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Abstract Lines of mice were created by selective breeding

for the purpose of identifying genetic mechanisms that

influence the magnitude of the selected trait and to explore

genetic correlations for additional traits thought to be influ-

enced by shared mechanisms. DNA samples from high and

low methamphetamine-drinking (MADR) and high and low

methamphetamine-sensitization lines were used for quanti-

tative trait locus (QTL) mapping. Significant additive

genetic correlations between the two traits indicated a

common genetic influence, and a QTL on chromosome X

was detected for both traits, suggesting one source of this

commonality. For MADR mice, a QTL on chromosome 10

accounted for more than 50 % of the genetic variance in that

trait. Microarray gene expression analyses were performed

for three brain regions for methamphetamine-naı̈ve MADR

line mice: nucleus accumbens, prefrontal cortex, and ventral

midbrain. Many of the genes that were differentially

expressed between the high and low MADR lines were

shared in common across the three brain regions. A gene

network highly enriched in transcription factor genes was

identified as being relevant to genetically determined dif-

ferences in methamphetamine intake. When the mu opioid

receptor gene (Oprm1), located on chromosome 10 in the

QTL region, was added to this top-ranked transcription

factor network, it became a hub in the network. These data

are consistent with previously published findings of opioid

response and intake differences between the MADR lines

and suggest that Oprm1, or a gene that impacts activity of the

opioid system, plays a role in genetically determined dif-

ferences in methamphetamine intake.

Introduction

Quantitative trait locus (QTL) analysis allows dissection of

genetic variation underlying a trait into its component loci

by mapping each one to a chromosomal region. To gen-

erate the needed data, a population is measured for a trait

(phenotype) of interest, then genotyped at marker loci

distributed genome-wide. There are two basic approaches

to carrying out a genome-wide search for QTLs, marker-

based and trait-based (Lebowitz et al. 1987). For the

marker-based approach, the question asked is, for each

marker locus (or an interval between markers), do animals
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of one genotype score differently on a trait than do animals

of other genotypes? Because of linkage, the genotypes at a

QTL can be predicted accurately from those at a nearby

marker or flanking markers. Alternatively, in the trait-

based approach, extreme high- and low-scoring animals for

the trait (e.g. selected lines) are examined and the question

is asked, do they differ in allele or genotype frequencies for

any of the markers? If the answer is yes, and the difference

is significant, then a QTL has been detected and mapped to

the chromosomal region of the marker(s).

This article describes QTL analyses for two separate

trait-based experiments, using bidirectionally selected lines

of mice. Each set of selected lines was focused on one of

two traits, either two-bottle choice methamphetamine

(MA)-drinking (MADR lines) or MA-induced sensitization

to locomotor-activating effects of MA (MASENS lines).

Each independent selection began with the testing of a

population of F2 intercross mice from the C57BL/6J (B6)

and DBA/2J (D2) inbred mouse strains. For the MADR

lines, the F2 mice that consumed the most MA, when it

was offered versus water, were chosen as breeders to

establish the high-MA-drinking (MAHDR) line, whereas

those that consumed the least were used to establish the

low-MA-drinking (MALDR) line (Wheeler et al. 2009;

Shabani et al. 2011). For the MASENS lines, a separate

set of F2 mice was tested for magnitude of locomotor

sensitization to MA over the course of five total MA

treatments. Mice with the highest sensitization scores

(those with the largest increase in locomotor response after

the final MA treatment compared to the response after the

initial treatment) were interbred to create the MA high-

sensitization (MAHSENS) line and those with the lowest

sensitization scores (with the smallest change in locomotor

response after the final MA treatment compared to the

response after the initial treatment) established the MA

low-sensitization (MALSENS) line (Scibelli et al. 2011).

The lines were tested and perpetuated across multiple

generations using an individual or mass selection proce-

dure (Falconer and Mackay 1996). This bidirectional

selection method resulted in divergent lines for each of the

two MA traits, with the extent of divergence dependent on

the proportion of genetic variation underlying each trait

(i.e. the heritability; Falconer and Mackay 1996). The

details of how each selection project was carried out are

given in Wheeler et al. (2009) and Scibelli et al. (2011),

respectively. This article addresses the question of whether

QTLs were located in common genetic regions for these

two MA traits.

In addition, for the MADR trait, differences in gene

expression that are related to greater and lesser genetic risk

for MA intake were examined using brain samples from

MA-naı̈ve MADR line mice. The brain regions chosen for

analysis were the prefrontal cortex, nucleus accumbens,

and ventral midbrain (including the ventral tegmental

area), because of their roles in effects of MA that are

related to MA use (e.g. Lin et al. 2007; Keleta and Mar-

tinez 2012; Zhu et al. 2012). Although there have been

gene expression profiling studies examining the effects of

MA (e.g. Yang et al. 2008; Martin et al. 2012), genetic risk

for MA use has not been the focus of investigation.

Materials and methods

Genotyping

QTL analyses were performed using DNA samples

obtained prior to MA exposure from all of the breeders of

the S2 and S5 generation offspring (N = 40–48 per gen-

eration). These animals represent the most extreme scoring

mice for high and low MADR of those tested in S1 and S4.

