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Abstract The REVEALS model is applied in quantitative

vegetation reconstruction to translate pollen percentage

data from large lakes and peatlands into regional vegetation

composition. The model was first presented in 2007 and

has gained increasing attention. It is a core element of the

Landcover 6k initiative within the PAGES project. The

REVEALS model has two critical components: the pollen

dispersal model and pollen productivity estimates (PPEs).

To study the consequences of model settings, we imple-

mented REVEALS in R. We use a state-of-the-art

Lagrangian stochastic dispersal model (LSM) and compare

model outcomes with calculations based on a conventional

Gaussian plume dispersal model (GPM). In the LSM tur-

bulence causes pollen fall speed to have little effect on the

dispersal pattern whereas fall speed is a major factor in the

GPM. Dispersal models are also used to derive PPEs. The

unrealistic GPM produces PPEs that do not describe actual

pollen productivity, but rather serve as a basin specific

correction factor. A test with pollen and vegetation data

from NE Germany shows that REVEALS performs best

when applied with the LSM. REVEALS applications with

the GPM can produce realistic results, but only if unreal-

istic PPEs are used. We discuss the derivation of PPEs and

further REVEALS applications. Our REVEALS imple-

mentation is freely available as the ‘REVEALSinR’ func-

tion within the R package DISQOVER. REVEALSinR

offers an environment for experimentation and analysing

model sensitivities. We encourage further experiments and

welcome comments on our tool.

Keywords DISQOVER � Lagrangian stochastic models �
Pollen � Fall speed of pollen � Pollen productivity estimates

Introduction

Reconstructing past plant abundances from the pollen

record is one of the main goals in palynology since the

inception of the field some 100 years ago (von Post 1918).

This goal is notoriously hard to achieve. The relationship

between plant abundances and pollen is not straightfor-

ward, because different plant taxa produce different

amounts of pollen that are dispersed with different effec-

tiveness. Differences in dispersion interact with the pro-

duction bias and lead to over- or underrepresentation of

taxa in the pollen record: a taxon with very large, poorly

dispersed pollen grains and low pollen productivity is

obviously under-represented in the pollen record of a large

lake. Yet, because its pollen travels shorter distances, the
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same taxon may be over-represented in the pollen record of

a small forest hollow.

Ad hoc attempts to correct over- and underrepresenta-

tion of plant taxa in the pollen record have a long history.

The first well-known formalized approach is the R-value

approach by Davis (1963), later refined to the extended

R-value approach by Parsons and Prentice (1981). The

R-value approach uses a taxon-specific correction factor

(the ratio of R-values) to correct for production and dis-

persal bias at the same time. However, the example above

illustrates that the representation of a taxon in the pollen

record may differ between different basins. R-values are

therefore not universal: they need to be calibrated sepa-

rately for each basin type.

The REVEALS approach (Sugita 2007a) overcomes this

limitation by correcting the production bias and the dis-

persal bias separately. It uses pollen productivity estimates

(PPEs) to account for the production bias and pollen fall

speeds and the associated ‘pollen dispersal-deposition

coefficient’ or K-factor to account for the dispersal bias.

PPEs ideally represent how much pollen a taxon produces

in relation to a reference taxon. PPEs are estimated in

studies that relate surface pollen deposition to distance

weighted plant abundances in the surroundings of the

pollen sample sites. Because distance weighting is

achieved through application of a pollen dispersal model,

the quality of PPEs depends on the suitability of the

underlying dispersal model (Theuerkauf et al. 2013). Also

the K-factor is calculated with a specific pollen dispersal

model. It represents how much pollen of a taxon is

deposited in a lake or peatland with a known diameter

compared to the amount of pollen deposited in a basin with

a zero diameter. The K-factor is 1 in a basin with zero

diameter and declines with increasing basin size.

REVEALS has gained increasing attention over the past

years; it is a core element of the Landcover 6k initiative

within the PAGES project (http://www.pages-igbp.org/ini/

wg/landcover6k/). REVEALS is also integral part of the

landscape reconstruction algorithm (LRA), which aims at

reconstructing vegetation composition on a local scale

(Sugita 2007b). So far, all REVEALS applications rely on

a Gaussian plume model (GPM) for pollen dispersion

(Sutton 1947) in both the calibration of PPEs as well as in

the REVEALS application itself. Recent developments,

which will be outlined in the next section, have highlighted

the limitations of this dispersal model family. Lagrangian

stochastic models (LSM) describe pollen dispersion more

realistically, especially when it comes to long-distance

dispersal (Kuparinen et al. 2007). The better performance

of LSMs has been demonstrated using surface pollen and

modern vegetation data (Theuerkauf et al. 2013). We show

how this progress in the modelling of pollen dispersal

affects REVEALS reconstructions. For this purpose we

developed an implementation of the REVEALS model in

the R environment for statistical computing (R Core

Team 2013). As part of the DISQOVER package,

‘REVEALSinR’ is available as open source software.

