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Abstract
The SW highlands of Ethiopia are a key component in the evolution of modern humans. Yet, palaeoecological studies, 
essential to understand past human-vegetation relationships, are almost inexistent in this region. In this paper, we present an 
anthracological study of the Sodicho rock shelter, located at 1,930 m a.s.l. in the SW Ethiopian Afromontane forest zone, 
reconstructing the past woody vegetation since the end of the African Humid Period (ca. 5,000 cal bp). Our results show 
that the vegetation around the rock shelter from ca. 4,750 to 1,750 cal bp was an ecotone between Afromontane forest and 
wooded grasslands of the lowlands, maintained open by the use of fire, although the climatic conditions were favourable 
for closed forest. The charcoal assemblage also demonstrates strong wood selection, with Syzygium guineense, Acacia and 
Proteaceae as the preferred taxa, even during a volcanic event when human occupation had been assumed to be absent. We 
therefore suggest that the rock shelter might have been visited more continuously than previously thought. Finally, under less 
intense occupation activities from ca. 1,700 to 300 cal bp, forest taxa became comparatively more dominant than before, as 
documented in the charcoal record. This demonstrates that the forest can recover under reduced human impact. The fact that 
the Afromontane forest is resilient is of utmost importance, indicating that reforestation is still possible despite the strong 
agricultural and demographic pressures the Ethiopian highlands are currently facing.
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Introduction

SW Ethiopia is one of the most ecologically and culturally 
diverse regions of Africa and therefore of special historical 
and prehistorical interest. A large part of the area consists 
of highlands, with Afromontane forest as the main potential 
natural vegetation above altitudes of 1,800 m (Friis et al. 
2010). The SW Ethiopian Afromontane forest is discussed 
as a refugium for prehistoric populations during arid phases 
of the late Quaternary, especially after the end of the African 
Humid Period (AHP, 11 to 5 ka; DeMenocal and Tierney 
2012; Foerster et al. 2015). However, excavated archaeo-
logical sites in the Ethiopian Afromontane forest zone are 
rare (Gutherz et al. 2002; Lesur et al. 2007; Hildebrand and 
Brandt 2010; Hildebrand et al. 2010; Brandt et al. 2012, 
2017; Arthur et al. 2019; Schepers et al. 2020; Hensel et al. 
2021, 2022). Only a few sites with preserved bones of wild 
animals provide palaeoenvironmental information (Lesur 
et al. 2007, 2014; Schepers et al. 2020). Pollen profiles that 
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might shed light on vegetation changes in the past are only 
available from higher altitudes above 3,000 m or from the 
lowlands, while non-existent from the Afromontane forest 
zone (Casas-Gallego et al. 2023). Therefore, data on pal-
aeoenvironment and natural resources are currently insuffi-
cient to support any anthropological model of human agency, 
mobility and landscape utilization in the past (Wright and 
Forman 2016). More site-specific environmental information 
from the Afromontane forest zone is necessary to understand 
vegetation changes and human responses in the late Quater-
nary, in particular after the end of the AHP.

Evidence for human occupation during the Early Hol-
ocene in the Ethiopian Afromontane forest zone is very 
sparse (Foerster et al. 2015) but becomes more abundant 
after 5,500 cal bp in the southwestern highlands (Hildebrand 
et al. 2010) and after 6,000 cal bp in the Gamo highlands 
(Arthur et al. 2019). This roughly coincides with the end of 
the AHP and a rapid drop in Rift Valley lake levels at Chew 
Bahir (Foerster et al. 2015; Trauth et al. 2015, 2018) and 
Lake Turkana (Garcin et al. 2012). The post-AHP sites in 
the highlands are rock shelters occupied by hunter-gatherers, 
whereas lowland sites of the same period are most often 
associated with pastoral populations (Lesur et al. 2014; 
Wright et al. 2015; Hildebrand et al. 2022).

The Sodicho rock shelter is exceptional with a strati-
graphic sequence from roughly 27,000 bp to subrecent 
times (Hensel et al. 2021, 2022). The strata younger than 
4,800 years, above the archaeologically sterile deposits of 
the AHP, provided abundant and well-preserved archaeobo-
tanical remains, including phytoliths and macroscopic wood 
charcoal. Both are local proxies from a restricted deposi-
tional area, making them ideal for a reconstruction of the 
past vegetation around the sites. This is much needed given 
the complex climate-altitude-vegetation interactions that can 
lead to a variety of vegetation types in a limited area (Hilde-
brand et al. 2019). Wood charcoal identification has already 
shown its reliability to reconstruct past African woody envi-
ronments, especially in the Sahara, West and South Africa 
(e.g. Neumann 1989, 1992, 1999; Ballouche and Neumann 
1995; Höhn 1999, 2022; Allott 2006; Höhn and Neumann 
2012, 2016; Cartwright 2013; Hubau et al. 2013, 2014; Eich-
horn and Neumann 2014; Höhn et al. 2021). Anthracologi-
cal studies are much rarer for Eastern Africa and so far, in 
Ethiopia, have only been applied in the Tigray region (Gebru 
et al. 2009; Ruiz-Giralt et al. 2021) and the Bale Mountains 
(Beldados et al. 2022).

The aim of this paper is to elucidate how the Afromon-
tane forest around Sodicho developed in relation to climate 
change and human impact during the last 4,800 years. Our 
research questions are: (1) Did the Afromontane forest per-
sist during human occupation or was there a more open 
vegetation? (2) If there was an opening of the vegetation, 
were the main drivers anthropogenic, climatic or both? To 

answer these questions, we analysed wood charcoal dated 
between 4,750 and 300 cal bp. We interpret them in terms 
of human activities, such as firewood selection or landscape 
modifications, in the context of increasing aridity after the 
end of the AHP.