Initial genotyping used custom single nucleotide poly-

morphism (SNP) arrays with 95 markers and the Golden

Gate Assay (Illumina, San Diego, CA, USA). These

informative SNPs were spaced at approximately 21-Mb

intervals throughout the genome. The SNPs were validated

using DNA from B6 and D2 parental strains. The samples

were analyzed locally using the Illumina Bead Station 500

X genotyping platform, and procedures were performed

exactly as recommended by the manufacturer. Subse-

quently, in an effort to increase map resolution for one

significant QTL location, four additional microsatellite

markers were added to proximal chromosome (Chr) 10

where SNP marker coverage was initially less than optimal.

Selection line QTL analysis

The genetic basis for bidirectional selective breeding (or

selection) is the change in allele frequencies in opposite

directions, when comparing one line with the other. All

allele frequencies for markers begin at close to 0.5 for each

of the two possible alleles (B6 or D2) in the founding F2.

Allele frequencies will diverge as a function of generations

of selection, approaching 1.0 and zero in the two oppositely

selected lines, for markers close to QTLs influencing the

MA trait under selection. In contrast, markers in those

portions of the genome not in close proximity to QTLs will

not change in allele frequency within the limits of sampling

error (e.g. random or genetic drift). The B6D2F2 has been

used as the founding population for several previous short-

term selective breeding projects for drug-related traits

(Belknap et al. 1997; Metten et al. 1998; Phillips et al.

2005; Kamens et al. 2005), and this was one factor in our

decision to use it for these MA traits. In addition, multiple

QTL mapping projects for traits relevant to addictive drug

effects have been based on populations derived from this
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F2 (e.g. Belknap et al. 1997; Grisel et al. 1997; Phillips

et al. 1998; Janowsky et al. 2001; Hitzemann et al. 2004;

Boone et al. 2008). We have recently published data

showing that D2 mice have greater intake and preference

for MA than B6 mice (Eastwood and Phillips 2012). Both

B6 and D2 mice develop locomotor sensitization to MA,

but D2 mice show sensitization after fewer MA treatments

(Phillips et al. 1994).

The selected lines were tested for QTLs in the second

and fifth selected generations, when random drift was rel-

atively small. We used the QTL analysis method of Bel-

knap et al. (1997), which is based on allele frequency

changes due to selection and is thus explicitly designed for

selection line data. The null hypothesis is that the observed

divergence in allele frequencies was due to random drift

and allele frequency sampling error, but not selection. We

refer to the D2 allele frequency as q and the B6 allele

frequency as p, such that p ? q = 1. In the F2, both p and

q = 0.5 (approximately). Selection for a trait will cause the

D2 allele frequency (q) for all QTL-associated markers to

diverge away from 0.5 and approach 1.0 in one line and 0

in the other line. Because the expected outcome for p is the

mirror image of q, we need to focus only on q. Evidence for

the presence of a QTL was gained from the difference in

relative allele frequencies between the high and low lines

at a nearby marker (d = qH - qL) significantly exceeding

that expected from genetic drift and sampling error. The

value of Z, the normal deviate, was calculated as follows

for each marker and used to test for QTL significance:

Z ¼ d=½p0q0F þ pHqH=2nH þ pLqL=2nL�0:5; ð1Þ

where the first term in the denominator is the expected

genetic drift variance (Falconer and Mackay 1996); the

second and third terms are the variances due to sampling

error in the high and low selected lines, respectively; nL

and nH are the sample sizes in each line; pH, qH, pL, qL are

the allele frequencies in each line; F is the inbreeding

coefficient at a given selection generation (Falconer and

Mackay 1996); and p0 and q0 are the initial allele fre-

quencies in the founding F2 population (both about 0.5).

F was calculated as [1 - (1 - 1/2Ne)]
t, where Ne is the

effective number of breeders, which averaged 24 in both

short-term selection experiments, and t is the generation of

selection (Falconer and Mackay 1996). The QTL results

are presented as logarithm of the odds (LOD) scores

(df = 2) calculated as the negative logarithm (base 10) of

the p value associated with the Z value from Eq. 1. For

example, LOD = 3.0 when p = 0.001. We used direc-

tional LOD scores, which were positive if the D2 allele was

associated with higher MA trait scores and negative if the

B6 allele was associated with higher MA trait scores.

Two selected generations, S2 and S5, were chosen

because, for large-effect QTLs, selection causes allele

frequencies to approach fixation (q ? 0 or 1) rapidly in

both lines in the S2, thus limiting further allele frequency

divergence in subsequent generations. In contrast, smaller-

effect QTLs will show moderate allele divergence at the S2

and continue to show further divergence approximately

linearly out to the S5. For this reason, it was important to

assess both S2 and S5 selected generations to more opti-

mally detect a broader range of QTL effect sizes for the

two MA behavioral traits.

All procedures using animals were approved by the

Institutional Animal Care and Use Committee and were

performed in accordance with the NIH Guide for the Care

and Use of Laboratory Animals.

Genetic correlation between the two MA behavioral

traits

Using LOD scores generated by the trait-based allele fre-

quency method, a genetic correlation can be estimated by

constructing a vector of LOD scores from Chr 1 to Chr X

(i.e. genome-wide) for each of the two traits and correlating

the two vectors using Pearson’s product moment correla-

tion. This approach was greatly facilitated by the use of the

same SNP markers in both short-term selection experi-

ments and the use of a B6D2F2 population to initiate both

selection experiments. For this purpose, directional LOD

scores were used, where the original LOD scores were

multiplied by -1 if the B6 allele was associated with higher

trait scores and by ?1 (left unchanged) if the D2 allele was

associated with higher trait scores. Because the selection

response relies primarily on additive genetic variation, the

genetic correlation estimated in this way is primarily

additive, or rA (Falconer and Mackay 1996).

