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Abstract
Modern pollen spectra can improve the interpretation of fossil pollen records used to reconstruct past vegetation, climate 
and human impacts. It is important, therefore, to carefully examine the relationships between modern pollen spectra, veg-
etation, climate and human activity. Here, we present the results of an analysis of the pollen spectra of 143 surface pollen 
samples from farmland, wasteland, desert, steppe/meadow, forest and river valley along a transect from Lanzhou to Urumqi, 
in northwestern China. The modern pollen assemblages are mainly composed of Amaranthaceae, Artemisia, Poaceae, Aster-
aceae, Ephedra and Nitraria. The results indicate that in general the surface pollen assemblages of different vegetation types 
reliably represent the modern vegetation in terms of the composition of the main taxa and the dominant types. Farmland is 
dominated by cereal-type (≥ 15%) and Amaranthaceae (≥ 20%), while the pollen assemblages of wasteland (i.e. the veg-
etation immediately surrounding farmland) are mainly composed of Amaranthaceae (≥ 25%), Artemisia (≥ 20%), Poaceae 
(≥ 10%), Asteraceae (≥ 5%) and Cyperaceae (≥ 5%). Amaranthaceae (≥ 45%) and Ephedra (≥ 10%) are the most important 
taxa in desert, and Cyperaceae (≥ 35%) and Thalictrum (≥ 2%) are the dominant pollen types in steppe/meadow. Forest and 
river valley samples are characterized by high frequencies of Picea (≥ 10%) and Cyperaceae (≥ 20%). Both constrained and 
partial canonical ordination techniques (RDA and partial RDA) of the main pollen types and environmental variables show 
that the modern pollen spectra are primarily controlled by mean annual precipitation (MAP). Cyperaceae, Thalictrum and 
Brassicaceae are positively correlated with MAP and negatively correlated with mean July temperature (TJuly), while the 
representation of certain other types, such as Amaranthaceae, Ephedra and Nitraria, is negatively correlated with MAP and 
positively correlated with TJuly. The Human Influence Index (HII) is significantly correlated with cereal-type pollen, and it 
can also differentiate human-influenced and natural vegetation. Our results provide a basis for improving the interpretation 
of fossil pollen records from arid northwestern China and similar regions.

Keywords  Modern pollen assemblages · Human-influenced vegetation · Climatic variables · Human influence index · 
Canonical ordination techniques

Introduction

High resolution stratigraphic pollen sequences can poten-
tially provide detailed information about past vegetation 
evolution and climatic change, and studies of the relation-
ships among modern pollen assemblages, vegetation and 
climatic variables are important for improving the inter-
pretation of fossil records. Quantitative climate reconstruc-
tions from pollen data based on various numerical methods, 
such as the Modern Analogue Technique (Overpeck et al. 
1985; Simpson 2011) and the Multivariate Calibration-
Function Approach (ter Braak and Juggins 1993; Birks et al. 
2010; Juggins and Birks 2012), are an important source of 
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information on past climate changes. However, human influ-
ences on vegetation, such as cultivation, deforestation, irri-
gation and the introduction of exotic species, are pervasive 
in most global ecosystems and can potentially obscure natu-
ral vegetation-climate relationships and distort the results of 
quantitative reconstructions (St. Jacques et al. 2008, 2015; Li 
et al. 2014b; Ding et al. 2017; Tian et al. 2017). Therefore, 
quantitative reconstruction of vegetation and climate using 
pollen data from densely populated regions is potentially 
challenging for palynologists (Tarasov et al. 1999; Seppä 
et al. 2004; Bjune et al. 2010; Xu et al. 2010a; Juggins and 
Birks 2012).

In China, pollen-based quantitative climate reconstruc-
tions have been mainly conducted in the Tibetan Plateau 
(Tang et al. 2000, 2009; Shen et al. 2006; Herzschuh et al. 
2009, 2010; Lu et al. 2011; Chen et al. 2014; Wang et al. 
2014; Opitz et al. 2015) and northern China (Jiang et al. 
2009; Wen et al. 2010, 2013; Xu et al. 2010b; Sun and Feng 
2013; Chen et al. 2015; Stebich et al. 2015), and these stud-
ies have demonstrated the prevailing patterns of vegetation 
and climate changes during the late Pleistocene. However, 
China is the most populated country on Earth with a his-
tory of agriculture dating back to the early Holocene (An 
1989; Barton et al. 2009; Lu et al. 2009; Zhao et al. 2012). 
Early agriculture would be expected to have some degree of 
impact on vegetation and thus reconstructions of palaeoveg-
etation and palaeoclimate may be biased by human impacts. 
Consequently, such impacts on both modern pollen refer-
ence datasets and fossil pollen records need to be considered 
when using them to reconstruct past climates.

In the past two decades, several modern pollen studies 
have been conducted in China to investigate human impacts 
on vegetation (Liu et al. 2006; Ma et al. 2009; Wang et al. 
2009; Zhang et al. 2010; Huang et al. 2011; Ding et al. 2011; 
Li et al. 2012, 2013, 2015; Wei and Zhao 2016). Samples 
representing human-influenced vegetation communities 
were excluded from representative modern pollen reference 
datasets (Zheng et al. 2014) when quantitatively reconstruct-
ing climate. However, pollen-based climate reconstructions 
may still potentially be biased. The Hexi Corridor and Xinji-
ang, in Central Asia, are important routeways of the ancient 
Silk Road, and were major crossroads of ancient economic 
and cultural exchange between the East and West. Agricul-
tural activity in the region was focused on oases and has 
sustained the local human economies for thousands of years. 
However, little is known of the impact of human activities on 
the vegetation and surface pollen spectra in the region (Ma 
et al. 2009; Huang et al. 2011; Wei and Zhao 2016).

