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Abstract

With high-throughput technologies now widely
available, investigators can easily measure thou-
sands of phenotypes for quantitative trait loci (QTL)
mapping. Microarray measurements are particularly
amenable to QTL mapping, as evidenced by a num-
ber of recent studies demonstrating utility across a
broad range of biological endeavors. The early suc-
cess stories have impelled a rapid increase in both
the number and complexity of expression QTL
(eQTL) experiments. Consequently, there is a need
to consider the statistical principles involved in the
design and analysis of these experiments and the
methods currently being used. In this article we re-
view these principles and methods and discuss the
open questions most likely to yield significant pro-
gress toward increasing the amount of meaningful
information obtained from eQTL mapping experi-
ments.

Expression QTL data

The data collected in an expression quantitative trait
loci (eQTL) mapping experiment consist minimally
of a genetic map, marker genotypes, and microarray
data collected on a set of individuals. Normalization
is done to remove systematic effects within and be-
tween arrays to obtain measurements (phenotypes)
that ideally provide an accurate quantification of

gene expression levels. Related clinical phenotypes
are also often collected. Most eQTL studies have
taken place in experimental populations and we fo-
cus here on methods used in those studies, noting
that many of the same issues apply to human studies
as well. Studies with experimental populations in-
volve arranging a cross between two inbred strains.
Segregating progeny are then typically derived from a
backcross or intercross. Brother-sister mating after
the F2 generation can also be done to generate re-
combinant inbred (RI) lines. For each offspring of the
cross, markers are genotyped and expression pheno-
types are collected via microarrays.

Experimental design

Many of the questions of eQTL experimental design
also arise in QTL mapping experiments, microarray
experiments, or both; and experience within each of
these areas can be used to guide developments spe-
cific to eQTL studies. The most relevant questions
include: How many subjects and markers should be
used to achieve a desired power? What type of cross
is best? At what level should replication be done?
Should biological samples be pooled? What should
be used as a reference (for two-color arrays)? Should
selective genotyping and/or phenotyping be done?

The power to identify loci affecting a single
quantitative trait in an intercross population de-
pends on many factors: the number of individuals
phenotyped, the number genotyped (which may dif-
fer from the number phenotyped if selective geno-
typing is used); the number, effects of, and
relationship among segregating QTL; the type I error
rate tolerated; the magnitude of environmental and
genetic variance components; and the method of
analysis used. There is much literature on this sub-
ject (for a comprehensive review, see Dupuis and
Siegmund 1999 and references therein). Dupuis and
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Siegmund (1999) provide power calculations for a
univariate quantitative trait for different intercross
designs, carefully accounting for each consideration
above.

Power calculations for microarray experiments
are less well developed. The core difficulties stem
from the high-dimensional nature of the data. Error
rate control becomes more complex and there are
additional sources of variability arising from the
microarray experimental procedure that must be
considered. These sources of variability are gene
dependent, as are effect sizes, and this further com-
plicates the problem. Early work extending tradi-
tional power calculations to microarray data
accounted for some of these issues (Black and Doerge
2002; Cui and Churchill 2003; Jung et al. 2005a; Lee
and Whitmore 2002; Pan et al. 2002) but were based
on control of gene-specific type I error or overall type
I error (i.e., the family-wise error rate). Recent efforts
have considered the false discovery rate (FDR) and
allow for gene-specific variability and effect sizes
(Dobbin and Simon 2005; Gadbury et al. 2004; Hu
et al. 2005; Jung 2005b; Muller et al. 2004)

There currently are no power calculations
available to guide eQTL studies. One could perform
a QTL sample size calculation for each expression
trait in isolation and choose the sample size that
yields identification of some percentage of the traits.
Alternatively, one could consider the problem of
grouping animals by genotype at each marker and
identifying transcripts differentially expressed across
the groups. Sample size calculations for traditional
microarray studies could be used to guide such a
marker-specific analysis. Determining sample sizes
based on the former does not directly account for
multiple tests across transcripts, while the latter
does not account for multiplicities across markers.
Certainly, improved methods that combine ideas
from both areas are possible. There will be added
complexities: hot spot identifications, rather than
individual transcripts, may be of primary interest;
eQTL interactions could be both within and among
transcripts; and there will be various ways to control
FDR, depending largely on whether multiple link-
ages are considered (see the section Generating a list
of mapping transcripts). Ideally, a power formula for
eQTL studies will account for these factors and ad-
dress questions related to resource allocations.

