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Abstract In this study, late Holocene vegetation, climate

and human impacts were investigated using multiproxy

data-pollen percentages, pollen accumulation rates (PAR),

humification and loss-on-ignition (LOI)—measured from

peat sediments from Daiyun Mountain, southeast China. A

stratigraphic chronology was established on the basis of

four radiocarbon dates. The 4,350 year sequence of vege-

tation history and climate change exhibits three distinctive

stages: (1) 4,350–1,000 cal BP, during which the vegetation

was dominated by evergreen forests mainly composed of

broad-leaf trees, indicating a warm and wet climate; (2)

1,000–550 cal BP, during which the climate was thought to

be cool and dry, based on a decrease in pollen percentages

and the PARs of trees, shrubs and wetland herbs, and an

increase in the pollen percentage and PAR of dry land

herbs, as well as high overall LOI values; and (3) 550 cal

BP to modern times, during which higher pollen percent-

ages of dry land and wetland herbs, along with low pollen

percentage and PAR of trees and shrubs, as well as low

absorbance and LOI values, suggest relatively cooler but

wetter climate conditions. In addition, major climatic

events, such as the warm period from AD 670–960, the

Medieval Warm Period (AD 1050–1520) and the Little Ice

Age (AD 1580–1850), could be identified within the peat

sediments in this study, with climatic conditions at these

times being characteristically warm and wet, warm and

dry, and cold and wet, respectively. Pollen signals indicate

significant human impact since 1,000 cal BP, which may be

linked to the development of the local porcelain industry

and a rapid increase in the population in the study region.

Keywords Late holocene � Vegetation � Climate change �
Human impact � Peat � Daiyun Mountain

Introduction

Vegetation-based palaeoclimatic reconstruction can be

used as a valuable input for modelling future global climate

change. However, human interventions and influences on

both vegetation and climate in the late Holocene can result

in uncertainties in such modelling efforts. Owing to

increasing interest in this field, several recent studies have

focused on the vegetation and climate changes that

occurred during the late Holocene, and particularly the

influence of human activities on vegetation changes (Liu

and Qiu 1994; Faust et al. 2004; van der Linden et al. 2008;

Xu and Zhang 2013; Li et al. 2014; Turner et al. 2014;

Cichon and Niedzielski 2015; Tian et al. 2015). Addi-

tionally, some authors have reported significant climate and

environmental changes during the medieval warm period

Communicated by Y. Zhao.

& Chunmei Ma

chunmeima@nju.edu.cn

1 School of Geographic and Oceanographic Sciences, Nanjing

University, Nanjing 210023, China

2 Jiangsu Collaborative Innovation Center for Climate Change,

Nanjing 210093, China

3 State Key Laboratory of Palaeobiology and Stratigraphy,

Nanjing Institute of Geology and Palaeontology, CAS,

Nanjing 210008, China

4 Department of Oceanography and Coastal Sciences, School

of the Coast and Environment, Louisiana State University,

Baton Rouge, LA 70803, USA

5 Department of Geology, University of Dayton, 300 College

Park, Dayton, OH 45469, USA

6 Daiyun Mountain National Nature Reserve Administration

Bureau, Dehua 362503, Fujian, China

123

Veget Hist Archaeobot (2016) 25:359–373

DOI 10.1007/s00334-016-0554-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00334-016-0554-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00334-016-0554-2&amp;domain=pdf


(MWP) and the little ice age (LIA) (Chu et al. 2002; Cronin

et al. 2003; Driese et al. 2004; Tan et al. 2009; Zeng et al.

2012; Quamar and Chauhan 2014; Sadori et al. 2015).

Mountain peat sediments in particular are capable of pre-

serving evidence of vegetation and climate change history,

including the events such as the MWP and LIA (Viau et al.

2012; Zhang et al. 2014; Chen et al. 2015). Thus, studies

into the dynamic vegetation landscape and contemporary

climate conditions based on multiple proxy data from

mountain peat sediments can be considered as critically

important for understanding the late Holocene

palaeoenvironment.

Southeastern subtropical China lies directly in the path

of the summer monsoon circulation, and is a key region for

the study of monsoon variability and vegetation recon-

struction during the late Quaternary. Daiyun Mountain, in

Fujian Province, is located in this subtropical region of

southeastern China, and is significantly affected by mon-

soon changes. As such, the changing East Asian Monsoon

climate may be recorded as vegetation changes upon

Daiyun Mountain, and therefore reconstruction of the

palaeovegetation of this region is of great importance. The

peat sediments of Daiyun Mountain are predominantly

located within a nature reserve and are surrounded by low

hills supplied with abundant atmospheric precipitation.