Microarray gene expression studies in MADR lines

Expression data have been collected, thus far, only in the

MADR lines. In part, this decision was based on available

resources, but more importantly on our more promising

results for genetic influences on the MADR trait, i.e. cal-

culated heritability at the end of selection for the MADR

lines was 0.35 (Wheeler et al. 2009), whereas it was 0.08

for MA sensitization (Scibelli et al. 2011). Heritability was

somewhat higher at 0.17 for the sensitization lines earlier

in selection, when most of the response to selection

occurred; however, it was still half that found for MADR.

For the array data, we used a 2 9 2 design in which one

factor was line (MAHDR or MALDR) and the second

factor was treatment (2 mg/kg MA or saline, both given

i.p.) for each of three brain areas: the nucleus accumbens

(NAC), prefrontal cortex (PFC), and ventral midbrain

(VMB; substantia nigra and ventral tegmental area). Two-

way ANOVA was used to test for significance for each
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brain area implemented in the MeV 4.6 software package

(www.tm4.org). We also performed a three-way factorial

ANOVA (line 9 treatment 9 brain area) using a full (or

saturated) model implemented in the LIMMA package in

R. However, in this article we are reporting only the results

for the main effect of line, because it reflects genetic dif-

ferences in the predisposition to MA drinking—the focus

of this paper; the treatment factor and its interaction with

line will be the focus of a subsequent paper. S5 generation

mice contributed brain tissue for expression profiling. A

total of 20 Affymetrix 430 2.0 mouse GeneChips were used

per brain area, with five chips per cell of the 2 9 2 factorial

design per brain area, for a total of 60 arrays overall. RNA

samples from four male mice, aged 60–67 days, were

pooled per chip. Each pool was hybridized to one 430 2.0

chip, resulting in a total of 45,101 probe sets (transcripts)

for analysis, representing about 19,000 distinct genes.

Tissue preparation and analysis

Four hours after injection, mice were killed by cervical dis-

location, followed promptly by brain removal, chilled saline

rinse, and dissection. Dissection was performed using

RNAse-free-treated tools and an aluminum dissection stage,

and dissected regions were placed into RNAse-free micro-

centrifuge tubes containing TRIzol� (Life Technologies,

Carlsbad, CA, USA) that were immediately placed on dry

ice. Samples were then stored at -80 �C for less than

2 months prior to RNA extraction. The prefrontal cortex was

removed as the medial third of a 1.5-mm slice from the

anterior part of the brain just behind the olfactory bulbs. The

next 1.4-mm slice was then taken, and the NAC was col-

lected from this slice using the anterior commissure as a

landmark and a micropunch fashioned from a 16-gauge blunt

cut needle. Then, using the superior colliculus as a landmark,

the most anterior portion of the brain was removed and dis-

carded, and the next 1-mm slice was taken. The ventral third

of that slice and the cerebral cortex were removed, and the

remaining tissue was collected as the ventral midbrain.

Total RNA was isolated with TRIzol, using a modifi-

cation of the single-step acid guanidinium thiocyanate-

phenol-chloroform extraction method (Chomczynski and

Sacchi 1987), according to the manufacturer’s guidelines.

The extracted RNA was then purified using RNAeasy

(Qiagen, Valencia, CA, USA). RNA purity and concen-

tration were evaluated using a NanoDrop spectrophotom-

eter (ND-1000, Thermo Scientific, Wilmington, DE, USA)

and all samples met our criterion of a 260/280-nm

absorption ratio of [ 1.8. Samples containing less than

10 lg of total RNA were vacufuged using a DNA120

SpeedVac (Thermo Scientific) until the desired concen-

tration was obtained (as measured by the spectrophotom-

eter). RNA samples that met these standards were sent to

the Oregon Health & Science University Affymetrix

Microarray Core for analysis. The Affymetrix Microarray

Core runs additional quality control checks according to

Affymetrix recommendations, including determination of

RNA quality by fluorescence-based capillary electropho-

resis, using the Agilent RNA 6000 Pico LabChip kit and

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA). All of the samples used in this study passed all

quality control measures. The procedures used at the Af-

fymetrix Microarray Core facility faithfully follow the

manufacturer’s recommendations, as detailed at the Af-

fymetrix Microarray Core web site: http://www.ohsu.edu/

gmsr/amc. This core facility performed all of the sub-

sequent steps of RNA labeling, hybridization, and sub-

sequent intensity scanning using Affymetrix scanners.

Probe (low) level data analysis

We used robust multiarray analysis (RMA; Irizarry et al.

2003), using the Bioconductor Affy package (www.

bioconductor.org) running in the R statistical computing

environment (ver. 2.9.1) with default settings (Gautier et al.

2004).

Testing for selection line differences in expression

The multiple comparison significance threshold was

determined as the 5 % false discovery rate (FDR), which is

based on the proportion of all declared significant findings

that are expected to be false positives (Benjamini and

Hochberg 1995; Storey and Tibshirani 2003). This differs

from the conventional multiple comparison correction

approach (e.g. Bonferroni), which is based on the propor-

tion of all tests that are expected to be false positives. FDRs

were calculated using the q value software package within

the R statistical program package (Storey and Tibshirani

2003). FDR values adjust the observed p values to correct

for the effects of multiple testing.