A common question related to allocation is
whether it is better to consider an F2 of some size, or
perhaps two backcrosses each half as big as the F2.
The optimal way in which samples should be allo-
cated to arrays is also a question. Experience from
QTL mapping and microarray studies gives some
ideas. In particular, Dupuis and Siegmund (1999)

indicate that intercross designs, in addition to being
able to estimate dominance effects, are usually more
powerful than backcross designs. Liu and Zeng
(2000) concur. This result will most likely extend to
eQTL studies. In studies of microarray experimental
design, it has been shown that when identifying
differentially expressed transcripts is of interest, re-
sources should be spent on biological, not technical,
replicates (Churchill 2002; Kendziorski et al. 2003;
Kerr 2003). No eQTL study to date has used techni-
cal replicates and most studies would not benefit
from doing so. It has also been suggested in the
context of microarray studies that pooling subject
samples can reduce the effects of biological vari-
ability and thereby reduce the number of arrays re-
quired in a given experiment (Churchill 2002;
Kendziorski et al. 2003; Simon and Dobbin 2003).
For this, subject samples within group are pooled
before hybridization, providing an expression profile
averaged across that group. In the context of eQTL
studies, one would not want to pool across some
subset of individuals from a backcross or an F2. In
these cases, each subject has a unique genotype
profile and there exists a one-to-one correspondence
between genotype and phenotype. This correspon-
dence would not be preserved by pooling. For RI
lines, there is a one-to-many correspondence be-
tween genotype and phenotype that allows pooling
within genetically identical groups. Chesler et al.
(2005) and Li et al. (2005a) considered brain tissue
pooled across groups of three mice from an RI pop-
ulation. If samples are available, pooling across lar-
ger groups might provide further advantage,
particularly if biological variability is much larger
than technical for most genes (Kendziorski et al.
2003, 2005). The ratio of biological to technical
variability will depend on the samples under study
as well as the types of arrays being used.

In a standard microarray experiment using two-
color arrays, an investigator must decide if a refer-
ence design is appropriate and if dye swaps are
needed. It has been shown that a direct comparison
is more efficient than a reference design when
comparing two (or a few) groups (Churchill 2002;
Yang and Speed 2002). For example, consider a sim-
ple experiment comparing treatments A and B. If,
say, four chips are available, an investigator can
hybridize both A (labeled in color 1) and B (in color 2)
to the same chip and replicate once. The labels could
be switched and the process repeated. Alternatively,
a reference sample R can be used. In this case, A
(color 1) is hybridized with R (color 2) and then re-
peated with the dyes swapped; the last two arrays
compare B with R. Comparisons between A and B for
this last case are made indirectly via the reference,
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which inflates the variance of the ratio of interest
[log(A/B)]. Despite this, reference (indirect) designs
are useful when multiple groups are being compared,
because the distance between any two samples is
always two steps and all comparisons are made with
equal efficiency. In eQTL experiments, it is not of
primary interest to compare any two particular
members of an intercross population, as in a direct
comparison, but rather to make comparisons among
subgroups of the population defined by marker
genotypes. As a result, eQTL investigations to date
have used a reference design. Brem et al. (2002) and
Yvert et al. (2003) used parental RNA (BY4716) as a
reference; Schadt et al. (2003, 2005) used a pool
constructed from individual samples. In general, the
reference should be plentiful, homogeneous, and
stable over time (Churchill 2002). Each of these two-
color eQTL experiments used a dye swap. An alter-
native to this that would reduce the number of ar-
rays required would be to include dye swaps of
randomly selected animals, or animals selected
based on genetic distance.