Thus, with typical swamp-like conditions, the Daiyun

Mountain peat is extremely sensitive to climatic changes,

and offers an ideal site for studying regional climatic

variability under a changing global climate. To date, the

majority of Holocene pollen studies in Fujian Province

have focused on coastal areas, flood plains and river deltas,

while mountain areas have been somewhat neglected (Lan

et al. 1986; Zheng 1991; Jin and Zheng 1993; Wu 1993;

Wang et al. 1995; Chen et al. 1998a, b; Zheng et al. 2002;

Zhi et al. 2003). Many studies have reconstructed vegeta-

tion and environmental changes (Liu and Qiu 1994; Qiu

2006; Xu et al. 2013; Huang et al. 2014; Yue et al. 2012,

2014) as well as the impact of human activities (Liu and

Qiu 1994; Qiu 2006; Xu et al. 2013) in the monsoonal

regions of southeastern China. Despite this, the climatic

conditions, vegetation history and the impacts of human

activities on Daiyun Mountain during the late Holocene

remain poorly understood (Liu and Qiu 1994; Qiu 2006).

Earlier studies in this region have relied on low-resolution

sequences with poor chronological control (Liu and Qiu

1994; Qiu 2006). In contrast, the high-resolution multi-

proxy record presented in this study offers a chronology

based on precise accelerator mass spectrometry (AMS)

radiocarbon (14C) dating of a peat profile from Daiyun

Mountain. Using this technique, we reconstruct the late

Holocene vegetation and climate changes on a regional

scale and analyze human impact on the vegetation and

environment over the last millennium. Our study provides

additional data for research into global change, both in

terms of tracing past conditions and modelling future

scenarios.

Study area

The peatland selected for this study is located in a nature

reserve on Daiyun Mountain, Fujian Province in south-

eastern China. The Daiyun Mountain nature reserve

(25�3800700-25�4304000N, 118�0502200-118�2001500E) is

located 40 km north of Dehua (Fig. 1). The Daiyun

Fig. 1 Maps showing a, the geographical location of the study site

and the modern vegetation of the study area: 1Wanxiang cave (Zhang

et al. 2008), 2 Dongge cave (Wang et al. 2005), 3 Pingnan peat (Yue

et al. 2012), 4 Lianhuachi site (Qiu 2006), 5 Daiyun Mountain peat

(DYS2), 6 Lake Huguangyan Marr (Yancheva et al. 2007; Wang et al.

2007), b modern vegetation of the DYS2 profile
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Mountain range occupies the central part of this province,

and comprises several peaks, including Daiyun (1,856 m

a.s.l.), Jiuxian (1,655 m a.s.l.), Shiniu (1,781 m a.s.l.) and

Zhiyundong (1,629 m a.s.l.). The mean annual temperature

in the region is 15.6–19.5 �C and the mean annual pre-

cipitation is 1,700–1,900 mm. Daiyun Mountain is a sub-

tropical oceanic climate under the strong influence of the

southeast monsoon. Around 80 % of the annual precipita-

tion falls during the rainy season between April and

September (Lin 2002).

More than 90 % of the area is covered by subtropical

evergreen broadleaf forests, mainly comprising evergreen

trees such as Quercus and Castanopsis (Fig. 1). The veg-

etation community varies with altitude (Fig. 2a): below

500 m, the evergreen broadleaved forest is dominated by

Castanopsis tibetana, C. eyrei and C. fabri, among others;

from 500 to 1,000 m on the southern slopes of the moun-

tain, broad-leaved evergreen forests, coniferous forests,

and coniferous and broad-leaved mixed forests are domi-

nated by species that include Cunninghamia lanceolata,

Pinus massoniana, Castanopsis fargesii, C. eyrei, Cyclob-

alanopsis myrsinifolia, Taxus chinensis var. mairei and

Cryptomeria fortunei; from 500 to 800 m on the northern

slopes of the mountain, forests with some deciduous fea-

tures are often interspersed with evergreen broadleaved

forests, conifer forests, and conifer and broadleaved mixed

forests. The species within the deciduous forests include

Quercus variabilis and Liquidambar formosana; from

1,000 to 1,600 m on the southern slopes of the mountain

and from 800 to 1,600 m on its northern slopes, vegetation

is dominated by coniferous trees and wetland plants, which

mainly include Cryptomeria fortunei, Tsuga longi-

bracteata, Juncus effusus, Isachne globosa and Eleocharis

tetraquetra; above 1,600 m, the mountain summits are

covered by broad-leaved evergreen shrubs dominated by

Rhododendron simsii, R. mariesii and Eurya saxicola.

The peatland investigated in this study developed

extensively during the Holocene. The total peat-covered

area on Daiyun Mountain is approximately 100 m by

200 m, and the marshy environment allowed the accumu-

lation of peat layers ranging from 1 to 3.2 m in thickness.

Due to the area’s poor drainage and the absence of any

significant water bodies, the peatland has a stable sedi-

mentary setting, with well-preserved continuous

autochthonous sediments.

