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Abstract Gene co-expression analysis has proven to be a

powerful tool for ascertaining the organization of gene

products into networks that are important for organ func-

tion. An organ, such as the liver, engages in a multitude of

functions important for the survival of humans, rats, and

other animals; these liver functions include energy meta-

bolism, metabolism of xenobiotics, immune system func-

tion, and hormonal homeostasis. With the availability of

organ-specific transcriptomes, we can now examine the

role of RNA transcripts (both protein-coding and non-

coding) in these functions. A systems genetic approach for

identifying and characterizing liver gene networks within a

recombinant inbred panel of rats was used to identify

genetically regulated transcriptional networks (modules).

For these modules, biological consensus was found

between functional enrichment analysis and publicly

available phenotypic quantitative trait loci (QTL). In par-

ticular, the biological function of two liver modules could

be linked to immune response. The eigengene QTLs for

these co-expression modules were located at genomic

regions coincident with highly significant phenotypic

QTLs; these phenotypes were related to rheumatoid

arthritis, food preference, and basal corticosterone levels in

rats. Our analysis illustrates that genetically and biologi-

cally driven RNA-based networks, such as the ones iden-

tified as part of this research, provide insight into the

genetic influences on organ functions. These networks can

pinpoint phenotypes that manifest through the interaction

of many organs/tissues and can identify unannotated or

under-annotated RNA transcripts that play a role in these

phenotypes.

Introduction

With the emergence of the fields of precision medicine and

systems genetics, the need for animal models and statistical

methods to facilitate the translation of research from bench

to bedside has grown (Malaney et al. 2014; Ritchie 2012).

Identification of determinants of genetic susceptibility to

disease and environmental toxins, and the integration of

pharmacogenomic information are critical components of

the NIH initiative to develop precision human medicine

(Riley et al. 2015). However, genetic studies in humans are
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very costly in both time and resources; some of these costs

can be attributed to the requirement of large sample sizes

and the lack of a priori control over genetic and environ-

mental variables. In addition, many human studies cannot

be performed for ethical reasons. Rodent models not only

provide opportunities to control and manipulate genetics

and environmental factors, but they also provide the

opportunity to investigate biological processes that cannot

ethically be studied in humans. Rats are a prominent model

for studying the mechanisms of disease, the impact of

environmental factors, and new drug technologies (Aitman

et al. 2008). Genetic models, rapid advances in sequencing

technologies, and recent gene-editing techniques have

allowed rats to remain a major resource for functional and

mechanistic studies in medicine (Parker et al. 2014).

Historically, investigators have often used a single

inbred strain or rodents from an outbred stock to examine

biological mechanisms of disease (Festing 2014). Another

approach, which has distinct advantages for systems

genetic studies, is to use a panel of inbred or recombinant

inbred (RI) rat strains (Printz et al. 2003). In such a panel,

the varied, but known, genetic composition of the panel is

relatively static and retained over generations. This ‘re-

producibility’ of genetic background allows for the iden-

tification of interactions among multiple phenotypes, and

their relationships to genetic variation. The accumulation

of multiple behavioral, physiological, and molecular phe-

notypes over generations and across laboratories is essen-

tial for truly integrative systems genetics research.

One type of molecular phenotype that is of particular

interest in systems genetics research is RNA transcript

abundance. By quantitatively measuring RNA expression

levels across an inbred rat panel, one can attempt to

describe a functional relationship between genes through

co-expression. The general theory of co-expression studies

is that if the expression levels of two transcripts react to

different genetic backgrounds in a similar manner, then the

two transcripts are likely involved in a similar biological

process (Allocco et al. 2004). One can use graph theory to

describe the relationships among genes based on co-ex-

pression across different genetic backgrounds (such as in

RI panels). For example, these co-expression networks can

be modeled as robust scale-free gene networks (Ravasz

et al. 2002; Weiss et al. 2012). Transcripts within a scale-

free network are not connected at random, rather these

networks are composed of many nodes with few connec-

tions, and a few hub nodes, which are connected to many

other transcripts.

The crux of our work is based on the proposition that if a

genetic locus influences both a behavioral/physiological

trait and RNA expression levels in an identified transcrip-

tional network, then the transcriptional network is likely to

influence the behavioral/physiological trait (Saba et al.

2015). In the current work, we sought to answer one

question: can one use information about the genetic locus

of expression variation in a module (eigengene QTL), from

a newly described co-expression network, to search phe-

notypic quantitative trait loci (QTL) databases for over-

lapping behavioral/physiologic QTLs and arrive at an

informative relationship between a physiological/behav-

ioral phenotype and the transcriptome.

We utilized RI rats and quantitative systems genetics

methods (network analysis of RNA expression levels) to

group both well-annotated, under-annotated, and unanno-

tated RNA transcripts into biologically relevant networks,

and to link these networks to phenotypic traits through

shared genetic influences (i.e., overlapping phenotypic and

expression QTL). We focused on the liver transcriptome of

the HXB/BXH RI rat panel. Our approach, outlined in

Fig. 1, contained five steps: (1) define the liver transcrip-

tome from the progenitor strains of the HXB/BXH RI rat

panel (SHR and BN-Lx), (2) measure expression levels of

the liver transcriptome in the HXB/BXH RI rat panel, (3)

identify co-expression modules within the liver, (4) iden-

tify modules exhibiting high levels of genetic control, and

(5) identify the biological relevance of genetically driven

modules.

This approach led to the discovery of two genetically

driven co-expression liver modules that were associated

with the immune system. Although the liver is often

Fig. 1 An outline of systems genetics approach. This workflow was

used to identify genetically driven and biologically relevant liver

modules
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associated with metabolism, it has many roles in the body

(Higuchi and Gores 2003). This research has uncovered a

genetic pathway associated with the lesser known function

of liver, innate immunity (Gao et al. 2008; Racanelli and

Rehermann 2006), and demonstrates how system genetics

approaches, such as the one discussed in this manuscript,

have the potential to aid in the discovery of genetic influ-

ences on biological functions and to expand current

research directions.

Materials and methods

Animals

RI panels are produced by first crossing two genetically

and phenotypically diverse inbred strains to create an F1

generation with one chromosome copy from each parent.

At the F2 generation, as a result of recombinant events,

each animal’s DNA sequence becomes a mosaic of the

original DNA sequences of the two parental strains. After

many generations of brother/sister mating, an RI panel is

produced that contains a large number of inbred strains. All

rats within a strain are genetically identical (similar to

monozygotic twins), and that genetic identity is retained

over generations. Rats from different strains within the

panel share approximately 50 % of the genetic sequence of

the parental strains, much like dizygotic twins or siblings

(Printz et al. 2003).