Here, we present the results of a study of modern pol-
len assemblages in 143 topsoil samples from different local 
vegetation types along a transect from Lanzhou to Urumqi 
in northwestern China. Our aims are as follows: (1) to inves-
tigate the relationships between modern pollen assemblages 

and both the modern vegetation and regional climate based 
on constrained and partial canonical ordination techniques 
(RDA and partial RDA), and (2) to explore relationships 
between human impacts and surface pollen assemblages in 
different vegetation zones. Our results potentially provide an 
improved basis for the reconstruction of palaeovegetation, 
palaeoclimate and human impacts in the region and in other 
arid and semi-arid regions.

Regional setting

The study area extends from 35° to 48°N and from 75° to 
110°E, with elevations ranging between − 87 and 3,464 m 
(Fig.  1A). Climatically, the mean annual precipitation 
(MAP) varies from 33 mm in the Gobi Desert, to more than 
480 mm in the Qilianshan Mountains, and the mean annual 
temperature (MAT) is 0 to 13 °C (Fig. 1B).

The vegetation is temperate steppe and temperate desert, 
and includes seven vegetation sub-zones: southern temperate 
forest-(meadow) steppe, southern temperate desert steppe, 
temperate subshrub/dwarf arbor desert, temperate shrub/
grassland semi-desert, temperate shrub/subshrub desert, 
warm-temperate shrub/subshrub desert and warm-temper-
ate shrub/subshrub bare dry desert (Hou 2001; Fig. 2). The 
dominant vegetation composition of these zones (Xinjiang 
Integrated Expedition and Institute of Botany, Chinese 
Academy of Sciences 1978) is as follows: Temperate for-
est-(meadow) steppe: Picea crassfiolia, P. wilsonii, Quercus 
liaotungensis, Pinus armandii, P. tabulaeformis, Ostry-
opsis davidiana, Stipa bungeana, S. glareosa, S. grandis, 
Orinus kokonorica, Festuca ovina, Achnatherum splendes, 
Koeleria cristata, Poa annua and Carex condilapis. Desert 
steppe: Stipa, Festuca sulcata, Artemisia, Anabasis salsa, 
A. brevifolia, Nanophyton erinaceum, Eurotia ceratoides, 
Tanacetum trifidum, T. achillaeoides, Allium and Caragana. 
Shrub deserts: Ephedra, Zygophyllum, Nitraria, Calligonum, 
Atraphaxis, Gymnocarpos and Convolvulus. Dwarf arbor 
desert: Haloxylon ammodendron and H. persicum. Sub-
shrub deserts: Calligonum leucocladum, Asterothamnus 
fruticosus, Reaumuria, Eurotia ceratoides, Kalidium schren-
kianum, Iljinia regelii and Sympegma regelii. The vegeta-
tion of the Qilianshan and Tianshan Mountains is mainly 
composed of boreal coniferous forest and mountain steppe 
(Hou 2001), and Picea, Abies, Pinus and Larix are the major 
components of the boreal coniferous forest.

Irrigation agriculture is well developed in the oasis areas, 
where for example Triticum aestivum, Zea mays, Gossypium 
and Vitis vinifera are widely cultivated. In the vegetable-
growing areas, Solanum tuberosum, Capsicum frutescans, 
Cuminum cyminum, Helianthus cannuua, Lycopersicon 
esculentum and Citrullus lanatus are planted. Around the 
farmlands and vegetable-growing areas, Populus, Salix, 
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Elaeagnus oxycarpa and Ulmus pumila are common; while 
in the wastelands, Tamarix chinensis, T. ramosissima, 
Lycium chinense, Achnatherum splendens, Caragana sinica 
and Peganum harmala are present.

Materials and methods

Field work

A total of 143 topsoil pollen samples was collected along a 
transect from Lanzhou to Urumqi at roughly 50-km intervals 
in late June of 2008 and 2009 (Fig. 1; ESM). At each sam-
pling site, 4–5 samples of topsoil were randomly collected 
and then combined into a single sample. To compare the 
pollen assemblages of different human-influenced vegeta-
tion types, two sampling points were selected at culturally 

impacted sites: one sample from farmland and the other from 
the surrounding area (here, we use the term ‘wasteland’ to 
refer to this zone). Samples were also collected from other 
vegetation types, such as desert, steppe, alpine meadow, for-
est and river valleys. The location of each sampling site was 
determined using GPS. In addition, the vegetation invento-
ries were performed at each sampling site within a 10 × 10 m 
quadrat for forest and a 5 × 5 m quadrat for other vegetation 
types. The vegetation types and the major plant taxa were 
recorded in the field (ESM), and the total vegetation cover 
as a percentage of the total land area and the cover of indi-
vidual taxa were also measured. The vegetation cover was 
estimated by the vertical projection of tree crowns or the 
stems and leaves of grass/shrub on the ground for each spe-
cies. The vegetation cover data are referenced below but are 
not shown in the ESM. Of the 143 topsoil sampling sites, 
54 were from farmland, 25 from wasteland, 37 from desert, 

Fig. 1   Location of the study 
region and sampling sites. A 
Location of the study area. B 
Distribution of mean annual 
precipitation (MAP) and mean 
annual temperature (MAT)
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17 from steppe/meadow, 7 from forest and the other 3 from 
river valleys (Fig. 1; ESM).