Investigators have pointed out in the context of
microarray studies that dye swaps are not always
necessary (Dobbin et al. 2003a). It is well known that
without the dye swap, treatment and dye effects are
confounded (Kerr and Churchill 2001; Yang and
Speed 2002); however, when a reference design is
used, it has been argued that it may not be necessary
to estimate and adjust for a potential dye effect since
comparisons are made between samples labeled with
the same dye. The idea is that any gene-specific dye
bias between the samples of interest (nonreference
samples) and the reference would cancel out when
the nonreference samples are compared (Dobbin
et al. 2003b). It has been shown empirically that this
is not always the case, and inference can change
depending on dye orientation, even when using a
reference design (Dombkowski et al. 2004). For these
reasons, we currently recommend that dye swaps be
used for eQTL studies (at least on a selected set of
samples).

A final design consideration is whether selective
genotyping or phenotyping should be used. As
genotyping costs continue to decrease, selective
genotyping is used less frequently. No eQTL studies
to date have used this approach. On the other hand,
phenotyping is relatively expensive and selective
phenotyping strategies have been developed (Jannink
2005; Jin et al. 2004). We used the method of Jin et al.
(2004) in our own eQTL studies (Kendziorski et al.
2006; Lan et al. 2006). The approach identifies the
group of animals with maximum recombination
among pairs of markers. All markers can be used, or
markers can be selected from genomic regions of

interest. Jin et al. (2004) show via simulation that
power is maximized in regions guided by prior
information, while power in remaining regions is
similar to that observed in the case of random sam-
pling. The simulations use the same data for selec-
tion and mapping. As noted in their article, it might
be useful to consider a two-stage approach where
mapping results from a sparse map are used to guide
selection. Additional genotyping could then be done
in interesting areas. Further simulations to investi-
gate and develop the two-stage procedure would be
worthwhile as would further study of the theoretical
properties of different selective phenotyping strate-
gies, provided to some extent by Jin et al. (2004) and
Sen et al. (2005).

Generating a list of mapping transcripts

Results from eQTL studies have been used for
identifying hot spots (Brem et al. 2002; Bystrykh
et al. 2005; Chesler et al. 2005; Hubner et al. 2005;
Lan et al. 2006; Morley et al. 2004; Schadt et al.
2003), constructing gene networks (Bing and Hoesc-
hele 2005; Chesler et al. 2005; Li et al. 2005a; Schadt
et al. 2005; Zhu et al. 2004), elucidating subclasses of
clinical phenotypes (Bystrykh et al. 2005; Schadt
et al. 2003), and narrowing down lists of candidate
genes (Bystrykh et al. 2005; Hubner et al. 2005;
Schadt et al. 2003). Each of these tasks relies largely
on the ability to generate a list of mapping tran-
scripts and the genomic locations to which these
transcripts map. As a result, the statistical methods
used for list construction deserve some attention.

Since eQTL studies differ from traditional QTL
studies only in number of phenotypes, it is perhaps
not surprising that most efforts to localize eQTL use
standard QTL mapping methods. Typically, a LOD
profile is constructed for each transcript and then
calibrated to adjust for multiple tests across markers.
Multiplicities across transcripts are often not con-
sidered. Ideally, a statistical method for eQTL iden-
tification would properly account for multiplicities
across the genome, multiplicities across transcripts,
and correlations among transcripts. A repeated
application of traditional QTL mapping to each
transcript in isolation respects the first consider-
ation. Some groups have attempted to deal in a sec-
ond stage with the multiplicities across transcripts
(Brem and Kruglyak 2005; Chesler et al. 2005; Hub-
ner et al. 2005). There is currently no standard ap-
proach for doing this. Efforts have generally involved
controlling FDR at some step in the analysis, but
particular implementations have differed in detail.

Approaches to control FDR have relied on cal-
culation of q-values as described in Storey and
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Tibshirani (2003) (Chesler et al. 2005; Hubner et al.
2005) or on permutations (Brem and Kruglyak 2005).
Q-Values are transformed versions of p-values that
were developed to address the multiple-testing
problem. The transformation uses the full distribu-
tion of p-values across all tests and allows for esti-
mation of an overall FDR. For example, a list of tests
for which the corresponding q-values are less than or
equal to a controls the FDR for that list at a (provided
some relatively mild conditions on the dependence
of the p-values hold; see Storey and Tibshirani 2003
for details).

