
Within-strain variation in behavior differs consistently
between common inbred strains of mice

Maarten Loos1,2 • Bastijn Koopmans1 • Emmeke Aarts3 • Gregoire Maroteaux3 •

Sophie van der Sluis4 • Neuro-BSIK Mouse Phenomics Consortium •

Matthijs Verhage3 • August B. Smit2

Received: 20 April 2015 / Accepted: 17 June 2015 / Published online: 28 June 2015

� Springer Science+Business Media New York 2015

Abstract Genetic and environmental factors interact

throughout life and give rise to individual differences, i.e.,

individuality. The diversifying effect of environmental

factors is counteracted by genetic mechanisms to yield

persistence of specific features (robustness). Here, we

compared robustness between cohorts of isogenic mice of

eight different commonly used strains by analyzing to what

extent environmental variation contributed to individuality

in each of the eight genotypes, using a previously published

dataset. Behavior was assessed in the home-cage, providing

control over environmental factors, to reveal within-strain

variability in numerous spontaneous behaviors. Indeed,

despite standardization and in line with previous studies,

substantial variability among mice of the same inbred

strain was observed. Strikingly, across a multidimensional

set of 115 behavioral parameters, several strains consis-

tently ranked high in within-strain variability (DBA/2J,

129S1/Sv A/J and NOD/LtJ), whereas other strains ranked

low (C57BL/6J and BALB/c). Strain rankings of within-

strain variability in behavior were confirmed in an inde-

pendent, previously published behavioral dataset using

conventional behavioral tests administered to different

mice from the same breeding colonies. Together, these

show that genetically inbred mouse strains consistently

differ in phenotypic robustness against environmental

variation, suggesting that genetic factors contribute to

variation in robustness.
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Introduction

There is a keen interest in society as well as in fundamental

and medical research in factors that make us unique as

individuals. Generally, these factors are divided into genetic

factors (nature) and environmental factors (nurture), which

through complex interactions shape the behavioral charac-

teristics of an individual. Accordingly, in the complete

absence of variation-contributing genetic factors, such as in

the case of monozygotic (genetic identical) twins, or inbred

(isogenic) mice, any difference in behavior should result

from environmental factors. Nonetheless, in experimental

studies employing isogenic (genetic identical) mice, in

which environmental conditions are highly standardized to

reduce environmental variation, behavioral differences

between isogenic mice are observed (Gärtner 1990; Crabbe

et al. 1999; Freund et al. 2013). A number of factors may

contribute to this individuality in behavior in mice, includ-

ing uncontrollable environmental factors such as intrauter-

ine position (Lathe 2004). Ultimately, such environmental

differences may lead to the profound epigenetic differences

(e.g., DNA methylation levels) that have been observed

between genetically identical individuals (Kaminsky et al.

2009; van Dongen et al. 2012). Interestingly, there is clear

evidence for molecular mechanisms that buffer environ-

mental variation. This phenomenon is known as phenotypic

robustness in model organisms (Queitsch et al. 2012), and is

broadly defined as the ability of a given genetic background

to produce a constant phenotype, despite environmental

variability (Debat and David 2001). For instance, experi-

mental evidence in plants and flies shows that impairing

HSP90 function decreases buffering of environmental

variation, thereby leading to increased phenotypic variation

(Queitsch et al. 2002; Sangster et al. 2008). The aim of the

present study was to investigate, in mice, whether genetic

variation contributes to phenotypic robustness.

The extent of variation among genetically identical

individuals is the net result of factors that promote individ-

uality and those that buffer against variation. In the present

study, we kept isogenic animals under strictly controlled

environmental conditions (e.g., living environment, nutri-

tion). Nonetheless, some environmental factors are uncon-

trollable [e.g., intrauterine position (Lathe 2004)], and we

used this environmental variation and perturbation to study

robustness. Importantly, these environmental factors are of

similar nature, and are uncontrollable in a similar fashion in

different strains of mice. Thus, behavioral differences

between strains, in response to these uncontrollable envi-

ronmental factors, should arise largely from strain differ-

ences in the capacity to buffer. To test this buffering capacity

(robustness), we compared within-strain variability in

behavior between eight genetically different laboratory

isogenic inbred strains of mice.