In this study, we assessed rats from the HXB/BXH RI

panel, which was originally developed in the Czech

Republic by Vladimir Kren (Institute of Biology of Charles

University) and Michal Pravenec (Institute of Physiology

of the Czech Academy of Sciences). This panel was gen-

erated using gender reciprocal crossing between the con-

genic Brown Norway strain with polydactyly-luxate

syndrome (BN-Lx/Cub) and the spontaneous hypertensive

rat strain (SHR/OlaIpcv), with sixty generations of

brother/sister mating after the F2 generation (Printz et al.

2003). Although this panel was originally developed to

examine differences in cardiovascular traits, many other

traits vary across the strains and have been studied exten-

sively (Bielavská et al. 2002, 2002; Conti et al. 2004;

Kunes et al. 1994; Pravenec et al. 2004; Vanderlinden et al.

2014).

Identification of RNA transcripts in the liver

Whole liver RNA sequencing

Male rats from substrains of the original parental strains of

the HXB/BXH RI panel, BN-Lx/CubPrin (BN-Lx) and

SHR/OlaIpcvPrin (SHR) were used for RNA-Seq analyses.

Rats were maintained and bred at the University of Cali-

fornia, San Diego. Three male rats from each parental

strain (70–90 days old) were quickly anesthetized with

isofluorane/air and decapitated according to a protocol

approved by the UCSD IACUC. Livers were quickly fro-

zen in liquid nitrogen, and they were shipped to the

University of Colorado for RNA extraction and library

preparation.

For each of the six liver samples, total RNA was

extracted with the RNeasy Midi Kit; additional cleanup

was performed using the RNeasy Mini Kit (Qiagen,

Valencia, CA, USA). External RNA Controls Consortium

(ERCC) Synthetic Spike-Ins (ThermoFisher Scientific,

Wilmington, DE, USA) were added to the extracted RNA;

4 ll was added from a 1:100 dilution of either Mix 1 or 2.

Sequencing libraries were constructed using the Illumina

TruSeq Stranded RNA Sample Preparation kit (Illumina,

San Diego, CA, USA), in accordance with the manufac-

turer’s protocol, and library quality was assessed using the

Agilent Bioanalyzer 2100 (Agilent Technologies, Santa

Clara, CA, USA). Ribosomal RNA depletion was carried

out as part of the Illumina TruSeq Stranded Total RNA

Library Prep Kit, which includes the Ribo-Zero ribosomal

RNA reduction chemistry. Samples were sequenced

(2x100 paired-end reads) on the Illumina HiSeq2000 (Il-

lumina, San Diego, CA, USA) with two samples multi-

plexed per lane.

For each of the livers of the rats from the BN-Lx and

SHR parental strains, the raw reads were trimmed for

quality and adaptors using trim-galore (http://www.bioin

formatics.babraham.ac.uk/projects/trim_galore/, version

0.4.0). The trimmed reads were aligned using Tophat2

(Kim et al. 2013) (Version 2.1.0) with default parameters.

The reads were initially aligned to rRNA from the

RepeatMasker database (Smit et al. 1996), which was

downloaded from the UCSC Genome Browser (Karolchik

et al. 2004); all of the paired-end reads with either end

aligned to those sequences were eliminated from the

analysis. If reads did not align to rRNA, they were aligned

to the rn5 version of their respective strain-specific gen-

omes. The strain-specific genomes were constructed with

DNA-Seq data from male brains of the BN-Lx/CubPrin and

SHR/OlaIpcvPrin strains (Hermsen et al. 2015), and they

are publicly available on the PhenoGen website [http://

phenogen.ucdenver.edu (Saba et al. 2015)].

Transcriptome reconstruction in progenitor strains

For reconstructing the rat liver transcriptome, reads from

all biological replicates within an inbred strain were

combined. Strain-specific transcriptomes were then recon-

structed using the Cufflinks algorithm (Trapnell et al. 2012)

(Version 2.2.1), with the rn5 Ensembl Rat Transcriptome
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(Roberts et al. 2011; Trapnell et al. 2010) as a guide.

Mitochondrial chromosomes were initially masked due to

the depth of reads within this small chromosome, which

would dramatically increase computational burden.

Within the strain-specific transcriptomes, ‘‘high-confi-

dence transcripts’’ (defined below) were identified using

estimated expression levels and transcript length. Frag-

ments per kilobase of transcript per million mapped reads

(FPKM) were compared across transcripts, and a threshold

was set to filter out low confidence transcripts. FPKM

values were calculated from the combined reads within a

strain. The focus was to qualitatively describe the tran-

scriptome without the restriction that the transcript be

expressed in multiple animals. Along with the FPKM

threshold, transcripts had to exceed a transcribed length of

300 base pairs (bp); this was the length required to survive

size selection during RNeasy RNA extraction and the gel-

size selection step within the Illumina TruSeq protocol.

For mapping and annotation, the resulting high-confi-

dence BN-Lx and SHR transcriptomes were merged to

create a single combined transcriptome. Ensembl-anno-

tated mitochondrial transcripts were reintroduced at this

stage, so that these transcripts were included in the final

mapped transcriptome. Overlapping transcripts between

the two strain-specific transcriptomes were identified and

merged into a single transcript if they occurred on the same

strand (or one strand was not designated), and they met at

least one of the following requirements: (1) all of the splice

junctions matched, or (2) both transcripts contained only

one exon, and when the two transcripts were compared,

their transcription start and stop sites were within 100 bp of

each other. After merging transcripts that overlapped,

transcripts (i.e., splice variants) were grouped into genes.

We determined that two transcripts were from the same

gene if their transcription start sites matched exactly, their

transcription stop sites matched exactly, or at least one

splice junction matched exactly.

Because the Cufflinks algorithm accommodates reads

aligned to multiple transcripts by splitting their read count

among the different transcripts (often multiple splice

variants of the same gene) in a probabilistic manner, the

addition of an alternative transcript to a transcriptome may

alter the expression estimate of the original transcript(s).

To identify the most robust set of transcripts, the combined

transcriptome of high-confidence transcripts was quanti-

tated separately in each strain. These transcripts were

quantitated using coverage, i.e., the average number of

reads per nucleotide across the whole transcript. If a tran-

script’s coverage dropped below an average of 50 reads per

nucleotide in each of the strains when considering all

transcripts in the combined transcriptome, it was dropped

from the combined transcriptome. This iteration of quan-

titation and reduction of the transcriptome was repeated

until less than 5 % of the remaining transcripts fell below

our coverage threshold.