Laboratory analysis

2–10 g of topsoil sample were used for pollen analysis. The 
samples were processed using standard procedures (Fægri 
and Iversen 1989; Moore et al. 1991): 10% HCl was used 
to dissolve carbonate; 10% KOH and 40% HF to remove 
humic components and silicates, respectively; and acetoly-
sis and sieving with a 7-μm mesh to remove cellulose and 
humic material and clay-sized particles, respectively. A tab-
let containing a known number of Lycopodium spores (about 
12,542 ± 2,081) was added to each sample as a tracer and 
for the calculation of pollen concentration. Pollen taxa were 

identified under an optical microscope at 400 × magnifica-
tion. At least 400 terrestrial pollen grains were counted for 
each sample. The pollen identifications followed a modern 
reference collection and cereal-type pollen was identified 
using a standard cut-off grain diameter of 40 µm, based on 
previous research (Andersen 1979; Chester and Raine 2001). 
Pollen percentages were calculated based on the sum of total 
terrestrial pollen, and pollen diagrams were plotted using 
Tilia 2.0.2 (Grimm 2004).

Numerical methods

The modern climatic data for each sampling site was 
interpolated using a database from China’s Meteorologi-
cal Administration and from http://www.ncdc.noaa.gov/

Fig. 2   Distribution of veg-
etation types in the study area 
(modified from Hou 2001)
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oa/ncdc.html. The spatial interpolation technique used is 
gradient plus inverse distance squared, considering the 
variation of meteorological elements with the gradients 
of elevation, latitude and longitude (Lin et al. 2002). Three 
of the main climatic parameters, mean annual precipitation 
(MAP), mean annual temperature (MAT) and July mean 
temperature (TJuly) were used.

Human influences, such as cultivation, irrigation, defor-
estation and urbanization are pervasive and intensive in 
our study area, and will potentially blur natural vegetation-
climate relationships (cf. Birks and Seppä 2004). There-
fore, in this study we used the human influence index (HII) 
as a proxy to quantify the impact of human activity on 
surface pollen spectra. The HII values for individual sam-
pling sites were derived from the global HII dataset with 
a spatial resolution of 1 km2 (Sanderson et al. 2002; WCS/
CIESIN 2005). This dataset has been produced by inte-
grating several indices that reflect the intensity of human 
impacts, including human population density, infrastruc-
ture and accessibility. The HII values vary from a mini-
mum of 0 to a maximum of 64 (Sanderson et al. 2002; 
WCS/CIESIN 2005).

Ordination methods are widely used to investigate the 
relationships among pollen taxa, vegetation and environmen-
tal variables. Detrended correspondence analysis (DCA) was 
first applied to the pollen data to determine whether linear- 
or unimodal-based techniques should be used in subsequent 
ordination analyses. In this study, only pollen taxa with per-
centages > 1% in at least three samples were used in the ordi-
nation analysis. The DCA results showed that the gradient 
lengths of the first four axes were less than 2.335 standard 
deviation (SD) units, indicating that linear techniques were 
appropriate for the data (Birks 1998). Therefore, redundancy 
analysis (RDA) was conducted to explore site-to-site simi-
larities and the primary taxonomic variation patterns among 
samples, as well as to determine the effects of different envi-
ronmental factors on the surface pollen spectra. In addition, 
to quantify the relative impact of the different environmental 
variables on pollen data, both RDA and partial RDA were 
performed. In the RDA analysis, a total of 37 pollen taxa 
was chosen as the dataset, and elevation, three climatic 
variables (MAP, MAT and TJuly), six vegetation/landscape 
types (farmland, wasteland, desert, steppe/meadow, forest 
and river valley) and human influence index (HII) were used 
as the environmental variables (11 explanatory variables). In 
the variation partitioning analysis, three groups of variables 
(vegetation type, climate and HII) were used. The statistical 
significance of the RDA was assessed using a Monte Carlo 
permutation test (499 unrestricted permutations). In addi-
tion, both the conditional and simple effects of the different 
variables and their shared effects were also tested. All the 
numerical analyses were performed using CANOCO v.4.5.2 
software (ter Braak and Šmilauer 2003) following guidelines 

from Šmilauer and Lepš (2014) and the pollen percentages 
were normalized using a log transformation.

The pollen representation (R) and relative representation 
(Rrel) values of the major pollen taxa were calculated accord-
ing to the definition in Davis (1963) and Andersen (1970) 
to quantitatively assess pollen-vegetation relationships. 
Amaranthaceae (i.e. Chenopodiaceae), because of its high 
occurrence in most of the samples and its distinctive pollen 
morphology, was chosen as a reference taxon for calculating 
the representation of other taxa. Samples with vegetation 
cover > 10% were selected in the calculation. Thus, R and 
Rrel were calculated as follows:

where R is the pollen percentage/percentage area of the 
total vegetation covered by the plant taxon.