To quantify variability in behavioral phenotypes of

sufficient numbers of isogenic mice, systematic, accurate,

and unbiased measurements are crucial (Bendesky and

Bargmann 2011). Here, we relied on studying behavioral

phenotypes in an automated home-cage environment (Loos

et al. 2014), in which behavior is automatically tracked for

multiple days in a row. Such a home-cage provides a

continuous living and testing environment without human

interference to reduce environmental factors contributing

to within-strain variation. Genetic contribution to pheno-

typic robustness would then become manifest as differ-

ences in within-strain variability between isogenic lines

with respect to the many behavioral parameters that auto-

mated home-cage testing yield.

Materials and methods

Mice

Mice were obtained from Jackson Laboratory and bred in

the facilities of the Neuro-Bsik consortium (VU University

Amsterdam, The Netherlands or Harlan Laboratories,

Horst, The Netherlands; 129S1/SvImJ n = 59, A/J n = 43,

BALB/cJ n = 44, C3H/HeJ n = 29, C57BL/6J n = 107,

DBA/2J n = 39, FVB/NJ n = 36, NOD/ShiLtJ n = 37). 8

to 12-week-old male mice were singly housed on sawdust

in standard Makrolon type II cages enriched with card-

board nesting material for at least 1 week prior to experi-

ments, with water and food ad libitum (7:00/19:00 lights

on/off; providing an abrupt phase transition). Experiments

were carried out in accordance with the European Com-

munities Council Directive of 24 November 1986 (86/609/

EEC), and with approval of the local animal care and use

committee of the VU University.

Automated home-cage observation and data

analyses

Observation was performed in a home-cage environment

(PhenoTyper model 3000, Noldus Information Technol-

ogy, Wageningen, The Netherlands), described in detail

previously (Maroteaux et al. 2012). Mice were housed for

seven consecutive days, of which the first 3 days were used

to analyze spontaneous behavior. Mice were introduced in

the cage in the second half of the subjective light phase

(14:00–16:00 h), and video tracking started at the onset of

the first subjective dark phase (19:00 h). The cages (L =

30 9 W = 30 9 H = 35 cm) were made of transparent
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Perspex walls with an opaque Perspex floor covered with

bedding based on cellulose. A feeding station and a water

bottle were attached on to two adjacent walls. A triangular-

shaped shelter compartment (height: 10 cm; non-transpar-

ent material) with two entrances was fixed in the corner of

the opposite two walls. The top unit of each cage contained

an array of infrared LEDs and an infrared-sensitive video

camera used for video tracking. The X–Y coordinates of the

center of gravity (COG) of mice sampled at a resolution of

15 coordinates per second were acquired and smoothed

(Hen et al. 2004) using EthoVision software (EthoVision

HTP 2.1.2.0, based on EthoVision XT 4.1, Noldus Infor-

mation Technology, Wageningen, The Netherlands). In

occasions where mice were not detected by the video

tracking system, due to processor overload (missing

frames) or in particular areas of the cage where image

contrast was low (not found frames; particularly when

climbing into the feeding station), linear interpolation (in-

terpolated frames) between last observed position and

newly detected position was implemented. Resulting digi-

tal tracks were processed to generate behavioral parameters

using AHCODATM analysis software (Sylics, Synaptolog-

ics BV, Amsterdam, The Netherlands), as described in

detail previously (Loos et al. 2014).

Statistical analyses

Before statistical analyses, parameters were log10 trans-

formed in case this decreased the positive skew of the

distribution (see Table S1 for parameters and the applied

transformation). Estimates of the genetic effect size (nar-

row sense heritability) were calculated as described by

Hegmann and Possidente (Hegmann and Possidente 1981)

using a custom function (Microsoft Excel) as reported

previously (Loos et al. 2009), which takes the differences

in the number of animals per group into account when

estimating the within and between-strain variance (Lynch

and Walsh 1998). Data were checked for skewness, and if

skewness could be improved by log10 transformations, this

was executed. Outlier data points were defined when

exceeding the threshold of ±5 times the standard deviation

of the entire dataset (i.e., not per strain), and outlying

values were replaced by this threshold. Principal compo-

nent analysis (PCA) was performed on data of individual

mice, and after subtraction of strain means, missing data

were replaced my strain means (i.e., 0 after subtraction);

principal components were retained if the Eigenvalue was

larger than 1, which is typically used as threshold (Kaiser’s

criterion; (Kaiser 1960)). Subject’s scores on PC were

estimated using regression. ANOVA and PCA were per-

formed with SPSS version 20.0 (IBM, Armonk, New York,

USA).