Quantitation of RNA expression in the livers

of the HXB/BXH recombinant inbred panel

Microarray expression measurements

Male rats from 21 strains of the HXB/BXH RI panel were

used for exon array analyses. Like the parental rat strains

used for RNA-Seq, rats from the RI panel were maintained

and bred at the University of California, San Diego

(UCSD). Three to four male rats from each strain

(70–90 days old) were quickly anesthetized with isofluo-

rane/air and decapitated according to a protocol approved

by the UCSD IACUC. Livers were quickly extracted and

frozen on dry ice or in liquid nitrogen. Livers were shipped

to the University of Colorado for RNA extraction and

microarray processing.

RNA was extracted from each whole liver using the

RNeasy Midi Kit (Qiagen) and the RNeasy Mini kit (Qi-

agen) for cleanup. cDNA from the liver of each individual

rat was hybridized to a separate Affymetrix Rat Exon 1.0

ST array following the manufacturer’s protocol. All pro-

cessed array data were examined for quality using the tools

outlined in detail on the PhenoGen website.

Probe sequences for the Affymetrix Rat Exon 1.0 ST

Array were obtained from the Affymetrix website (http://

www.affymetrix.com/). High-integrity probes were identi-

fied based on their alignment to the genome and known

genomic variants in the BN-Lx and SHR strains (Saba et al.

2015). For example, probes were removed from the anal-

ysis if they did not align perfectly and singularly to the rn5

rat genome. Probes were also removed if they aligned to a

region that harbored an SNP, small insert, or small deletion

between the BN-Lx or SHR strains, when compared to the

Brown Norway (BN) reference genome (Hermsen et al.

2015). Entire probe sets were eliminated if less than three

probes remained after filtering. This array mask is publicly

available on the PhenoGen website.

The full set of probe sets on the Affymetrix array targets

many different regions of the genome; this include anno-

tated genes, and unannotated regions with sequence char-

acteristics that predict possible transcription. This breadth

of coverage allows for the quantitation of both annotated

and unannotated transcripts in the reconstruction. To do

this, probe sets from the exon array were mapped to tran-

scripts in the reconstructed liver transcriptome. Probe sets

were retained if their targeted region was exclusively and

entirely within a gene. This allowed for the selection of

probe sets specific for genes that are expressed in the liver

of naı̈ve BN-Lx and SHR rats, including probe sets that

targeted unannotated genes.
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All of the probes that targeted a particular gene were

grouped into a single expression estimate, which is called a

gene cluster throughout this manuscript. The mapping of

probe sets to gene clusters is available on the PhenoGen

website. Genes with at least one ‘‘high-confidence’’ tran-

script in the reconstruction, which precisely matched a

transcript annotated in the rn5 Ensembl Rat Transcriptome,

were associated with gene information for that annotated

transcript. Affymetrix Power Tools (http://www.affyme

trix.com/) was used to implement an RMA-sketch algo-

rithm to estimate expression levels for individual gene

clusters. Correction for batch effects was executed using

the ComBat algorithm (Johnson et al. 2007). We required

that at least 5 % of samples had expression above back-

ground (the detection above background (DABG) p value

\0.0001) for a gene cluster to be retained for further

analyses.

Network analysis

Weighted gene correlation network analysis (WGCNA)

Strain means of gene clusters were used for co-expression

analysis. Each gene cluster represents a singular gene

product, which is defined as all of the RNA transcripts

derived from a particular gene. An unsigned weighted gene

correlation network was constructed using the R package

WGCNA (Langfelder and Horvath 2008) (version 1.49). A

co-expression similarity matrix was derived by calculating

pairwise Pearson correlation coefficients between the

expression levels of genes across strains. This similarity

matrix was subsequently transformed into a scale-free

connectivity network by raising each correlation coefficient

to a power of 7; this threshold was chosen using criteria

and methods from Langfelder, Horvath, and Zhang

(Langfelder and Horvath 2008; Zhang and Horvath 2005)

for modeling a scale-free network. In an effort to avoid

spurious connections within our networks, a topological

overlap map (TOM) was used to assess both the direct

connection between two gene products and the indirect

connection between the two gene products based on the

similarity of their relationships with other gene products

(Langfelder 2013). The minimum module size was set at 5

to allow for smaller modules, compared to the default

setting of 30; subsequently, modules were merged if their

eigengenes were highly correlated using a threshold of

0.75. Gene product co-expression modules were identified

with dynamic tree cutting (Langfelder et al. 2008); this

method identifies large clusters of gene products with an

initial static cut, then refines the large clusters by recur-

sively splitting them into subclusters. Principal Compo-

nents Analysis was used to calculate an eigengene (the first

principal component) for each co-expression module. Each

eigengene represents the expression pattern across strains

for the module, and the accuracy of these representations

can be quantified as the proportion of variance of gene

expression across strains explained by the eigengene.

Within each module, we calculated the intramodular

connectivity and the number of connections for each gene

product (Zhang and Horvath 2005). Intramodular connec-

tivity was defined as the sum of connection strengths with

gene products within a module associated with a gene

product of interest, and the gene product with highest

connectivity within each module was identified as the hub

gene product. The number of intramodular connections of a

gene product represents the number of gene products

within the module that are correlated with that gene pro-

duct (correlation coefficient[ |0.5|).

Selection of genetically driven modules

To identify genetically driven modules in the liver, mod-

ules were required to have: (1) an eigengene that explained

over 50 % of module variance (Langfelder et al. 2011), and

(2) a significant module eigengene quantitative trait loci

(meQTL), i.e., genome-wide p value\0.05.

meQTLs were identified by testing for an association

between a module eigengene and a set of genomic markers

(i.e., strain distribution patterns) for the HXB/BXH panel.

This set of markers was downloaded from PhenoGen, and

further details are available in the study by Saba et al.

(2015). Associations were calculated with R/qtl (Broman

et al. 2003) (Version 1.28–4) using marker regression with

a genome-wide LOD significance threshold based on 1000

permutations (Churchill and Doerge 1994).

Identifying biological relevance of modules

We used two independent public databases to uncover the

biological function of each genetically driven module.

First, we used PANTHER (http://pantherdb.org/) to find

significant enrichment for pathways or gene ontology (GO)

terms among the annotated gene products of the module

(Mi et al. 2016). If a module was significantly enriched for

a GO term or PANTHER pathway, we used the Rat Gen-

ome Database’s (RGD) QTL search (Shimoyama et al.