Regional setting and archaeological context

The Sodicho rock shelter (7°15′21″N-37°36′44″E) is located 
about 40 km NW of Sodo, Wolayta, in the SW Ethiopian 
highlands, on the southern flanks of Mount Sodicho (max. 
altitude 2,025 m a.s.l.), a volcano belonging to the major 
trachytic volcanic complexes formed along the Rift’s mar-
gins during the Plio-Pleistocene (WoldeGabriel et al. 1992). 
At an elevation of 1,930 m a.s.l., the shelter is located only 
a few meters below the edge of the plateau and offers an 
excellent view over the surrounding landscape (Fig. 1A–B) 
(Hensel et al. 2021). The mountain is flanked by two streams 
that drain into the Omo River about 11 km to the Southwest. 
The highlands are characterised by a complex rainfall regime 
(Friis et al. 2010; Kassa et al. 2017; Hildebrand et al. 2019) 
varying according to the regions. The SW highlands are part 
of the temperate dry summer–warm summer climate after 
the Köppen-Geiger classification (Csb climate, Peel et al. 
2007; Beck et al. 2018). The rainy season occurs between 
March and November and the dry season between December 
and February (Kassa et al. 2017). Mean annual rainfall and 
mean annual temperature recorded in Sodo are 1,125 mm 
and 14 °C, respectively (World Weather Online 2012).

The rock shelter is located near the lower limit of the 
Afromontane forest, which is now highly impacted by 
human pressure throughout Ethiopia. Since the 1970s, the 
population of Ethiopia has more than tripled (Ringheim 
et al. 2009; United Nations Population Fund 2022), and agri-
cultural expansion has led to dramatic deforestation (Friis 
et al. 1982; Woldu 1999; Holden and Shiferaw 2004; Nys-
sen et al. 2004; Kassa et al. 2017; Tolessa et al. 2017). As 
a result, the Afromontane forest is degraded and has turned 
into woodlands and wooded grasslands in many areas, form-
ing a mosaic landscape. The different vegetation types that 
would occur without such human pressure are referred to as 
the potential natural vegetation of Ethiopia and were mapped 
by Friis et al. (2010), based on topography, rainfall data and 
field surveys. The potential vegetation types around Sodicho 
are the Dry Afromontane Forest (DAF), the Combretum-
Terminalia woodland and wooded grassland (CTW) and, 
further down in the lowlands to the East, the Acacia-Com-
miphora woodland and bushland (ACB) (Fig. 1A–B). The 
DAF is potentially present between 1,800 and 3,000 m a.s.l. 
and grows under precipitation between 700 and 1,700 mm/
year (Friis et al. 2010). But today, the area around Sodicho is 
heavily impacted by crop cultivation and grazing, and almost 
no remnants of the natural DAF can be found (Fig. 1C–D). 
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Instead, the current vegetation is a mosaic of agricultural 
plots, grazing areas, barren land and plantations of intro-
duced tree species, mainly Eucalyptus camaldulensis.

The DAF comprises two subtypes: the undifferentiated 
Afromontane Forest (DAF/U) and the Afromontane wood-
land, wooded grassland and grassland (DAF/WG), which is 
(partly) a degraded state of the DAF/U (Friis et al. 2010). 
A floristic survey in the surrounding of Sodicho comprised 
some single specimens of DAF/U and/or DAF/WG species, 

such as Syzygium guineense (Fig. 1E), Croton macrostach-
yus, Teclea nobilis, Ritchiea albersii, Maesa lanceolata, 
Ekebergia capensis, and Maytenus arbutifolia (Wondafrash 
pers. comm. 2023), indicating that the DAF could grow 
there. The CTW potentially grows on the western escarp-
ment of the highlands; while the ACB potentially occurs on 
the eastern escarpment and down to the Rift Valley, both 
vegetation types with an altitudinal range between 400 and 
1,800 m a.s.l. (Friis et al. 2010).

Fig. 1  The Sodicho rock shelter. A Map of Ethiopia showing the 
different vegetation types according to Friis et  al. (2010), location 
of Sodicho and Mochena Borago. B Zoom on the vegetation types 
around the two rock shelters. C Sodicho, and the degraded vegeta-
tion in the surrounding. D Landscape as seen from Sodicho, showing 

the cultivated areas downhill. E Syzygium guineense growing next to 
the rock shelter, behind a local resident. Maps by M. Casas-Gallego, 
modified from Friis et al. (2010); photos by S. Bodin and R. Vogel-
sang
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Past human occupation in Sodicho is evidenced by 
potsherds and tool assemblages from the Later Stone 
Age. These are dominated by segments (curved backed 
forms), representative of typical hunting equipment 
(Lombard 2008; Lombard and Pargeter 2008; Mazzucco 
et al. 2012). The stratigraphy of Sodicho is divided into 
natural sedimentary units (SUs). SUs I (450–300 cal bp), 
III (2,090–1,750 cal bp), V (4,750–4,360 cal bp), VII 
(17,000–4,960 cal bp) and IX (27,000–21,000 cal bp) are 
considered anthropogenic according to their content in 
lithics and features such as hearths and pits. The scarcity 
of cultural remains in SU I, consisting mainly of pot-
sherds and few obsidian stone artefacts, indicates only 
sporadic use of the shelter by small groups, such as hunt-
ing expeditions of farming and/or herding people, set-
tling in the lowlands. Evidence of human occupation is 
much stronger in SU III and especially in SU V, which are 
both characterised by microlithic stone tools, mainly seg-
ments. SU VI, which had been formed during the AHP, is 
archaeologically sterile (Fig. 2; Hensel et al. 2021). SUs 
II, IV and VIII correspond to allogenic tephra deposits 
(Hensel et al. 2021). We presume that during the Holo-
cene, Sodicho was never a long-term settlement site, but 
rather a hunting camp used by small groups of hunters for 
repeated short-term stays. Indeed, while food-producing 
societies settled in large parts of the Horn of Africa dur-
ing the late Holocene, the highlands of Ethiopia seem to 
have offered a retreat for hunter-gatherers.

