
to mutational analysis (Fig. 2). However, only a restricted 
subset of genes with associated polymorphisms can be inter-
connected to form a network, although some of the remain-
ing genes can sometimes be implicated in similar biological 
processes represented by the network through gene ontology 
analyses.

Extreme QTL mapping

We can increase the power of GWA analyses by generating 
advanced intercross populations (AIP) from DGRP lines. 
There are several strategies for generating such AIPs. We 
can select a small number of lines with extreme pheno-
types and cross them for many generations (Swarup et al. 
2013; Shorter et al. 2015); we can select a random number 
of DGRP lines (Huang et al. 2012; Morozova et al. 2015; 
Carbone et al. 2016); or, we can select DGRP lines that are 
genetically unrelated with minimal residual heterozygosity, 
and free of inversions and infection of the symbiotic bacte-
rium, W. pipientis (Garlapow et al. 2017). The lines can be 
crossed in a round-robin crossing design (Fig. 3) or a diallel 
crossing scheme (Griffing 1956) to generate a base popula-
tion. Many generations of intercrossing in large population 
sizes to minimize loss of diversity due to drift will result 
through recombination in a virtually unlimited number of 
unique genotypes. We can now select and pool individuals 
with extreme phenotypes, subject the pools to bulk DNA 
sequencing, and identify alleles that differentially segregate 
among the phenotypic extremes (Fig. 3). This experimental 

Table 1  (continued)

Trait Number of 
DGRP lines

H2 Number of signifi-
cant variants/genes

References

Toluene inhalation 123 ND 82/66 Bushnell et al. (2017)
Virgin egg retention 90 0.60 29/15 Akhund-Zade et al. (2017)
Virgin female life span 197 0.41 NA Ivanov et al. (2015)
Wing morphology 143 0.71–0.78 439/157 Vonesch et al. (2016)

All published GWA analyses listed in PubMed as of September 12, 2017 are listed
ND not determined, NA not available
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approach, known as “extreme QTL mapping” (Ehrenreich 
et al. 2010), resembles case–control studies in human genet-
ics, where allele frequencies associated with disease status 
are contrasted with those among unaffected age-matched 
individuals.

The advantages of the AIP design are that alleles that 
are present at low frequencies in the DGRP and may have 
large phenotypic effects, but cannot be analyzed by conven-
tional GWA due to the risk of spurious LD, will be present 
at higher frequencies in the AIP base population, and hence 
their effects can be assessed. The diversity of genotypes 
generated through intercrossing increases statistical power, 
provided the pools for bulk DNA sequencing contain suffi-
ciently large numbers of individuals. Indeed, extreme QTL 
mapping studies using DGRP-derived AIPs can resolve trait-
associated variants that surpass a Bonferroni threshold for 
multiple tests. It is noted, however, that generating an AIP 
results in loss of polymorphisms that are not represented 
among the lines used to generate the base population. Nev-
ertheless, AIPs derived from ~ 40 DGRP lines still captured 
a substantial amount of the genetic variation present in the 
DGRP (Huang et al. 2012).

From flies to human genetics: common concepts

The transcriptional niche

Genes do not act in isolation, but form part of functional 
expression networks. Introduction of a mutation that alters 
gene expression can result in altered transcript abundances 
of a suite of genes in addition to that of the target gene 
(Anholt et al. 2003). Analyses of correlations among tran-
scripts of 40 DGRP lines reared under standard growth con-
ditions showed a modular organization of the transcriptome, 
in which 10,096 genetically variable transcripts could be 
clustered in 241 modules, such that the genetic correlation 
of transcripts within each module was maximized and the 
genetic correlation of transcripts between modules mini-
mized (Ayroles et al. 2009). This modular organization, 
however, is dynamic and changes under different environ-
mental conditions (Zhou et al. 2012). Analyses of correlated 
transcript abundances with variation in gene expression of a 
focal gene define a group of correlated transcripts, the size 
of which depends on the statistical correlation threshold. We 
have designated such a modular array around a focal gene as 

