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Abstract Most biological traits of human importance are

complex in nature; their manifestation controlled by the

cumulative effect of many genetic factors interacting with

one another and with the individual’s life history. Because

of this, mouse genetic reference populations (GRPs) con-

sisting of collections of inbred lines or recombinant inbred

lines (RIL) derived from crosses between inbred lines are

of particular value in analysis of complex traits, since

massive amounts of data can be accumulated on the indi-

vidual lines. However, existing mouse GRPs are derived

from inbred lines that share a common history, resulting in

limited genetic diversity, and reduced mapping precision

due to long-range gametic disequilibrium. To overcome

these limitations, the Collaborative Cross (CC) a geneti-

cally highly diverse collection of mouse RIL was estab-

lished. The CC, now in advanced stages of development,

will eventually consist of about 500 RIL derived from

reciprocal crosses of eight divergent founder strains of

mice, including three wild subspecies. Previous studies

have shown that the CC indeed contains enormous diver-

sity at the DNA level, that founder haplotypes are inherited

in expected frequency, and that long-range gametic dis-

equilibrium is not present. We here present data, primarily

from our own laboratory, documenting extensive genetic

variation among CC lines as expressed in broad-sense

heritability (H2) and by the well-known ‘‘coefficient of

genetic variation,’’ demonstrating the ability of the CC

resource to provide unprecedented mapping precision

leading to identification of strong candidate genes.

Background

Human populations display wide variation in their sus-

ceptibility to and manifestations of infectious, metabolic,

or psychiatric disease. This variation has been shown by

biometrical analyses to have a genetic component of

greater or lesser magnitude, depending on the disease.

Generally, susceptibility traits belong to the class of

‘‘complex’’ (also termed ‘‘quantitative’’) traits. That is,

their specific manifestation in an individual is controlled by

the cumulative effect of many genetic factors, interacting

with one another and with the life history of the individual.

Because of this complex etiology, it has proven exceed-

ingly difficult in humans to identify the individual genetic

elements (‘‘QTG,’’ taken in the broadest sense to include

functional RNA transcripts, up- and down-stream regula-

tory sites, enhancers, and so on) or sequence variants

within the QTG (‘‘QTN,’’ taken in the broadest sense to

include all sequence variants: SNPs, indels, CNVs, and

larger chromosomal re-arrangements) contributing to

genetic variation in susceptibility to specific diseases. This

has prompted the development of mouse genetic resources

for genetic analysis of complex traits. Humans and mice
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share widely in their genome architecture, and in their

basic biology and disease susceptibility. Large numbers of

inbred mouse lines that vary in their genetic architecture

have been developed and are commercially available.

These have formed the basis for genetic reference popu-

lations (GRPs) based on collections of inbred lines or

crosses between them (Roberts et al. 2007; Silver 1995).

GRPs are popular for the study of complex traits and

biological systems in both medical and life sciences

because genotyping is only required once (the ‘‘genotype

once, phenotype many times’’ paradigm), replicate indi-

viduals can be produced with the same genotype in larger

cohorts allowing for optimal case/control and gene-by-

environment designs (Broman 2005); data from numerous

experiments can be accumulated for the population

allowing deep bioinformatic data mining. GRPs can be

studied under defined environmental conditions, providing

model systems through which the genetic elements

responsible for the genetic variation of complex traits,

including disease susceptibility can be mapped to defined

chromosomal regions [termed ‘‘quantitative trait loci,

(QTL)’’] (see e.g., Groden et al. 1991; Hernandez-Vallad-

ares et al. 2004a; b; Houle 1992; Iraqi et al. 2000, 2003).