Material and methods

Charcoal sampling

Charcoal was sampled during excavations in 2015, 2016 
and 2017 in the framework of the CRC 806 “Our Way to 
Europe” (Hensel et al. 2021). Four 50 × 50 cm quadrants 
were investigated for charcoal: F34, F35, G34 and G35. 
Sampling was done according to the SUs which were subdi-
vided into arbitrarily defined 5 cm thick layers (see detailed 
protocol in Hensel et al. 2021). No identifiable charcoal was 
recovered from the tephra unit VIII and the anthropogenic 
unit IX. The sediment was dry-sieved in the field with 10, 
5 and 2.5 mm meshes to recover archaeological remains 
including charcoal (Hensel et al. 2021). In the laboratory, 
we sorted charcoal pieces suitable for anatomical identifi-
cation, i.e. big enough, using a 4 mm mesh (Chabal et al. 
1999; Scheel-Ybert 2001; Kabukcu and Chabal 2021). The 
majority of pieces are dispersed charcoal fragments and 
only a few come from identifiable archaeological features 
(several pits and one hearth). Dispersed charcoal is the best 
indicator of the palaeovegetation as these fragments are the 
residuals of different types of burning activities over time; 
while charcoal from features like hearths is more likely to 
give only a picture of a specific use or a short-term activ-
ity and, therefore, often leads to a poor representativeness 
(Chabal 1992; Kabukcu and Chabal 2021). Nevertheless, 
we can reasonably assume that all of the dispersed charcoal 
comes from fireplaces. Big charcoal fragments (from ca. 1.5 
to more than 2 cm) were also recovered among the dispersed 
charcoal from units III and V. These large fragments most 

Fig. 2  Illustration of sampled excavation profiles F35 West and 
North, G35 South, and F34 East from Sodicho. Profiles are displayed 
to a depth of 1 m to indicate which sediment units are in the focus 
of this study. Locations of the illustrated profiles are marked in red 

within the excavation trench (box bottom right). Major stratigraphic 
units are highlighted in the background by different colours (mod. 
after Hensel et al. 2022)
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probably indicate fireplaces as suggested by Hensel et al. 
(2021), and were scattered after trampling and sweeping 
processes (Hensel et al. 2022). Therefore, the charcoal from 
archaeological features assigned to specific units are there-
after interpreted together with the dispersed charcoal from 
the same sedimentary units.

Charcoal identification

Charcoal anatomical features were observed with a ZEISS 
Axio Imager A2.m reflected light microscope equipped 
with dark and bright field devices at × 100, × 200 and × 500 
magnifications. The anatomy of each charcoal taxon was 
described and images were taken with a JEOL JSM-6490LV 
Scanning Electron Microscope in the SGN-SF-Hi-res-SEM 
laboratory. Taxonomic identifications were done by compar-
ing archaeological charcoal to the wood slides of the Afri-
can reference collection from the Institute of Archaeological 
Sciences of Goethe University (JWG) Frankfurt am Main 
(Germany), mainly on duplicates of the Ethiopian wood 
collection of Addis Ababa University. The online database 
InsideWood (Wheeler et al. 1989; Wheeler 2011) and spe-
cific literature (Metcalfe and Chalk 1950; Neumann et al. 
2001 and see references for specific taxa in the SI 1) were 
also used to help the identification process. The taxonomic 
nomenclature used in this paper follows that of Friis et al. 
(2010) to allow easy comparison. Naming of charcoal taxa 
was done in small capitals according to Höhn and Neumann 
(2018). We used the prefix “cf.” when the specimen was 
very similar to the assigned taxon but badly preserved and/or 
when one of the diagnostic features was not clearly visible. 
The unidentifiable pieces were those too badly preserved 
(e.g. vitrified, presenting many cracks, twisted) to provide 
any good anatomical description. Finally, we evaluated the 
number of knots and twigs present in the charcoal assem-
blage; the former being characterised by a distortion of the 
anatomical planes of wood and the latter recognizable by 
the growth-ring curvature and/or the non-parallelism of the 
rays in cross section. We did not undertake any qualitative 
measurements but simply counted the number of charcoal 
fragments presenting such features. The list of the charcoal 
taxa and their anatomical description, as well as the raw data 
containing the charcoal counts and information on the stra-
tigraphy are available in the online resources (SI 1 and SI 2).

The basis of the anthracological diagram was made on 
RStudio v. 2022.7.2.576 (RStudio Team 2022) with the strat.
plot() function from the package Rioja (Juggins 2022). Addi-
tional information (e.g. counts, dates and pie charts) was 
then added using Inkscape v. 1.2.1 (Inkscape’s Contributors 
2022).

Radiocarbon dating

A total of 31 radiocarbon dates made on charcoal, seeds, 
soot and organic material was already available for Sodi-
cho (Hensel et al. 2021). Four additional radiocarbon dates 
were obtained from charcoal for this study (Beta Analytic). 
Calibration was done using the IntCal20 calibration curve 
(Bronk Ramsey 2009; Reimer et al. 2020). We chose twigs 
from different taxa to ensure that we do not date charcoal 
pieces from the same specimen and that there is no ‘old 
wood effect’ (Schiffer 1986; Carcaillet and Talon 1996). 
Dated specimens are from SU II where no date had been 
available before, SUs III and IV where the dating was 
unclear and SU VI, the archaeologically sterile unit depos-
ited during the AHP (Hensel et al. 2021), where a few char-
coal pieces had also been recovered.

Results

Additional 14C dates to Hensel et al. 2021 for four 
stratigraphic units

The four dates obtained are consistent with the stratig-
raphy and with the dates previously obtained by Hen-
sel et  al. (2021). Charcoal from SU II (tephra deposit) 
delivered a date of 1,192–1,070 cal bp, SU III (anthropo-
genic) of 2,007–1,872 cal bp, SU IV (tephra deposit) of 
2,490–2,338 cal bp, and SU VI (archaeologically sterile) of 
4,772–4,612 cal bp (Table 1).

Given the date obtained for SU VI, the charcoal found 
in this sterile unit probably originates from the unit above. 
Indeed, SU VI is a mixture of allochtonous and autochtonous 
sediments (Hensel et al. 2022). Therefore, the charcoal found 
in SU VI can be reasonably interpreted together with those 
from SU V.