Results

Pollen assemblages

A total of 63 pollen and spore taxa were identified from 143 
topsoil samples and a summary percentage pollen diagram 
with 37 selected taxa is shown in Fig. 3. The pollen assem-
blages are dominated by herb pollen (with average percent-
ages > 64%), especially Amaranthaceae, Artemisia, Poaceae, 
Brassicaceae, cereal-type, Cyperaceae and Asteraceae. The 
total tree pollen percentages in the samples from forest and 
river valley are > 15%, while the tree pollen percentages 
are < 5% in farmland and the other sampling sites. The 
shrub pollen percentages in desert and river valley samples 
are general > 20% and > 10%, respectively, while for other 
sampling sites shrubs are relatively well represented, with 
values < 10%.

As shown in Fig. 3, the abundance of each pollen taxon 
varies in different vegetation types. Samples S001-S054 are 
from farmland where wheat, barley, maize, rapeseed, cot-
ton and sunflower, as well as various vegetables and fruits 
(including grapes, watermelon, potatoes, peppers, fennel 
and radishes), are cultivated. These samples have relatively 
high pollen frequencies of Amaranthaceae and cultivated 
plants, mainly cereal-type (up to 72.3%, mean of 16.3%), 
Brassicaceae (up to 90.9%, mean of 20.1%) and Vitaceae 
(up to 65.8%). The pollen assemblages from wasteland sur-
rounding the farmland are dominated by Amaranthaceae 
(mean of 27.3%), Artemisia (mean of 20.2%), and other taxa 
include Poaceae, Asteraceae and Cyperaceae; in addition, 
the pollen of cultivated plants is significantly reduced. In 
the samples from desert, the most abundant pollen type is 
Amaranthaceae, with a maximum of 86.6% and a mean of 
48.5%, which is the highest representation amongst all the 
vegetation categories studied. In addition, in some areas of 

R
rel

= R
taxon

∕R
Amaranthaceae
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desert, Nitraria, Ephedra and Tamarix are common pollen 
types, and the pollen of cultivated plants is the least well 
represented. The steppe/meadow samples are dominated by 
Cyperaceae, with a maximum percentage of 76.3% and a 
mean of 38.2%. Other taxa have relatively high frequencies, 
including Poaceae (mean of 11.1%), Asteraceae (mean of 
8.3%) and Thalictrum (mean of 2.2%). In the forest sam-
ples, the pollen assemblages are dominated by Picea (up to 
39.7%, mean of 13.6%) and Cyperaceae (up to 50%, mean of 
24.2%). The pollen assemblages from river valleys are domi-
nated by Cyperaceae (mean of 38.5%), and have the high-
est Cyperaceae representation in all the samples studied. In 
contrast, the frequencies of Amaranthaceae (mean of 4.9%), 
Artemisia (mean of 3.6%) and Poaceae (mean of 3.2%) in the 
river valley samples are the lowest in the data set.

The pollen concentration varies according to the different 
vegetation types. In the farmland, the total pollen concentra-
tion ranges from 1,394–74,743 grains/g, with a mean value 
of 15,782 grains/g, which is the lowest in all the samples. 
By contrast, the mean total pollen concentration of samples 
from river valley is the highest—617,143 grains/g. The mean 
pollen concentrations of samples from wasteland, desert and 
steppe/meadow are 36,923 grains/g, 22,706 grains/g and 
45,067 grains/g, respectively.

Results of numerical analysis

RDA

The results of RDA ordination of the percentages of the 37 
taxa and the environmental variable are presented in Fig. 4 
and Table 1. The first four axes of the RDA are significantly 
correlated (p = 0.002) with all the environmental variables, 
and the first two axes explain 28.4% (axis 1: 18.8%, axis 
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Fig. 4   Results of redundancy analysis (RDA) of surface pollen spectra from arid and semi-arid northwestern China. A Biplots of the RDA 
results based on the surface pollen taxa. B Biplots of the RDA results based on the surface pollen samples

Table 1   RDA results for modern pollen assemblages and environ-
mental variables

p-values are based on 499 unrestricted Monte Carlo permutation tests

Environ. variable/ Axis Explained variance (%) p-value

MAP 16 0.002
Farmland 8 0.002
Wasteland 4 0.002
Desert 3 0.002
TJuly 3 0.002
MAT 2 0.002
Elevation 2 0.002
HII 1 0.006
Axis 1 18.8 0.002
Axis 2 9.6 0.002
Axis 3 3.8 0.002
Axis 4 3.2 0.002
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2: 9.6%) of the total variance. The results also show that 
all the environmental variables are statistically significantly 
related to the variance in the pollen data (p = 0.002), with 
MAP capturing the largest proportion (Table 1). Among the 
environmental variables, the temperature variables (MAT 
and TJuly) are strongly positively correlated with each other, 
and they are very strongly negatively correlated with MAP, 
while MAP is positively correlated with elevation. HII is not 
correlated with any climate variables but is strongly posi-
tively correlated with farmland. In addition, the temperature 
variables are positively correlated with desert. According 
to the RDA, climate variables and vegetation types are the 
primary factors that control the variations of the surface pol-
len data. HII values are weakly correlated with the first two 
axes (axis 1: − 0.1165, axis 2: − 0.4492), indicating that HII 
has a less important influence on the surface pollen spectra 
than climate and vegetation. However, HII is significantly 
correlated with several pollen taxa: e.g. cereal-type, Brassi-
caceae, Apiaceae, Elaeagnaceae and Cannabaceae (Fig. 4A). 
Most of the farmland samples and some desert and waste-
land samples are also correlated with HII (Fig. 4B). There-
fore, as would be expected, human influences in the study 
area are mainly reflected in the surface pollen spectra from 
farmland, and to a lesser extent in those from wasteland and 
desert (Fig. 4). In addition, human influences are reflected 
by changes in cereal-type, Brassicaceae, Apiaceae, Elae-
agnaceae and Cannabaceae, because of the high correlations 
between these pollen taxa and HII.