Yet, with some exceptions, even in such model systems, it

has not been possible to identify the actual functional QTG

and QTN, in part due to the complex genetic architecture of

these lines which precludes high-resolution mapping. This

has led the mouse genetics community to propose and

design a new ‘‘next generation’’ GRP, the Collaborative

Cross, ‘‘CC’’ (Threadgill et al. 2002). The CC is a mouse

GRP specifically tailored for high-resolution QTL mapping

of complex traits, with special emphasis on traits relevant

to human health in its broadest aspects. However, the CC

goes beyond this to include expanded possibilities for

analysis of epistatic interactions among QTG, identification

of the biological systems and networks within which the

QTG are embedded and through which their QTN exert

their effect at the whole organism phenotypic level, and the

interaction of these biological systems with the environ-

ment as mediated through epigenetic markings (Churchill

et al. 2004; Silver 1995).

The CC resource

This unique genetic reference population will eventually

comprise a set of approximately 500 recombinant inbred

lines (RIL) created from almost full reciprocal matings of

eight divergent strains of mice (some of the F1 crosses

were not viable). These include five classical inbred lines

(A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ, and NZO/HiLtJ)

and three wild-derived strains: CAST/Ei, derived from M.

m. castaneum mice trapped in Thailand in 1971, and PWK/

PhJ and WSB/EiJ, derived, respectively, from wild M. m.

musculus and wild M. m. domesticus mice trapped near

Prague in 1974 and the Eastern Shore of Maryland in 1976,

respectively (Beck et al. 2000).

Currently, over 350 pre-CC lines are in more or less

advanced stages of development at three locations: Tel

Aviv University, Israel (TAU) (Iraqi et al. 2008); Univer-

sity of North Carolina, USA (UNC) (Chesler et al. 2008);

and Geniad Ltd, Western Australia (GND) (Morahan et al.

2008). In addition to TAU, UNC, and GND, The Jackson

Laboratory and Oxford University also participated in the

initial development of the CC resource lines. To facilitate

community access to the CC, a material transfer agreement

was executed among all five parties and can be obtained

from any of them (Welsh et al. 2012). Genotypes are

available at a dedicated Web site: http://csbio.unc.edu/

CCstatus with a browser to facilitate visualization and

interaction with the genomes of the individual CC lines:

http://csbio.unc.edu/CCstatus/?run==CCV/.

Controlled randomization was performed during the

breeding process to break up large linkage disequilibrium

(LD) blocks and to recombine the natural genetic variation

present in these inbred strains with the aim to create a

unique resource of RI strains exhibiting a large phenotypic

and genetic diversity (Roberts et al. 2007).

The CC population exhibits about fourfold map expan-

sion compared with a single generation cross, increasing

accuracy of QTL map location in proportion. Because of

their inbred nature, all genetic traits involve homozygotes;

thus, increasing genetic variation associated with each QTL

(Falconer and Mackay 1996); there may, of course, be

exceptions to this rule. In addition, multiple individuals can

be phenotyped in each line reducing environmental sources

of variation. In this way, the effective mapping power of

the set of RILs is increased many-fold relative to standard

F2 mapping populations (Valdar et al. 2006). Initially, all

CC mice were genotyped with the mouse diversity array

(MDA), which contains 620,000 SNP markers (Yang et al.

2009), and their genome reconstruction was presented

(Durrant et al. 2011). Recently, all mice were regenotyped

at advanced generations with the new 7500 custom-

designed mouse universal genotype array (MUGA), which

provided the genome architecture of the CC lines (CCC

2012). After six inbreeding generations, the entire CC

mouse population was re-genotyped by the 77,000 SNP

array of MegaMUGA, and all their genotypes will be

available. Figure 1 shows the genomic reconstruction of

three CC lines after genotyping with MDA (Durrant et al.

2011) by using Happy software (Mott et al. 2000).

With some exceptions, the founder line haplotypes are

distributed more or less equally across the population of

lines as a whole, although the distribution of founder

genome within individual chromosomes or lines can differ
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widely from equality. Linkage disequilibrium decayed

rapidly with distance as expected for a collection of inde-

pendent inbred lines, and there were no indications of

gametic disequilibrium (i.e., of LD among unlinked

markers), which agrees with the report by Broman et al.

(2012). Consequently, except for type I error due to sam-

pling, marker–QTG association tests will be significant

only between markers and QTN that are closely linked.