Comparative network analysis

This approach seeks to move beyond looking at genes one

at a time and instead seeks to identify groups of genes

showing coordinated gene function as the unit of analysis,

such as those in an interacting pathway or pathways. We

used Metacore (www.genego.com), which is a bioinfor-

matics package that relies on an extensive database of

mostly interacting protein information gleaned from the

literature on about 700 known networks. Differentially

expressed (DE) genes from a microarray experiment are

entered along with their p values and fold-change values to

be used as weights. The program identifies those pathways

from among the 700 in the database that are statistically
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significantly overrepresented with DE genes from a

microarray experiment (Nikolsky et al. 2009). Note that

this approach does not involve any clustering of DE genes

in the statistical sense, and thus does not require the con-

struction of a correlation or other similarity matrix as does

the clustering algorithm approach.

Comparative network analysis was conducted on the DE

candidates (upregulated, FDR adjusted p \ 0.05) for all

three brain regions (N = 103 for NAC; N = 439 for PFC,

and N = 191 for VMB) for the MAHDR versus MALDR

comparison. To discover common regulatory networks, for

every transcription factor (TF) with direct target(s) in the

overlapping candidate list, the shortest-path algorithm

generates a subnetwork consisting of all shortest paths to

this TF from the closest receptor with direct ligand(s) in the

candidate list using high-confidence interaction data from

the Metacore knowledge base. The p value for the sub-

network is based on a hypergeometric distribution in which

the p value essentially represents the probability of a par-

ticular mapping arising by chance, given the number of

genes in the candidate list and the distribution of pathways

and membership from the knowledge base.

Gene Ontology database to identify overrepresented

functional categories among differentially expressed

genes between the MAHDR and MALDR selection

lines

The NIH DAVID online database and analytical tools

(https://david.abcc.ncifcrf.gov) were used to infer func-

tional characteristics of DE genes between the high and

low selection lines in all three brain areas (Huang et al.

2009a, b). All three broad GO categories of biological

processes (BP), molecular function (MF), and cellular

component (CC) were examined for overrepresentation of

DE genes in all subcategories within each of these three

broad categories compared to all genes represented on the

microarray (Huang et al. 2009a). This program was also

used to identify significant overrepresentation among the

20 chromosomes in the mouse genome by these same DE

genes.

Results

Genetic correlation between the two behavioral traits

The correlation of the two vectors of LOD scores, derived

from the directional LOD scores for each trait, indicated

significant genetic codetermination of the MA drinking and

sensitization traits. The additive genetic correlation

between the two MA traits was rA = 0.32 for the S2

(p \ 0.001) and rA = 0.28 for the S5 (p \ 0.005),

indicating significant common genetic influences for the

two traits. These results are shown in Fig. 1.

QTL detection in the MADR and MASENS selection

lines

The QTL results for both traits are also shown in Fig. 1 for

the S2 and S5 selected generations, with results presented

as directional LOD scores (df = 2). For the MADR lines,

two QTLs emerged as significant, one on proximal Chr 10

(LOD 12.9) and another mid Chr X (LOD 6.6), with

2-LOD support intervals of 10–40 and 60–140 Mb,

respectively; the 2-LOD support interval approximates a

95 % confidence interval. The Chr 10 QTL was by far the

largest detected for either trait, accounting for 24 % of the

phenotypic variance and 60 % of the genetic variance in

the S2. As expected for such a large-effect QTL, the

divergence in allele frequencies (q) due to selection was

Fig. 1 Directional genome-wide LOD scores resulting from QTL

analysis for the MADR (solid line) and MASENS (dotted line) short-

term selected lines in the S2 and S5 generations. Positive LOD scores

indicate that the D2 strain allele confers higher trait scores, while

negative LOD scores indicate that the B6 allele confers higher trait

scores. The genetic correlation between the two traits is also shown,

indicating a statistically significant degree of genetic codetermination

between the two behavioral traits in both generations. Horizontal

dashed lines indicate genome-wide significance threshold based on

permutation tests (Doerge and Churchill 1996)
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unusually rapid, attaining in the S2 a value of q = 0.96 in

the MAHDR line compared to q = 0.17 in the oppositely

selected MALDR line. By S5, this QTL approached fixa-

tion, with q = 0.97 in the MAHDR and q = 0.02 in the

MALDR line. This is clearly evident in Fig. 2, which plots

the difference in allele frequencies (qH - qL) for all

markers on Chr 10. In contrast, no evidence for a Chr 10

QTL was seen for the MASENS lines, so this QTL is

unique to the MADR lines. Suggestive QTLs (Lander and

Kruglyak 1995), which are those where one QTL is

expected to be a false positive in a genome-wide search,

were detected on distal Chr 2 (LOD 2.6) and mid Chr 9

(LOD 2.6). The Lander and Kruglyak (1995) criteria for

attaining significant or suggestive status are considered to

be unusually stringent compared to other widely accepted

criteria (Doerge and Churchill 1996; Broman and Sen

2009).