Materials and methods

Field sampling and dating

A 100 cm deep profile was excavated from the peatland on

Daiyun Mountain in 2010 (25�40.0400N, 118�12.3810E; alti-
tude, 1,579 m a.s.l.). Terrestrial plant macrofossils, peat

(60–180 lm) and pollen samples were collected from four

locations anddatedusingAMS(Table 1).Three sampleswere

dated at the AMS Dating Laboratory of Beijing University,

China, and one was dated by Beta Analytic, USA. Pollen

extracts contained both terrestrial and aquatic pollen, in

addition to other organic matter. While pollen dating can be

problematicwhen aquatic plants are involved,we consider the

use of pollen extraction for dating to be effective in reducing

Fig. 2 a Vegetation

composition with altitude.

b View of the peatland studied.

c The vegetation landscape

surrounding the DYS2 profile
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the influence of old carbon to give more reliable ages, com-

pared with bulk sample dating techniques. Many previous

studies have indicated that pollen extraction from sediments is

able to givemore reliable stratigraphic ages (Zhou et al. 1997,

2005). All dates were calibrated to calendar years before

present (0 = AD 1950) using CALIB Rev. 6.0.1 with the

IntCal 09 calibration data set (Stuiver and Peimer 1993; Stu-

iver et al. 1998; Reimer et al. 2009). The age-depthmodelwas

established by fitting spline functions to the age control points

using the Bacon model (Blaauw 2010); this task was carried

out using the statistical software package R.

Pollen analysis

Forty-five samples were taken at 2 cm intervals for pollen

analysis. Each sample contained 1–2 cm3 of peat material.

Sample preparation followed the standard procedure, using

10 % HCl to remove carbonate and 10 % KOH to remove

organic matter. Finally, pollen and charcoal were extracted

using a heavy liquid (2.1 g ml-1) composed of HBr, Zn

and KI (500 ml: 120 g: 510 g) and sieved on a 7 lm mesh

screen to obtain a higher concentration of pollen grains

(Nakagawa et al. 1998). The concentrate was mounted in

glycerol gel and Lycopodium tablets (27,637 grains/tablet)

were added to each sample to enable calculation of the

pollen concentration (Maher 1981). Each pollen sample

was counted under a light microscope at 9400 magnifi-

cation and 1,0009 was used for critical identifications.

Pollen counts were usually[500 terrestrial pollen grains.

Pollen identification was carried out using published pollen

atlases by Wang et al. (1995) and Xi and Ning (1994), as

well as the modern pollen collections of the laboratory.

Pollen percentages of trees, shrubs and dry land herbs were

calculated based on their pollen sums. The relative pollen

percentages of wetland herbs and fern spores were then

established from the sums of all counted palynomorphs.

The pollen diagram was plotted using Tilia 1.7.16 (Grimm

2011) and pollen assemblage zones were provided by

stratigraphically constrained cluster analysis (CONISS)

(Grimm 2011).

The charcoal record was prepared from pollen-slide

charcoal counting in widely spaced profile samples. Micro-

charcoals larger than 50 lm were counted in order to cal-

culate their accumulation rates, as they may be used to

reconstruct fire history, to indicate palaeovegetational and

palaeoenvironmental changes and to mark any significant

fire event in the study region (Patterson et al. 1987; Lv

et al. 2002).

Geochemical analysis

The degree of peat humification, as indicated by fluctua-

tions in absorbance, was determined following the alkaline

extraction method described by Blackford and Chambers

(1993). The analyses were performed using a personal

computer-based 2102 UV–Visible spectrophotometer in

the Soil Laboratory of the School of Geographic and

Oceanographic Sciences, Nanjing University, China. The

sediment core was sampled at 1 cm intervals and a total of

85 samples, each weighing 0.1 g, were used for the

humification analysis.

Eighty-four subsamples weighing 2 g each were taken

from depths of 3–86 cm in the sediment core for loss-on-

ignition (LOI) analysis. Sequential combustion at 550 �C
was used to estimate the organicmatter content (Dean 1974).

Data analysis

Numerical analyses were conducted using only those taxa

that occurred in at least three samples with a percentage of

Table 1 AMS 14C dates from DYS2 (this study) and the Lianhuachi site (Qiu 2006) from Fujian province, China

Lab. code Sample ID Depth 
(cm) 

Material dated 14C age 
(BP) 

Age cal BP
(1 σ) 

Probability Sedimentation 
(mm/a) 