Dispersal models in palynology

Pollen dispersal models play a critical role in quantitative

reconstructions of past vegetation. Reliable reconstructions

of past vegetation require an understanding of where the

pollen comes from. Despite its central role in vegetation

reconstruction, the study of atmospheric dispersion of

small particles such as pollen is covered by other fields of

research, such as aerobiology, micrometeorology, the

military (to study dispersion of radioactive substances or

chemical weapons), medicine (to forecast hay fever

potential), agriculture (to control pests or transgenic plants)

and forestry (to assess pollination potentials). Pollen dis-

persal models developed during the 20th century can be

categorized as follows:

(i) Simple mathematical models with only few

parameters that describe observed dispersal pat-

terns in a correlative way (e.g. Schmidt 1918;

Gregory 1945; Tauber 1965).

(ii) Quasi-mechanistic models with descriptive

parameters that are estimated by statistical fitting

to empirical data (Tufto et al. 1997; Nurminiemi

and Tufto 1998; Klein et al. 2003).

(iii) Fully mechanistic models that describe the phys-

ical factors affecting dispersal and are therefore

able to predict the dispersal process based on

measurements of environmental parameters (Ku-

parinen 2006; Kuparinen et al. 2007; Theuerkauf

et al. 2013).

The first to adopt dispersal models in pollen-based

vegetation reconstruction was Tauber (1965). Later, also

Prentice (1985) used the same equations of Sutton for a

GPM (Sutton 1947, 1953) to calculate the origin of pollen

in peatlands of different size. Sugita (2007a, b) incorpo-

rated this dispersal model in his landscape reconstruction

algorithm (LRA). This model framework is designed to

quantify regional and local scale past plant abundances

using pollen data from large and small sites (see e.g.

Hultberg et al. 2015; Mehl and Hjelle 2016). The LRA

optionally adjusts the GPM of Sutton to pollen deposition

in lakes.

Overall, simple dispersal models such as the GPM fail to

predict the magnitude of long-distance dispersal (Kupari-

nen 2006). Field observations have indicated, for example,

that cross-pollination and seed dispersal by wind com-

monly occur over much larger distances than predicted

(Giddings et al. 1997; Hofmann et al. 2014). Experiments

542 Veget Hist Archaeobot (2016) 25:541–553

123

http://www.pages-igbp.org/ini/wg/landcover6k/
http://www.pages-igbp.org/ini/wg/landcover6k/


and micrometeorological modelling both suggest that

strong upward air sweeps, so-called ‘updrafts’ are a key

driver of long-distance dispersal (Nathan et al. 2002;

Tackenberg 2003). Updrafts lift airborne particles above

the canopy where the horizontal airflows are stronger,

dispersing particles over large spatial distances (Soons

et al. 2004). Such turbulent events are generally not

described by GPMs; if GPMs include turbulent flows then

these are assumed to be symmetric, non-autocorrelated

fluctuations around the mean horizontal airflow. Therefore,

GPMs appear only suitable to predict dispersal at short

distances (\15 m), because only over such short distances

dispersal is governed by release height and mean wind

speed rather than the turbulence conditions (Soons et al.

2004). Yet, even in closed forest hollows most pollen

arrives from longer distances. The discrepancies between

model outcome and observations have stimulated the

development of new modelling approaches since the early

21st century.

Realistic models of long-distance dispersal of pollen and

seeds have come to depend on Lagrangian stochastic

simulations as the state-of-the-art tool (Kuparinen 2006;

Nathan et al. 2011). LSMs predict the trajectory of each

dispersing particle under turbulent conditions, which

depend on the degree of atmospheric (in)stability and the

vertical structure of the atmospheric boundary layer.

Within the canopy, turbulence is weak and close to sym-

metric, while above it turbulence is characterized by strong

upward sweeps and weaker, but more frequent downward

flows (Kuparinen et al. 2007).

Intuitively, one might assume that atmospheric condi-

tions have larger impact on pollen with low fall speed than

on pollen with high fall speed. However, sensitivity anal-

yses reveal the opposite: dispersal of pollen with low fall

speed hardly depends on atmospheric conditions as its

falling velocity is typically lower than average vertical

turbulent flows. In contrast, dispersal of pollen with high

fall speed depends on strong turbulent flows that are cap-

able of carrying also such pollen across longer distances

(Kuparinen et al. 2007). Pollen is primarily released under

unstable atmospheric conditions with strong turbulent

flows (Jackson and Lyford 1999) so that the difference in

the dispersal of pollen is largely independent of fall speed.

Strong updrafts under unstable conditions lift pollen both

with low and high fall speeds well above the canopy, ini-

tiating long-distance transport (Soons et al. 2004).