2015) (http://rgd.mcw.edu/) to find phenotypic QTLs in the

same genomic location as the meQTL.

PANTHER gene ontology and enrichment

PANTHER’s statistical overrepresentation test (Mi et al.

2013)was used to identify enrichment (adjusted p\ 0.05) of

PANTHERpathways andGO terms,whichwere categorized

as either related to biological processes,molecular functions,

or cellular components. Because this type of analysis
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increases in power as more gene products are included, we

required that each module contain at least ten Ensembl

annotated gene products. This type of analysis identifies

terms or pathways that are statistically overrepresented by

gene products represented within a module. PANTHER uses

the binomial distribution to compare a set of reference genes

to the genes that occur in each module; in this case, our

reference set was constrained to the genes included in the

network analysis. A Bonferroni adjustment was applied

within PANTHER to each GO term or pathway that occurred

in the overrepresentation analysis. When many gene prod-

ucts within a module share a common GO term or are from

the same annotated pathway, one can postulate that the

module’s collective function is related to the ontology term

or pathway. The statistical test for enrichment can produce a

significant result if only one gene product from themodule is

associated with a GO term or pathway when the probability

of even one gene product from the term/pathway appearing

in the module by chance is extremely low. Because of this,

we implemented an additional criterion that more than one

gene product within the module needed to be associated with

the term/pathway.

Phenotypic QTLs

To investigate the etiologic relationship between liver

modules and genetic factors that may predispose animals to

specific phenotypes, phenotypic QTLs were identified using

the RGD’s QTL search. RGD contains a repository of

genetic information for the rat species; as of 2015, the

website contained records for 53,345 genes, 108,875 tran-

scripts, and 2163 QTLs (Shimoyama et al. 2015). We con-

sidered all QTLs thatwere documented to overlap the peak of

eachmodule’s significantmeQTL.We set a high standard for

potentially relevant QTLs with a LOD scoreC10. Since this

QTL data source is curated from published rat QTL papers,

precise genome-wide p values are often not reported.

Additional characterization of modules

Partial correlation

In the event that a module of interest had many gene products

physically located within the same region of the genome, we

assessed the biological nature of our findings with partial cor-

relation. Associations between two co-localized gene products

are more likely to share a biological function/process, if the

partial correlation remains significant when accounting for an

associated cis-locus (Supplementary Fig. S1). Pairwise corre-

lations were recalculated between gene clusters, while con-

trolling for each module’s meQTL. Connectivity and the

number of relevant connections (r[ |0.5|) were re-assessed

under the partial correlation model.

Liver cell type-specific transcriptome analysis

Alcohol-naı̈ve adult male BN-Lx/CubPrin and SHR/Ola-

Prin rats were shipped to the Integrative Liver Cell Core at

University of Southern California for separation of liver

cell types. Kupffer cells (KC) and hepatic stellate cells

(HSC) were isolated by sequential digestion of rat liver

with pronase and collagenase followed by low-speed cen-

trifugation and discontinuous arabinogalactan gradient

ultracentrifugation. This procedure has been described in

detail by Kamimura and Tsukamoto (1995), and by Tsu-

kamoto et al. (1995). Sinusoidal endothelial cells (SEC)

were isolated by collagenase perfusion, density gradient

centrifugation, and centrifugal elutriation as previously

described by Deleve (1994). Primary hepatocyte cells (HC)

were isolated aseptically according to the method of Mol-

déus et al. (1978). This method is based on collagenase

digestion and separation of liver parenchymal cells. Fresh

cells were shipped to the University of Colorado Denver

for RNA extraction and microarray processing.

RNA from four rats per strain and cell type was

extracted and hybridized to separate Affymetrix Rat Exon

Arrays 1.0 ST (Affymetrix) in the same manner as

described previously for the whole liver in the HXB/BXH

panel. To make gene clusters comparable to our earlier

analyses, the same methods used in the whole liver analysis

were applied to the cell type-specific arrays; specifically,

arrays were processed using the same probe mask and

normalized with the same algorithm and batch corrections.

A two-way ANOVA model was used to estimate expres-

sion means for each cell type and strain, and differential

expression between cell types (either strain dependent or

independent) was determined using an F-statistic and a

false discovery rate (FDR) to correct for multiple com-

parisons. Further, genes were subset by module for pair-

wise cell type comparisons.

Results

Identification of RNA transcripts in the liver

Whole liver RNA sequencing

RNA isolated from each of the three livers of each strain

(BN-Lx and SHR) was prepared and separately sequenced.

We obtained 311 million paired-end reads for BN-Lx and

314 million for SHR. After trimming and the removal of

reads that aligned to ribosomal RNA (rRNA), 224 million

paired-end reads (72.0 %) from the BN-Lx rats aligned to

the BN-Lx strain-specific genome and the synthetic spike-

ins. 256 million paired-end reads (71.5 %) from the SHR

aligned to the SHR strain-specific genome and the
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synthetic spike-ins. Synthetic spike-ins were included to

improve normalization and batch correction.

Transcriptome reconstruction in progenitor strains

Within each progenitor strain transcriptome, an FPKM

(based on combined reads within a strain) threshold of 1

was set to define a high-confidence transcript (Supple-

mentary Fig. S2). For BN-Lx, we retained 17,343 tran-

scripts (14 % of the total transcripts), with FPKM ranging

from 1 to 11,952. Similarly in SHR, we retained 14,023

transcripts (16 % of the total transcripts), with FPKMs

ranging from 1 to 5293.

After the high-confidence transcripts of the BN-Lx and

SHR transcriptomes were combined and iteratively quan-

titated with CuffLinks, 18,260 transcripts (14,201 genes)

remained; 6671 transcripts were annotated in the Ensembl

database (Birney et al. 2004) and 11,589 were not included

in the rn5 version of the Ensembl database (Table 1). It is

important to note that using an RNA-Seq-derived tran-

scriptome to select transcripts, we were able to identify

many unannotated isoforms of annotated genes with

respect to the Ensembl database,

Quantitation of RNA expression in the livers

of the HXB/BXH recombinant inbred panel

Microarray expression measurements

The same probe mask described by Saba et al. (2015) was

used to filter the 4.1 million probes on the Affymetrix Rat

Exon 1.0 ST Array to 3.8 million ‘high-integrity’ probes

(890,607 probe sets). When these probe sets were mapped

to the combined transcriptome of both the BN-Lx and SHR

rats, 146,473 probe sets were contained entirely within

liver transcripts that were identified from the RNA-Seq

data. Specifically, 9847 gene products from the liver tran-

scriptome were targeted by at least 1 probe set. All probe

sets targeting a singular gene product were summarized

into a gene cluster. After filtering out gene clusters that did

not meet our detection above background criteria, 9223

gene clusters remained in our analysis (Table 1).