This is in contrast to the situation found in panels of

classical mouse GRP involving collections of inbred

strains, where extensive long-range gametic disequilibrium

is present due to historical relationships among the lines,

and results in a much higher effective type I error than

predicted by sampling considerations alone. Thus, the CC

resource is well along the way to fulfill the most sanguine

hopes of its community.

A recent study characterizing the genome architecture of

350 pre-CC lines (CCC 2012) showed that the wild mice

indeed contributed enormous stores of genetic variation that

were not found in the standard mouse laboratory strains.

Whereas most classical strains differ from the reference

C57BL/6J at about 4 million SNPs, PWK/PhJ, and CAST/Ei

each differ at about 17 million SNPs, and WSB/EsJ at

6 million (Keane et al. 2011). Among them, the eight foun-

der populations present 36.155 million SNPs! This is many-

fold greater than the genetic diversity captured in existing

GRPs derived from crosses or panels of standard laboratory

strains. Consequently QTL mapping using the CC is likely to

uncover novel QTLs involving contrasts between the wild-

derived strains. This is exemplified in a pilot experiment in

our laboratory in which we fine-mapped eight QTLs asso-

ciated with post-challenge survival after infection by

Aspergillus fumigatus. Of these, five QTL involved contrasts

with wild-derived strains and would not have been present in

a cross between classical strains (Durrant et al. 2011). That

study, and others by our collaborators (Aylor et al. 2011;

Durrant et al. 2011; Bottomley et al. 2012; Kelada et al. 2012;

Kovacs et al. 2011; Mathes et al. 2011; Philip et al. 2011),

further showed that by incorporating variation data from the

genome sequences of the CC founders—available from the

Sanger Mouse Genomes Project (Keane et al. 2011)—and

restricting attention to variants whose differences across the

founders are consistent with the pattern of action of the QTL

(Yalcin et al. 2005), confidence interval of QTL location can

be significantly narrowed, and the list of potential candidate

genes markedly refined.

In the present report, we present extensive data primarily

from our own laboratory, documenting extensive genetic

variation among CC lines as expressed by the well-known

heritability statistic, representing the proportion of total phe-

notypic variation that can be attributed to genetic factors, and

by the well-known ‘‘coefficient of genetic variation (CVG),’’

which provides a unit-free measure of the relative magnitude

of the genetic variation. In addition, we discuss previous

studies from our laboratory and others demonstrating the

ability of the CC resource to provide high-resolution mapping

of QTL affecting a wide variety of traits, including suscepti-

bility to a spectrum of infectious diseases. Finally, we consider

the potential role of the CC as a uniquely powerful resource for

systems biology.

Fig. 1 Reconstructions of the

genomes of representative CC

lines. Genomes of CC lines IL-

127 (upper panel), IL-134

(middle panel), and IL-135

(lower panel) were

reconstructed using a hidden

Markov model (HMM)

implemented by HAPPY

program (Mott et al. 2000). The

X-axis shows the 19 autosomes.

The Y-axis shows the eight CC

founders, with probability of

descent from each founder.

Regions attributed with high

probability to a single founder

appear as dark horizontal bands

in the lane corresponding to the

founder. Regions where two or

more putative founders cannot

be distinguished are gray.

Regions where a founder is not

represented at all are white
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Materials and methods

Heritability and genetic coefficient of variation analysis

in the CC lines

Heritability estimates were obtained from unpublished data

for a wide variety of traits presently being studied at TAU

and from the published results of Philip et al. (2011) for

selected morphological and behavioral traits recorded for

the lines under development at Oak Ridge National Lab-

oratory [(ORNL), later transferred to North Carolina State

University]. Traits at ORNL were monitored from the

initial crosses of the funnel breeding scheme (G1 genera-

tion), through the seventh inbreeding generation (G2:7

generation).

Brief descriptions of the study traits are given in Box 1.