Fig. 2  Genetic networks for variation in olfactory behavior. a A net-
work of interactions among candidate genes associated with variation 
in response to the odorant benzaldehyde among DGRP lines. Can-
didate genes are indicated by rectangles, missing genes (i.e., genes 
without significant associations) by triangles, and metabolites by 
circles. Components of the network associated with distinct intercon-
nected cellular processes are highlighted by the colored backgrounds. 
b Validation of the connectivity of the predicted network. Transposon 
insertion in the Pkc53e locus results in a two-fold increase in gene 
expression accompanied by aberrant olfactory behavior. qRT-PCR 

of transcripts of genes connected in the network shown in panel a 
in a Pkc53e P{MiET1}-insertion mutant show increased expression 
levels compared to control, corroborating their functional connectiv-
ity. Error bars indicate SEM. *0.01 ≤ P ≤ 0.05; **0.001 ≤ P ≤ 0.01; 
***0.0001 ≤ P ≤ 0.001. c An extended network of candidate genes 
associated with variation in responses to 14 structurally different 
odorants based on GWA and extreme QTL mapping analyses. Note 
the absence of missing genes in this network.  Modified from Swarup 
et al. (2013) and Arya et al. (2015) 
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the gene’s “transcriptional niche” (Fig. 4a; Arya et al. 2010). 
Gene ontology analyses of transcriptional niches can provide 
functional contexts to genes of unknown function or indicate 
pleiotropy of the focal gene (Fig. 4b, c).

The concept of the transcriptional niche is of relevance 
to human genetics, but often underappreciated. Identifica-
tion of a SNP associated with a disease phenotype does not 
necessarily mean that the gene harboring this SNP is directly 
causal to the phenotype, since its effect may be mediated 
through a shift in its transcriptional niche, such that modula-
tion of expression of a different gene may actually be causal 
to the phenotype (Fig. 4d).

Epistasis, an inconvenient truth

Early QTL mapping studies on D. melanogaster recombi-
nant inbred lines provided evidence for epistasis (Long et al. 
1995; Leips and Mackay 2000; Dilda and Mackay 2002; 
Montooth et al. 2003). Subsequent studies on olfactory 
behavior, sleep, and waking activity, using chromosome 
substitution lines in which different chromosomes extracted 
from DGRP lines were introduced in a common genetic 
background with and without single P-element insertional 
mutations, provided evidence for suppressing epistasis, i.e., 
epistatic interactions tend to suppress the effects of new 

mutations (Yamamoto et al. 2009; Swarup et al. 2012). How-
ever, it remained unclear how prominent the contribution 
of epistasis is to the genetic architecture of complex traits.

When results from GWA analyses in the DGRP on star-
tle behavior, recovery time from a chill-induced coma, and 
resistance to starvation stress were compared to the results 
from extreme QTL mapping experiments in DGRP-derived 
AIPs, SNPs identified by extreme QTL mapping were dif-
ferent from those identified by GWA analysis for all three 
traits (Huang et al. 2012). However, gene ontology and net-
work analyses revealed that candidate genes implicated by 
both analyses converged on the same biological processes. 
Pairwise analyses of epistasis revealed extensive networks 
of epistatic interactions connecting results from the two 
analyses (Huang et al. 2012). A similar result emerged from 
studies on the genetic underpinnings of olfactory behavior, 
where combined GWA and extreme QTL mapping analy-
ses implicated a network of genes associated with neural 
development and function as a substrate for variation in the 
behavioral phenotype (Swarup et al. 2013). This observa-
tion was extended and further confirmed by a GWA analysis 
that identified epistatic partners which interact with transpo-
son-tagged mutants of two neurogenic genes, Sema-5c and 
neuralized, both of which have large effects on olfactory 
behavior (He et al. 2016). Similarly, transgenic expression 