Results

Systematic analysis of within-strain variability

Our analysis yielded qualitatively different move, arrest,

and shelter segments, of which an example is shown in

Fig. 1a. The methods and between-strain differences in

behavior of 11 strains have been described previously (Loos

et al. 2014). In the present study, however, we investigated

within-strain differences in behavior of 8 of those strains

for which a large number of individuals was measured

(between 29 and 107 individual mice per strain), which is

required for an accurate assessment of within-strain vari-

ability. In short, mouse activity was studied with respect to

time windows ranging from activity bouts in the subminute

range (Fig. 1b), habituation effects across multiple days

(Fig. 1c), diurnal 12/12 h dark/light rhythms (Fig. 1d), to

the hours surrounding the phase. Together, the analysis

provided 115 parameters to study within-strain variability

in behavior. Given that several parameters were related in

time or location in the cage, we examined to what extent

each of the 115 parameters contributed to insight into

within-strain variability. Hereto, we performed principal

component (PC) analysis with Varimax rotation on the data

of all individual mice (394) belonging to eight strains, after

subtraction of their respective strain mean, to specifically

focus on within-strain variability. PC analysis identified 22

orthogonal PCs of within-strain variability across the entire

dataset. However, the principal components identified in

the pooled data of mice of all strains may not be truly

independent in each strain. In other words, the variance of

some behaviors could be highly correlated in some strains

but not in others and pooling them might mask those dif-

ferences. To explore the independence of the parameters

within each strain, we repeated PC analyses within each of

the 8 strains. In all strains, PC analysis identified 20 or

more PCs, showing that this dataset of 115 parameters is

truly multidimensional and, therefore, suited to investigate

overall phenotypic robustness.

Strain comparison of within-strain variability

in home-cage behavior

To study strain differences in phenotypic robustness, we

compared the within-strain standard deviation. The coef-

ficient of variation (standard deviation divided by the

mean) was unsuitable as metric for within-strain variabil-

ity, since the coefficient of variation will approach infinity

when the mean is close to zero (e.g., as in the case of

measures of habituation, which are inferred from the slope

of the activity during the first 3 days). The standard devi-

ations were plotted as z-scores in a heatmap (Fig. 2),

350 M. Loos et al.: Within-strain variation in behavior differs consistently between common...

123



representing the high (red) or low (blue) variability of a

strain compared to the average variability of all eight

strains. Although all strains displayed both relatively high

and low variability on particular parameters in comparison

to other strains, some strains stood out in terms of the

relatively low number of highly variable parameters

(C57BL/6J for instance) or a high number of highly vari-

able parameters (for instance 129S1/Sv). To quantify dif-

ferences between strains in overall phenotypic robustness,

i.e., variability in many behavioral parameters, the average

variability of the eight strains was calculated (Fig. 3a).

Indeed, this quantification indicated that C57BL/6J and

BALB/c mice showed the lowest variability across these

115 parameters in contrast to highly variable strains such as

129S1/Sv and A/J. Since larger means might be associated

with larger standard deviations, we investigated whether

there was a relation between the z-scores of the standard

deviations (as used in Figs. 2, 3) and the z-scores of the

means, for each parameter in the dataset. There was no

consistent correlation between the z-scores of the means

and the z-score of the standard deviations, indicating that

the metric of variability in this study (i.e., the standard

deviation) was not confounded by differences in the mean

performance of the strains (Fig S1).

As PCA had indicated, the 115 parameters were not

independent but reflect 22 orthogonal components. Thus, the

average variability of a strain, as depicted in Fig. 3a, rep-

resents the average of 22 independent assessments of within-

strain variability in a given strain. Thus, to statistically test

for strain differences in variability, while accommodating

the dependency among parameters, the average within-

strain variability on the 22 PCs was statically evaluated.

Indeed, ANOVA showed that the strain difference in vari-

ability in the 22 orthogonal components was highly signif-

icant [F(7168) = 4.33, P\ 0.001; Fig. 3b].

The group size varied considerably between the eight

inbred strains in the study, and the accuracy of the esti-

mation of a standard deviation is higher with increasing

sample sizes. Although the lower standard deviation in the

largest group (i.e., C57BL/6J) cannot readily be explained

by the larger group size, we nevertheless investigated the

effect of group size on the observed variability by ran-

domly drawing smaller samples for all strains, i.e., samples

the size of the smallest group (C3H/HeJ; n = 29) as well as

a typical size for behavioral experiments (n = 12), and

calculated the average variability based on these smaller

samples (Fig. S2, intermediate and light gray shaded bars).

The pattern of strain differences in variability did not

change; again C57BL/6J and BALB/c mice showed the

lowest variability, while strains such as 129S1/Sv and A/J

displayed the highest variability.