Upland pollen deposited in large lakes or peatlands to a

large degree arrives from some to many kilometres dis-

tance. Observing pollen dispersal over such distances to

test dispersal models directly is virtually impossible. Dis-

persal models instead may be tested using modern pollen

and vegetation data. A first such test on lakes across NE

Germany has indeed shown that the LSM of Kuparinen

et al. (2007) much better describes observed pollen depo-

sition than the GPM (Theuerkauf et al. 2013).

The GPM and LSM differ considerably in the predicted

deposition from various sources (Fig. 1). The contribution

of pollen arriving from 10 to 100 km away is much lower

in the GPM than in the LSM. The LSM predicts that some

20–30 % of the pollen arriving from outside a peatland

with a diameter of 1,000 m originates from within 10 km

distance, for both lighter and heavier pollen types. Depo-

sition of pollen from increasingly farther away gradually

declines. Very little pollen is predicted to arrive from

beyond 100 km. In contrast, the GPM (adjusted for neutral

conditions) predicts that pollen arriving from the first

10 km is far more important; for heavier pollen making up

close to 80 % of the total deposition. Consequently, the

amount of pollen that arrives from greater distances is very

low. Yet, the long tail of the Gaussian distribution means

that a considerable amount of the deposited pollen comes

from distances beyond 100 km, from up to thousands of

kilometres away. In the GPM adjusted for unstable condi-

tions deposition from nearby sources is somewhat lower,

but deposition from very long distance is even higher.

Differences between the deposition of pollen with high

and low fall speed are—as mentioned—small for the LSM

but high for the GPM. For the centre of a peatland of

1,000 m diameter the LSM predicts that 80 % of total

upland pollen deposition originates from within 60 km for

pollen with low fall speed and 50 km for pollen with high

fall speed (Table 1). The GPM for neutral conditions pre-

dicts that the size of the 80 % source area is 119.5 km for

taxa with low fall speed and 12.2 km for pollen with high

fall speed. The GPM for unstable conditions predicts far

larger source areas.

Principles of ‘REVEALSinR’

The REVEALS model (Sugita 2007a) is based on the

assumption that pollen deposition of a plant taxon in a large

lake or peatland is equal to the mean abundance of that

taxon in the region, multiplied by its pollen productivity

and its ‘pollen dispersal-deposition coefficient’ K. In

reverse, if pollen data are available, the past regional

abundance of a taxon can be calculated as its pollen

deposition divided by its pollen productivity and dispersal

coefficient. The REVEALS model expresses abundance in

relative terms because pollen data are commonly given as

percentage data:

Vi ¼ 100� ni=PPEiKi
Pm

j¼1 nj
�
PPEjKj

where Vi is the relative abundance of taxon i, ni is the

pollen count of i, PPEi is the pollen productivity estimate
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for i, Ki is the ‘pollen dispersal-deposition coefficient’ for

i and m is the total number of pollen types considered.

The REVEALS model was originally implemented in the

C?? programming language by Shinya Sugita, (current ver-

sion ‘v4.2.2.Tallinn.wks.exe’, Mazier et al. 2012). REVEALS

calculates K-factors using a GPM adjusted to neutral atmo-

spheric conditions, although adjustment to unstable conditions

would be more appropriate (Jackson and Lyford 1999). The

model offers an option for pollen deposition in lakes, taking

account of lake internal mixing (Sugita 1993).

Our alternative implementation ‘REVEALSinR’ is

written in the R environment for statistical computing (R

Core Team 2013; see ESM for details). Conceptually,

‘REVEALSinR’ differs from the Sugita programme in the

calculation of K-factors and in the calculation of error

estimates. ‘REVEALSinR’ is flexible with respect to the

dispersal model used. By default, it uses a LSM, but GPMs

(adjusted to unstable or neutral conditions) and the non-

parametric function ‘1 over d’ are implemented as well.

Alternative models can easily be added. Because actual

LSM calculations are time consuming, ’REVEALSinR’

uses look-up tables of LSM outputs that cover a range of

fall speeds and atmospheric conditions.

Like the original REVEALS programme, ‘REVEALSinR’

includes a function to address deposition in lakes (for details

see ESM). Both the original REVEALS programme and

‘REVEALSinR’ only consider atmospheric pollen deposition

(and lake mixing); neither model is applicable to sites that

receive significant amounts of pollen from rivers, streams or

surface run-off.

In the original REVEALS programme error estimates are

calculated from the variance–covariance matrix of PPEs

Fig. 1 Origin of upland pollen

in a peatland with 1,000 m

(above) and 10,000 m (below)

diameter, calculated for low

(left) and high fall speed of

pollen (right). Origin of pollen

is calculated for consecutive

rings of 10 km width with the

LSM and the GPM adjusted to

neutral and unstable

atmospheric conditions

Table 1 Radius of the 80 % source area of pollen, i.e. the distance

from which 80 % of the total pollen deposition at a site arrives.