For the MASENS lines, only one QTL emerged as sig-

nificant and was located on mid Chr X (LOD 4.5 in S2). The

maximum LOD score was seen at SNP marker mm13483927

at 97 Mb (2-LOD support interval = 60–140 Mb), the same

X Chr marker showing the maximum LOD score on this

chromosome in the MADR S2 and in the same direction, i.e.,

the B6 allele conferred higher trait scores for both MA

behavioral traits. Thus, this mid Chr X QTL, present in both

MADR and MASENS sets of lines, is a prime candidate for

being the major cause of the positive additive genetic cor-

relation (rA) between these two traits when examined gen-

ome-wide. For the MASENS trait, four suggestive QTLs

emerged on distal Chr 3 (LOD 3.3), distal Chr 1 (LOD 3.0),

distal Chr 2 (LOD 2.6), and mid Chr 5 (LOD 3.0). Only for

the distal Chr 2 suggestive QTL for MASENS was there a

corresponding suggestive QTL for the MADR trait at the

same location and in the same direction. Thus, this sugges-

tive chromosomal region could also contribute to the gen-

ome-wide positive genetic correlation, although likely to a

lesser extent than the common (between the two traits) sig-

nificant QTL on mid Chr X.

MAHDR versus MALDR expression differences

For the NAC, 195 probe sets were found to be DE at an

FDR \ 0.05, which in terms of unadjusted p values was

p \ 0.0005. For the PFC, 787 probe sets were detected as

significantly DE at this same FDR threshold, corresponding

to an unadjusted p \ 0.002. For the VMB, 399 probe sets

were significantly DE at this same threshold, corresponding

to p \ 0.001.

The genome-wide distributions of DE probe sets for all

three brain areas are shown in Fig. 3 for all probe IDs

showing FDR \ 0.05. The same threshold was adopted for

the purpose of data plotting to put all three brain areas on

an equal footing. As can be seen, there was an overrepre-

sentation of DE probe sets (IDs) in the proximal Chr 10

QTL region in all three brain areas, especially in terms of

the magnitude of the -log(p) values which were highest in

this chromosomal region compared to any other. The mid

Chr X QTL region showed a diminished degree of

enrichment of DE probe sets compared to the genome-wide

average in all three brain regions, suggesting that this QTL

is predominantly based, not on differences in transcript

abundance, but on protein variants differing in functional

capacity. However, the distal Chr 2 and mid Chr 9 sug-

gestive QTL regions did show an enrichment of DE probe

IDs in all three brain regions compared to genome-wide

averages.

There were clusters of DE genes at the same chromo-

somal locations in all three brain regions not associated

with any MADR QTL, either suggestive or significant.

Because QTLs always map to the causative polymor-

phisms, these non-QTL clusters of DE genes are likely

caused indirectly by QTLs residing elsewhere in the gen-

ome. These non-QTL DE clusters were strongly apparent

on distal Chr 4, proximal 5, proximal 7, and mid 19

(Fig. 3). These findings suggest that these non-QTL

regions of DE gene clusters reflect the secondary expres-

sion effects of QTLs on downstream pathways or the

widespread effects of one or more transcription factors.

Because these DE gene clusters are also DE between the

two lines despite the absence of coincident QTLs, they may

well play a role in the influence QTLs have on the MADR

trait via non-QTL portions of the genome. An obvious

mechanism for this is QTL-mediated trans regulation

effects on other portions of the genome which in turn may

also influence the MADR behavioral trait.

Fig. 2 Difference in allele frequencies between the two oppositely

selected MADR lines, qH - qL, for all markers on Chr 10 where the

largest QTL was found. The S2 and S5 generations are shown

indicating increasing allele frequency divergence as a function of

generation of selection, especially for the proximal portion of this

chromosome where the QTL resides. There is a suggestion of a

second QTL at the distal end of Chr 10, but this did not meet our

statistical criteria for being significant
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Figure 4 shows the distribution of DE probe sets on Chr

10, where the largest-effect QTL was found for the MADR

trait. All three brain areas showed a closely similar clus-

tering of DE probe sets in the QTL region within the

2-LOD support interval. These are tabulated in Supple-

mentary Table 1. Note that another DE cluster at

80–85 Mb is apparent where there is no known QTL, again

suggesting trans regulation emanating from the proximal

Chr 10 (or other) QTL, causing differential expression of

genes on distal portions of Chr 10.

While all three brain areas showed closely similar

clusters in terms of chromosomal location, the probe sets

making up these clusters differed considerably among the

brain areas. For example, within the Chr 10 QTL region, 62

probe sets were DE for at least one brain area, 12 in the

NAC, 30 in the PFC, and 20 in the VMB (Fig. 4). Of these

62 probe sets, 28 (45 %) were DE for only one brain area

and not the other two. Only 18 of these DE probe sets

(29 %) were DE for all three brain areas (see Supple-

mentary Table 1). Similar findings emerged for the clusters

of DE probe sets in non-QTL regions seen on distal Chr 4,

proximal 5, proximal 7, and mid 19 (Fig. 3). While the

clustering was closely similar in all three brain areas, the

probe sets making up each cluster often differed substan-

tially among the brain areas.

The NIH DAVID website (Huang et al. 2009a, b) was

used to detect overrepresentation of DE genes between the

two lines by chromosome at p \ 0.01 (compared to all 20

mouse chromosomes) for each of the three brain areas sub-

jected to microarray analysis. For those DE genes showing

higher expression values in the high-MADR compared to the

low-MADR selected line, Chr 10 was overrepresented in the

NAC (p = 9 9 10-4), PFC (p = 4 9 10-4), and VMB

(p = 7 9 10-7) (all FDR \ 0.05). Chromosomes 4 and 12

were overrepresented, but only in the PFC at p = 0.007 and

p = 0.0034, respectively (both FDR \ 0.05). For those DE

genes showing lower expression values in the high-MADR

compared to the low-MADR selection line, Chr 10 was

overrepresented in the NAC (p = 5 9 10-3) and PFC

(p = 0.01) (both FDR \ 0.10). Chromosome 4 was over-

represented in the PFC (p = 1 9 10-7) and VMB

(p = 2 9 10-4) (both FDR \ 0.05), and the NAC

(p = 0.01) (FDR \ 0.10). To summarize for all three brain

areas, the strongest and most consistent overrepresentation

of DE genes by chromosome was seen for Chr 10, followed

Fig. 3 Genome-wide distribution of differentially expressed (DE)