To implement this in eQTL studies, p-values
corresponding to the peak LOD scores from each
transcript have been used. Using these trait-specific
p-values controls the FDR for a list of transcripts
mapping to at least one location. Because only peak
LOD scores are considered, this approach gives
misleading information for transcripts mapping to
multiple locations. Simply using multiple p-values
per transcript in a q-value calculation is not recom-
mended as this potentially violates dependence
assumptions (Storey and Tibshirani 2003). A step-
wise procedure would also be flawed because biases
could be introduced (Storey et al. 2005). Similar
considerations apply to the permutation-based esti-
mation of FDR implemented by Brem and Kruglyak
(2005).

Statistical methods designed specifically to con-
trol an overall FDR for single and multiple linkages
are beginning to emerge. Kendziorski et al. (2006)
proposed an empirical Bayesian approach to eQTL
mapping that shares information across transcripts
to determine a posterior probability that each tran-
script maps to each marker. The primary goal of
their approach is to identify mapping transcripts;
multiple eQTL are identified in a second stage using
the posterior probabilities. Specifically, a genome
region is considered linked to a trait if the associated
posterior probability of linkage is in the upper 100 *
(1 � a)% of all probabilities for that trait (a is often
taken to be 5%). These highest posterior density
(HPD) regions allow for multiple-eQTL identifica-
tion of mapping transcripts. Storey et al. (2005) pro-
pose an approach specifically designed to identify
multiple eQTL per transcript (they focus on two) and
estimate the FDR associated with the multiple
identifications. They also allow for epistatic effects.

A common feature of these approaches is that
adjustments for multiple tests across both markers
and transcripts are considered. Furthermore, both
approaches demonstrate an increase in power ob-
tained when information is shared across transcripts.
An advantage of Storey et al. (2005) is that FDR is
estimated precisely for multiple linkages. However,

the approach of Storey et al. (2005) is not designed to
identify a relatively large number of loci with small
effects; the HPD regions of Kendziorski et al. (2006)
are better suited for this task. For example, in
Kendziorski et al. (2006), approximately 20% of
identified mapping transcripts showed only moder-
ate effects, most of which were not statistically
significant on their own. Further investigation of
these approaches and additional developments along
these lines should prove useful.

Identifying hot spots

Whatever statistical method is used for list genera-
tion, once obtained, ‘‘hot spots’’’ are often of primary
interest. Hot spots are genomic regions where an
abundance of transcripts map, and to date they have
been found in a straightforward way. At each gen-
ome region, the total number of mapping transcripts
is tallied. Hot spot candidates are those regions with
the highest totals. Although intuitive, it is not clear
that this is the best way to define hot spots, partic-
ularly if there are numerous loci with moderate ef-
fects that perhaps do not reach the level of statistical
significance.

Kendziorski et al. (2006) considered five statis-
tical methods that could be used to generate lists of
mapping transcripts. They then identified hot spot
candidates in two ways: by counting the number of
mapping transcripts, as described above, and by
summing evidence in favor of mapping (e.g., as as-
sessed by LOD score) across every transcript whether
it exceeded a significance threshold or not. They
found increased agreement among methods when all
transcripts were used. This is consistent with a
system in which most transcripts are affected by
multiple eQTL with moderate effect size. Brem and
Kruglyak (2005) provide evidence for this in yeast.
Each of the methods considered in Kendziorski et al.
(2006) uses the mapping information provided by
individual transcripts for hot spot identification.
Profiles averaged across correlated transcripts (Yvert
et al. 2003) or profiles from sets of correlated tran-
scripts that are functionally related (Lan et al. 2006)
could also be used. This last approach has been
shown to improve the power for eQTL hot spot
identification.

Whatever becomes the best way to define po-
tential hot spots, statistical tests are required to
determine with some confidence which spots are
truly hot. Perez-Enciso (2004) considers a number of
scenarios that can lead to spurious identifications
or ‘‘ghost’’ hotspots. These considerations are
addressed to some extent by the statistical test pro-
vided by Brem et al. (2002). They propose a Poisson-
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based test that calculates the probability that a
particular genome region would have at least n
transcripts linked to it if in fact there were no hot
spots. This test should prove useful in similar stud-
ies that define hot spot candidates by number of
transcripts exceeding some significance threshold.
New statistical tests are required to address the case
in which hot spot candidates are defined by sum-
ming the evidence of linkage across all transcripts.