For TAU data, broad-sense heritability estimates (H2)

including epistatic but not dominance effects were obtained

from a one-way ANOVA with CC lines as the main effect

as follows:

H2 ¼ Vg= Vg þ Ve

� �

where

Ve is the environmental component of variance within

lines = MSwithin

Vg is the genetic component of variance among CC

lines = (MSbetween - Ve)/n

n is the average number of mice per line

For the ORNL data, narrow-sense heritability (h2) esti-

mates (not including epistatic effects) were obtained by

Philip et al. 2011 from parent–offspring regressions.

The genetic coefficient of variation

The heritability statistic estimates the proportion of

observed phenotypic variation that is due to genetic factors.

However, it does not tell us whether the absolute amount of

genetic variation generated by these genetic factors (the

‘‘genetic component of variation’’) is great or small. A

Box 1 Data sets from TAU and ORNL for calculation of heritability and coefficient of genetic variation

Susceptibility to Klebsiella pneumonaie infection (KLEB). Klebsiella pneumonaie (Kp) is a common pulmonary pathogen causing severe

pneumonia in immunocompromised hosts and often associated with sepsis (Keynan and Rubinstein 2007). Here, we initiated a study aimed

at mapping and subsequently identifying the host susceptibility genes to Kp infection following intraperitoneal challenge. Survival and body

weight were monitored for 15 days post-challenge.

Susceptibility to periodontitis (PER). Periodontal infection (Periodontitis) is the most common chronic inflammatory disease in humans,

which results in destruction of tooth-supporting tissues and eventually leading to tooth loss. This process is characterized by destruction of

the periodontal ligament, formation of periodontal pockets, and alveolar bone resorption (Baker et al. 2000; Baker and Roopenian 2002;

Wilensky et al. 2005). We use the oral mixed infection system of the two anaerobic gram-negative bacteria Porphyromonas gingivalis and

Fusobacterium Nucleatum (Polak et al. 2009; Shusterman et al. 2013a, b) (40, 43, 44) to examine variation in susceptibility to periodontitis.

The phenotype is measured as initial alveolar bone volume prior to infection, residual bone value after infection, and bone volume loss, in

mm3 (49).

Modifiers of Apc gene (APC). Familial adenomatous polyposis (FAP) is a rare dominant genetic disease, which is characterized by multiple

intestinal polyps (Fearnhead et al. 2001; Fostira et al. 2010). It is caused by a functional mutation in the adenomatous polyposis coli (Apc)

gene. In order to investigate the syndrome in vivo, the ApcMin?/- mouse was developed, modeling the human polyp phenomenon (Moser

et al. 1992, 1993; Cormier and Dove 2000; Cormier et al. 2000) (13, 14, 34, 35). We generated an (ApcMin- x CC) F1 mouse population, by

crossing male mice of C57Bl/6J carrying ApcMin?/- with females of advanced generations CC lines. After 5 months, mice were terminated,

and the number and sizes of polyps in the small intestines and colon were recorded.

Susceptibility to type 2 diabetes (DEXA T2D). The worldwide prevalence of type 2 diabetes (T2D), in the past decades, has reached

epidemic proportions, (150 million in the year 2000) expected to double by 2025 (Buse et al. 2007). Diabetes can be considered as a disease,

where the challenge is the Western diet. In this study, 8 week-old mice per line were maintained on high-fat diet (42 % fat) for a period of

3 months, and subsequently assessed for glucose level by intraperitoneal glucose tolerance test (IPGTT), and for body composition and

body mass index (BMI) index by dual-energy X-ray absorptiometry (DEXA) scan (Broman 2005).

Normal body composition by DEXA scan analysis (DEXA normal). This study aims to determine the genetic factors underlying body

composition as obtained through the DEXA scan technique (Brommage 2003). The following phenotypes (among others) were recorded:

body length (BL) and weight (BW), bone mineral density (BMD), and body and liver fat percentages (%). The body mass index

(BMI = BW/(BL2) was also obtained.

Immune response cell lineages in peripheral blood (Immuno). Mapping quantitative trait loci (QTLs) effecting the immune response cells

lineages in the peripheral blood and subsequently identifying the genes underlying these QTL can lead to better understanding of the host

response to these different infectious diseases (Petkova et al. 2008). Here, we quantified the relative proportions of peripheral blood T, B,

and macrophage cells of 10 week-old mature mice (3–5 mice per line at 10 weeks), by immunophenotyping using flow cytometry analysis

and fluorescence-activated cell staining (FACS) technology.