Selection of genetically driven modules

Using the 9223 gene clusters, we identified 50 co-expression

modules: each contained between 5 and 3369 gene products

(median module size = 22.5). We calculated an eigengene

for each of the modules to represent the expression of genes

within each module. The eigengenes accounted for between

43 and 81 % of the variance within each module (median

58 %). Fourteen modules had significant meQTL genome-

wide LOD scores, based on a genome-wide p value\0.05,

and all of the eigengenes for these modules explained at

least 57 % of the respective module variance (Table 2).

Identifying biological relevance of modules

Seven of the modules contained at least ten Ensembl

annotated gene products and, of these, four of the

genetically driven modules were significantly enriched

(adjusted p value \0.05) for at least one GO term or

PANTHER pathway: thistle2, plum2, firebrick4, and

lightcyan. To find physiological or behavioral traits

associated with these modules, we used the RGD data-

base to identify physiological and behavioral QTLs that

overlapped the meQTLs of our significantly enriched

modules (Table 3).

Thistle2

Twenty-three of the thistle2 module’s 37 gene products

(Supplementary Table 1) were associated with aspects of the

immune system according to gene ontology, and the module

was highly enriched for several GO terms that are related to

the immune system. Ten gene products from thistle2 were

associated with antigen processing and presentation (GO:

0019882); this represents a 111-fold enrichment for this

Table 1 Summary of rat liver transcriptome reconstruction and RNA-Seq-guided microarray mask

Strain Data type Unique

gene IDs

Total

transcripts

Ensembl

transcripts

Transcripts not annotated in the

Ensembl database

BN-Lx Complete transcriptome 123,143 143,107 28,836 114,271

High-confidence transcripts 13,593 17,343 6998 10,345

SHR Complete transcriptome 83,864 102,825 28,822 74,003

High-confidence transcripts 10,321 14,023 7136 6887

BN-Lx &

SHR

combined Transcriptome 14,201 18,260 6671 11,589

rn5 Affymetrix exon array gene clusters included

in network analysis

9223 13,111 5994 7117

RNA-Seq high-confidence transcripts were required to have FPKM[ 1 and length[ 300 bp
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category (adjusted p value = 9.80 9 10-17). Of those ten

gene products, two were specifically associated with antigen

processing and presentation of peptide or polysaccharide

antigen via MHC-class II (GO: 0002504) representing

100-fold enrichment for the category (adjusted p value =

3.13 9 10-2).

The thistle2 module was also enriched for several other

biological, cellular, and molecular gene ontology terms. Under

biological processes, four genes were associated with cellular

defense response (GO: 0006968), representing 22-fold

enrichment for the category (adjustedpvalue = 5.50 9 10-3).

For the cellular component, two geneswere associatedwith the

MHC protein complex (GO0042611), representing a 200-fold

enrichment (adjusted p value = 3.64 9 10-3). Finally, with

respect tomolecular function, eight geneswere associatedwith

antigen binding (GO: 0003823), representing a 133-fold

enrichment (adjustedpvalue = 2.17 9 10-13).Geneproducts

that are involved in these processes are represented as yellow

nodes (circles) in Fig. 2.

The top five most highly connected gene products in this

module function within the immune system. The hub is an

RT1-class 1 gene product (RT1-CE16) that functions as an

MHC-class I molecule. The remaining gene products

include 2 other MHC-class I-related molecules, a gene

product that processes MHC-class I molecules, and the

lymphotoxin beta gene (TNF superfamily, member 3).

A total of 24 phenotypic QTLs overlapped thistle2’s

meQTL; four of these met our criteria: collagen-induced

arthritis autoantibody (Ciaa1), adjuvant-induced arthritis

(Aia1), food consumption (Foco23), and serum corticos-

terone levels (Scort12).

Two of the overlapping phenotypic QTLs are associated

with autoimmunity. The collagen-induced arthritis

autoantibody (Ciaa1) phenotype is the IgG autoantibody

Table 2 Genetically driven co-expression modules in rat liver

Module Genes Eigengene meQTL

Number of genes in

module

Number of Ensembl

annotated genes

Proportion of variance in module

explained by eigengene

Location LOD Genome-wide

p value

Thistle 19 14 0.56 Chr1:

177 Mb

8.47 0.004

Yellow3 15 8 0.60 Chr1:

282 Mb

8.65 0.004

Plum 23 11 0.60 Chr2:

223 Mb

6.67 0.016

Palevioletred2 18 10 0.58 Chr2:

248 Mb

5.69 0.008

Indianred3 10 6 0.58 Chr5:

155 Mb

4.54 0.048

Lightcyan 119 67 0.58 Chr6:

6.6 Mb

3.28 0.041

Firebrick4 45 17 0.59 Chr8:

7.4 Mb

5.06 0.005

Plum2 38 22 0.67 Chr10:

26 Mb

4.47 0.017

Lightpink2 5 3 0.81 Chr10:

67.2 Mb

8.50 0.009

Tan4 9 3 0.67 Chr10:

87 Mb

7.51 \0.001

Magenta3 5 3 0.75 Chr15:

107 Mb

8.48 0.004

Pink4 13 6 0.57 Chr16:

36 Mb

6.11 0.005

Lightblue4 11 7 0.64 Chr18:

53.8 Mb

7.85 0.007

Thistle2 37 21 0.58 Chr20:

8.0 Mb

6.39 0.004

Fourteen modules had significant module eigengene QTLs (meQTLs; genome-wide p\ 0.05), and a proportion of variance in the module

explained by the eigengene greater than 0.5. Although partial correlation was performed for the thistle2 module; these numbers reflect the

number of genes that occurred prior to partial correlation
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titer against native rat type II collagen (Furuya et al. 2000).

This phenotype is a model for rheumatoid arthritis; rats

with higher susceptibility to collagen-induced arthritis have

higher levels of the IgG autoantibody, which is a biomarker

for the autoimmune disease. Adjuvant-induced arthritis is

another model for rheumatoid arthritis. The adjuvant-in-

duced arthritis phenotype (Aia1) is associated with disease

severity; measures of the arthritis index were used to

determine severity of the disease (Joe 2006; Kawahito et al.

1998).