Fig. 3  Diagrammatic representation of the generation of advanced 
intercross populations and their application for extreme QTL map-
ping. Note that replicate AIPs are always constructed from a base 

population derived by round-robin crossing of the same parental lines 
and that sexes are analyzed separately
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of a misfolded mutant of human preproinsulin, proposed as a 
model for neonatal diabetes mellitus, causes morphological 
defects in adult flies; when crossed to different DGRP lines, 
F1 offspring displays a continuous range of morphologi-
cal phenotypes, indicating genetic background-dependent 
modulation of the effect of the transgene (Park et al. 2014). 
Epistatic interactions between SNPs identified through GWA 
analysis and SNPs identified through extreme QTL mapping 
were also identified and validated in a study on variation in 
aggression (Shorter et al. 2015). These studies, along with 
others (Sanjuán and Elena 2006; Corbett-Detig et al. 2013; 
Chow et al. 2016), show convincingly that epistasis is a 
prevalent determinant of the genetic architecture of com-
plex traits.

Lack of replication of associated polymorphisms between 
GWA studies in the DGRP and extreme QTL mapping anal-
yses in the AIP is most likely due to the different frequencies 

of causal molecular variants in the two populations; note 
that this will almost always occur since the AIP populations 
are derived from a small subset of DGRP lines. A hallmark 
of epistatic interactions is that the effect of a focal locus 
on a quantitative trait depends on the allele frequencies at 
the interacting locus/loci (Fig. 5; Mackay 2015). This is not 
true for additive interactions among loci. Epistatic interac-
tions are also sensitive to environmental conditions and are 
likely to affect the composition of the transcriptional niches 
of interacting partners, causing higher-order ripple effects. 
Thus, epistasis might be a confounding factor for the inter-
pretation of GWA studies in human populations. For exam-
ple, well-executed studies with sufficient statistical power to 
replicate associated variants in an independent population 
often fail to replicate the initial findings. However, lack of 
replication is actually expected in the presence of epistasis 
when populations have different allele frequencies at the 

Fig. 4  The transcriptional niche. a Gene X gives rise to transcript X 
the abundance of which is correlated with that of other transcripts, 
indicated by circles of which the color shades indicate different statis-
tical levels of correlation. b Different segments of the transcriptional 
niche of gene X can be recruited to give rise to different phenotypes, 
indicating that the transcriptional niche can serve as a conduit for 
pleiotropy. c The transcriptional niche is plastic and can change, for 
example, as a function of developmental stage, accompanied by a 

switch in its relationship to the organismal phenotype, as illustrated 
in this diagram, where purple circles indicate transcripts that are 
uniquely associated with the transcriptional niche of gene X in adult-
hood. d Transcriptional niches of different genes can overlap and 
interact to modify the organismal phenotypes associated with genes 
X and Y and give rise to different phenotypes, here illustrated as phe-
notype Z 
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genotyped loci (Greene et al. 2009; Moskvina et al. 2011; 
Mackay 2015). Disease-associated polymorphisms that are 
ignored because they do not replicate in different popula-
tions may nevertheless contribute important disease risk to 
members of the population in which they could be identified.

Although epistasis has been recognized in genetic studies 
on human populations (Webber 2017), it is often dismissed 
in analyses, because assessing pairwise epistatic interactions 
genome-wide is subject to a huge multiple testing penalty 
such that only interactions with very large effects could be 
detected. However, genetic variants uncovered in extensively 
studied human traits (a notable example is height; Wood 
et al. 2014) account for only a small fraction of the herit-
ability (Manolio et al. 2009). Epistasis is one factor that can 
contribute to this “missing heritability” (Zuk et al. 2012).