The RDA results based on pollen samples (Fig. 4B) indi-
cate that the first two axes (λ1 = 0.186, λ2 = 0.098) primar-
ily differentiate most of the samples from farmland and the 
other vegetation types. They also separate samples from sites 
at high altitude and with high MAP from samples from sites 
characterized by high temperatures (MAT and TJuly). How-
ever, a group of samples from wasteland overlaps with the 
samples from desert, and at the same time, the samples from 
steppe/meadow, forest and river valley are overlapping. The 
sample-environment biplots show that MAP and elevation 
are closely related to the negative side of axis 1, while MAT 
and TJuly are positioned to the right of axis 1; in addition, 
HII is negatively correlated with axis 2. The pollen spectra 
from high altitudes and with high MAP are generally located 
to the left of the first axis (steppe/meadow, forest and river 
valley), while the spectra from lower altitudes and with high 
MAT/TJuly but low MAP are located on the positive side 
of axis 1 (i.e. desert). In addition, the sites with intensive 
human activity (high HII values; i.e. farmland and most of 
the wasteland) are located on the negative side of axis 2, 
while the samples from areas with predominantly natural 
vegetation (desert, steppe, forest and river valley) are located 
on the other side of axis 2.

In addition, the RDA results for the pollen types (Fig. 4A) 
clearly reveal the relationships between pollen taxa, 

vegetation types and climate. Cereal-type is positively asso-
ciated with farmland and HII, but weakly related with cli-
mate. Ephedra, Nitraria and Amaranthaceae are positively 
associated with desert, MAT and TJuly, and negatively cor-
related with MAP and elevation - that is associated with high 
temperatures but low precipitation. Cyperaceae, Thalictrum, 
Picea, Polypodiaceae, Caryophyllaceae and Brassicaceae are 
positively correlated with each other, and strongly associated 
with high elevation and high precipitation, but low tempera-
ture. Brassicaceae is also positively correlated with HII and 
farmland. Forest, steppe/meadow and river valley have no 
clear relationship with any single pollen taxon or climatic 
variable.

A Monte Carlo permutation test of the RDA results 
(Table  1) indicates that the environmental variables of 
MAP and temperature, farmland, wasteland and desert 
explain > 2% of the variance and are statistically significant 
(p < 0.05). Most of the total explained variation in pollen 
assemblages (40.8%, 59.2% unexplained) is explained by 
MAP (16%), three vegetation types (farmland, wasteland 
and desert, 15%) and temperature (MAT and TJuly, 5%) (36% 
in total). The vegetation types, that is steppe/meadow, forest 
and river valley, are not significant environmental variables.

Variance partitioning

In an analysis of the partitioning of the variance (Fig. 5; 
Table 2), the significance tests of the conditional and simple 
effects show that all the proportions tested are significant 
(p < 0.05). Vegetation, climate and HII together explain 
38.7% of the variance in the pollen data (Fig. 5). Decom-
position of the pollen assemblage variance suggests that the 
largest proportion (14.6%) is accounted for by the effect of 
vegetation alone, while climate alone accounts for 12.6% 
of the variance, and the HII alone for only 1% (Fig. 5). The 
shared effect of vegetation and climate accounts for 7.7%, 
while that of vegetation and HII, as well as climate and HII, 
account for 2 and 0.6%, respectively.

Pollen relative representation ratio

The representation (R) and relative representation (Rrel) 
values in the study area show a broad range for each pollen 
taxon (Table 2). However, a semi-quantitative sequence of 
relative representation from under- to over-representation 
of the major pollen types can be established. The trend of 
variation from under-representation to over-representation is 
as follows: Fabaceae < Asteraceae < Zygophyllaceae < Tama-
rix < Poaceae < Nitraria < Amaranthaceae < Ephedra < Arte-
misia. Relative to Amaranthaceae, Artemisia and Ephedra 
have high Rrel values (median values of 2.49 and 1.84, 
respectively), while other pollen types (Poaceae, Fabaceae, 
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Asteraceae, Zygophyllaceae, Tamarix and Nitraria) have low 
Rrel values (median < 1).