Radius calculated for taxa with low and high fall speed of pollen and

for deposition in peatland sites of different diameter using different

dispersal models

Dispersal model LSM GPM neutral GPM unstable

Basin diameter (m) 1,000 10,000 1,000 10,000 1,000 10,000

Fall speed (m s-1) 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06 0.03 0.06

Radius (km) of the 80 % source area 60 50.5 67.3 56.8 119.5 12.2 415 61.5 [1,000 185 [1,000 700

544 Veget Hist Archaeobot (2016) 25:541–553

123



through a hybrid method (Sugita 2007a). ‘REVEALSinR’

arrives at error estimates through repeated model runs (a

minimum of 1,000) with random error added in pollen data

and PPEs during each model run (see ESM). By default, the

10 and 90 % percentile of the repeated calculations are

selected as error range boundary estimates. Other options are

easily implemented.

The ‘REVEALSinR’ function is freely available on our

website at http://disqover.botanik.uni-greifswald.de. The

‘REVEALSinR’ function is the first function of the

DISQOVER package.

Materials and methods

To introduce and test the ‘REVEALSinR’ function we first

use a simple scenario with two taxa X and Y. Both taxa

produce similar amounts of pollen (PPE = 5; SE = 0.5) but

with different fall speeds: X has a higher fall speed

(0.06 m s-1) than Y (0.03 m s-1). X and Y are similarly

abundant in the pollen record: 500 pollen grains of each taxon

are found.We associate the recordwith lakes and peatlands of

different size (100–10,000 m in diameter), using different

cut-off distances for the tail of the GPM (50 km to infinity).

This cut-off sets an arbitrary limit to the maximum distance

pollen may travel (the region considered as pollen source

area). The cut-off for the LSM is set to 100 km, which is the

calculated average distance at which 95 % of the pollen has

settled (cf. Fig. 1). We calculate regional vegetation com-

position with ‘REVEALSinR’ using the LSM as well as the

GPM. The LSM parameters apply to unstable atmospheric

conditions (friction velocity u* = 0.6 m s-1, Obukhov-

length L = -40 m; further parameters follow Kuparinen

et al. 2007). Sugita’s REVEALS programme uses the GPM

with parameters for neutral atmospheric conditions (vertical

diffusion coefficient cz = 0.12, turbulence parameter

n = 0.25). We include this setting for comparison, but also

use the GPM with parameters for unstable conditions

(cz = 0.21, n = 0.20).

Secondly, ‘REVEALSinR’ is applied to a high resolu-

tion pollen dataset from Lake Tiefer See/NE Germany

covering the period 1870–2010 (Theuerkauf et al. 2015).

Calculations are performed for four different settings A, B,

C and D that differ in the underlying pollen dispersal model

and PPE dataset (Table 2). A and B use the LSM, C and D

the GPM; A and C use the PPE.MV2015 dataset, B and D

the PPE.st2 dataset (Table 2). The PPE.MV2015 (Table 3)

dataset was specifically derived for the study area of NE-

Germany using the LSM (Theuerkauf et al. 2013, 2015).

The PPE.st2 dataset (Table 3) has been compiled from a

number of PPE studies across northern and central Europe

(all using the GPM; Mazier et al. 2012). Further options,

i.e. basin size (300 m), basin type (lake) and cut-off size of

the pollen source area (100 km), are equal in all experi-

ments. Experiment C and D were repeated as C* and D*

with Sugita’s REVEALS programme (latest version:

REVEALS.v4.2.2.Tallinn.wks.exe). To validate model

performance we compare the reconstructed cover of major

crops during the study period with observed cover values

recorded in written sources (cf. Theuerkauf et al. 2015).

Cover data for trees are only available for the present so

that model results are validated for the modern situation

only. In the text, elements of the actual vegetation are

written in italics, whereas reconstructed taxa are written in

normal font.

Results

The two taxa scenarios

The vegetation composition that was calculated from the

hypothetical pollen sample differs strongly depending on

which dispersal model is used (Fig. 2). With the LSM, the

50 % of pollen of X (with a high fall speed) translates into

a cover in the regional vegetation slightly above 50 %.

Consequently, the cover of Y (with low fall speed) is

slightly below 50 %. Whether the sample is assumed to be

taken from a peatland or lake has little effect. Also the

influence of basin size is small. The highest cover of X

(52.5 %) is found for a peatland with a diameter of

1,000 m. With the GPM, the cover of X is instead modelled

to be well above 70 % (and that of Y well below 30 %).

The cover of X increases with basin size from 74.4 % for a

lake and 75 % for a peatland with a diameter of 100 m

towards 82.9 % for a lake and 85 % for a peatland with a

diameter of 10,000 m; the cover of Y decreases corre-

spondingly. The difference in cover between X and Y is

larger for peatlands than for lakes.