Sexually dimorphic architecture of complex traits

Virtually every complex trait examined to date by mutational 
analyses, QTL analysis, GWA analysis, or extreme QTL 
mapping shows extensive genetic variation in sexual dimor-
phism, often with little overlap between trait-associated 

polymorphic markers of males and females (Fig. 6; Weber 
et  al. 2012; Swarup et  al. 2013; Harbison et  al. 2013; 
Morozova et al. 2015; Garlapow et al. 2015; Zhou et al. 
2016; Carbone et al. 2016). This is perhaps not surprising 
since extensive sexual dimorphism and genetic variation in 
sexual dimorphism is also apparent in genome-wide tran-
script abundances across the DGRP (Ayroles et al. 2009; 
Huang et al. 2015). In addition to inherent sex bias, environ-
mental or genetic effects on gene expression may show sex 
specificity or sexually antagonistic modulation.

It is well known that disease susceptibility varies between 
men and women in human populations. It is, therefore, 
essential to include sex as a variable in analyses of GWA 
data (Golden and Voskuhl 2017). Failure to do so can reduce 
statistical power if a DNA variant affects a phenotype in 
one sex only or can lead to the erroneous conclusion that a 
particular variant poses a disease risk in both sexes. Con-
siderations of sexual dimorphism are, therefore, essential 
for the development of genetic information-based precision 
medicine.

Genes and the environment

Phenotypic plasticity is the ability of a genotype to give 
rise to different phenotypes under different environmental 
conditions (Fig. 7). Studies in which an AIP derived from 
40 DGRP lines was subjected to a wide range of different 
exposures showed that most of the Drosophila transcriptome 
is robust in the face of environmental changes, while the 
environmentally sensitive transcriptome includes genetically 
variable transcripts associated with detoxification, metabo-
lism, proteolysis, heat shock proteins, and transcriptional 
regulation (Zhou et al. 2012).

Genotype by environment interaction is due to genetic 
variation in phenotypic plasticity, i.e., different genotypes 
respond differently in response to environmental changes 
(Fig.  7). Some examples of genotype by environment 
interactions have been documented in studies of human 
populations. A classic study by Caspi et al. (2002) showed 
that a variable number tandem repeat polymorphism at 
the promoter of the MAOA gene was associated with vio-
lent behavior only in individuals who had experienced 
maltreatment as children. Furthermore, this effect was 
sex-specific and only observed in males. Similarly, poly-
morphisms in the promoter of the serotonin transporter 
gene have been associated with depression, dependent on 
stressful life experiences (Caspi et al. 2003; Rocha et al. 
2015). These well-executed studies have not been univer-
sally corroborated (Munafò et al. 2009), potentially due 
to epistasis or differences in environmental sensitivity 
of allelic effects in different populations, as mentioned 
earlier. A well-established example of genotype by envi-
ronment interactions is the observation that the effects 

Fig. 5  Epistasis depends on allele frequencies of interacting partners. 
a, b Absence of epistatic effects between alleles of locus B and alleles 
of locus A. c Differential epistatic effects of alleles B1 and B2 with 
alleles of locus A and d the dependence of the effect of locus A on 
the frequency of the B1 allele. e Antagonistic epistatic interactions 
between the B1 (enhancing epistasis) and B2 (suppressing epistasis) 
alleles with locus A and f the resulting dependence of the effect of 
locus A on the frequency of the B1 allele
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Fig. 6  Sexual dimorphism is prevalent among phenotypes measured 
in the DGRP. The example of sexual dimorphism shown here is phe-
notypic variation in sleep duration. Blue bars in the histograms in 
panels a and c denote male line means and purple bars denote female 

line means. The difference in line means between males and females 
(male–female) is shown in b and d. a Night sleep. b Male–female 
night sleep. c Day sleep. d Male–female day sleep.   Adapted from 
Harbison et al. (2013) 

Fig. 7  Phenotypic plasticity and genotype by environment interac-
tion. The diagram shows schematic reaction norms for two genotypes 
in two environments (Env). Phenotypic plasticity is evident when the 
reaction norms are parallel, i.e., the two genotypes respond similarly 

to a change in environment. Genotype by environment interaction is 
evident when the genotypes respond to different extents or in opposite 
directions to environmental change, or when one genotype responds 
to environmental change, whereas another is unaffected
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of polymorphisms in immune response genes, including 
members of the interleukin family, associated with risk for 
asthma, are dependent on previous exposure to allergens 
(Sordillo et al. 2015; Bønnelykke and Ober 2016; Li et al. 
2016).