probe sets between the MAHDR and MALDR lines that attained

FDR \ 0.05 for each of the three brain areas, either nucleus

accumbens (NAC), prefrontal cortex (PFC), or ventral midbrain

(VMB). As can be seen, the clustering of DE probe sets in particular

chromosomal locations was closely similar for all three brain areas,

although the probe sets making up each cluster often were not the

same. The arrows show the locations of the two significant QTLs for

the MA preference drinking trait on Chr 10 and X. The X axis in all

cases is the negative logarithm of the p value for the line difference

Fig. 4 The distribution of differentially expressed (DE) probe sets on

Chr 10 between the MAHDR and MALDR lines that attained

FDR \ 0.05 for each of the three brain areas, either nucleus

accumbens (NAC), prefrontal cortex (PFC), or ventral midbrain

(VMB). As can be seen, the clustering of DE probe sets in particular

chromosomal locations was closely similar for all three brain areas,

although the probe sets making up each cluster often did not agree.

The QTL influencing the MADR trait was on proximal Chr 10, with a

2-LOD support interval ranging from 10 to 40 Mb; however, the lack

of markers at the most proximal end (centromere) impacts the ability

to exclude this region. The X axis in all cases was the negative

logarithm of the p value for the line difference
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by Chr 4. While Chr 10 has a large-effect and highly sig-

nificant QTL, Chr 4 does not have even a single suggestive

QTL for any brain area.

Network analysis

A highly significant TF-centric subnetwork was identified

based on the shared DE genes (p = 1.87e-40, Fig. 5).

Examination of annotation of the subnetwork members

also revealed that this network was functionally enriched

for regulation of apoptotic processes (p = 2.728e-25),

consistent with our previous data (Wheeler et al. 2009).

Transcription factor hubs for this network included HNF4-

alpha (12 edges), AP-1 (11 edges), ATF-3 (9 edges),

C/EDBPalpha (7 edges), c-Jun (6 edges), ESR1 (6 edges),

HSF1 (6 edges), NF-KB1 (6 edges), SP2 (6 edges), and

ATF-6 (5 edges). There was enrichment for genes from the

dorsal neural tube (Calr, Klc1, Hspa5, Hjurp, Pcmt1, Xbp1,

Serpinh1, Cap1, Ddit3, Hspa1b, Mrpl15, Map3k5, Rcn1,

Hpgd; p = 7.532e-26) and brain (p = 3.031e-21).

Relation of Oprm1 to the network

A potential candidate in the Chr 10 QTL region is Oprm1,

the mu-opioid receptor (MOP-r) gene. We have determined

that the MADR lines differ in sensitivity to MOP-r agonist

drugs (Eastwood and Phillips 2012) and that the low-

MADR line voluntarily consumes more morphine than the

high-MADR line (Eastwood and Phillips 2013). When

Oprm1 was added to this network to determine with which

genes it interacted and to identify its location in the

network, it became a hub, with 9 edges or interactions in

the network [with AP1, C/EBPbeta, NF-jB, NF-jB(nuc-

lear), GCR-alpha, ESR1, GCR-beta, CUX1, and GATA-1],

all of which are with transcription factors (Fig. 6).

Discussion

Bidirectionally selected lines have a number of advantages

as QTL detection and mapping tools. Because of the greatly

increased frequency of extreme phenotypes and associated

genotypes generated by selection, the effects of QTLs will

be greatly leveraged, facilitating their detection. An

advantage of selection from an F2 of two inbred strains is

that there are only two possible alleles at each locus, each

with frequencies initially of about 0.5 per allele, which is

close to the optimum for each QTL to contribute maximally

to the additive genetic variance upon which selection pro-

gress depends (Falconer and Mackay 1996). This, in turn, is

conducive to a rapid selection response compared to other

foundation populations (Belknap et al. 1996). Further,

because the unit of genetic analysis is the selected line rather

than individual mice, smaller anatomical brain areas can be

used by pooling multiple mice from the same selected line

for expression analysis. This is not possible in an F2, where

each mouse is a unique genotype and must be analyzed as

such. In this study, we demonstrated a large-effect QTL on

Chr 10 for the strongly heritable trait, MA drinking. Not

surprisingly, QTLs were more difficult to detect for the less

heritable trait, MA-induced sensitization. Based on stronger

genetic contribution, we carried out gene expression

Fig. 5 Results of comparative

network analysis conducted on

differentially expressed genes in

three brain regions (nucleus

accumbens, prefrontal cortex,

and ventral midbrain) identifies

a network rich in transcription

factor genes (p = 1.87e - 40).

Shown are inferred functional

characteristics of genes that

were differentially expressed

between the high and low

methamphetamine drinking

selected lines
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analysis in the MADR lines and identified a highly signifi-

cant transcription factor-centric subnetwork associated with

risk for MA intake. Oprm1, a gene located in the region of

the Chr 10 QTL serves as a hub with multiple interactions

within this TF-centric network.