Table 1  Radiocarbon dates 
obtained from identified 
charcoal of the Sodicho rock 
shelter

Lab. code Sample code Material dated Stratigraphic unit Conv. age (bp) Cal. range (cal bp)

Beta-628478 F35_SE_L4_2 Charcoal II (tephra) 1,240 ± 30 1,192–1,070
Beta-628479 G34_NE_L12_1 Charcoal III (anthropogenic) 2,020 ± 30 2,007–1,872
Beta-628480 F35_NW_L11_8 Charcoal IV (tephra) 2,370 ± 30 2,490–2,338
Beta-628481 F34_NW_L19_2 Charcoal VI (sterile) 4,170 ± 30 4,772–4,612
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Anthracological results

A total of 1,907 charcoal fragments was analysed from 
SUs I to VII, including transitional units (e.g., SU I/II 
and so on), corresponding to a total of 26 charcoal taxa 
(Fig. 3, SI 1). Older units did not provide any charcoal or 
fragments big enough for identification, except a single 
piece from quarter G35, SE, level 38. It is identified as 
Juniperus procera/podocarpus falcatus and the level is 
dated to 27,107–26,392 cal bp (Hensel et al. 2021). All 
fragments were analysed except in the richest units SU 
III and V: there, we stopped the identification at the 438th 
and 740th piece, respectively, because the accumulation 
curves of these SUs reached a plateau in the taxonomic 
identification after a substantial number of identified frag-
ments. Out of these 1,907 charcoal fragments, 61 come 
from archaeological features, mainly pits. One hearth 
from SU V provided 11 charcoal pieces representing three 

different taxa, faurea rochetiana/protea spp., combretum 
2 and prunus africana, which are also present in dispersed 
charcoal samples.

As expected, the richest SUs are the anthropogenic 
ones; they provided the highest number of charcoal pieces 
and taxa. In SUs I, III and V, a total of 15, 19 and 13 char-
coal taxa were identified out of 159, 438 and 740 charcoal 
pieces, respectively. Hereafter, we provide percentages 
that take into account the number of unidentified pieces. 
The assemblages from SUs III, V and the SU interface 
III/V are dominated by syzygium guineense (29, 53 and 
79%, resp.), acacia spp. (19, 11 and 13%, resp.) and fau-
rea rochetiana/protea spp. (11, 14 and 6%, resp.). If the 
pieces confidently identified as faurea rochetiana are 
added to the latter percentages, the Proteaceae account 
for 14, 25 and 6% of the charcoal pieces, respectively. A 
number of burned kernels from Syzygium guineense were 
found in SU V, three of them dated to 4,617–4,765 cal bp, 

Fig. 3  Anthracological diagram showing the charcoal taxa identified. 
Vertical axes on the left: stratigraphic units, radiocarbon ages and the 
main events occurring: volcanic activity, human occupation. Vertical 
axes on the right: total number of analysed charcoal fragments, num-
ber of identifiable taxa and percentages of twigs (dark grey), knots 
(light grey) and the remaining charcoal pieces (black). Lower hori-
zontal axe: percentage of taxa in the charcoal-rich units (bars). Col-

oured dots indicate the presence of taxa in charcoal-poor units and for 
taxa with abundance < 10%. CTW: Combretum-Terminalia woodland 
and wooded grassland; DAF/WG: Afromontane woodland, wooded 
grassland and grassland; DAF/U: Undifferentiated Afromontane For-
est (Friis et  al. 2010); Mix: for taxa growing in several vegetation 
types
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4,567–4,729 cal bp and 4,610–4,828 cal bp. Local residents 
of Mt Sodicho indicated that the fruits are still eaten today.

SU I shows a different pattern and is dominated by 
syzygium guineense, sapotaceae, rubiaceae 3 and olea 
spp., which account for 28, 15, 14 and 10% of the charcoal 
pieces, respectively.

In occupation Unit VII, most charcoal pieces were uni-
dentifiable due to poor preservation, and only 15 fragments 
of a single taxon, syzygium guineense, were found. Unit VII 
has a very broad chronological range of 17,000–14,960 cal 
bp, with two intrusive radiocarbon dates from younger units. 
Because it is not known how old the charcoal pieces are and 
because they are very few, we exclude them from our discus-
sion on the palaeoecological significance.

The tephra units SU II and IV were overall less rich in 
charcoal fragments (37 and 164, respectively) but contained 
similar taxa as in the anthropogenic units, with syzygium 
guineense, faurea rochetiana/protea spp, sapotaceae, 
acacia spp. and olea spp. being the most abundant. The 
transitional units SU I/II, II/III, III/IV, III/V, IV/V and V/VI 
provided the same dominant taxa as the tephra and anthro-
pogenic units.

Among the fragments analysed, there was a high propor-
tion of knots and twigs. Together, they represent 27% of the 
whole record and an average of 21 ± 14% per anthropogenic 
unit and of 39 ± 21% per tephra unit. In the archaeologi-
cally sterile unit VI, where the charcoal dates correspond 
to the anthropogenic SU V, 45% of the fragments are twigs 
or knots.

Discussion

Wood selection and human fire activity

One of the most striking results is that three taxa strongly 
dominate the charcoal sequence, from the end of the AHP 
to roughly 2,000 cal bp: syzygium guineense, the Proteaceae 
faurea rochetiana and faurea rochetiana/protea spp., and 
acacia spp. Especially significant is their strong abundance 
in SU V, dated between 4,750 and 4,360 cal bp, where the 
highest number of fragments was counted. The dominant 
representation of some taxa in the charcoal record may 
simply reflect their abundance in the environment (Chabal 
1992; Kabukcu and Chabal 2021), but they may have also 
been preferred for their usefulness. Charcoal fragmentation 
depends on many factors and is not always dependent on 
the species. Nevertheless, as it has already been widely dis-
cussed in anthracology, these fragmentation issues do not 
impact the palaeoenvironmental representativeness, pro-
vided that the assemblage is composed of dispersed char-
coal and is large enough (see for example Asouti and Austin 
2005; Lancelotti et al. 2010; Théry-Parisot et al. 2010). The 

dominance of only three taxa, in an assemblage of 740 frag-
ments, provides a strong argument for wood selection by 
past people. Although only few fragments were identifiable 
in occupation unit VII, the fact that syzygium guineense was 
the only taxon also speaks for selection.