Genotype by environment interaction is notably evident 
upon exposure to toxins. The Drosophila model is eminently 
suitable as a model system for population-based large-scale 
toxicogenomic studies. Several studies have focused on the 
genetic factors that underlie individual variation in suscep-
tibility to heavy metals, such as cadmium, lead, and meth-
ylmercury (Akins et al. 1992; Hirsch et al. 2012). Metal-
lothioneins are small cysteine-rich proteins that can bind 
ingested toxic heavy metals, notably cadmium, and contrib-
ute to their long persistence following exposure (Isani and 
Carpene 2014). In Drosophila, levels of metallothionein 
contribute to differences in sensitivity to cadmium between 
different strains (Gill et al. 1989), but cadmium sequestration 
by metallothionein is not the only factor that is responsible 
for cadmium resistance (Nguyen et al. 2014), indicating that 
other mechanisms contribute to cadmium toxicity.

Flies reared on low concentrations of lead acetate show 
changes in courtship, fecundity, and locomotor activity 
(Hirsch et al. 2003). A study on recombinant inbred lines, 
which used expression microarrays to identify cis-eQTL 
(i.e., where a local gene controls its own transcription) and 
trans-eQTL (i.e., where the activity of distant genes controls 
transcription) that were differentially expressed among con-
trol and lead-exposed flies, identified a co-regulated ensem-
ble of 33 lead-induced genes, many of which are associated 
with neurodevelopment (Ruden et al. 2009). A study on 
lead sensitivity across the DGRP showed similar results. 
DGRP flies showed different effects on development time 
and adult locomotion when reared on medium supplemented 
with lead acetate, and gene ontology and network analyses 
showed enrichment of genes associated with early develop-
ment and function of the nervous system (Zhou et al. 2016). 
Observations in the Drosophila model can guide studies of 
lead toxicity in children, which leads to neurological and 
cognitive deficits (Canfield et al. 2003; Jakubowski 2011; 
Liu and Lewis 2014; McDermott et al. 2014), by suggesting 
candidate pathways or cellular mechanisms.

A subsequent extreme QTL mapping study on a DGRP-
derived AIP identified allelic variants associated with sensi-
tivity to lead and cadmium exposure (Zhou et al. 2017). This 
study revealed genetic networks on which human counter-
parts of Drosophila genes could be superimposed. Human 
genes previously implicated in heavy metal toxicity could 
be placed in biological context along with identification of 
novel targets for heavy metal toxicity. This study showed that 
evolutionary conservation of fundamental biological pro-
cesses enables Drosophila to serve as a translational model 
for toxicogenomics studies.

Methylmercury, a toxic heavy metal that can accumu-
late in seafood, has detrimental effects on the developing 
nervous system by interfering with the Notch receptor path-
way (Bland and Rand 2006; Alattia et al. 2011; Engel et al. 
2012). A GWA study on susceptibility to methylmercury 
exposure of DGRP lines identified candidate genes involved 
in muscle and neuromuscular development, and pupae 
exposed to methylmercury showed disrupted development 
of indirect flight muscle (Montgomery et al. 2014). In addi-
tion to effects on neural development, these observations 
implicate effects on muscle development as a consequence 
of methylmercury exposure. Glutamate cysteine ligase pro-
vides protection against methylmercury and overexpression 
of this enzyme in muscle-rescued eclosion of flies reared on 
methylmercury-supplemented medium. Mutations in kirre, 
a myogenic gene identified as a candidate gene associated 
with variation in methylmercury sensitivity, modulated eclo-
sion rates upon exposure to methylmercury (Montgomery 
et al. 2014).