Tests for enrichment have also been done in an
attempt to validate hot spot candidates. Most of
these tests rely on hypergeometric calculations that
compare the proportion of transcripts with a partic-
ular biological function to the proportion with that
function that map to the region under question. The
appropriate thresholds for these tests is not obvious
since there are thousands of functional groups that
are tested, and, furthermore, small p-values can re-
sult when testing functional groups with many, or
just a few, transcripts (Gentleman 2005). Statistical
tests for enrichment are being improved in the con-
text of standard microarray studies (Barry et al. 2005;
Subramanian et al. 2005) and should prove useful in
eQTL studies as well, perhaps with modifications to
address the increased number of tests at multiple-
genome regions.

Networks

The identification of hot spots provides lists of co-
mapping transcripts and often leads to the inspection
of putative candidates controlling the collection.
The idea is that comapping is the result of comem-
bership in a biological pathway, an idea similar to
that put forth in Eisen et al. (1998), where functional
information was inferred using temporally correlated
transcripts. Jansen and Nap (2001) were perhaps the
first to formally recognize how hot spot lists could
be used to construct networks.

Mathematically, a network is a collection of
nodes (or vertices) and edges. Here, nodes are genes
or transcripts and an edge exists between nodes
when there is some relationship between them
(oftentimes measured via a correlation coefficient).
Elucidating the precise actions of and interactions
between nodes is a difficult challenge, but promising
strategies are beginning to emerge in the context of
eQTL mapping experiments.

Chesler et al. (2005) use pairwise correlations
among all transcripts to identify cliques, i.e., sets of
transcripts completely connected by edges. The cli-
ques themselves provide information about the
relationship among members in that two transcripts
are connected by an edge that indicates extent of
correlation. Mapping regions common to clique

members, and perhaps also to clinical traits, are
studied further to identify candidates likely affecting
the pathway. Utility of the approach is demonstrated
in a study of neural synapse function.

Complementary approaches that allow for the
elucidation of potentially causal relationships
among transcripts are also being developed. Bing and
Hoeschele (2005) identify eQTL confidence regions
and narrow down the number of candidates within a
region by requiring high correlation between the
candidates and affected transcripts. Networks are
constructed by drawing directional edges between
retained candidates and downstream transcripts.
This type of approach assumes that transcripts
belonging to the same network have strong correla-
tions between their expression values, as indicated
above. For most cases, the assumption is likely
necessary but not sufficient. In other words, it will
often be the case that genes within a network are
correlated; however, other scenarios such as inde-
pendent control by closely linked loci can give rise to
correlated traits that are in distinct pathways. As
noted in their article, the approach of Bing and
Hoeschele (2005) can be extended to incorporate
multitrait mapping methods so that this issue can be
resolved.

The issue is one of many addressed in the con-
text of Bayesian networks, where effective algo-
rithms exist for finding the ‘‘best’’ model in some
model space (for an introduction to Bayes nets, see
Jensen 2001). ‘‘Best’’ can be defined in different
ways, but often the definition involves calculation of
a penalized likelihood that balances the goodness of
fit of the model to data and number of model
parameters; the model space must be moderately
sized to make the problem computationally feasible.
Reducing the model space for eQTL mapping often
starts with considering only those transcripts that
map to at least one location. In Li et al. (2005a), the
number of transcripts considered for network
reconstruction was reduced to approximately 200,
and the model space was further reduced by using
SNP genotype information to narrow down the
number of possible regulatory nodes. In Zhu et al.
(2004), the information provided by the eQTL map is
used to reduce both the number of possible nodes
and model complexity. In particular, measures on
pairs of transcripts are considered. Only those pairs
of transcripts with highly correlated LOD profiles
and large mutual information measures are consid-
ered (the latter provides some evidence for pleiotropy
as opposed to multiple tightly linked loci). This
narrows down the list of transcripts considerably
(�1000) and provides selection for pairs that may be
causally related. For a pair of transcripts, to distin-
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guish between independent control by a common
eQTL and a causal relationship where an eQTL af-
fects one transcript that in turn affects the other,
Zhu et al. (2004) use eQTL overlap information, as
initially prescribed by Jansen and Nap (2001). In
short, they assume that if, say, X maps to a number
of locations and Y maps to some subset of those
(perhaps with higher LODs), then it is likely that Y
controls X. Schadt et al. (2005) further develop this
approach to allow for incorporation of clinical data
and elucidation of both causal and reactive rela-
tionships among transcripts and clinical traits. The
power of this approach is maximized when relatively
homogeneous clinical traits can be measured, or
derived.