Reference 

       0.363  
Beta-371397 DYSII-7 7 Pollen (extracted) 170±30 193 (168-218) 0.513 This paper
       0.449  
GZ4165 DYSII-57 57 Peat 60-180μm 1,405±20 1,307 (1,294-1,320) 1  This paper 
       0.080  
GZ4166 DYSII-77 77 Peat 60-180μm 3,490±30 3,756 (3,736-3,777) 0.425  This paper 
       3.71  
GZ4167 DYSII-100 100 Plant macrofossils 3,575±25 3,869 (3,840-3,898) 1  This paper 
       0.322  
Beta-57823 CS90-4-8 35-40 Peat 1,240±100 1,168±100   Qiu 2006 
       0.0617  
Beta-47267 CS90-4-112 50-60 Peat 3,240±80 3,462±80   Qiu 2006 
       0.0763  
Beta-37536 WS-1 90 Wood 3,930±60 4,406±60   Qiu 2006 
Beta, dates from Beta Analytic, Miami, USA; GZ, dates from AMS Dating Laboratory at Beijing University
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[1 %. A total of 30 pollen taxa were used and the analysis

was carried out using CANOCO v.4.52 (Ter Braak and

Smilauer 2003). Detrended correspondence analysis (DCA)

was used to determine whether linear or unimodal based

techniques should be employed in the subsequent ordina-

tion analysis. The length of the gradient was 1.363 standard

deviation (SD) units, which was less than 3. Therefore, a

principal component analysis (PCA) (Birks and Gordon

1985; Birks 1998) was performed to analyze the pollen

assemblages using inter-species correlations and square-

root transformations of pollen percentages.

Results

Lithology and radiocarbon dates

Four stratigraphic units are identified, and are presented in

Fig. 3. Unit 1 (uppermost 32 cm) consists of yellow–brown

peat, with an organic matter content of 24.28 %. Unit 2

(32–61 cm) is distinguished by its black colour and high

organic matter content of around 40 %; this banded peat

section is dark with highly humified peat layers (Fig. 3).

Unit 3 (61–90 cm) consists of brown peat with an organic

matter content of 22.92 %. Finally, Unit 4 (90–100 cm)

consists of sand and gravel with the lowest amount of

organic matter.

The four calculated dates (in calendar ages) were used to

construct the age-depth model, which was established by

fitting spline functions to the age control points using the

Bacon model (Blaauw 2010) (Fig. 3). This chronology

indicates that the peat profile spans the last 4,460 years.

Therefore, the temporal sampling resolution for the litho-

logical analysis is 45 years for each contiguous 1 cm

interval, while each centimetre represents 90 years of the

fossil pollen record. Ages based on this model are used in

the discussion section below. The lower unit (77–100 cm)

was found to have a sedimentation rate of 3.71 mm a-1;

the upper units (0–7, 7–57 cm) had similar rates of

0.363 mm a-1 and 0.449 mm a-1, respectively. However,

the sedimentation rate of the middle unit was considerably

lower, at 0.080 mm a-1. Comparing the lithologies and

peat accumulation rates at our study site with those at the

nearby Lianhuachi site (25�4001500N, 118�1101200E;
1,550 m a.s.l.) reported by Qiu (2006), we can see that the

peat depths in both areas are the same (approximately

90–100 cm), and that the accumulation rates in the upper

units (approximately 0–60 cm) of the two sites are high,

while those of the lower units are low (Table 1). The

correspondence of our results with those from pollen

stratigraphy at Lianhuachi confirms the reliability of the

chronology constructed in this study.

Fossil pollen data

A total of 96 pollen and spore types were identified in the 45

samples, including 57 trees and shrubs, 33 herbs, six ferns

and three types of moss and algal palynomorphs.

The identified pollen taxa spanned coniferous, tropical,

subtropical and temperate vegetation types. The coniferous

taxa mainly included Pinus, Picea, Tsuga, Podocarpaceae

and Taxodiaceae. The tropical and subtropical broad-leaved

taxa mainly include Castanopsis (including Lithocarpus),

Ilex and evergreen Quercus (including Cyclobalanopsis).

The temperate broad-leaved taxa include Alnus, Carpinus,

Betula, Pterocarya, Fagus, deciduous Quercus, Ericaceae,

Corylus, Carya, Juglans, Acer, Tilia and Rosaceae. The

main dry land herbaceous taxa are Poaceae, Asteraceae,

Artemisia, Lamiaceae, Humulus, Brassicaceae, Fabaceae,

Apiaceae, Thalictrum and Campanulaceae. The main

wetland herbs are Cyperaceae, Liliaceae, Polygonum,

Ranunculaceae, Potamogetonaceae,Myriophyllum and Typha.

The identified spores mainly consist of Polypodiaceae,

Hymenophyllaceae, Pteris, Selaginella, Parkeriaceae and

trilete spores. Two pollen zones, each with two subzones,

were identified (Figs. 4, 5).