Studied at ORNL (39) Table 2 of Philip et al. 2011 present estimates of h2 in generation G2:7 with accompanying data from which CVA can

be estimated for selected morphological and behavioral traits, among them: body weight, heart weight, tail length, open-field test (average

distance from the center of the field, and total distance traveled, in first 3 min of exposure to the open field), and hot-plate latency test (time

to respond to being placed on a hot metal surface).
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high-heritability value is compatible with very little

absolute genetic variation (if total phenotypic variation is

also very low and mostly due to genetic factors), while a

low heritability value is compatible with a large genetic

component of variation (if phenotypic variation is very

large). The absolute value of the genetic variation is

readily obtained as the genetic standard deviation (Vg0.5).

This value, however, depends on the measurement unit of

the trait and is not meaningful for comparison among

traits. The coefficient of variation (ratio of standard

deviation to the mean) is a commonly accepted unit-free

measure of dispersion. We used the well-known evolv-

ability parameter, the ratio of the genetic standard devi-

ation to the mean, (also termed the genetic coefficient of

variation, CVG), as the comparable measure for unit-free

evaluation of genetic dispersion (Garcia-Gonzalez et al.

2012; Houle 1992).

It is of interest to give a benchmark for judging whether

CVG values are large or small. As a rough estimate, within

any given outcrossing population, quantitative traits gen-

erally have a phenotypic coefficient of variation equal to

about 10 % of the mean, i.e., SD/mean = 0.1. If we con-

sider a trait with heritability 0.50, the genetic variance will

be 0.5 of the phenotypic variance, and the genetic standard

deviation will be the square root of this, or 0.71 SD. Thus,

the CVG will be about 0. 071. Thus, comparison of CVG

among the CC lines with this benchmark will tell us to how

the genetic variation among the CC lines compares to that

found for many quantitative traits, within a typical out-

crossing population.

For TAU data, CVG was estimated as

SDG=Mean

where

SDG = the broad-sense genetic standard deviation

among CC lines = VG
0.5

Mean = mean trait value across all CC lines

For ORNL data that provided information on narrow-

sense heritability, SDA was calculated from values for

mean, h2, and SD presented in Table 2 of Philip et al. 2011.

Results and discussion

Here, we present selected phenotypic profiles of traits that

were characterized on TAU CC lines. Figure 2 shows total

polyps variation among different (ApcMin- x CC) F1 mouse

lines. Figure 3 shows variation of blood glucose level

during intraperitoneal glucose tolerance test (IPGTT)

assessments of different CC lines. Figures 4 and 5 show

distribution of body lengths and body mass index (BMI) of

20 week-old mice of different CC lines, respectively.

Fig. 2 Variation among CC

lines: modifiers of familial

adenomatous polyposis (Apc)

gene. Mean polyp count in F1

cross of CC line x ApcMin-. The

X-axis represents the 15 tested

CC lines (2–4 mice per line)

while the Y-axis represents the

mean polyps count (with

standard error) in small

intestines and colon at age

5 months. Mean polyp count in

control C57BL/6J (APCmin?/-)

mouse is also presented

Fig. 3 Variation among CC lines: intraperitoneal glucose tolerance

test (IPGTT). Blood glucose levels during an IPGTT, performed on

11 CC mouse lines (4–6 mice per line), maintained on high-fat diet

for a period of 12 weeks. The X-axis represents the time points (min)

used for testing blood glucose levels (mg/dL). Blood glucose levels

(with standard error) are represented on the Y-axis
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Fig. 4 Body length of

20 week-old mice of CC lines.

Body length was defined the

distance between nose and anus.