Furthermore, to check whether variability between mice

could have been due to measurement accuracy, we corre-

lated measures of video tracking accuracy of each strain

with within-strain variability. None of these measures

correlated significantly with variability (missing frames:

Spearman’s q = .12, P = .78; not found frames: Spear-

man’s q = .33, P = .42; interpolated frames: Spearman’s

q = .10, P = .82), indicating no evidence for method-

ological sources of strain differences in variability.

a bSegmentation of videotrack into behavioral elements Bouts of activity (minutes and seconds)

Minutes
Short LongShelter visit
ShortArrest Long

Activity bout

0 4 8 12 16

Habituation (days) DarkLight index (phase)

Dark Light

Ac
tiv

ity

Patterns (hours)

Day1
Day2
Day3

Light thgiLkraD Dark Light Dark

edc

Short LongMovement

Fig. 1 Segmentation of sheltering behavior and activity into ele-

ments, studied at four different time scales. a A representative track of

approximately 17 min of a C57BL/6J mouse, obtained during the

dark phase of the first night in the cage (7:34:22–7:52:00), dissected

into elements by individually determined thresholds. b Active

elements of behavior occur in bouts, interchanged with periods of

inactivity during long arrest or long shelter segments. c At a multi-day

timescale, activity level changes due to habituation effects. d At a

timescale of 12 h, there is an effect of the dark/light phase. e At the

timescale of hours, especially around phase transitions, activity shows

strong increases and/or decreases. For illustrative purposes, panels c–
e contain reference data of C57BL/6J mice that were previously

published (Loos et al. 2014)
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Next, we sought to confirm our strain ranking of vari-

ability with an independent second behavioral dataset. We

re-analyzed 29 previously published behavioral parameters

obtained in a battery of conventional behavioral tests of

activity/anxiety in a panel of inbred strains [(Loos et al.

2009); n = 12 per strain], using five strains that were also

tested in the current study. In line with the home-cage data

in the current study, a significant strain difference in

variability was detected [F(4140) = 9.61, P\ 0.001], and

again, the average variability of C57BL/6J was low,

whereas the A/J showed the highest variability.

In conclusion, we found consistent differences in within-

strain variability among inbred strains, suggesting a genetic

contribution to overall robustness of behavioral phenotypes

in mice.

Discussion

The longitudinal automated home-cage data used in the

current study allowed us to study a wide range of behaviors

in individual mice under highly standardized conditions

over prolonged periods of time (72 h). Consistent differ-

ences in within-strain variability between eight inbred

strains were observed across many behavioral phenotypes,

showing that distinct genetic backgrounds differ in robust-

ness, i.e., their capacity to produce a constant behavioral

phenotype.

Within-strain variability, i.e., variation between highly iso-

genic individuals, has been observed in behavioral experi-

ments in general (Gärtner 1990; Crabbe et al. 1999; Freund

Fig. 2 Strain comparison of within-strain variability across 115

behavioral parameters. For each behavioral parameter (rows), the

standard deviation within each strain (columns) was calculated. The

standard deviations are plotted as z-scores, representing the high (red)

or low (blue) deviation of a strain compared to the average standard

deviation of the eight strains for that parameter. The dendrogram on

the left side of the figure visualizes the result of average linkage

clustering of the parameters with Euclidian distance as metric,

illustrating the dimensionality of the dataset
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Fig. 3 Strain comparison of overall phenotypic robustness. Pheno-

typic robustness was inferred from the average within-strain vari-

ability for a given strain, calculated from a collection of behavioral

parameters. Before calculating the average, within-strain variability

was standardized (z-scores). a Jittered scatterplot of the average

variability of each individual mouse in the experiment, as obtained

from 115 parameters in the home-cage (Loos et al. 2014). The

average variability per strain is indicated by the horizontal lines.

b Bar plot of the average variability per strain, as obtained from the

22 PCs extracted from the 115 parameters. c Bar plot of the average

variability per strain, obtained from previously published behavioral

parameters obtained in a battery of conventional behavioral tests

(Loos et al. 2009). The error bars represent the standard error of the

mean
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et al. 2013), and has been attributed to a number of sources.

First, despite careful inbreeding, genetic variation can still

exist in these highly inbred mice. However, all strains used

here have been subjected to decades of inbreeding by the same

breeder (Jackson Laboratories) that implemented a genetic

stability program (Taft et al. 2006), virtually eliminating

the possibility for systematic differences in the amount of

residual genetic variation between the lines in the experiment.