Zone 1 (91–48 cm depth; 4,350–1,000 cal BP): pollen

percentages are dominated by evergreen Quercus (ranging

Fig. 3 Age/depth model based on four calibrated AMS 14C dates (see

Table 1 for details). The chronology for the section 0–7 cm is

difficult to read in the chronology curve, but consisted of a linear

function for this short section
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from 9.7 to 26.9 %, mean of 19.7 %) and Castanopsis

(mean of 2.3 %), with some Castanea, Liquidambar, Ilex

and Ericaceae. The pollen percentage of dry land herbs

fluctuates between 37.9 and 66.2 % with Poaceae as the

major taxon (mean 38.8 %). In addition, there is a rela-

tively high percentage of wetland herbs (mean 7.3 %) and a

low percentage of fern spores (mean 8.6 %). The pollen

accumulation rate (PAR) fluctuates between 632 and

138,420 grains cm-2 a-1. This zone is characterized by the

highest abundance of evergreen Quercus but the lowest

abundance of herbaceous pollen. The zone can be divided

into two subzones: Subzone 1-1 (91–62 cm depth;

4,350–1,550 cal BP) contains the highest percentage of

evergreen Quercus and the lowest Poaceae percentage

within the entire profile. In addition, the percentages of

Castanopsis, Castanea, Liquidambar, Ilex and Cyperaceae

are relatively high, whereas the percentages of Asteraceae

and Artemisia are low. The PAR is low, at 35,093 grains

cm-2 a-1. Subzone 1-2 (62–48 cm depth, 1,550–1,000 cal

BP) is marked by a sharp increase in Poaceae and a slight

decrease in evergreen Quercus. However, pollen assem-

blages are still dominated by evergreen Quercus. The PAR

is 37,770 grains cm-2 a-1.

Zone 2 (48–0 cm depth; 1,000–0 cal BP): This zone is

characterized by the highest percentage of dry land herbs

(mean 78.78 %); however, it has the lowest percentage and

Fig. 4 Pollen percentage diagram of the DYS2 profile with the 28

main taxa and the four main pollen zones obtained from a constrained

cluster analysis. The pollen sum used is ‘‘trees and shrubs (AP) ? dry

land herbs (NAP)’’, except for wetland herbs and ferns, which use the

pollen sum ‘‘trees and shrubs ? dry land herbs ? wetland herbs ? -

ferns’’; shadow is 95 magnification

Fig. 5 PARs from the DYS2 profile with the 28 main taxa and the four main pollen zones obtained from a constrained cluster analysis; shadow

is 95 magnification
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PAR of trees and shrubs (mean 21.22 %, 4,837 grains

cm-2 a-1). In addition, there is a relatively low percentage

of wetland herbs (mean 4.4 %) and a high percentage of

fern spores (mean 22 %). Poaceae, Pinus and Asteraceae

increase markedly, while evergreen Quercus shows a

notable decrease. This zone can also be divided into two

subzones. Subzone 2-1 (48–27 cm depth; 1,000–550 cal

BP) is marked by the highest percentage of dry land herbs

and the lowest percentage and PAR of trees and shrubs.

Pinus, Poaceae and Asteraceae increase markedly, while

evergreen Quercus, Castanopsis, Castanea, Liquidambar

and Ilex decrease considerably. There is a relatively low

content of wetland herbs and a high content of trilete

spores. Subzone 2-2 (27–0 cm depth; 550–0 cal BP) also

contains a high percentage and high PAR of dry land herbs

and a low percentage and PAR of trees and shrubs. The

percentages and PARs of Poaceae, Pinus and Asteraceae

are high, but slightly less than in Subzone 2-1, whereas the

percentages and PARs of evergreen Quercus, Castanopsis,

Castanea, Liquidambar and Ilex are low. There is a rela-

tively low content of wetland herbs and a high content of

trilete spores.

PCA results

PCA results based on pollen samples and pollen taxa reflect

the characteristics of the pollen assemblages and effec-

tively summarize the main vegetation changes (Fig. 6).

Fig. 6 PCA results for fossil

pollen data from DYS2 (Campa:

Campanulaceae; Miche:

Michelia; Poace: Poaceae;

Ligus: Ligustrum; Myrio:

Myriophyllum; Apiac:

Apiaceae; Arter: Artemisia;

Potam: Potamogetonaceae;

Aster: Asteraceae; Ranun:

Ranunculaceae; Carpi:

Carpinus; Brass: Brassicaceae;

Reere: Reevesia; Taxod:

Taxodiaceae; Liqui:

Liquidambar; E-Quer:

evergreen Quercus; Casis:

Castanopsis; Casta: Castanea;

Erica: Ericaceae; Lamia:

Lamiaceae; Sympl: Symplocos;

Rosac: Rosaceae; Cyper:

Cyperaceae)
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The first two principal components (Axis 1 and Axis 2)

capture 83.8 and 6.5 % of the total variance in the data set.

PCA Axis 1 (PCA-1) mainly reflects relative changes

between warm temperature taxa such as evergreen Quer-

cus, Ilex, Fagus and Tsuga, as shown on the right side of

Fig. 6a, and cold-tolerant taxa such as Poaceae and

Asteraceae, as shown on the left side of the figure. PCA

Axis 2 (PCA-2) separates the mesic taxa such as Ranun-

culaceae from the drought-resistant ones such as Artemisia.