Discussion

Pollen‑vegetation relationships

The pollen assemblages of the surface samples indicate that 
the pollen assemblages of different vegetation types contain 
different representative components (Fig. 3). Cereal-type 
(≥ 15%) and Brassicaceae (≥ 20%) are the dominant taxa 
in farmland; wasteland surrounding the farmland is char-
acterized by a high diversity of the pollen of non-cultivated 
plants; and Amaranthaceae (≥ 45%), Artemisia (≥ 10%) 
and Ephedra (≥ 10%) are the most important desert taxa. 
However, the RDA results show that, in our study area, pol-
len assemblages can only distinguish farmland from other 
vegetation types (Fig. 4). Cyperaceae (≥ 35%), Thalictrum 
(≥ 2%) and Picea (≥ 10%) are the dominant pollen types in 
steppe/meadow, forest and river valleys (Fig. 3). In addition, 
the RDA results show that discriminating steppe/meadow, 
forest and river valley may be difficult because the steppe/
meadow samples are grouped together with forest and river 
valley samples. Moreover, although the samples from desert 
and wasteland are overlapping in the RDA plot (Fig. 4B), 
the pollen assemblages from these vegetation types can 
be separated based on the percentages of Amaranthaceae, 
Artemisia and Ephedra: that is, Amaranthaceae (≥ 45%) and 
Ephedra (≥ 10%) are high, but Artemisia (≥ 10%), is low in 
desert; and Amaranthaceae (≥ 25%) and Artemisia (≥ 2%) 
are high, but Ephedra (< 5%) is low, in wasteland. Com-
parison with previous investigations in northwestern China 
(Luo et al. 2009; Li et al. 2017) reveals both similarities and 

Fig. 5   Results of variance partitioning analysis for three groups of 
environmental variables (vegetation types, climate and HII). A Pro-
portions of three individual variables or groups of variables (a–g). B 
The amount of explained variance (in percentages) is shown for veg-
etation type, climate and HII

Table 2   Tests of the conditional 
and simple effects of 
individual variable groups and 
combinations of variable groups 
on the variation in the pollen 
data

In addition, the percentages of the variance explained by the tested variable proportions are also given
a The variables are defined in Fig. 5

Independent variables Explained 
variance (%)

p-value Combination of envi-
ronmental variablesa

Conditional effect
 Vegetation + climate + HII combined 38.7 0.002 a + b + c + d + e + f + g
 Vegetation alone 14.6 0.002 a
 Climate alone 12.6 0.002 b
 HII alone 1 0.004 c
 Vegetation + (shared vegetation + climate) 22.3 0.002 a + d
 Climate + (shared climate + HII) 13.2 0.002 b + e
 HII + (shared HII + vegetation) 3 0.002 c + f

Simple effect
 Vegetation + (all shared vegetation with climate + HII) 24.4 0.002 a + d + f + g
 Climate + (all shared climate with vegetation + HII) 21 0.002 b + d + e + g
 HII + (all shared HII with vegetation + climate) 3.7 0.002 c + e + f + g
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differences. For example, all the studies show that desert is 
characterized by high percentages of Amaranthaceae, and 
Cyperaceae is the dominant pollen type in steppe. However, 
the results of both Luo et al. (2009) and our study show that 
Ephedra and Artemisia are the main components of desert, 
while Li et al. (2017) suggest that these two pollen taxa are 
associated with steppe. The discrepancies among these stud-
ies may be the result of differences in sampling method and 
location, together with the definition of vegetation types.

Various types of farmland are dominated by different 
taxa, although Amaranthaceae contributes significantly to 
all these samples (Fig. 3). For example, the pollen assem-
blages of samples from fields planted with wheat, corn 
and barley (S002–003, S006–018, S031–S048) are char-
acterized by a relatively high abundance of cereal-type 
and Amaranthaceae; while samples from rape fields (e.g. 
S001, S004–S005, S027–S030, S049–S054) are dominated 
by Brassicaceae. Similarly, the characteristic feature of the 
pollen spectra from vineyards (S019, S022–S024) is the pre-
dominance of Vitaceae and Amaranthaceae. However, the 
pollen assemblages from cotton fields and fields with mixed 
crops are dominated by Amaranthaceae and Poaceae but 
they have relatively low values of Malvaceae, Solanaceae, 
Cucurbitaceae and Cannabaceae, indicating that the pollen 
of the dominant crops in these fields is under-represented. 
Nevertheless, the samples from these types of farmland 
are characterized by the pollen of Malvaceae, Solanaceae, 
Cucurbitaceae and Cannabaceae, although the percentages 
are relatively low.

The representation of several major pollen types was also 
estimated by a qualitative comparison of the abundance of 
each pollen taxon and its observed vegetation coverage 
around the sampling site. Amaranthaceae pollen occurs in 
all the samples even though no Amaranthaceae plants were 
growing near the sampling sites (steppe/meadow). This can 
be attributed to the high degree of preservation and long-
distance dispersal capacity of Amaranthaceae. In addition, 
Artemisia is relatively abundant in almost all the samples 

and is clearly over-represented (Fig. 3; Table 3). These 
results agree with the findings of many previous studies of 
surface pollen spectra from arid China (Herzschuh et al. 
2003; Yang et al. 2004; Luo et al. 2009; Zhao and Herzschuh 
2009; Wei and Zhao 2016).

Poaceae exhibits relatively low percentages in all samples 
even though gramineous plants are abundant in the steppe 
vegetation (in sample S118, its vegetation cover is up to 
90%), suggesting that is under-represented (Table 3). Similar 
conclusions were made in several studies of surface pollen 
spectra from the steppe and desert regions of northern China 
(Li et al. 2005; Zhao and Herzschuh 2009; Wei and Zhao 
2016).