The x-axis represents the 15

tested CC lines while y-axis

represents the mean body length

(cM) with standard error

included. On average 3–6 mice

per line were assessed. Mean

body lengths of the different

tested CC lines were ranged

between 8.2 and 10.3 cM

Fig. 5 Body mass index (BMI)

of CC lines. BMI was defined as

body weight divided by the

square of body length (BW/

BL2), at 20 weeks of age. The

X-axis represents the 15 tested

CC lines (3–6 mice per line),

while the Y-axis represents the

BMI (with standard error)

Fig. 6 Variation among CC

lines: percentage of T, B, and

macrophage immune cells. The

X-axis represents 15 naı̈ve CC

mouse lines (5–7 mice per line),

while the Y-axis represents the

percentage (with standard

errors) of the three tested

immune cells in peripheral

blood at age of 8–9 weeks
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Figure 6 describes percentage of T, B, and macrophage

immune cells in different naı̈ve CC mouse lines.

Table 1 presents heritability and genetic coefficient of

variation values for a variety of traits studied at TAU and

obtained from ORNL data. For the TAU traits, H2 values

are generally in the range of 0.10–0.40; for ORNL, h2

values were higher, in the range of 0.37–0.89. In both data

sets, CVG or CVA was in the range 0.15–0.60, much higher

than the benchmark of 0.071. Thus, these data show that

the absolute magnitude of genetic variation among the CC

lines is much greater than found within typical outcrossing

populations. This can be attributed to the inclusion of the

three wild subspecies among the founder parents. It also

suggests that QTL with very large effects may be segre-

gating in the CC lines. This is supported by the initial QTL

mapping studies that were conducted using CC lines in

various stages of development (‘‘pre-CC lines’’). The

Table 1 Collaborative Cross, genetic variation among lines

Experiment Trait H2, h2 Mean CVG

PER

(23, 139) Initial bone volume (mm3) 0.40 3.09 0.26

(23, 133) Residual bone

volume (mm3)

0.40 1.86 0.24

(23,117) Bone loss (mm3) 0.20 NA NA

APC

(31, 234) Total polyp lengths (mm) 0.34 28.45 0.53

KLEB

(60, 345) Survival time (d) 0.17 4.25 0.33

Immuno

(41, 355) T cells 0.34 17.41 0.35

(41, 355) B cells 0.30 26.53 0.26

(41, 355) Macrophages 0.16 19.57 0.21

DEXA naive

(38, 394) Body weight (g) 0.46 26.49 0.15

(34, 274) Liver weight (g) 0.40 1.75 0.24

(34, 269) Spleen weight (g) 0.47 1.59 0.13

(34, 274) % fat, liver 0.10 1.30 0.22

(38, 394) % fat, total body 0.44 20.99 0.22

(42, 562) Body length 0.27 10.25 0.05

(42, 562) Body mass index 0.30 0.26 0.11

(20, 147) IPGTT: blood glucose, T0 0.37 170.88 0.15

(20, 147) BG 30 0.28 476.10 0.14

(10, 147) BG180 0.25 220.68 0.27

(38, 394) BMD (g/cm2) 0.00 0.061 0.00

DEXA T2D

(44, 125) % fat, liver 0.24 56.90 0.14

(44, 125) % fat, total body 0.51 32.85 0.24

(44, 125) Body weight (g) 0.47 29.62 0.18

(43, 111) Liver (g) 0.43 1.66 0.28

(44, 122) Spleen (g) 0.27 2.13 0.30

(53, 397) Body mass index 0.42 0.28 0.17

(53, 397) BL 0.39 10.64 0.05

(44, 125) BMD 0.00 0.072 0.00

(40, 81) BG0 0.16 195.3 0.16

(37, 77) BG30 0.33 523.6 0.15

(38, 76) BG180 0.35 362.1 0.30

ORNL

(NA/181) Body weight (g) 0.59 24.33 0.21

(NA/141) Tail length (cm) 0.72 5.28 0.12

(NA/141) Heart weight (g) 0.66 0.16 0.30

(NA/70) Hot plate (log s) 0.37 1.62 0.13

(NA/56) Open field, distance

from center (cm)