Augmenting traditional QTL studies

Schadt et al. (2003) provide a beautiful example of
how eQTL data can be used to define clinical traits
more precisely, thereby reducing the challenges im-
posed by genetic heterogeneity. By clustering a col-
lection of genes differentially expressed between
mice varying in fat pad mass (fpm), they identified
two distinct groups within the high fpm group,
confirming some degree of heterogeneity within the
fpm trait. QTL mapping of the groups separately (low
fpm vs. high fpm 1 and low fpm vs. high fpm 2)
identified two nonoverlapping genomic regions,
suggesting independent control of subsets of the fpm
trait. When using only fpm, a second peak was
missed and the primary peak had reduced LOD.

Optimizing and automating this or a similar
approach on a large scale will surely help elucidate
the genetic basis of complex traits. Doing so requires
addressing a number of questions: Given a popula-
tion of animals for which clinical phenotypes are
available, which animals will prove most powerful
for identifying the differentially expressed genes that
will then be used to detect heterogeneity? How
many differentially expressed genes should be used?
Can and should the process of identifying subgroups
be automated (Schadt et al. 2003 discovered the
subgroups by visual inspection of a cluster plot)?
These remain important open questions.

Discussion

In this review we have summarized information on
the statistical methods currently available for the
design and analysis of eQTL mapping studies, the
ways in which these methods can best be used, and
the most promising avenues for the development of
new statistical methods. Much of what we have
learned from traditional microarray and QTL map-

ping experiments has given insights into addressing
the questions posed by eQTL mapping experiments.
For example, studies of microarray experimental de-
sign suggest that for an eQTL mapping experiment
using two-color arrays, dye swaps should be used on
at least some selected animals so that any dye effects
can be estimated. Pooling can also be useful in
reducing the effects of biological variability within
genetically identical subgroups of RI lines. A design
consideration specific to the eQTL mapping setting is
selective phenotyping; and recent studies indicate
that the practice is a useful one. Further evaluation
and methodologic extensions should further increase
the utility of selective phenotyping approaches. An-
other experimental design question requiring atten-
tion is the calculation of power. There are currently
no power calculations available for eQTL studies.
Until appropriate power calculations are available,
calculations from standard QTL mapping (or micro-
array) experiments can be applied transcript by tran-
script (or marker by marker) and used as suggested
here in the section on experimental design. This will
provide at least ballpark estimates on sample sizes.

For eQTL experiments that are not well powered,
strict thresholding to control FDR can yield few
interesting results. It should be remembered that
there are different methods used to control FDR and
these methods are often applied at different steps in
an eQTL data analysis. Both the q-value approach
and estimation via permutations have been used to
estimate false positive rates across maximum LODs
per transcript or across multiple identifications
within and among transcripts. It is good to remem-
ber that these approaches provide an estimate, and
the assumptions upon which the estimation is made
should always be considered. In addition, it is well
known but not widely appreciated that FDR esti-
mates can have high variance (Efron 2005). These
reasons provide good justification for lowering FDR
significance thresholds in many cases. For example,
Chesler et al. (2005) tolerate an FDR estimate of 25%
(calculated across a set of heritable transcripts).
When automated in silico approaches are used to
validate and further refine lists, relaxing an FDR
measure perhaps poses little trouble. On the other
hand, a close consideration of the assumptions made
in estimation, the properties of the estimators, and
the implications of associated thresholds should be
given when expensive followup experiments are
planned on a list of identified transcripts (a rigorous
consideration of choosing thresholds in light of
competing goals is given in Muller et al. 2004).