The different dispersal functions (LSM and GPM) result in

differences in the K-factors (=relative pollen influx) of the

models. TheK-factor is 1 for basins of zero size and decreases

with increasing basin size as expected (Fig. 2). However, the

decrease ismuch strongerwith theGPMthanwith theLSM. In

other words, K-factors for the LSM aremuch higher (0.5–0.8)

than for the GPM (0–0.3), meaning that for medium sized to

large basins the LSM predicts significantly higher pollen

deposition arriving from within the 100 km region than the

GPM. Moreover, with the LSM K-factors for X and Y hardly

differ, whereas with the GPM the K-factors for taxon Y with

light pollen are 2–5 times higher than for taxonXwith heavier

pollen. The ratio of Y:X increases with basin diameter and is

higher for peatlands than for lakes.

Increasing the size of the region considered as pollen

source area (i.e. cutting the tail of the GPM at a larger

distance) increases the K-factor of Y (with the lower fall
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speed) far more than that of X (Fig. 3). As a result, the

reconstructed cover of Y decreases. The effect is similar in

basins with different diameter but stronger with the GPM

adjusted for unstable conditions than with the GPM

adjusted for neutral conditions.

Lake Tiefer See

Analysis of the Tiefer See data showed that among the six

model settings (Table 2), setting A produces the best fit

between the REVEALS based plant cover reconstructions

and observed plant cover (Table 4). With this setting A,

which uses the LSM and PPE.MV2015, the reconstructed

cover of cereals (excluding Secale), grassland and Secale

largely matches the observed cover over the study period

(Fig. 4). Deviations occur particularly for the 1970s and

onward, for Cerealia also before. The setting also produces a

good fit for Alnus but a somewhat too high cover for Fagus,

Picea and Pinus (Fig. 5). Poor fits are instead observed with

setting B, which also uses the LSM but PPE.st2. In this set-

ting the cover of cereals (excluding Secale) is strongly

underestimated as is (for the most part) the cover of Secale.

Setting B overestimates the cover of grassland, Alnus, Fagus

and Pinus; merely the reconstructed cover of Picea appears

reasonable.

Also the performance of the model settings that use the

GPM differs substantially. The overall poorest fit is found

with setting C (GPM and PPE.MV2015). This setting

produces too high reconstructed cover for cereals (ex-

cluding Secale), Secale, Fagus and Picea and too low

cover for grassland, Alnus and Pinus. Model setting D

(GPM and PPE.st2) performs better. It produces (partly)

reasonable reconstructions for Secale, grassland and Pinus

but arrives at too low cover for cereals (excluding Secale)

and too high cover particularly for Fagus, less so for

Alnus and Picea.

Table 2 Studied model settings; radius of the source area considered is 100 km, the basin type is lake

Setting A B C D C* D*

Software REVEALSinR REVEALSinR REVEALSinR REVEALSinR Sugita progr. Sugita progr.

PPE PPE.MV2015 PPE.st2 PPE.MV2015 PPE.st2 PPE.MV2015 PPE.st2

Dispersal model LSM LSM GPM GPM GPM GPM

Table 3 Fall speed of pollen,

pollen productivity estimates

and their error from the PPE.st2

dataset (calculated with the

GPM) and the PPE.MV2015

dataset (calculated with the

LSM). The PPE.MV2015

dataset does not include PPEs

for Acer, Carpinus, Corylus,

Salix, Calluna, Cerealia and

Cyperaceae; these values were

partly taken from the PPE.st2

dataset. The PPE of Corylus was

set to 10, assuming that pollen

productivity is about as high as

in Betula. For Cerealia, the

mean PPE from the period

1950-2010 from the lake Tiefer

See data is used. The Cerealia

PPE includes Secale in PPE.st2

but excludes Secale in

PPE.MV2015

Taxon Fall speed PPE.st2 PPE.st2 SE PPE.MV2015 PPE.MV2015 SE

Acer 0.056 1.27 0.23 1.27 0.23

Alnus 0.021 9.07 0.10 16.26 1.24

Betula 0.024 3.09 0.27 13.77 2.96

Carpinus 0.042 3.55 0.43 3.55 0.43

Corylus 0.025 1.99 0.20 10.00 1.00

Fagus 0.057 2.35 0.11 2.20 0.21

Fraxinus 0.022 1.03 0.11 1.07 0.31

Picea 0.056 2.62 0.12 0.87 0.18

Pinus 0.031 6.38 0.45 4.93 0.22

Quercus 0.035 5.83 0.15 9.15 1.24

Tilia 0.032 0.80 0.03 2.57 2.56

Ulmus 0.032 1.27 0.05 2.60 2.55

Salix 0.022 1.22 0.11 1.22 0.11

Artemisia 0.025 3.48 0.20 4.56 0.51

Calluna 0.038 0.82 0.02 0.82 0.02

Cerealia 0.06 1.85 0.38 0.15 0.02

Cyperaceae 0.035 0.87 0.06 0.87 0.06

Poaceae 0.035 1.00 0.00 1.00 0.10

Plantago lanceolata 0.029 1.04 0.09 2.98 1.08

Rumex acetosella 0.018 2.14 0.28 3.55 0.56

Secale 0.06 3.02 0.05 1.17 0.14
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Model settings C and D were also calculated with the

REVEALS programme of Shinya Sugita (settings C* and

D*). The resulting mean cover values are similar to those

found with the ‘REVEALSinR’ function. Apparently, the

two implementations produce comparable results despite

differences in e.g. the lake models. However, for setting

C* the Sugita programme produced much higher error

ranges than ‘REVEALSinR’ (Fig. 4). The error estimates

for herbs even well exceed the natural limits of percent-

age data. They are highest for cereals (excluding Secale)

(618.5 %), which is the taxon with the smallest PPE (0.2).