0.70 5.28 0.67

(NA/56) Open field, distance

traveled 3 min

0.89 1,399.12 0.54

Heritability1 and genetic coefficient of variation (CVG) according to trait

and experiment. In parentheses under column ‘‘Experiment,’’ number of

lines, number of mice
1 TAU studies: broad-sense heritability (H2); Philips, narrow-sense her-

itability (h2)

Box 2 QTL mapping experiments

AYL: Aylor et al. 2011. They used 184 partially inbred CC lines

to map QTL affecting body weight and eQTL affecting gene

expression. They used analysis based on inferred haplotypes to

improve power, increase QTL map resolution, and identify

promising candidate genes. The number of uncovered expression

QTLs was greater than in all previous efforts at eQTL mapping

in mice, and cis-eQTL were mapped at 1-Mb resolution. They

demonstrated that the genetic diversity of the CC, which derives

from random mixing of eight founder strains, enhanced the

ability to map causative loci underlying complex disease-related

traits.

DUR: Durrant et al. 2011. They used 371 mice from 66 pre-CC

lines to map QTL affecting survival time after challenge by

Aspergillus fumigatus infection and identified 7 QTL. Most of

the QTL involved contrasts between wild-derived founder

strains and therefore would not segregate in classical inbred

strains. Use of variation data from the genomes of the CC

founder strains further refined these QTL.

KEL: Kelada et al. 2012. They used 131 mice from 131 pre-CC

lines to identify genetic determinants of hematological

parameters, including RBC volume, WBC count, percent

neutrophils/lymphocytes, and monocyte number. They used

founder line haplotypes to further refine QTL confidence

intervals and identified a small number of promising candidate

genes

MAT: Mathes et al. 2011. They used 176 mice from 176 pre-CC

lines to map QTL for 15 metabolism- and exercise-related

phenotypes.

PHI: Philip et al. 2011. (see Box 1)

BOT: Bottomley et al. 2012

They used 44 mice from 44 influenza-infected pre-CC lines

determined to have extreme phenotypes with regard to the host

response to influenza A virus infection. Global transcriptome

profiling identified 2671 transcripts that were differentially

expressed between mice that showed a severe (‘‘high’’) and mild

(‘‘low’’) response to infection, and identified 21 eQTL, which

allowed direct examination of genes associated with regulation

of host response to Influenza A.
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Table 2 Collaborative Cross, QTL mapping

Exp Trait Des. Location, CI Effect Reduced CG

AYL 184,184 Body weight Bwq14 4 (3.03) 7.3 0.186 (6.01) 4.61 Asph

eQTLa 7235 0.92 ND ND

DUR 66,371 Survival time, Aspergillus

fumigatus challenge

Asprl1 8 (42.3) 16.7b 0.162 NS Irf2

Asprl2 10 (93.7) 5.9 0.154 NS

Asprl3 15 (28.3) 9.2 0.153 NS Laptm4b;