As previously reported, selective breeding produced a

rapid divergence between the oppositely selected MADR

lines, resulting in a realized heritability of 0.34 in the S4

generation (Wheeler et al. 2009). These heritability esti-

mates represent the proportion of the total trait (pheno-

typic) variation due to genetic variation and are based on

the observed divergence between the lines (selection

response) as a fraction of the cumulated total selection

pressure applied, estimated by the divergence in the bree-

der trait means for each generation (Falconer and Mackay

1996). The realized heritability calculated through S2 for

the MADR lines was somewhat higher at 0.40, indicating

that divergence occurred early in selection and began to

wane in later generations as fixation was approached for

trait-relevant genes (QTLs), thus reducing the genetic

variance upon which further selection progress depends.

We have recently replicated the selection for MA

drinking, following the same procedures as for the first, and

we obtained virtually identical selection and heritability

results; realized heritability was 0.35 in the S4 generation

(Shabani et al. 2011). In addition, QTL analysis in the

second set of MADR lines produced a remarkably similar

pattern of mapping results, including the identification of a

large-effect QTL in the same region on Chr 10 as reported

here (see Supplementary Fig. 1). When mapping results are

combined for the two selections (Supplementary Fig. 1),

the QTLs on both Chr 10 and X are supported more

strongly and more modest support for QTLs on other

chromosomes appears; however, the mapping results for

the independent and combined replicates are remarkably

similar. On the other hand, the MASENS selection exper-

iment showed a realized heritability of only 0.17 in the S2

and 0.08 in the S5 generation (Scibelli et al. 2011), roughly

half that of the MADR trait. We have therefore decided not

to replicate this selection.

One drawback of the current approach to QTL mapping

is that each generation of selection increases the possibility

of genetic drift (also known as random drift), which is a

change in allele frequencies, resulting from sampling error

accumulating over generations. In part, this is due to the

use of a finite number of breeders that are used to generate

offspring in each generation. Thus, drift can cause a

divergence in allele frequencies between the selected lines

by random events alone, unrelated to the effects of selec-

tion, which is a bidirectional process. The variance due to

drift is a simple function of the inbreeding coefficient, F, as

follows: vardrift = p0q0F (Falconer and Mackay 1996),

where p0 and q0 are the initial allele frequencies of each of

the two possible alleles per locus. The way to minimize the

effect of drift is to minimize F, by using a larger number of

breeders, avoiding the mating of relatives, and/or restrict-

ing selection to only a few generations when F is relatively

low compared to later generations. In the MADR and

Fig. 6 Candidate gene Oprm1

(mu-type opioid receptor)

becomes a hub when added to

the top-ranked transcription

factor network of genes that

show differential expression in

the nucleus accumbens,

prefrontal cortex, and ventral

midbrain of methamphetamine-

naı̈ve high and low

methamphetamine drinking line

mice
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MASENS selection projects, we selected for only five

generations (to S5) to minimize inbreeding and thus

genetic drift, and we maintained reasonably large numbers

of breeding pairs for each line (Wheeler et al. 2009; Sci-

belli et al. 2011). This approach can be described as short-

term selective breeding, because at the outset there was no

plan to perpetuate these lines indefinitely. However, for

QTL detection purposes, earlier generations may be opti-

mal for study because this practice often maximizes the

effect of selection compared to random drift as contributors

to allelic frequency differences between the lines. The

genetic data from the second selection generation (S2)

proved to be optimal for the largest-effect QTLs in both of

the selection experiments reported here, although the S5

data provided evidence of smaller-effect QTLs, which took

longer to show their effects as allele frequency differences

accumulated.

For the purpose of gene discovery, QTL analysis of a

behavioral trait and microarray analysis of gene expression

have several complementary strengths that address some of

their independent weaknesses and make their combination

especially attractive when applied to the same population of

mice. When a statistically significant QTL is first detected,

three important facts become known. First, the QTL influ-

ences a behavioral trait such as MA drinking in the sense that

it controls (accounts for) a portion of the trait variation. In

other words, in our two-allele population, substituting one

allele for the other at a QTL is associated with a significant

change in the behavioral trait score. This substitution effect

(or QTL effect) is the basis for detecting QTLs and is thus

the cornerstone of all types of QTL analyses (Falconer and

Mackay 1996). Second, a QTL will map to the region of the

causative polymorphism, thus providing important clues as

to which polymorphisms are trait-relevant. Third, the QTL

effect allowing detection is unidirectional; the QTL influ-

ences trait variation and not the reverse. What is not known

initially is the identity of the gene underlying the QTL due to

insufficient mapping precision. Finding the responsible gene

is challenging, but new technologies now make this task

easier; gene expression microarrays have been one of these

(Belknap et al. 2001; Phillips and Belknap 2002; Hitzemann

et al. 2004; Schadt et al. 2003, 2005; Han et al. 2008; Yeung

et al. 2011), although the analytic tools have continued to

evolve.

When variation in mRNA (transcript) abundance is found

in a microarray study, the identity of the gene involved is

known, in most cases, as is map location. What is not known is

whether that gene has any influence on a behavioral trait,

because variation in mRNA abundance may not translate to a

protein function difference or effects on the behavioral trait.

Also, differential expression of a gene may be due to a

polymorphism in or near the gene in the case of cis regulation

(e.g., the promoter), but it may be elsewhere in the genome in

the case of trans regulation (e.g., a transcription factor).