Wood selection is indeed often observed in charcoal 
records from archaeological sites (Bachelet and Scheel-
Ybert 2017; Bodin et al. 2020; Robledo 2021; Ruiz-Giralt 
et al. 2021) and it is supported by ethnographic and mod-
ern-day observations (Picornell Gelabert et al. 2011; Teklay 
et al. 2014; Picornell Gelabert 2020).

Nowadays, Syzygium guineense, Olea (O. capensis, O. 
europaea ssp. cuspidata) and Acacia (e.g. A. abyssinica) 
are commonly used as firewood and charcoal in Ethiopia 
(Bekele-Tesemma 2007; Maroyi 2008; Bekele and Girmay 
2013; Teklay et al. 2014; Feyisa et al. 2017; Bahru et al. 
2021; Gebre and Seboka 2021; Tropical Plants Database 
2022). Faurea rochetiana is not currently known as being 
used as firewood or charcoal in Ethiopia, though it has a 
high calorific potential (Gebremedhin 2021). protea madi-
ensis (one of the two Protea species present in Ethiopia) 
and syzygium sp. have been reported in all levels from the 
hunter-gatherer site Shum Lake in Cameroon, dated between 
1,000 and 8,000 cal bp (identification by H. Doutrelepont, 
Lavachery 2001), illustrating their high value as firewood. 
Selection of certain taxa for fuelwood was also observed 
in several other charcoal assemblages from tropical Africa, 
although they come from different environmental contexts. 
acacia and olea were abundant in the charcoal record from 
Ona Adi, Tigray, and interpreted as selected taxa (Ruiz-
Giralt et al. 2021). syzygium guineense was the dominant 
charcoal taxon in Ounjougou, Mali, throughout the Holo-
cene sequence (Eichhorn and Neumann 2014). An additional 
argument for wood selection comes from the low number 
of taxa found in the hearth from Unit V, which was prob-
ably used only once given its poor taxonomic richness. The 
hearth contained the abovementioned faurea rochetiana/
protea spp., a combretum and prunus africana, the two lat-
ter also known to provide good firewood in Ethiopia (Bekele-
Tesemma 2007).

Syzygium guineense, Faurea rochetiana and several Aca-
cia and Olea species are also known to have medicinal prop-
erties (Bekele-Tesemma 2007; Glen 2008), to provide edi-
ble fruits (e.g. Syzygium guineense), or are used for mouth 
care (Olea europaea), among other uses. We can therefore 
assume that plant parts of these species were not only har-
vested for fire making but also for other activities and that 
the wood wastes served to light fires, explaining why they 
are so abundant in the charcoal record.

The high number of twigs and knots (Fig. 3) indicates 
that small calibre wood and twigs were preferred. It makes 
sense, as these parts would be easier to collect and transport. 
In fact, shrubs are mainly used for firewood and charcoal 
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production (Bahru et al. 2012) as this was also observed 
in anthracological assemblages from various sites around 
the world (Bodin et al. 2021; Kabukcu et al. 2021; Robledo 
2021).

It is noteworthy that the emblematic DAF gymnosperms 
Juniperus procera and Podocarpus falcatus are not present 
in the Sodicho assemblage, just as it was noticed for the 
Ona Adi and Mezber sites in Tigray, dating from ca. 3,550 
to 1,950 bp and then located in the DAF (Ruiz-Giralt et al. 
2021). Both are assigned to the DAF/U and usually not pre-
sent in the secondary DAF/WG (Friis et al. 2010, p 178). 
The absence of Podocarpus falcatus charcoal correlates with 
its absence in several modern Afromontane forest invento-
ries of Ethiopia (Friis et al. 1982; Friis 1986) and thus needs 
no further explanation. But the absence of Juniperus procera 
in the assemblages of Sodicho is striking. Almost all avail-
able vegetation surveys of Ethiopian DAF include J. procera 
(Friis et al. 1982, 2010; Friis 1986; Bekele 1993), which 
also has a strong regeneration capacity after fire (Bussmann 
2001). Maybe the open DAF/WG was much more extended 
than the closed DAF/U, and the occupants of the rock shelter 
may have avoided Juniperus as firewood because it grows in 
closed forest, as proposed for the sites Mezber and Ona Adi 
in northern Ethiopia where Juniperus charcoal was also very 
rare (Ruiz-Giralt et al. 2021). Juniperus procera may also 
have been avoided because only tall trees were present in the 
landscape. According to Friis et al. (2010), J. procera has a 
tree habit and can grow up to 40 m, while almost all other 
taxa present in the assemblage can also grow as shrubs. If 
hunter-gatherers came to the rock shelter for short visits (see 
the archaeological context section), then they would have 
avoided cutting off large calibre trees. The almost complete 
absence of the dominant taxa acacia and proteaceae in SUs 
I and I/II, dated after 1,100 cal bp, might be explained either 
by a change in collection behaviour, or, especially in SU II, 
by the low number of counted fragments. However, in the 
assemblage from SU I, 159 fragments were counted, exclud-
ing sampling size as the reason for the absence of certain 
taxa. The dominance of forest taxa in SU I can indeed be 
interpreted as real change in the vegetation.

Palaeoecological significance

Past vegetation around the rock shelter during human 
occupation

The vegetation composition during human occupation can 
be best described thanks to the assemblages of SUs V, III 
and I from where the majority of the charcoal pieces were 
recovered. As most taxa in the charcoal assemblages cannot 
be identified to species level, several options for assigning 
them to vegetation types must be considered. We base our 
interpretation mainly on the Atlas of the Potential Vegetation 

of Ethiopia (Friis et al. 2010) with its general description 
of the Ethiopian vegetation types. Most important for our 
reconstruction is the information on the undifferentiated Dry 
Afromontane Forest (DAF/U) and the Afromontane wood-
land, wooded grassland and grassland (DAF/WG). The latter 
includes primary edaphic woodlands with several Acacia 
species on black cotton soils, and secondary woodlands 
resulting from the deforestation of the “proper” DAF/U 
and subsequent intensive human land use. These secondary 
woodlands are especially relevant for our reconstruction. We 
also include more general literature on East African montane 
forests in other countries (Friis 1992; African Plant Database 
2022), as well as personal observations gained during three 
field trips in SW Ethiopia.