Asprl4 10 (10.0) 14.6 0.148 NS

Asprl5 18 (4.4) 10.16 0.130 NS

Asprl6 3 (108.5) 17.01 0.125 NS

Asprl7 2 (5.5) 8.8 0.122 NS

KEL 131, 131 Red cell volume Mcvq4 17 (110.3) 5.9 ND 0.127 Hbb

Red cell volume Mcvq5 14 (8.9) 14.0 ND 2.45 Anxa7

White cell count Wbcq7 18 (70.0) 4.1 ND NS Idd212

% Neutrophils Ne_pct1 11 (31.3) 3.8 ND NS oc2

Monocyte number Moq1 1 (87.6) 7.4 ND 0.167 Lrrfip1

MAT 176, 176 Body weight (BW) None 4 (3.3) 7.0 ND NS

Avg. running distance days 11/12) None 16 (32.5) 5.8 ND NS

Food intake during running phase None 12 (82.9) 6.2 ND NS

BW change after running phase None 6 (72.7) 10.7 ND NS

None 6 (39.4) 8.7 ND NS

PHI 163–293, 326–586 Body length None 2 (152.9) 5.6 ND ND

Avg. % sleep at night None 7 (90.9) 6.0 ND ND

Hot-plate latency None 6 (45.5) 5.5 ND ND

Red cell width None 7 (105.5) 7.0 ND ND

Peak activity after sleep deprivation None 9 (29.7) 0.5 ND ND

Open field, locomotion, None 4 (21.1) 9.2 ND ND

Open field, distance from center None 6 (89.6) 3.6 ND ND

Periosteal circum. None 19 (21.4) 1.1 ND ND

FER 155,155 Host response to influenza: BW

Day 4 post-challenge

HrI1 16 (97.5) 0.7 0.417 NS Mx1

Hrl2 7 (89.1) 7.6 0.097 NS Il16,

Pulmonary edema Hrl3 1 (21.7) 7.3 0.297 1.01

Airway neutrophils Hrl4 15 (77.4) 9.2 0.228 0.091 Grap2

BOT 99,99 eQTL affecting host response to influenza by gene under eQTL control. H, High response; L, Low response.

All eQTL were cis.

LOC675467 H None 14 (20.2) 0.4 ND ND

Ifi2712a H None 12 (107.0) 0.7 ND ND

Kcmf1 H None 6 (68.5) 1.3 ND ND

Thns12 L None 6 (68.0) 2.7 ND ND

AK153595 L None 17 (5.2) 2.1 ND ND

BC022687 L None 12 (112,8) 1.6 ND ND

Sh3g13 L None 7 (87.8) 3.2 ND ND

Clec16a L None 16 (6.2) 4.5 ND ND

Exp. Experiment acronym, (in parentheses no. of lines, no. of mice); Des. QTL designation); Location: in bold, MMU; in parentheses, lower

bound of 95 % CI of QTL location; in italics, 95 % CI in Mb. Effect, proportion of observed phenotypic variation explained; Reduced, reduced

CI using founder allele effect patterns

CG strong candidate gene, ND not done, NS not successful
a 7235 eQTL were mapped, with median eQTL–mid-gene distance 0.91 Mb
b Median distance true QTL location and peak Log P \ 1 Mb
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experiments are listed with brief descriptions in Box 2.

These QTL mapping studies (Table 2) were remarkably

successful in mapping QTL for a variety of traits to very

narrow confidence intervals, using population sizes much

smaller than would normally be required to achieve such

results. In a few cases, resolution was sufficiently precise to

point to one or a very small number of candidate genes for

the QTN.

This unexpected mapping effectiveness, relative to the

Valdar et al.’s (2006) simulations can be attributed to a

number of factors:

(1) As noted, the CC includes three wild-derived strains,

representing three Mus musculus subspecies. Apparently,

these introduced genetic variants having much stronger

effects than those uncovered in QTL analyses of the standard

mouse inbred lines, or in domesticated livestock and poultry.

(2) QTL mapping in the CC resource is based on an

eight-allele founder haplotype model, instead of a simple

marker-based association test. This avoids confounding of

different linkage phase of marker allele and QTL allele in

different founder populations.

(3) Sorting parental lines according to allele effect of the

QTL identifies regions of similar effect and similar hap-

lotype shared by two or more founders, and contrasting to

the effects and haplotypes of the other founders. This limits

the location of the QTL to the chromosomal region and

marker haplotype that is common to the founders sharing

the QTL allele. The reduction in confidence interval of

QTL location by this means can be dramatic.

These studies confirm that by phenotyping a relatively

modest number of CC lines (around 100 lines), with suffi-

cient replication, it is possible to map QTLs to a resolution

of about 1 Mb (Aylor et al. 2011; Durrant et al. 2011; Philip

et al. 2011; Bottomley et al. 2012; Kelada et al. 2012),

subsequently leading to identification of strong candidate

genes. Knockouts of candidates within QTL can then be

used to confirm function. Deep RNA sequencing (Ansorge

2009; Ng et al. 2010; Voelkerding et al. 2009) can also be

employed to identify the pathways activated by these genes.

We believe that these achievements cannot be obtained with

any other currently available mouse resource populations.
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