Another frequent concern is that observed variation in

expression could be a cause of variation in the behavioral trait

or it could be the consequence of such trait variation—the

direction of effect is often difficult to disentangle unless the

experiment is designed to differentiate these possibilities (e.g.

see Slonim 2002). This is a problem when the process of

measuring the trait (e.g. consumption of MA for several days)

might alter the expression of many genes, causing them to be

DE between the selected lines. However, short-term selective

breeding experiments provide an effective way to take

advantage of both approaches in a complementary fashion.

For example, in this study, differences in gene expression

were examined in mice that had been bred for differences in

susceptibility to MA consumption, without having been

exposed to MA themselves. In this way, risk genes and

mechanisms are identified. With regard to the Chr 10 QTL

region, the genes that we have found to be DE in one or more

of the three brain regions include Oprm1, Esr1 (estrogen

receptor 1), pcmt1 (protein-L-isoaspartate [D-aspartate]

O-methyltransferase 1), ppil4 (peptidylprolyl isomerase [cy-

clophilin]-like 4), Hivep2 (human immunodeficiency virus

type 1 enhancer binding protein 2), Nhsl1 (NHS-like 1), Pex7

(peroxisome biogenesis factor 7), Map3k5 (mitogen-acti-

vated protein kinase kinase kinase 5), Amd1 (S-adenosylme-

thionine decarboxylase 1), Cirbp (cold-inducible RNA-

binding protein), Rfx4 (regulatory factor S, 4), Dmt2 (dorso-

medial telencephalon gene 2), and Fgd6 (FYVE, RhoGEF,

and PH domain containing 6). Partly because good pharma-

cological tools exist to manipulate mu-opioid receptors, but

also because several polymorphisms and linkage disequilib-

rium blocks in human OPRM1 have been associated with MA

dependence/psychosis (Ide et al. 2006) and because bupr-

enorphine, a mu-opioid receptor partial agonist, attenuated

the effects of MA on dopaminergic neurotransmission in rats

(Pereira et al. 2011), we have pursued a line of research that

has demonstrated highly significant differences between

MALDR and MAHDR mice in both opioid sensitivity

(Eastwood and Phillips 2012) and intake (Eastwood and

Phillips 2013). However, any of the genes in the QTL region

could be relevant. For example, a human ESR1 functional

polymorphism has been associated with MA-induced psy-

chosis (Kishi et al. 2009); mice lacking Map3k5 (aka Ask1)

exhibited hyperactivity and altered dopamine levels, which

would be expected to affect responses to MA (Kumakura et al.

2010); Fgd6 regulates Rho protein signal transduction; and

Rho-associated kinase activity has been associated with

dopamine levels and behavioral effects of MA (Narita et al.

2003). Before pursuing other candidates, we are taking steps

to narrow the QTL region and, thus, the list of potential

candidates for further study.

The current network analysis based on DE genes for

three different brain regions allowed a more global analysis
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of interactions and identified a highly significant subnet-

work that is enriched in transcription factor genes. This

expression study is unique in its focus on genetic risk for

MA intake. However, there has been a series of studies

examining initial MA sensitivity, which may (or may not)

predict future use (de Wit and Phillips 2012). The first of

these studies used an approach similar to the one used here

in that QTL and expression analyses were conducted in

selected lines bred for sensitivity to a single acute admin-

istration of MA and suggested casein kinase 1 epsilon

(Csnk1e) as a candidate gene in one QTL region (Palmer

et al. 2005). These results were translationally applied to a

human study that obtained evidence of a role for the human

CSNK1E gene region in subjective response to d-amphet-

amine (Veenstra-VanderWeele et al. 2006). Subsequent

work has verified involvement of Csnk1e in sensitivity to

both psychostimulants and opioids (Bryant et al. 2012),

which is of interest given the interconnectedness of Oprm1

in the current network analysis. However, the QTL for MA

sensitivity is on mouse Chr 15, whereas the major QTL for

MA drinking is on Chr 10, indicating that this is not a

pleiotropic effect.

Uhl et al. (2008) performed a genome-wide association

study for human MA dependence and reported associations of

genes involved in cell adhesion, enzymatic functions, tran-

scription, and other cellular functions, using samples from

MA-dependent individuals and matched controls from Japan

and Taiwan. Several genetic association studies have focused

on specific genes, e.g. Oprm1 (Ide et al. 2006). Bousman et al.

(2009) reviewed the genetic association studies for MA use

disorders and noted that 18 genes within 38 studies identified

significant associations. However, they also noted that repli-

cation, greater statistical power, and development of more

rigorous methods for classification and reporting were nee-

ded. Another recent study reported the failure to replicate

results for 12 candidate genes for subjective and physiological

responses to amphetamine. This included CSNK1E (dis-

cussed above), and the authors drew similar conclusions

about power and also cautioned that allelic effect sizes may

not be accurately predicted by genome-wide association

studies (Hart et al. 2013). There are certain advantages to

pursuing drug-related genetic factors in genetic animal

models, including the ability to test large numbers of subjects,

allowing for increased power, and the ability to control drug

history. The network approach described here, as well as

approaches that identify transcriptional modules and coex-

pression patterns (Li et al. 2005; Piechota et al. 2010; Mul-

ligan et al. 2011; Iancu et al. 2013), attempt to identify genetic

interactions and hub genes with significant effects on a rele-

vant network that could be manipulated to produce a desired

effect on the important trait. Perhaps this systems approach to

genetic effects will provide a more functional application to

human MA addiction.
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