It appears that the use of such small PPEs is problematic

in Sugita’s REVEALS programme. ‘REVEALSinR’

instead performs reasonably well also for taxa with small

PPEs. Furthermore, only ‘REVEALSinR’ produces—as

expected in percentage data—error estimates that are not

symmetric.

Discussion

The considerable differences in model outcome and per-

formance illustrate how important it is to select an

appropriate dispersal model in REVEALS reconstructions.

The two dispersal models that we tested differ substan-

tially with respect to overall dispersal distances and the

influence of pollen fall speeds. The pollen dispersal

function enters the REVEALS reconstructions through the

K-factor, which for each taxon represents predicted pollen

influx at a site. The absolute value of K is not important

in REVEALS, what matters is the difference between

taxa. This difference is high in the GPM, where fall speed

of pollen has a large effect on dispersal distances, but low

in the LSM, where fall speed has only little effect. In

other words, the GPM supposes a strong dispersal bias

implying that independent of pollen productivity taxa with

higher fall speed (such as Fagus and Cerealia) are under-

represented in the pollen record of large basins compared

with taxa with low fall speed (e.g. Alnus and grasses).

REVEALS is designed to correct for this dispersal bias,

but the choice of the dispersal model used for the cor-

rection can lead to large discrepancies in the reconstruc-

tions (Fig. 2).

Dispersal model selection

Evidence shows that the LSM describes particle dispersal

and deposition much better than the GPM. Upland pollen

deposited in lakes or peatlands to a large degree arrives

from some to many kilometres distance. Theuerkauf et al.

(2013) showed that the LSM of Kuparinen et al. (2007)

describes observed pollen deposition much better than the

GPM; our data suggest the same (Table 3; Figs. 4, 5). Still,

REVEALS applied with the GPM and PPE.st2 (settings D

and D*) also arrives at reasonable results for the Lake

Tiefer See, except for Cerealia and Fagus. For both these

taxa the poor fit could be attributed to unsuitable PPEs. The

PPE for Cerealia in PPE.st2 derives from studies that

include Secale in the analysis although Secale is wind-

pollinated and emits far more pollen than the autogamous

cereals Avena, Hordeum and Triticum. Because the PPE of

Cerealia is too high, the resulting reconstructed cover is too

low. Instead, in the case of Fagus the reconstructed cover is

too high; suggesting that its PPE of 2.35 in the PPE.st2

dataset is too low. All studies from the lowlands of Central

Europe indeed calculate higher PPEs between 5 and 15

(with grasses as reference and using the GPM; Sugita et al.

1999; Nielsen 2004; Theuerkauf et al. 2013; Matthias et al.

2012). With the Fagus PPE in setting D adjusted to 10,

REVEALS produces a reasonable reconstruction also for

Fagus (Fig. 5, dashed box).

Fig. 2 Reconstructed abundance of two taxa X and Y based on

hypothetical pollen samples with 50 % pollen of X and 50 % pollen

of Y. Samples taken from lakes and peatlands with 100–10,000 m

diameter. X and Y have similar pollen productivity but pollen of X

has a higher fall speed than that of Y. The upper graphs show the

reconstructed plant cover; the lower graphs the K factors and their

ratio. Circles denote results of REVEALS reconstructions using the

GPM, triangles using the LSM
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Apparently, REVEALS can produce satisfactory results

with different dispersal models if PPEs are used that have

been calculated in surface samples studies with the same

underlying dispersal model and in basins of similar size.

So, does the choice of dispersal model not matter after

all? We argue that it does. First, we arrive at reasonable

reconstructions with two very different sets of PPEs. Yet,

obviously only one (if any) of these can truly be the set

that represents pollen productivity. PPEs are determined

in studies that relate modern pollen data to modern plant

abundances. Dispersal models are crucial in the calcula-

tion because they determine distance weighting (Theuer-

kauf et al. 2013); they provide an answer to the question

how much of the pollen signal is arriving from nearby and

how much from far away. This answer is not trivial,

particularly if pollen fall speeds differ and have a strong

effect on the resulting pollen signal, as in the case of the

GPM (Fig. 2). Only if the dispersal model is appropriate,

distance weighted abundances are correct and the result-

ing PPEs indeed represent the pollen productivity of the

taxa involved. The GPM underestimates pollen dispersion

in taxa with higher fall speed such as Fagus and Secale.