Nonetheless, at present, it is unknown whether different

strains may differ in the rate of, e.g., de novo mutations and

copy number variation (Egan et al. 2007; Watkins-Chow and

Pavan 2008). Thus, differences in within-strain variability

may be due to strain differences in the fidelity of the DNA

replication machinery and/or resistance to transposon-based

mutations.

Second, despite standardized breeding and housing in

the same facility, uncontrollable environmental influences,

such as intrauterine position of the embryo and feeding

hierarchy in newborns, cause within-strain variability

(Lathe 2004). The majority of these phenomena can be

expected to be present in all strains tested in this study and,

therefore, provide no direct explanation for strain differ-

ences in within-strain variability.

Third, stochastic events inmolecular and cellular processes

contribute to the emergence of phenotypic variation between

isogenic individuals. Experiments in unicellular organisms

have for instance shown that events stochastically affecting

chromatin structure create so-called intangible phenotypic

variation (Pujadas and Feinberg 2012), for review (Whitelaw

et al. 2010b)). Especially those stochastic events that occur

during a critical developmental phase may non-linearly affect

the phenotype of an organism (Molenaar et al. 1993). The

effect of stochastic events promoting variability, and mecha-

nisms contributing to robustness cannot be distinguished in

the present study and may, to a certain extent, be two sides of

the same token.

All three sources of within-strain variation mentioned

above may contribute to initial variation between individ-

ual isogenic mice, and set the stage for a unique develop-

mental trajectory of each individual (Lynch and Kemp

2013). As recently shown in a longitudinal (3 months)

home-cage observation of exploratory behavior of inbred

mice, these individual trajectories increasingly diverge

over time (Freund et al. 2013). Importantly, the present

study shows that the eight common inbred strains differed

in their sensitivity to these three sources of variation; some

strains are more robust than others.

Of note, strain differences in maternal care (Carlier et al.

1982) are known to affect behavior of the offspring at later

developmental stages; however, these factors would sys-

tematically impact on all offspring of a particular strain,

and contribute to the plethora of strain differences in home-

cage behavior (Loos et al. 2014), but would not specifically

explain observed differences in phenotypic variation within

strains.

There is evidence for mechanisms that buffer these three

sources of within-strain variation. In plants and flies, there

is clear evidence for buffering by the HSP90 pathway.

Reduced HSP90 function impairs buffering of genetic and

environmental variation, thereby increasing the penetrance

of genetic variants to change the phenotype (Rutherford

and Lindquist 1998; Queitsch et al. 2002; Sangster et al.

2008). In mice, reduced levels of two modifiers of epige-

netic gene silencing (Dnmt3a and Trim28) increase within-

strain variation gene expression and behavior (Whitelaw

et al. 2010a). Thus, genetic differences between common

inbred strains of mice in molecular chaperones or epige-

netic modifiers might underlie the differences in pheno-

typic robustness described in the current study. The

observation of differences in variability among strains

suggests that some strains have superior mechanisms to

buffer diversifying factors, and maintain a constant phe-

notype (i.e., C57BL/6J and BALB/c), whereas others show

reduced phenotypic robustness (i.e., DBA/2J, 129S1/Sv

A/J,and NOD/LtJ). A study on variation in gene expression

has shown that segregating mouse lines are instrumental to

identify loci underlying within-strain variability (Fraser

and Schadt 2010). In fact, a recent study using different

Drosophila inbred lines confirmed the idea that different

genotypes vary dramatically in their propensity for vari-

ability, and that loci affecting variability could be mapped

(Ayroles et al. 2015). We anticipate that systematic auto-

mated behavioral analysis panels of inbred or mutant mice

in the home-cage could provide the throughput, multidi-

mensionality and sensitivity for genetic dissection of phe-

notypic robustness in mice as well.

In conclusion, the present study in a panel of inbred

mouse strains showed that, in addition to the previously

described strain differences the response to environmental

factors (G 9 E interaction), mouse strains also differ in

phenotypic robustness. This may have implication for the

choice of mouse strain in future behavioral genetics stud-

ies, in which within-strain variability is of great concern.

Moreover, this conclusion could only be reached by mea-

suring the behavior of multiple genetically identical indi-

viduals of the same genetic background, which is not

possible in humans. Thus, these findings in mice might be

exemplary for our thinking of how the human genome, by

influencing phenotypic robustness, renders each individual

more or less prone to subtle environmental perturbations.
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