The remaining QTLs were associated with food prefer-

ence and basal corticosterone levels. The food consumption

phenotype (Foco23) is a reflection of macronutrient

selection and weight gain. Marissal-Atvy et al. (2014a)

allowed rats to self-select from different macronutrient-

driven diets (i.e., protein-, carbohydrate-, and fat-rich

diets), and documented diet preference and the resulting

weight gain. This phenotypic QTL is associated with car-

bohydrate preference in female rats that have differential

macronutrient preferences. Marissal-Atvy et al. (2014b)

were also interested in phenotypes that were related to

genetic variability within the hypothalamic–pituitary–

adrenocortical (HPA) axis, so they investigated the overlap

between QTLs associated with the function of the HPA and

phenotypes that were associated with carbohydrate

metabolism. One of these metabolism-related phenotypes

was basal state serum corticosterone levels (Scort12).

Plum2

There were 38 gene products in the plum2 module (Supple-

mentaryTable 2), and 22 of those gene productswere Ensembl

annotated. The module hub gene product was interferon regu-

latory factor 7 (Irf7), and at least 14 gene products within the

plum2modulewere related to interferon regulation, response to

various types of interferon, defense to virus, and immune

response. The module is significantly enriched for the immune

response (GO: 0006955); it had a 13-fold enrichment for the

category (adjusted p value = 4.16 9 10-2). Gene products

that are involved in these processes are represented as yellow

nodes (circles) in Fig. 3.

We identified 35 phenotypic QTLs that overlapped the

plum2 module’s meQTL; 2 of these phenotypic QTLs met

our criteria: food consumption (Foco17) and plasma insulin

level (Insul27). Like Foco23 (food consumption phenotype

in thistle2), the food consumption phenotype overlapping

plum2 (Foco17) is also associated with carbohydrate pref-

erence in female rats. While investigating the association

between the HPA and metabolism, Marissal-Atvy et al.

(2014b) found the plasma insulin level QTL (Insul27).

Table 3 Genetically driven liver co-expression modules with inferred biological relevance

Enrichment

Module GO term/PANTHER pathway Smallest

p value

Name LOD References

Thistle2 Antigen processing and presentationa, antigen processing and

presentation of peptide or polysaccharide via MHC-class II, cellular

defense response, MHC protein complex, Antigen binding

9.80 9 10-17 CIA

autoantibody

39.9 Furuya et al.

(2000)

Food

consumption

20.7 Marissal-Arvy

et al. (2014a)

Serum

corticosterone

level

20.5 Marissal-Arvy

et al. (2014b)

Adjuvant-

induced

arthritis

18.0 Kawahito et al.

(1998), Joe

2006

Plum2 Immune responsea 4.16 9 10-2 Food

consumption

18.7 Marissal-Arvy

et al. (2014a)

Insulin level 10.5 Marissal-Arvy

et al. (2014b)

Lightcyan Receptor bindinga, G protein-coupled receptor activity, actin binding 1.67 9 10-3 Bone mineral

density

11.7 Koller et al.

(2008)

Bone mineral

density

11.2 Koller et al.

(2008)

Firebrick4 Vesicle-mediated transporta, protein transport 2.88 9 10-3 Insulin/glucose

ratio

18.5 Marissal-Arvy

et al. (2014b)

Summary of the results obtained from two public resources: PANTHER Gene List Analysis for PANTHER pathway and GO term enrichment,

and the Rat Genome Database QTL search
a Marks the enrichment category that corresponds to the smallest p value
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Lightcyan

There are 119 gene products in the lightcyan module; 67 gene

products were Ensembl annotated. The hub gene product is

prostaglandin G/H synthase 1 (Ptgs1), an oxygenase involved

in inflammation mediated by chemokine and cytokine signal-

ing pathways. The module was enriched for several GO terms

that involved binding. Five gene products were associatedwith

actin binding (GO: 0003779), representing a ninefold enrich-

ment for the category (adjusted p value = 2.68 9 10-2). Ten

gene products were associated with receptor binding (GO:

0005102), with sixfold enrichment for the category (adjusted

p value = 1.67 9 10-3). Finally, four genes were associated

with G protein-coupled receptor activity (GO: 000490), with

17-fold enrichment for the category (adjusted p value =

1.67 9 10-2).

We identified 16 phenotypic QTLs that overlapped light-

cyan’smeQTL; 2of these phenotypicQTLsmet our criteria, and

both were related to bonemineral density (Bmd51 and Bmd52).

The bone mineral density phenotypes Bmd51 and Bmd52 are

associated with the variability in femur areal and volumetric

bone mineral density, respectively (Koller et al. 2008).

Firebrick4

There were 45 gene products in the firebrick4 module, and

17 of them were annotated in the Ensembl database. The

hub was the coatomer protein complex subunit alpha gene

product (Copa), which is a vesicle coat protein.

Firebrick4 was enriched for several GO term transport

categories. There were seven gene products associated with

vesicle-mediated transport (GO: 0016192), representing an

eightfold enrichment for the category (adjusted p value =

2.88 9 10-3), and seven were associated with protein

transport (GO: 0015031), with sixfold enrichment for the

category (adjusted p = 1.98 9 10-2).

Five phenotypic QTLs overlapped the firebrick4

meQTL, but only one met our criteria: insulin/glucose ratio

(Insglur5), which is associated with insulin resistance. In

the same study that was referenced for the plasma insulin

QTL that overlapped the plum2 module, Marissal-Atvy

et al. (2014b) identified insulin resistance as a relevant

phenotype for metabolism. Insulin resistance was calcu-

lated by finding the percent decrease in glycaemia after

injecting animals with insulin.

Agreement was found between the PANTHER enrich-

ment and RGD QTL databases for the thistle2 and plum2

modules (Table 3). There were strong similarities between

gene product enrichment and overlapping phenotypic

QTLs for the thistle2 module. In both databases, there was

strong evidence that this module is related to the immune

system. The strongest overlapping phenotypic QTL was

related to the IgG autoantibody and autoimmune disease,

while the module was enriched for the immune system, and

Fig. 2 Connectivity within the thistle2 module. a Initial pairwise

connections between gene products in the thistle2 co-expression

module. b Pairwise connections that remained after adjustment for the

module eigengene QTL, i.e., potential shared cis eQTL among genes.

A red edge represents a negative correlation between the two nodes

and a blue edge represents a positive correlation between two nodes.

The thickness of each edge represents the strength of each correlation

(i.e., a correlation with a larger magnitude has a thicker line), and

edges are only visible if their associated correlation is greater than

|0.60|. Unannotated genes are represented by chromosomal location.