As a result, distance weighted plant abundances are too

low for these taxa, which the model compensates with a

high PPE. Indeed, all studies from the lowlands of Central

Europe produce a high PPE for Fagus when using the

GPM (Sugita et al. 1999; Nielsen 2004; Matthias et al.

2012; Theuerkauf et al. 2013), although Fagus is com-

monly considered an intermediate pollen producer (Pohl

1937; Andersen 1970). To accommodate the expectation

of a moderate PPE for Fagus, data have been discarded

(Matthias et al. 2012) and averaged with low values from

Switzerland (Mazier et al. 2012). Yet, to arrive at rea-

sonable reconstructions of Fagus cover with the GPM, an

Fig. 3 The effect of the cut-off

distance for the tail of the GPM

in basins with 100, 500, 1,000

and 10,000 m diameter. The

same model setting as in Fig. 2

with different limits to the

extent of the region considered

as pollen source area. The upper

graphs show the reconstructed

cover of Y; the lower graphs

show K factors of Y. GPM for

neutral conditions on the left

and for unstable conditions on

the right

Table 4 Root mean square error of REVEALS based reconstructed

plant cover. RMSE is calculated as distance between reconstructed

cover and distance weighted plant abundance as recorded in written

sources

RMSE A B C D C* D*

Cereals 7.5 20.5 20.9 15.1 17.4 16.0

Grassland 4.9 9.9 13.0 4.9 10.7 6.2

Secale 3.8 9.6 11.9 4.6 11.1 2.2

Pinus 5.4 2.3 4.1 0.4 2.6 0.3

Fagus 1.3 2.0 1.8 7.4 2.5 7.3

Alnus 0.4 3.5 2.0 0.6 1.7 1.1

Picea 3.5 0.4 5.8 2.8 6.1 2.7

Sum 26.8 48.2 59.5 35.9 52.1 35.7

* Repeated with Sugita’s REVEALS programme (latest version:

REVEALS.v4.2.2.Tallinn.wks.exe)
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Fig. 4 REVEALS based

reconstructed cover of major

crops (coloured shading) during

the period 1880–2010 compared

with the observed cover (gray

shading). Upper and lower

limits represent the 10 and 90 %

percentile of 100 repeated

model runs with settings A–D

and standard error for setting

D*. The standard error for

setting C* is extremely high and

not displayed
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unreasonably high PPE is necessary. When using the

GPM, PPEs are merely a correction parameter and do not

truly represent (relative) pollen productivity, i.e. they are

not pollen productivity estimates in the meaning of the

word.

The problem is not only semantic, however. The use of

an inappropriate dispersal model like the GPM will directly

affect the REVEALS modelling results. Like R-values,

PPEs calculated with an inappropriate dispersal model will

differ between small and large basins and will not be

universally applicable. Thus, PPEs that are calculated

(using the GPM) from pollen-vegetation-relationships in

small basins are not applicable to large basins (and vice

versa). Moreover, it matters whether PPEs are calculated

from the relationship between pollen and the vegetation in

a short (e.g. 2 km) or a long distance around the basin

(100 km), even in landscapes with homogenous vegetation

cover. This effect is far more pronounced with the GPM

than with the LSM (Fig. 6).

Another problem is related to the infinitely long tail of

the GPM, particularly when light pollen types are con-

cerned. In REVEALS studies the extent of a region is

arbitrarily limited, mostly to 50 or 100 km (Mazier et al.

2012) and pollen modelled to arrive from more distant

sources is neglected. However, with shorter cut-off dis-

tances progressively more pollen with low fall speed is

neglected than pollen with high fall speed, affecting the

model results. The effect is even more pronounced in the

GPM adjusted for unstable conditions but largely absent in

the LSM (Fig. 3).

What is the region?

The dispersal models do not only affect the REVEALS

calculations, but also matter in the interpretation of the

results. REVEALS output is commonly interpreted as

representing the regional vegetation composition—but how

large is this region? Or, where does the pollen come from?

There is no simple answer because pollen arrives from

nearby as well as far away, with nearby sources con-

tributing (much) more (Janssen 1966). Prentice and Webb

(1986) suggested approximating the source area as the area

outside the basin from which e.g. 80 % of total pollen

deposition arrives. For large lakes and peatlands with

1,000 m diameter, the LSM predicts that the size of the

80 % source area is *55 km for all taxa, whether with

high or low fall speed. In contrast, the conventional GPM

for neutral conditions predicts a large difference in the

80 % source area of taxa with low (*120 km) and taxa

Fig. 5 REVEALS based reconstructed cover (in colour bars) of

major trees using the six model settings (Table 2) compared with

modern cover (dashed line). Upper and lower limits of the boxes

represent the 10 and 90 % percentiles of 100 repeated model runs

with settings A–D and standard error for settings C* and D*. For

Fagus, the dashed box indicates results with the PPE in setting D

adjusted to 10 (see ‘‘Discussion’’ section)