Based on the ecological affinities of individual taxa, it is

evident that Axis 1 therefore represents changes in summer

temperature, because pollen assemblages typically reflect

vegetation conditions during the flowering seasons. In

contrast, Axis 2 represents changes in effective moisture.

Four clusters can be identified on the basis of the PCA

scores along the first two axes, as shown in Fig. 6b; these

correspond to the pollen assemblage zones defined by

CONISS (Grimm 2011) (Figs. 4, 5).

Humification and LOI

Figure 7 shows that both the mean degree of humification

(17.52 %) and LOI (26.45 %) are low during the period

4,350–1,000 cal BP. Organic matter varies between 25 and

41.18 % during 1,000–550 cal BP. After 550 cal BP, the

mean LOI is relatively lower (22.72 %). Additionally, the

degree of humification shows a decreasing trend from

1,000 cal BP to 550 cal BP, with the lowest mean value

(10.2 %) found between 550 cal BP and the present.

Discussion

Vegetation history and climate since 4,350 cal BP

Knowledge of the size of the pollen catchment is essential

for interpreting pollen assemblages in terms of pollen

source areas. Typically, the boundary for local pollen

ranges between 20 and 30 m within the sedimentary basin.

The presence of local pollen is therefore a reflection of the

surrounding vegetation and has important implications for

the reconstruction and succession of local vegetation

(Bradshaw 1981; Jacobson and Bradshaw 1981; Prentice

1985; Xu and Zhang 2013). In contrast, regional pollen

refers to that pollen which covers a range of 100–2,000 m

within the sedimentary basin and is important for studies

into vegetation reconstruction and climate change (Nielsen

and Sugita 2005; Wang and Herzschuh 2011; Xu and

Zhang 2013). The peat bog investigated in this study is

approximately 100 m wide and 200 m long, and has

Fig. 7 Comparison of multiproxy data in the DYS2 profile and

pollen percentages (trees ? shrubs) from Lake Huguangyan Maar

(Wang et al. 2007), of evergreen Quercus from the Pingnan peat (Yue

et al. 2012) and magnetic susceptibility from Lake Huguangyan Maar

(Yancheva et al. 2007)
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accumulated a 1.0 m thick peat layer. As this peatland is

enclosed without the presence of a river, we can consider

the sources of pollen to be both local and regional. This

allows a high resolution reconstruction of vegetation his-

tory and climate changes in the Daiyun Mountain region

during the late Holocene.

4,350 to 1,550 cal BP

This pollen zone was characterized by high pollen per-

centages of wetland herbs, trees and shrubs, as well as a

small pollen percentage of dry land herbs. Taxa typical of

the warm subtropics, such as evergreen Quercus, Castanea,

Castanopsis, Ilex and Liquidambar, dominate this zone.

Poaceae and Lamiaceae are the major contributors to the

dry land herbs, while Cyperaceae and Ranunculaceae are

the major wetland herbs. The vegetation mainly comprised

evergreen forests dominated by broad-leaved trees, indi-

cating a warm and wet climate at this time. Previous

studies have also found high pollen percentages of Cas-

tanopsis and evergreen Quercus in the Fuzhou basin (Yue

et al. 2014) and the Pingnan peat (Yue et al. 2012) during

4,000–1,000 cal BP, supporting the interpretation of a warm

climate during this period. Additionally, results from Lake

Huguangyan Maar (Fig. 7; Wang et al. 2007; Yancheva

et al. 2007; Wu et al. 2012), indicating low magnetic

susceptibility (also see Fig. 7) and high total organic car-

bon, support the interpretation of a warm climate during

4,350–1,550 cal BP.

1,550 to 1,000 cal BP

The pollen diagram shows a decrease in the pollen per-

centage from trees and shrubs, but increased pollen per-

centage and PAR from dry land herbs. Evergreen Quercus,

Castanopsis, Castanea, Ilex and Liquidambar decline sig-

nificantly, while Poaceae and Asteraceae increase. Addi-

tionally, wetland herbs, predominantly Cyperaceae and

Ranunculaceae, show a significant decline. The vegetation

at this time was therefore dominated by evergreen forests,

suggesting a warm and wet climate, similar to the previous

stage. Wang et al. (2007) also reported high relative pollen

abundance of trees and shrubs from Lake Huguangyan

Maar in southern subtropical China, while Yancheva et al.

(2007) reported low magnetic susceptibility in the same

lake. Both of these results support our interpretation of a

warm and wet climate during this period.