Genes are marked with an asterisk if none of its associated high-

confidence transcripts were annotated in the Ensembl database, but at

least one is similar to an annotated transcript from the rat Ensembl

database, the rat RefSeq database, or the RefSeq database from other

species. Yellow nodes represent gene products that were involved in

module enrichment (immune system, antigen processing and presen-

tation, cellular defense response, MHC protein complex, and antigen

binding). RT-CE16, a Class I Major Histocompatibility Complex, is

the hub gene product both before (a) and after (b) adjustment for

shared cis eQTL
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antigen presentation and processing. The similarities

between enrichment and overlapping phenotypic QTLs are

not as obvious for the plum2 module; however, several of

the proteins that directly impact food consumption and

insulin regulation are associated with pro-inflammatory

responses (Wensveen et al. 2015), and the module was

enriched for genes related to immune response. With these

similarities in mind, we chose to further analyze our results

with the thistle2 and plum2 gene product networks.

Additional characterization of modules

Partial correlation

Twenty-five of the gene products within the thistle2 mod-

ule were co-localized to chromosome 20, so we performed

partial correlation analysis to determine if the correlation

among gene products was due to independent causal loci in

linkage disequilibrium. After adjusting for the meQTL, the

module retained the majority of its nodes; in fact, none of

gene products associated with chromosome 20 lost all of

their connections (Fig. 2b). This indicates that these gene

products from chromosome 20 likely have a biological

relationship, and are not simply expressed in similar

manner because of linkage disequilibrium among causal

loci.

Liver cell type-specific transcriptome analysis

Of the 9331 genes that remained after pre-processing of the

cell type-specific arrays, 8447 (90 %) were differentially

expressed among cell types (FDR\ 0.05). The normalized

expression data and the original CEL files are available on

PhenoGen. Because the thistle2 and plum2 modules are

related to the immune system and immune response, we

compared the Kupffer cell expression of genes within the

modules to each of the other three cell types in this cell-

specific analysis (hepatocytes, hepatic stellate cells, and

sinusoidal endothelial cells).

Thistle2 Of the 37 gene products in the thistle2 module,

Kupffer cells had the highest expression among the 4 cell

types in 27 (57 %) of the gene products (Fig. 4). The hub

gene, RT1-CE16, was up-regulated in the Kupffer cells;

these cells showed 43 % higher expression of the hub gene

compared to hepatocytes, 23 % higher expression com-

pared to hepatic stellate cells, and 8 % higher expression

compared sinusoidal epithelial cells. The five most highly

connected genes of the thistle2 module were up-regulated

in Kupffer cells, and of the top 15 most highly connected

genes in the thistle2 module, 13 were up-regulated in

Kupffer cells.

Plum2 Of the 38 gene products in the plum2 module,

Kuppfer cells had the highest expression among the four

cell types in 17 (45 %) of the gene products (Fig. 5). The

hub gene, Ifr7, was up-regulated in Kupffer cells; these

cells had 520 % higher expression of the hub gene com-

pared to hepatocytes, 54 % higher expression compared to

hepatic stellate cells, and 19 % higher expression com-

pared to sinusoidal epithelial cells.

Although not discussed here, the cell type-specific

expression values for gene products in the firebrick4 and

lightcyan modules are displayed in Supplementary Figs. 3

and 4.

Discussion

The approach discussed in this paper included increasing

the interpretability of microarray data using RNA-Seq and

DNA-Seq data, constructing gene product networks with

WGCNA, and applying stringent criteria for the identifi-

cation of genetically regulated modules within the rat liver.

This resulted in the thistle2 module with gene products that

were related to the immune system, including the hub gene

Fig. 3 Connectivity within the plum2 module. Initial pairwise

connections between gene products in the plum2 co-expression

module. A red edge represents a negative correlation between two

nodes and a blue edge represents a positive correlation between two

nodes. The thickness of each edge represents the strength of each

correlation (i.e., a correlation with a larger magnitude has a thicker

line), and edges are only visible if their associated correlation is

greater than |0.60|. Genes are marked with an asterisk if none of its

associated high-confidence transcripts were annotated in the Ensembl

database, but at least one is similar to an annotated transcript from the

rat Ensembl database, the rat RefSeq database, or the RefSeq database

from other species. Yellow nodes represent gene products that were

involved in module enrichment (immune response). Irf7, Interferon

regulatory factor 7, is the hub gene product
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product RT1-CE16 (an MHC-class I molecule). Thistle2

was also enriched for the immune system process, and for

antigen processing and presentation. Not surprisingly, the

majority of gene products in this module had higher

expression in Kupffer cells than in hepatocytes, hepatic

stellate cells, or sinusoidal endothelial cells (Figs. 4, 5).

Further, after searching through publicly available pheno-

typic QTLs that overlapped the thistle2 meQTL, we found

two phenotypic QTLs that mapped to the same region and

were associated with immune system function: collagen-

induced arthritis (Ciaa1) and adjuvant-induced arthritis

(Aia1). Interestingly, Ciaa1 is located at the marker for

lymphotoxin alpha, and the thistle2 module contains the

gene product for lymphotoxin beta; lymphotoxin alpha and

beta specifically bind to each other.

The collagen-induced and adjuvant-induced arthritis rat

models are commonly used to study rheumatoid arthritis

(Joe 2006). Cell type-specific analyses showed that the

majority of components within the thistle2 module pri-

marily reside in Kupffer cells. These cells are the monocyte

and macrophage cells of the liver (Li et al. 2010), are

responsible for cytokine production and the presentation of

antigen to B and T cells (Li et al. 2010), and are involved in

systemic immune tolerance (You et al. 2008; Xu et al.

2014). It has also been shown that these monocyte and

macrophage systems are an essential component of

autoimmune disease (Li et al. 2010). With all of these in

mind, it can be postulated that the liver contributes to

rheumatoid arthritis through a genetically influenced and

Kupffer cell-mediated effect on systemic immune tolerance

that predisposes to, or diminishes, the likelihood of

autoimmune disease.

Behavioral phenotypic QTLs for food consumption and

corticosterone levels also overlapped the thistle2 meQTL.

Interestingly, factors influencing food consumption have

been associated with measures of immune function. Leptin

released from adipose tissue regulates the behavior of food

consumption by suppressing appetite, and low levels of

leptin have been shown to also suppress the immune sys-

tem (Fernández-Riejos et al. 2008). It has also been

observed that patients with rheumatoid arthritis have higher

levels of leptin, and that leptin-deficient mice are less

susceptible to antigen-induced arthritis (Lago et al. 2007).