In SU III, dated between 2,090 and 1,750 cal bp, there 
is the highest charcoal taxonomic diversity, suitable for a 
detailed vegetation reconstruction. The taxonomic composi-
tion in SU V, dated between 4,750 and 4,360 cal bp, is fairly 
similar to that of SU III, except that there is proportionally 
a higher number of open vegetation taxa. Several forest taxa 
that are present in SU III are absent from SU V, such as the 
emblematic olea spp.

The majority of the taxa in SU III depict an open veg-
etation: combretum spp., rhus spp. (now Searsia), grewia 
spp., acacia spp. and the Proteaceae faurea rochetiana and 
faurea rochetiana/protea spp. Most of the Combretum spe-
cies of Ethiopia occur in the CTW (Friis et al. 2010, p 186, 
2022). However, C. adenogonium, which would anatomi-
cally correspond to our combretum spp. 2, can also be found 
in the DAF/WG (Friis et al. 2010, p 186; African Plant Data-
base 2022). Rhus occurs mainly in dry vegetation types and 
along forest margins (Friis 1992; Friis et al. 2022, p 297). 
Ethiopian Grewia species have a wide distribution, includ-
ing the lowlands, but G. ferruginea also occurs at higher 
altitudes in the DAF/WG (Friis et al. 2010, p 187, 2022, 
p 225). Faurea rochetiana and Protea are typical second-
ary vegetation taxa, growing in the CTW and the DAF/WG 
(Friis et al. 2010, p 184, 2022, p 211).

The charcoal taxon acacia, so dominant in the occu-
pation units III and V, poses a special challenge for the 
interpretation due to the wide distribution of the genus in 
Africa (nowadays divided into two genera Senegalia and 
Vachellia). The majority of the Ethiopian Acacia species 
are found in the Acacia-Commiphora woodland and bush-
land (ACB) (Friis et al. 2010, p 198), which is distributed 
more to the East. This is why we do not consider it for our 
reconstruction. It is much more likely that the charcoal taxon 
acacia represents either CTW or DAF/WG. Some Acacia 
species grow in the CTW, but they are not a dominant ele-
ment. On the black cotton soils of the primary DAF/WG, 
Acacia species are well represented, but they are much rarer 
in the secondary DAF/WG. A probable candidate is Acacia 
abyssinica, described by Friis (1992, p 143) as a forest tree 
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with an altitudinal range of 1,500–2,900 m a.s.l., but hardly 
occurring in closed forest. Acacia abyssinica rather grows 
along forest edges; it is a pioneer in secondary woodlands 
(Friis 1986), and its thick bark is probably an adaptation to 
fire resistance (Friis et al. 2022, p 242). Finally, the presence 
of caesalpinioideae in the charcoal assemblage may also be 
indicative of an open environment as most of them are found 
in the CTW or DAF/WG (Friis et al. 2010, pp 196–197).

In addition to these open vegetation taxa, the assemblages 
of unit III and V also comprise several ones typically associ-
ated with the DAF/U proper (Friis 1992; Bekele-Tesemma 
2007; Friis et al. 2010): allophylus spp. (e.g. A. abyssinicus 
which can be found in the DAF), sapotaceae (e.g. Mimu-
sops and Sideroxylon occurring in the DAF), and especially 
prunus africana and olea spp., both typical forest taxa of 
the DAF/U.

The high proportion of CTW and DAF/WG taxa in com-
parison to those of DAF/U is at first glance surprising. At an 
altitude of 1,930 m a.s.l., Sodicho is located in the Afromon-
tane forest zone, although today no forest remnants are found 
around the site, due to intensive land-use and population 
pressure. The picture emerging from the charcoal assem-
blages of the anthropogenic units III and V might be best 
interpreted in terms of an ecotone, a transition zone between 
closed DAF, secondary DAF/WG and CTW woodlands. The 
ecotone would comprise a mosaic of open woodland and 
closed forest, existing side-by-side, the distribution of them 
determined by edaphic factors, solar exposition, and human 
impact. An example of an ecotonal situation can be observed 
in the Kure Forest, near Jinka, 178 km southwest of Sodo, at 
an altitude of ca. 1,500 m a.s.l. There, small patches of for-
est with Olea europaea ssp. cuspidata, Syzygium guineense, 
Teclea nobilis, and Diospyros sp. are alternating with 
patches of open woodland, according to the topography of 
the terrain. In the open woodland, fire-resistant Proteaceae 
(Faurea rochetiana and Protea madiensis) were observed. 
A similar mosaic is probable for the area around Sodicho 
between 4,750 and 1,750 cal bp. Although at 1,930 m a.s.l., 
the exposition of the rock shelter, facing south, might have 
contributed to a drier type of DAF in a mosaic with CTW.

Fire would have been an important factor for the equi-
librium between the three vegetation types in the ecotone. 
Bushfires occur regularly in the CTW, due to a distinct pre-
cipitation seasonality, resulting in a bulk of inflammable 
biomass during the dry season (Friis et al. 2022, p 41). By 
contrast, the closed DAF/U is usually not affected by fire 
(Eriksson et al. 2003; Teketay 2005; van Breugel et al. 2016). 
That fire was a constant factor in the landscape around Sodi-
cho through its complete occupation history from 27,000 cal 
bp to the present, is indicated by burnt phytoliths in the soil 
samples of the site (Hensel et al. 2022). Although most of the 
burnt phytoliths are attributed to fireplaces within the rock 
shelter, they also occur in natural tephra deposits of aeolian 

origin, the phytoliths of which represent the surrounding 
vegetation. Furthermore, high percentages of phytolith mor-
photypes from the grass subfamily Panicoideae in the soil 
samples attest the presence of large savanna grasses that 
are dominant constituents of CTW and are regularly prone 
to fire (Neumann ongoing laboratory work; White 1983, p 
168). The strong representation of fire-resistant Proteaceae 
charcoal in occupation units III and V provides a further 
argument for regular bushfires between 4,750 and 1,750 cal 
bp (White 1983, p 169; Friis 1992, p 99). Proteaceae, as well 
as many Combretaceae, are typical fire-tolerant taxa with 
thick barks (Gilbert and Gebregziabher 1975; Bond et al. 
1990; Midgley 2019; Makumbe et al. 2020; Friis et al. 2022, 
p 211). Regular bushfires would favour the CTW with its 
panicoid grass layer at the expense of forest and contribute 
to a relative openness of the landscape.