The pollen of Fabaceae and Asteraceae is present in all 
samples with a very low abundance, even in samples from 
sites where the parent plants were abundant (e.g. in sample 
S057 the Fabaceae plant cover is 80%, but its pollen per-
centage is 7.2%; in sample S058 the Asteraceae plant cover 
is 80%, but its pollen percentage is 38.7%). This indicates 
that these two pollen types are under-represented (Table 3).

Tamarix, Nitraria and Ephedra are the most common taxa 
in desert. Tamarix has very low pollen percentages at the 
sample sites where it occurs, while its pollen is not repre-
sented at sites where the plant is absent. This suggests that 
Tamarix is under-represented (Table 3), probably because 
of its relatively low pollen dispersal capacity (Wei et al. 
2009). Nitraria is mainly found in the samples from desert, 
which indicates that the pollen representation of Nitraria is 
strongly correlated with the presence of the parent plants and 
it is moderately represented (Table 3; Herzschuh et al. 2003; 
Zhao and Herzschuh 2009). Ephedra is present in almost 
all the samples irrespective of whether the parent plants are 
present, with the pollen percentages (from 0 to 85.5%) sug-
gesting that Ephedra pollen has a high dispersal capacity 
and is over-represented (Table 3; Yan and Xu 1989; Xu et al. 
1996; Carrión 2002; Herzschuh et al. 2003; Wei et al. 2011).

It can be concluded from the foregoing discussion that 
the pollen assemblages of surface samples reflect the local 

Table 3   Representation (R) and 
relative representation (Rrel) 
values of major pollen taxa in 
arid and semi-arid northwestern 
China

Pollen type R (range) Number of 
valid values

Rrel (range) Number of 
valid values

Rrel (average) Rrel (median)

Poaceae 0.1–3.01 26 0.05–0.79 12 0.34 0.29
Artemisia 0.22–24.48 11 0.54–23.39 7 5.20 2.49
Amaranthaceae 0.53–5.1 27 1.00 27 1.00 1.00
Cyperaceae 0.2–0.95 3 – 0 – –
Fabaceae 0.02–1.09 19 0.01–0.46 10 0.12 0.07
Asteraceae 0.06–5.47 21 0.04–4.29 7 0.71 0.08
Zygophyllaceae 0.01–1.58 11 0.02–0.43 4 0.17 0.11
Tamarix 0.01–0.64 13 0.01–1.05 9 0.30 0.26
Nitraria 0.1–2.66 7 0.06–1.68 6 0.51 0.31
Ephedra 0.95–2.48 4 0.58–7.85 4 3.03 1.84
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vegetation composition moderately well. However, it is note-
worthy that the pollen concentration has no direct relation-
ship with vegetation type and vegetation cover. For example, 
the vegetation cover of farmland (up to 100%) is the highest 
in all the vegetation types, but the pollen concentration is the 
lowest, and lower than that of the desert (Fig. 3). There are 
several possible explanations for this: (1) Farming activities 
(repeated ploughing and sowing) loosen the soil and pro-
mote strongly oxidizing conditions, which does not promote 
pollen preservation. (2) Various fertilizers have been applied 
to the farmland creating an alkaline or neutral environment, 
in which the pollen grains are easily damaged. (3) Several 
samples from desert may have been collected from near the 
plant and flowers, resulting in the extremely high pollen 
concentration of some samples. By contrast, pollen grains 
could be preserved well in wasteland, steppe/meadow and 
other landscapes because of the relatively high moisture and 
compact soil conditions. As mentioned above, the pollen 
assemblages of soil samples from farmland may reflect the 
vegetation conditions of several years, whereas the vegeta-
tion survey of the farmland reflects the conditions of that 
sampling year. Nevertheless, the pollen assemblages of 
farmland may still indicate the vegetation composition of 
both the farmland and regional vegetation background.

Pollen‑climate relationships

The RDA results (Fig. 4; Table 1) demonstrate that the mod-
ern pollen assemblages are mainly controlled by climatic 
variables (MAP and temperature), although human activity 
also has a significant impact on the vegetation distribution 
of the study region. Similar results were reported previously 
from the Qinghai–Tibetan Plateau and northwestern China 
(Wei and Zhao 2016; Ma et al. 2017). These results reveal 
that precipitation (MAP) is the dominant factor influenc-
ing the modern pollen spectra in the study area. The pol-
len spectra from steppe/meadow, forest and river valleys at 
relatively high altitudes, where Cyperaceae, Thalictrum and 
Picea are the dominant pollen taxa, reflect the relatively high 
MAP and low MAT. In contrast, the pollen spectra from 
desert, dominated by Amaranthaceae and Ephedra, reflect 
relatively low MAP and high MAT. For the samples from 
farmland and the surrounding wasteland, the RDA results 
reveal a specific distribution of points in the RDA biplots 
(Fig. 4B), with samples on the left side from areas with a 
high MAP and low MAT, while those on the right side are 
from areas with a high MAT and low MAP; in contrast, 
the samples in the central part of the plot are from areas 
with moderate MAP and MAT. This result can be attributed 
to the different growth conditions of the various cultivated 
crops. For example, the rape field sites have relatively high 
MAP but low MAT, the vineyard sites have a relatively high 
MAT but low MAP, and the wheat and corn field sites have 

moderate MAP and MAT. Therefore, our results suggest that 
modern pollen data from human-influenced vegetation sites 
still potentially enable quantitative climatic reconstruction 
in similar regions.