Fig. 6 PPEs calculated from a hypothetical pollen sample from a

lake with a diameter of 2,000 m. Taxon X and Y each comprise 50 %

of the surrounding, homogenous vegetation and 50 % of the pollen

deposition in the lake. Pollen of X has a higher fall speed

(vg = 0.06 m s-1, similar to Fagus) than pollen of Y

(vg = 0.03 m s-1, similar to Pinus). The resulting PPE of X (with

Y as the reference) is much higher when calculated with the GPM

than with the LSM, because the GPM assumes that pollen of X is

dispersed less far. With the GPM, the PPE of X also markedly

increases with increasing sampling radius although vegetation

composition is uniform
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with high fall speed (12 km; Table 1). Whereas the unre-

alistic GPM defies definition of a distinct source area, the

realistic LSM offers a clear delineation.

The above calculations of the pollen source area assume

that the vegetation cover of the region is homogenous. This

is a central assumption in REVEALS modelling that is

rarely met in reality. In the present study area, for example,

vegetation follows a pattern that primarily reflects soil

types (morainic sediments versus outwash plains).

REVEALS-based vegetation reconstructions in such pat-

chy landscapes may strongly differ from true abundances.

The problem is most obvious in the disturbing effects that

shore vegetation can have on the pollen record found in a

lake. For example, high pollen values of Alnus in a lake

may solely derive from a small fringe of Alnus trees around

the lake (Janssen 1959). However, a REVEALS recon-

struction would reconstruct Alnus as an important element

of the regional vegetation.

Therefore, in situations where regional vegetation is

expected to be patchy, approaches that do not rely on

homogeneity are preferable to REVEALS. For a single site,

multiple scenario approaches allow the detection of vege-

tation mosaics (Fyfe 2006; Bunting et al. 2008).

If pollen data are available from many sites, site to site

differences in pollen deposition may be exploited to

reconstruct patches, as it is done in the (extended) down-

scaling approach (Theuerkauf and Joosten 2009; Theuer-

kauf et al. 2014).

REVEALSinR

We have implemented the REVEALSinR function in a way

that allows for easy, rapid and automated application with

full control of all parameters. REVEALSinR thus also

provides a sandbox to test the effects and sensitivities of

model assumptions and parameter settings, some of which

we discuss above. Moreover, the robustness of recon-

structions can be assessed by varying the parameter set-

tings. For example, REVEALS is usually applied under the

assumption that the pollen productivity of taxa is constant

in time. In reality, however, pollen productivity is known

to respond to changes in climate, stand density, soil con-

ditions and land management. The effects are still poorly

understood and have rarely been quantified (Feeser and

Dörfler 2014; Theuerkauf et al. 2015). REVEALSinR

enables running numerous PPE scenarios to establish

variability and probabilities in reconstructions. Effects of

error in pollen data can be assessed as well. REVEALSinR

is able to deal with very small and large PPEs and in all

cases produces reasonable, asymmetric error estimates. As

mentioned above, the error estimates are only applicable in

homogenous vegetation.

In its default settings REVEALSinR runs with the state-

of-the-art LSM (and suitable PPEs), because this model is

the most appropriate for describing regional pollen dis-

persal and deposition. Yet, like any model, this model also

has its limitations. For example, in its current form the

model is adjusted to atmospheric conditions that prevail in

and above a pine forest. Furthermore, the model so far

neglects diurnal changes in wind speed and turbulence.

However, the model is flexible enough to include variations

in these (and further) parameters.

Conclusions

The choice of dispersal model matters in REVEALS

reconstructions, much more than has hitherto been

acknowledged. The commonly used GPM does not depict

pollen dispersal well. If REVEALS is run with the GPM,

the required PPEs do not represent pollen productivity of

plant taxa, but rather a basin-specific correction factor.

PPEs derived for one basin are not necessarily applicable to

another and uncertainties ensue in reconstructions. Aver-

aging PPEs over multiple studies will alleviate the inac-

curacies to some extent, but does not address the core

problem posed by an inappropriate dispersal model. We

suggest that the GPM is replaced by the LSM both in

REVEALS applications (including the LRA) as well as in

the associated calculation of PPEs.

REVEALS produces mean regional plant abundances

under the assumption of homogenous vegetation compo-

sition. In a patchy landscape, true vegetation composition

may deviate considerably from the REVEALS recon-

struction. To solve this discrepancy new approaches are

needed. ‘REVEALSinR’ is only a first step in that

direction.

Our R routine provides a tool that is open to further

implementations. It offers a sandbox for testing model

sensitivities and assessing consequences of parameter

choices. The REVEALSinR function is part of the DISQ-

OVER package (DIverse Set of models for Quantitative

pOllen-based VEgetation Reconstruction). Additional

functions like MARCO POLO and extended downscaling

are currently in the testing phase.
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