Drosophila has also proven to be a valuable model to 
study genetic variation in susceptibility to environmental 
oxidative stress agents, notably the highly toxic herbicide 
paraquat, which has been implicated as a causative agent 
for Parkinson’s disease, characterized by degeneration of 
dopaminergic neurons. Paraquat neurotoxicity in Dros-
ophila also affects dopaminergic neurons (Martin et al. 
2014) and expression of the dopamine receptor (Cassar 
et al. 2015). However, GWA studies on DGRP lines show 
that the genetic architecture that determines variation in 
susceptibility to paraquat and other oxidative stressors is 
highly polygenic. There is extensive variation in sensi-
tivity to acute exposure to two oxidative stress-inducing 
agents, paraquat and menadione sodium bisulfite with little 
overlap of SNPs associated with variation in sensitivity to 
these compounds (Weber et al. 2012). GWA analyses of 
DGRP lines exposed to chronic oxidative stress induced 
by menadione sodium bisulfite revealed a network of can-
didate genes on which human orthologues could be super-
imposed. These candidate genes were associated with 
inositol triphosphate signaling and synaptic transmission, 
intermediary metabolism, signaling by NGF, EGFR, and 
Rho GTPases, and DNA replication (Jordan et al. 2012). 
These studies further underscore the translational potential 
of the Drosophila model as they highlight molecular pro-
cesses that are conserved across phyla.

Orthologous networks

As mentioned earlier, we can assemble candidate genes 
identified through GWA analyses of the DGRP and/or 
extreme QTL mapping analyses of DGRP-derived AIPs 
into networks (Fig. 2). By superimposing human ortho-
logues on these Drosophila genetic networks, we can build 
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a translational blueprint to target candidate genes for subse-
quent focused studies in human populations (Fig. 8; Jordan 
et al. 2012; Zhou et al. 2016, 2017; Carbone et al. 2016). 
This approach is based on the principle of evolutionary 
conservation of fundamental biological processes and has 
several advantages. First, the Drosophila network provides 
a functional biological context for its human orthologue. 
Second, association of a gene with a trait in Drosophila, 
especially if it is a hub gene in the network, increases the 
chances for discovering an association of its orthologue with 
an analogous phenotype in a human population. Third, by 
identifying candidate genes with human orthologues through 
genome-wide screens in Drosophila, one can focus a sub-
sequent association study on a single orthologue, which 
greatly reduces the multiple testing problem and, thus, 
increases statistical power.

Conclusion

GWA studies in Drosophila highlight the importance of 
sex-, environment-, and genetic background-dependent 

(epistatic) effects, modularity of gene expression, plei-
otropy, and interactions among these parameters, which 
give rise to a dynamic integrative genetic architecture for 
complex traits. Understanding the genetic mechanisms 
that lead to the manifestation of genotype by environment 
interactions is critical for human health and developing 
genetics-informed precision medicine. Elucidating these 
mechanisms requires comprehensive empirical and com-
putational approaches which integrate DNA sequence 
variation with variation at the levels of the transcrip-
tome, proteome, and metabolome, while accounting for 
the complexity and dynamics of epistatic interactions, 
genome–environment interactions, and plasticity of tran-
scriptional niches. D. melanogaster is the most favorable 
model organism for the pursuit of such a systems genetics 
endeavor. Principles derived from studies on this powerful 
genetic model system are universal and apply across phyla, 
from the DGRP to human populations.
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Fig. 8  A genetic network for susceptibility to lead exposure. The 
network was derived from candidate genes identified in GWA analy-
ses for development time, viability, and activity of flies exposed to 
lead acetate. Yellow square boxes indicate candidate genes associated 
with any of these traits, while gray ovals represent computationally 

recruited intermediate genes. Blue font indicates genes with human 
orthologues. Note the extent by which human orthologues can be 
superimposed on their Drosophila counterparts to identify potential 
human candidate genes that may contribute to susceptibility to lead 
toxicity. From Zhou et al. (2016)
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