The results of the variance partitioning analysis lead to 
the same conclusion: that the climatic variables have a large 
impact on the pollen assemblages in our study region. As 
shown by Fig. 5 and Table 2, the climate variables alone 
explain 12.6% of the variation in the pollen assemblages, 
while vegetation explains 14.6% and HII only explains 1%. 
Vegetation, climate and HII together explain 38.7%. Because 
pollen assemblages are directly influenced by vegetation, 
it is understandable that vegetation alone accounts for the 
largest proportion of the explained variation. Moreover, the 
natural vegetation is primarily controlled by climate; there-
fore, the explained variation of climate is slightly lower than 
that of the vegetation. In addition, vegetation and climate 
have a combined explanatory effect of 7.7% on the pollen 
assemblages.

Relationship between pollen spectra and human 
influences

The RDA results revealed that the HII has less influence on 
the modern pollen assemblages than the climatic variables 
and vegetation, in agreement with the results of our vari-
ance partitioning analysis and previous findings (Liu et al. 
2006, 2008; Zhang et al. 2010; Li et al. 2014b). The results 
of variance partitioning analysis (Fig. 5; Table 2) show that 
the HII alone explains only 1% of the variation in the pollen 
assemblages. The results also reveal that the shared effect 
of HII and vegetation does increase the explained variation 
compared with HII alone and the combined effect of HII 
and climate. However, the HII can differentiate effectively 
between human-influenced (farmland and wasteland) and 
natural (desert, steppe, forest and river valley) vegetation 
categories (Fig. 4B). In addition, the HII is significantly 
correlated with the pollen frequencies of Apiaceae, Elae-
agnaceae, Liliaceae and cultivated plants such as cereal-
type, Cannabaceae and Brassicaceae, with the strongest cor-
relation with cereal-type (Fig. 4A). This result differs from 
previous studies. For example, in a study of alpine meadow 
and steppe in the Tianshan Mountains, HII was correlated 
with Poaceae, Plantago, Polygonaceae and Elaeagnaceae 
(Wei and Zhao 2016). However, the ordination results of 
modern pollen data from northeastern China show that the 
HII was significantly correlated with Amaranthaceae pol-
len (Liu et al. 2006; Zhang et al. 2010). The discrepancy 
between these studies may result from high local variability 
of the HII (Li et al. 2014b).

In our study, cereal-type, Cannabaceae and Brassicaceae 
are the major pollen components of farmland, while Api-
aceae, Elaeagnaceae and Liliaceae are the main components 
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of wasteland. The pollen of cereal-type has been considered 
a direct indicator of human impacts (Whittington et al. 1991; 
Li et al. 2013, 2014a, 2015). In addition, pollen of the weed 
species such as Apiaceae, Elaeagnaceae and Liliaceae is 
often used as an indicator of human activity (Li et al. 2008; 
Ma et al. 2008). However, the relatively high weed pol-
len frequencies in farmland and wasteland may be due to 
increased humidity caused by irrigation systems. The sig-
nificant correlation between the HII and these pollen types 
indicates that changes in these types, in particular cereal-
type, exhibit the same trend as the HII values: the relatively 
pristine vegetation categories (desert, steppe/meadow, forest 
and river valley) have low HII values and low frequencies of 
cereal-type, indicating minimal human impacts. In contrast, 
the human-influenced vegetation categories (farmland and 
wasteland) have high HII values and high cereal-type pollen 
frequencies, indicating significant human impacts (Fig. 4). 
Therefore, human influences almost certainly affect the sur-
face pollen assemblages in the study region. In addition, 
both cereal-type pollen and the HII values can be used to 
differentiate between human-influenced and natural vegeta-
tion. Thus, our results are a potentially useful reference for 
pollen-based reconstruction of the history of human activity 
in the region.

Conclusions

1.	 The modern pollen assemblages of topsoil samples from 
different vegetation types along a transect from Lanzhou 
to Urumqi in northwestern China are representative of 
the contemporary vegetation. Pollen spectra from farm-
land are dominated by cereal-type (≥ 15%) and Amaran-
thaceae (≥ 20%), whereas those of wasteland are domi-
nated by Amaranthaceae (≥ 25%), Artemisia (≥ 20%), 
Poaceae (≥ 10%), Asteraceae (≥ 5%) and Cyperaceae 
(≥ 5%). Amaranthaceae (≥ 45%) and Ephedra (≥ 10%) 
are the most important taxa in desert, and Cyperaceae 
(≥ 35%) and Thalictrum (≥ 25%) are the dominant taxa 
in steppe/meadow. The pollen spectra from forest and 
river valley are characterized by high frequencies of 
Picea (≥ 10%) and Cyperaceae (≥ 20%).

2.	 RDA analysis indicates that the pollen assemblages are 
primarily controlled by mean annual precipitation and 
vegetation type. Thus, the modern pollen spectra from 
human-influenced vegetation can potentially be used for 
quantitative climate reconstructions in arid China.

3.	 The human influence index (HII) is significantly cor-
related with cereal-type pollen, and in addition it can 
differentiate human-influenced and natural vegetation. 
Human influences in the region have a discernible effect 
on the surface pollen spectra. Our results have implica-

tions for interpreting fossil pollen records in northwest-
ern arid China and similar regions.
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