1,000 to 550 cal BP

This zone is characterized by a high pollen percentage and

PAR of dry land herbs, and low pollen percentages and

PARs of trees, shrubs and wetland herbs. The vegetation

mainly comprised degraded forests at this time, with a

sharp decline seen in trees and shrubs, corresponding to an

abundance of well-developed herbs, indicating ecological

succession due to disturbance of the vegetation. A signifi-

cant change in the vegetation occurred after 1,000 cal BP,

with a sharp reduction of evergreen trees including Quer-

cus, Castanopsis, Castanea, Ilex and Liquidambar, and an

increase in Poaceae and Asteraceae. LOI, absorbance and

the ratio of evergreen to deciduous groups are high,

whereas the wetland herbs are scarce during this period,

suggesting that a cool and dry climate prevailed in the

Daiyun Mountain region at this time (Fig. 7). Most of the

late Holocene pollen records from southeastern China

consistently show a gradual decline in evergreen forests,

such as those dominated by evergreen Quercus, after

1,000 cal BP (Liu and Qiu 1994; Qiu 2006; Yue et al.

2014). It is believed that the climate in southeastern China

became cooler during the late Holocene, probably associ-

ated with a weakening of the summer monsoon.

550 cal BP to present

The pollen percentage and PAR of trees and shrubs are

low, whereas dry land herbs, largely composed of Poaceae

and Asteraceae, are high at this time. The vegetation had

become increasingly degraded, as indicated by the sharply

decreased pollen percentage and PAR from trees and

shrubs and plentiful pollen from herbs. LOI, absorbance

and the ratio of evergreen to deciduous groups are low

whereas wetland herbs are abundant (Fig. 7), suggesting a

wet and cold climate since 550 cal BP. A previous study by

Wang et al. (2007) reported a similar low abundance of tree

and shrub pollen and Yancheva et al. (2007) documented

low magnetic susceptibility from Lake Huguangyan Maar

in south China. Additionally, a number of pollen records

also show a gradual decline in trees, especially evergreen

forests, since 550 cal BP in Fujian Province (Liu and Qiu

1994; Qiu 2006; Yue et al. 2014). All of these studies

suggest a similar climate to that inferred from our results.

Overall, vegetation was dominated by evergreen forests

mainly composed of broadleaf trees during 4,350–1,000 cal

BP, suggesting a warm climate at this time. The pollen per-

centage and PAR of trees and shrubs sharply decrease after

1,000 cal BP, indicating a cooling climate. Pollen records

from the SZY core in Fujian also show an abrupt decrease in

evergreen broadleaved tree pollen around 2,600 cal BP,

indicating a cooling climate, driven by the weakening East

Asian monsoon (Yue et al. 2012). We find that most of the

late Holocene pollen records consistently show a gradual

decline in evergreen forests, such as those dominated by

evergreen Quercus, after 2,000 cal BP (Liu and Qiu 1994;

Qiu 2006; Yue et al. 2014). It is therefore believed that the
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climate in southern China became cooler during the late

Holocene, probably associated with a weakening summer

monsoon. Oxygen isotopes measured in Dongge Cave

exhibit negative values, indicating a weak Asian monsoon

during the late Holocene (Wang et al. 2005). Similar pat-

terns in oxygen isotope values have also been reported from

Shanbao Cave further north (Shao et al. 2006; Wang et al.

2008). Together, these results support our interpretations of

the varying climate conditions in our study area during the

late Holocene. In addition to this, Xu et al. (2013) suggested

that human activities have influenced the vegetation changes

in the mountainous regions of Fujian Province of south-

eastern China during the last 1,300 years. In the section

below, we further investigate human impacts on vegetation

and the environment since 1,000 cal BP.

Climate events: the warm period from AD 670 to 960,

the MWP and the LIA

In our study, we suggest that the chronology may not be

sufficiently robust for discussion of climate events, as they

have not been accurately dated. However, by comparing

the lithologies and peat accumulation rates from our study

site with those from the nearby Lianhuachi site

(25�4001500N, 118�1101200E; 1,550 m a.s.l.) from Qiu

(2006), we can be more certain of the reliability of the

chronology constructed in this study. Thus, we can identify

the timings of climate events with some degree of uncer-

tainty through the reconstruction of late Holocene vegeta-

tion and climate change, and therefore consider that the

timings of climate events described here are reliable.

Both LOI and humification are good proxies for past

climate and environment conditions (Aaby 1976; Zhang

et al. 1998; Borgmark and Schoning 2006; Daley and

Barber 2012). High LOI and humification suggest a dry

climate, while low LOI and humification indicate a wet

climate (Aaby 1976; Zhang et al. 1998; Zhou et al. 2004;

Borgmark 2005; Borgmark and Schoning 2006; Ma et al.

2009). In this study, we analyzed the peat humification,

LOI, pollen accumulation rates and the ratio of evergreen

groups to deciduous groups in our study area, and com-

pared the results with the winter half-year mean tempera-

ture change over the last 2,000 years in eastern China (Ge

et al. 2002), in addition to the d18O record from Wanxiang

Cave (Fig. 8; Zhang et al. 2008). While the differences

between summer temperatures in the north and south of

China are small, a significant difference can be seen in

winter temperatures. As a result, temperature changes

caused by varying solar radiation are more obvious during

the winter under the background of climate change. Thus,

we consider it reasonable to compare our data to the tem-

perature changes in the winter half-years. Overall, the

changes recorded in the six curves are largely consistent,

since two warm periods and a cold period can be identified.