This implies that leptin, which plays an important role in

Fig. 4 Cell type-specific expression of gene products in the thistle2

module. Cell type: HC hepatocyte cells, HSC hepatic stellate cells,

SEC sinusoidal endothelial cells, KC Kupffer cells. Strain: BN-Lx

Brown Norway with polydactyly-luxate mutation, SHR spontaneous

hypertensive rat. The color and intensity of each cell represent its

relative expression compared to the strain average in the Kupffer

cells, e.g., a value of 2 indicates that the expression in that strain and

cell type is twice the average expression in the Kupffer cells. Genes

are in order of connectivity after partial correlation, with the highest

connectivity at the top of the graphic and the lowest connectivity at

the bottom
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food consumption, may also play a role in immune sup-

pression and autoimmunity. Finally, food consumption and

circulating corticosterone levels have been linked. In rats, it

has been shown that the daily pattern of corticosterone can

be modified by restrictive feeding (Namvar et al. 2016),

and that high levels of glucocorticoids increase the intake

of foods with high fat and/or sucrose (Dallman et al. 2005).

We also identified the plum2 module, which was enri-

ched for immune response. It contained gene products

associated with the pro-inflammatory response: peg inter-

feron alpha-2a/b, chemokines, interferon regulatory fac-

tors, and response to interferon. Additionally, many of the

gene products in this module showed higher expression in

Kupffer cells, when compared to the other three cell types.

Phenotypic QTLs for food consumption and insulin regu-

lation overlapped the genetic control of expression levels in

plum2. Cortisol provides an important link between food

consumption and insulin regulation; high cortisol levels

can promote insulin resistance at the cellular level, which

increases the hunger signals that lead to overeating

(Aronson 2009). Leptin also helps to explain the relation-

ship between food consumption and inflammation, because

it functions in part as a pro-inflammatory cytokine and its

levels are increased by inflammatory stimuli such as IL-1

and IL-6 (Lago et al. 2007). It has also been postulated that

there is a relationship between insulin resistance, inter-

feron-gamma, and inflammation (Wensveen et al. 2015).

Wensveen et al. showed that obesity stimulates the up-

regulation of interferon-gamma and NK cell proliferation,

which in turn increases the production of pro-inflammatory

macrophages and insulin sensitivity.

In this analysis, we identified two genetically driven

modules with obvious biological relevance; however, this

does not imply that the remaining 48 modules do not

represent biological pathways. Our goal was to demon-

strate how these methods and models, in conjunction with

currently available public databases, could be used to

uncover biological relevance and, indeed, we identified two

liver modules associated with immune response. There are

several possible reasons why more modules were not

linked to biological pathways. Nearly 5000 of the RNA-

Seq-derived liver genes were not interrogated by the array,

and some of the genes that were interrogated by the array

failed to be detected above background; consequently,

Fig. 5 Cell type-specific expression of gene products in the plum2

module. Cell type: HC hepatocyte cells, HSC hepatic stellate cells,

SEC sinusoidal endothelial cells, KC Kupffer cells. Strain: BN-Lx

Brown Norway with polydactyl luxate mutation, SHR spontaneous

hypertensive rat. The color and intensity of each cell represent its

relative expression compared to the strain average in the Kupffer

cells, e.g., a value of 2 indicates that the expression in that strain and

cell type is twice the average expression in the Kupffer cells. Genes

are in order of connectivity, with the highest connectivity at the top of

the graphic and the lowest connectivity at the bottom
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these technology-related limitations could miss important

genes. Thus, modules that are derived in this manner may

not include every gene product that is relevant to the

related pathway; instead, they represent a set of the mea-

sureable genes related to the pathway.

Publication biases, associated with the public databases

used to define biological relevance, are another possible

limitation for identifying more biologically relevant mod-

ules. For example, the QTL database may be biased to

phenotypes that have been researched with respect to

genetic determinants. Some phenotypes may have a higher

abundance of QTLs, because rats have been good models

for studying a particular disease process (e.g., alcohol

response, blood pressure, arthritis); consequently, QTLs

are both overrepresented and underrepresented in the cur-

rent databases.

Further, regardless of the rat population used for map-

ping, all of the RGD QTLs were considered. Although this

‘‘inclusive’’ approach may identify phenotypic QTL that do

not represent the same causal loci as the overlapping

meQTL, because they were detected in two different

populations, the two loci are likely in linkage disequilib-

rium and may have similar effects. It is true that without

detailed QTL studies using rat populations derived from

the same or similar strains as the progenitors of the HXB/

BXH RI panel, we may miss relevant phenotypic QTL.

Some may argue that using a heterogeneous tissue

sample will ‘mask’ important transcription patterns.

Although some connections between genes will be missed,

the connections that are identified are robust strong signals

that are important in a systems genetics analysis. When we

examined cell type-specific expression in modules that

were associated with immunity and inflammation, as pre-

dicted, both modules contained strong signals from Kupffer

cells. Kupffer cells account for a small proportion of the

total cells in healthy liver, but we were still able to recover

relevant pathways that they likely influence. Using whole

tissue is not an end-all approach, but rather a starting point

to identify key components of a system/network.

In conclusion, our systems genetics approach improved

the interpretability of microarray data by mapping probes

to progenitor strain-specific transcriptomes, and allowed

for the identification and characterization of liver co-ex-

pression modules within our panel of rats. This combina-

tion of methods and data allowed us to characterize

previously unannotated gene products, and to identify

genetically and biologically relevant gene networks. RNA-

based networks can serve many purposes in future

research: (1) they can be viewed as an intermediate product

between DNA sequence variants and a particular pheno-

type, (2) they can be used to ‘‘hypothesize’’ about the

function of individual unannotated transcripts through

associations within a module, and (3) they can be used to

identify optimal animal strains for future studies of disease

etiology by prediction of individual strain predisposition to,

magnitude of, and progression of disease.
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Herttuala S, Brittenham GM (1995) Experimental liver cirrhosis

induced by alcohol and iron. J Clin Invest 96:620–630

Vanderlinden LA, Saba LM, Printz MP, Flodman P, Koob G,

Richardson HN, Hoffman PL, Tabakoff B (2014) Is the alcohol

deprivation effect genetically mediated? Studies with HXB/BXH

K. K. Harrall et al.: Uncovering the liver’s role in immunity through RNA co-expression networks 483

123



recombinant inbred rat strains. Alcohol Clin Exp Res 38:

2148–2157

Weiss JN, Karma A, MacLellan WR, Deng M, Rau C, Rees CM,

Wang J, Wisniewski N, Eskin E, Horvath S et al (2012) ‘‘Good

Enough Solutions’’ and the Genetics of Complex Diseases. Circ

Res 111:493–504
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