It is highly probable that humans contributed to the open-
ness around Sodicho and the maintenance of the ecotone 
through fire activity. Human-induced bushfires are a central 
element of human niche construction, associated with the 
expansion of Homo sapiens from Africa to Europe and Aus-
tralasia at least from 50,000 bp onwards (Summerhayes et al. 
2010; Boivin et al. 2016). For Africa, Archibald et al. (2012, 
p 849) assume high fire probability from 40,000 to 4,000 cal 
bp, ‘when the effect of humans on ignition frequency and 
season were pushing fire into landscapes previously rarely 
burned’. If, as the vegetation model by Casas-Gallego et al. 
(2023) shows, Sodicho was located in an area with climatic 
conditions suitable for DAF throughout the Holocene, 
although not far from the adjacent CTW, it would have been 
easy for humans to increase the extension of open CTW and 
DAF/WG through regular burning.

Hunter-gatherers visited Sodicho at least for 27,000 years, 
albeit, according to the archaeological record, not continu-
ously. Probably these hunter-gatherers were highly mobile 
and used a large range of different habitats along an altitu-
dinal gradient from the hot lowlands to alpine grasslands. 
Hunting and gathering economies persisted in SW Ethiopia 
longer than in other regions of the Horn of Africa, and live-
stock and ceramics only appear around 2,000 cal bp (Hilde-
brand et al. 2010; Lesur et al. 2014). For hunter-gatherers, an 
ecotonal situation with several vegetation types would have 
been favourable, increasing the availability of resources, 
such as wild animals, plants and honey. Hunting of wild 
animals is still a major activity of the few remaining mod-
ern hunter-gatherers in the East African montane forests, 
such as the Okiek of Kenya (Kratz 1999), and the Chabu of 
SW Ethiopia (Dira and Hewlett 2017). There is also early 
evidence for hunting at high altitudes in the Bale Mountains 
around 47,000 cal bp (Ossendorf et al. 2019). As numerous 
examples around the world have shown, human-induced fires 
are a regular element for hunting wild animals (e.g., Bliege 
Bird et al. 2008; Bird et al. 2016).
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In the anthropogenic unit I of Sodicho, dated to 
450–300 cal bp, a different vegetation pattern emerges. 
The CTW and DAF/WG taxa acacia spp. and combretum 
spp. are not present anymore and only a few fragments 
from faurea rochetiana and protea gaguedi/madiensis 
were found. The forest taxa olea spp. and sapotaceae 
are the most abundant, together with rubiaceae 3 and 
syzygium guineense, which can either grow in a closed 
or open vegetation (Bekele-Tesemma 2007; Friis et al. 
2010). apodytes dimidiata, found in the transitional unit 
I/II (i.e. it can belong either to SUs I or II), may be added 
to the forest taxa list. The reconstructed vegetation would 
be a denser DAF/U, whereas the DAF/WG and the CTW 
would have retreated and were probably only found at 
lower altitudes, explaining why people were less relying 
on their firewood.

How can the development of an open ecotone with a 
mosaic of DAF/U, DAF/WG and CTW during occupa-
tion periods V and III (4,750 and 1,750 cal bp), towards 
a closed DAF in occupation period I (450–300 cal bp) be 
explained? As the distribution of the Ethiopian potential 
vegetation types is largely dependent on climatic factors 
(Friis et al. 2010; Casas-Gallego et al. 2023), climate 
change might provide an answer. In the Holocene, after 
the end of the AHP, the modelled vegetation maps by 
Casas-Gallego et al. (2023) for 5,000 cal bp to the present 
indicate a gradual retreat of the DAF to higher altitudes 
and an expansion of CTW and ACB. The Chew Bahir 
record (Foerster et al. 2015) shows a distinct increase 
in precipitation between 2,200 and 1,300 cal bp for SW 
Ethiopia that might have favored the expansion of the 
DAF, but a return to drier conditions afterwards. Thus, 
the expansion of the DAF during the last millennium in a 
former ecotone around 1,900 m a.s.l. cannot be explained 
by climate change. This leaves decreasing human impact 
as the most probable factor.

It is remarkable that almost all SW Ethiopian rock shel-
ter sites show only weak signs of human presence for the 
last two millennia (Hildebrand et al. 2010). At Mochena 
Borago, the most recent occupation phase is dated around 
1,500 cal bp (Lesur et al. 2007). It seems that with the 
arrival of domesticated animals around 2,000 cal bp in 
SW Ethiopia, residential activity shifted from the mon-
tane forest areas to the lowlands. If pastoralism became 
the main economic basis in the lowlands, then the upland 
forests might have become less attractive and were only 
visited sporadically for specific tasks, such as hunting 
and honey collection. This would have contributed to the 
regeneration and expansion of the DAF/U during the last 
two millennia, a development that was only reversed in 
the 20th century through massive settlement activities and 
land use.

Human occupation at Sodicho during volcanic events 
(tephra units) and the AHP

The charcoal assemblages from the tephra units (SUs II, 
IV) are taxonomically similar to the anthropogenic units, 
though much less diverse. Only two new taxa were found 
in unit II, namely bridelia micrantha and cf. schefflera 
spp. (now Astropanax). The habitat of Bridelia micrantha 
includes forest margins and moist CTW habitats (Friis et al. 
2022, p 233), while Schefflera is a forest plant (Friis 1992; 
Friis et al. 2010). Charcoal fragments from these tephra units 
are probably too big to have been transported over long dis-
tances (> 4 mm) (Clark 1988) even in an eruption context 
(see for example Loughlin et al. 2018).

No evidence of human occupation, including lithics and 
features such as combustion areas (which would have led 
to concentrated charcoal lenses), were found in the tephra 
units (Hensel et al. 2021). Black carbon analyses (Hensel 
et al. 2022) show a very low content for the upper part of 
SU IV when compared to the higher black carbon values 
in the surrounding anthropogenic units. The lack of black 
carbon signals rather points to an absence of humans, as 
black carbon particles would have spread throughout, even 
if human fire activity had occurred at a different spot within 
the rock shelter.