Fortunately, statistical methods are beginning to
emerge that precisely define the models used in FDR
estimation and the conditions under which FDR
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control is obtained for eQTL identifications (Kendz-
iorski et al. 2006; Storey et al. 2005). An advantage of
Storey et al. (2005) is that FDR is estimated in the
context of multiple linkages. However, the approach
of Storey et al. (2005) uses statistically significant
eQTL identified in a first step of the analysis and is
therefore not amenable to identifying a relatively
large number of loci with moderate effects. The ap-
proach of Kendziorski et al. (2006) does not require
significant linkage at any one location and is there-
fore better suited for this task. Further investigation
of these approaches and additional developments
along these lines should prove useful. It would also
be useful to consider more carefully correlations
across transcripts, which are most likely imposed
not only by the biology but also by the technology.
Both Storey et al. (2005) and Kendziorski et al. (2006)
assume that sufficient preprocessing has been done
so that correlations from the latter source have been
minimized. Statistical methods that uncover and
exploit the former are sure to improve inferences.

Statistical methods are also being applied for
eQTL network construction. Most approaches are
extensions of existing methods with modifications
made to best use the information in eQTL mapping
data. Identifying the network that best describes the
actions of and interactions among large sets of
transcripts is computationally and algorithmically
challenging; many of the current approaches require
that the number of transcripts be greatly reduced. A
straightforward approach is to consider mapping
transcripts, perhaps further restricting the set to
those that are correlated, colocalized, and function-
ally related to a traditional quantitative trait of
interest. Further consideration of optimal methods
for sifting through candidate nodes and reducing
model complexity is required.

It has been suggested that some biological net-
works are scale free (SF) (Jeong et al. 2000). If in fact
this is the case, incorporating properties of SF net-
works could be used to help reduce model com-
plexity. For example, the distribution of the numbers
of edges connecting a random node in a SF network
is a power law and, consequently, there are a few
nodes that are highly connected. This is just one
property inherent to an SF network. Li et al. (2005b)
precisely consider all properties of SF networks and
provide rigorous definitions of the necessary and
sufficient conditions. At this point, incorporating
properties of SF networks into eQTL studies may be
premature because Li et al. (2005b) provide good
reason to question the relevance of SF networks in
many biological systems.

The methods that eventually prove most useful
for eQTL network construction will benefit tre-

mendously by considering the errors involved in
estimation. As discussed in this review, a relation-
ship identified as associative or causal is not guar-
anteed to be so. Unfortunately, there are currently
no statistical methods for assessing confidence in
large-network predictions. Ideas for assessing esti-
mation errors in phylogenetic inference (Larget and
Simon 1999) might guide future developments in
eQTL applications. Of course, biological validation
studies such as the single-gene perturbation experi-
ments done in Schadt et al. (2005) and Mehrabian
et al. (2005) are the gold standard for testing network
predictions, and this is always recommended when
possible.

In addition to biological validation, we recom-
mend practices that allow for statistical validation.
We now know that results from microarray studies
can be misleading, as evidenced by several high-
profile articles reporting results that have been
impossible to reproduce (see PLoS Medicine Editors
2005 and references therein). Three articles in the
May 2005 issue of Nature Methods (Larkin et al.,
Irizarry et al., and Weis et al.) find that differences in
microarray platforms are most likely not the main
reason for discrepancies in results. They show that
with standardized protocols for sample preparation
and data analysis, results for most genes are reliable
across platforms and experiments.

The Microarray Gene Expression Data Society
has made a laudible effort to address the reproduca-
bility problem at the sample preparation and pro-
cessing level by establishing a set of guidelines
(MIAME) for reporting microarray data experimental
protocols and requiring that all such data be depos-
ited in public databases. This will certainly benefit
the eQTL mapping community. Those developing
statistical methods and performing data analysis
should follow suit. To this end, Ruschhaupt et al.
(2004) proposed an R-based system (R Development
Core Team 2004) to facilitate not only publication of
raw data but also the detailed statistical methods,
computer code, documentation, and derived data
associated with a study. Whatever system is used for
data analysis, this type of public availability will
allow for more rapid testing and facilitate compara-
tive studies across methods.
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