Nevertheless, in SU IV, three taxa dominate the charcoal 
assemblage: syzygium guineense (37%), acacia spp. (36%) 
and the Proteaceae faurea rochetiana and f. rochetiana/
protea spp. (17%), just as in the anthropogenic units III and 
V. Such high percentages of dominant taxa in the charcoal 
assemblage from unit IV, as in anthropogenic units, depict 
a strong wood selection. This suggests that the charcoal 
was also produced by humans, but that the rock shelter was 
visited for short stays without tool making as no obsidian 
artefacts were found (Hensel et al. 2021). The absence of 
features such as combustion areas might be explained simply 
because they were not present in the excavated squares or by 
the reworking of charcoal fragments. Our new 14C dates indi-
cate that charcoal was produced between 2,490–2,338 cal bp 
(Table 1), so even if some may have been reworked, fire 
activity did occur in the rock shelter during these volcanic 
events.

There is a gap of at least 1,700 years between SUs V and 
IV (Fig. 2), for which archaeological evidence is missing. 
One could first think that people were simply not around 
in this interval; but the similarity of the anthracological 
assemblages from SUs IV and V challenges this assump-
tion. If humans had abandoned the rock shelter for such a 
long time, according to the environmental setting favourable 
for the DAF, the forest would have recovered. It would be the 
case even if volcanic eruptions occurred in the meantime, 
as it takes only decades to centuries for the forest to recover 
(Clarkson 1990; Tsuyuzaki 1995; Zobel and Antos 1997). 
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The fact that the CTW charcoal taxa are still present in SU 
IV, pointing to identical wood selection as observed in SU 
V, suggests that visits by humans occurred rather continu-
ously. Thus, the gap might be explained by weathering pro-
cesses and sediment erosion. This is evident from the micro-
morphological observations of thin sections from SU IV. 
According to Hensel et al. (2022), the thin sections indicate 
a multi-stratification of the tephra, allowing division into 
subunits. The stratigraphically lower homogeneous subunit 
contains a high proportion of volcanic glass, which can be 
considered as the initial ash fall. Overlying subunits also 
contain mainly volcanic glass, but also non-continuous lami-
nations (fine grading) of volcanic glass with clay and appear 
redeposited. These observations suggest increased moisture 
and weathering intensity along with sediment redeposition. 
As Unit IV is not comparatively well preserved in all exca-
vation squares (Fig. 2), the processes involved confirm that 
sediment was subsequently eroded.

Further work comparing anthracological and black carbon 
analyses would be needed to disentangle such potential con-
tradictory signals. Keeping that in mind, the anthracological 
results have shown that (1) the same main taxa occur along 
almost the whole sequence; (2) the same taxa dominate the 
charcoal assemblages even in tephra layers (with a different 
pattern in unit I); and (3) there is evidence of fire activity 
given by both charcoal and phytoliths in an environment 
naturally not prone to fire. Based on these evidences, we sug-
gest that human presence at and around Sodicho was actually 
more continuous than previously thought since the end of 
the African Humid Period ca. 5,000 cal bp until 1,750 cal bp.

The charcoal pieces identified in the archaeologi-
cally sterile unit VI, associated with the AHP, are attrib-
uted to syzygium guineense. As one of them was dated to 
4,772–4,612 cal bp, which falls in the range of the dates 
from the overlying anthropogenic unit V, they are probably 
allogenic and of anthropogenic origin. Furthermore, several 
charcoal pieces from this unit come from twigs – and one 
was a very big piece (> 2 cm), probably indicating a fire-
place (Hensel et al. 2021) – as observed in anthropogenic 
units. Shrink and swell processes as well as bioturbation, 
which were identified in this unit (Hensel et al. 2022), may 
have reworked them. Therefore, the general conclusion by 
Hensel et al. (2021, 2022) that Sodicho was not visited dur-
ing the AHP, is still valid.

Conclusions

The anthracological study of Sodicho allows us to provide 
new insights into wood selection, human occupation, human-
vegetation relationships and Afromontane forests dynamics 
in the SW highlands of Ethiopia since the end of the AHP. 
In contrast to expectations regarding the environmental 

conditions, Sodicho was not located in a closed DAF/U 
between 4,750 and 1,750 cal bp. The charcoal record clearly 
shows that CTW and DAF/WG were part of the picture, 
suggesting that the site was actually in the ecotone between 
CTW and DAF, constituting a mosaic with DAF/WG. This 
brings new perspectives into potential economic activities 
of the late Holocene hunter-gatherers. It seems that they pre-
ferred a more open landscape, most probably due to its better 
resource potential, and that the closed DAF/U was only one 
element among others. The presence of DAF/WG and CTW 
in an environment not prone to their development indicates 
that humans were the main factor conditioning their main-
tenance by using fire. This illustrates the significant impact 
that hunter-gatherers can have on the vegetation.

The charcoal record clearly shows consistent firewood 
selection from 4,750 to 1,750 cal bp. acacia spp., syzyg-
ium guineense and the Proteaceae faurea rochetiana and 
protea spp. were the preferred taxa. As these charcoal taxa 
were also the most abundant in the tephra unit IV, where no 
archaeological evidence was found, this challenges the inter-
pretation that humans were not present. It rather suggests 
that hunter-gatherers visited the rock shelter for different 
purposes than living and tool making. Continuity of human 
presence around Sodicho can also be assumed for the chron-
ological gap between units V and IV (4,360 and 2,490 cal 
bp), indicated by the persistence of open vegetation taxa in 
unit IV. If no people had been there before, a closed DAF 
would have developed, which was obviously not the case.

Finally, the regeneration and expansion of the DAF dur-
ing the most recent periods (from 1,750 cal bp onwards), 
when human interference was decreasing, demonstrates 
that the Afromontane forests are resilient. This is of utmost 
importance knowing the challenge these forests are fac-
ing nowadays due to very high demographic and land use 
pressure.
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