For AD 670–960, the pollen accumulation rates peak, sug-

gesting a warm period, which can be confirmed by the

winter half-year mean temperature record in eastern China.

Additional evidence in the form of negative d18O at

Wanxiang Cave and low LOI and absorbance further

suggest that the climate was warm and wet from AD 670 to

960. This stage corresponds to the third warm period (AD

600–1000) in the climate evolution of eastern China over

the past 5,000 years as suggested by Zhu (1973). However,

the Daiyun Mountain peat records reveal that this warm

period began later and ended earlier than the times estab-

lished by Zhu (1973) and that the event was shorter and

cooler than the medieval warm period (MWP). We suggest

that the area was possibly cooled by the winter monsoon.

Many studies have attempted to reconstruct the climate

changes during theMWP, however the beginning and end of

this event remain controversial (Adhikari and Kumon 2001;

Mann and Jones 2003; Yang et al. 2003; Driese et al. 2004;

Pla and Catalan 2005; Matul et al. 2007; Yang et al. 2007).

Nevertheless, the period from AD 800 to 1400 is generally

considered to cover the MWP time span (Zuo and Jin 2009;

Wang 2010). Thus, the climate fluctuations during theMWP

can be recognized in our peat record. Based on our results,

the MWP occurred around AD 1050–1520, with relatively a

dry and warm climate compared with the warm period from

AD 670 to 960. The ratio of evergreen to deciduous pollenwas

also higher during the MWP, suggesting a warmer climate,

while the higher absorbance and LOI indicate dry conditions

at this time. The evergreen to deciduous pollen ratiowas high

during AD 1060–1280 and 1430–1520, indicating that the

climate was relatively warm during these two stages; these

correspond to the two temperature peaks, with a 150 year

long relatively cool period between. This pattern is consid-

ered broadly consistent with the main features of the climate

fluctuations during the MWP.

From AD 1580 to 1850, both the evergreen to deciduous

pollen ratio and pollen accumulation rates are low, corre-

sponding to the low temperatures of the reconstructed

winter half-year temperature record in eastern China. This

suggests that the climate during this period, which corre-

sponds to the LIA, was cold. In addition, low LOI and

absorbance and negative d18O values from Wanxiang Cave

suggest a wet climate at this time. As such, the LIA may

have corresponded to the cold periods of the Ming and

Qing dynasties (Zhu 1973).

Human impact on vegetation and environment

since 1,000 cal BP

Since 1,000 cal BP, the abundance of evergreen trees such

as Castanopsis, Ilex and evergreen Quercus, and deciduous

broad-leaf trees and shrubs such as Rosaceae and
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Ericaceae, decreased in our pollen data. Both human

activities and climate change could have been the cause of

such substantial changes in trees and shrubs. Human

activities tend to result in the decline of selective woody

plant taxa in small patches in the same region (Li et al.

2008). In contrast, a reduction of climate-sensitive trees

and shrubs over large areas tends to be driven by climatic

change (Li et al. 2008). In our study area, therefore, the

declining numbers of evergreen trees and deciduous

broadleaved trees and shrubs may have been caused by the

use of these as building materials or fuel. In addition, our

data suggest that secondary pine forests and grasses

increased significantly at the same time, suggesting the

beginning of farming in the region. According to Liu and

Qiu (1994) and Qiu (2006), who have also reconstructed

vegetation change in Fujian Province, the collapse of pri-

meval vegetation communities occurred around 1,200 cal

BP. This was represented by an abrupt decline in Cas-

tanopsis and evergreen Quercus pollen and a noticeable

increase in Pinus and Poaceae pollen percentages. Addi-

tionally, the pollen record from Pingnan peat (Xu et al.

2013) also indicated a gradual decrease in Castanopsis and

evergreen Quercus pollen, accompanied by a continuous

increase in Poaceae pollen since approximately 800 cal BP;

this pattern may be interpreted as reflecting the spread of

rice cultivation. A large number of pollen records from

lake sediments and soil profiles are also characterized by a

reduction in arboreal pollen, such as Pinus, evergreen

Quercus and Cyclobalanopsis, in parallel with a rise in

herbaceous pollen, such as Artemisia, Poaceae and

Chenopodiaceae, as a result of human influence during the

late Holocene in east-central, southern, and northeastern

China (Tarasov et al. 2006; Chen et al. 2009; Cao et al.

2010; Li et al. 2014).

A high concentration of charcoal usually indicates

abundant fire activity (Chen 1990) and previous studies

have suggested that the concentration of charcoal

([50 lm) is a convincing indicator of regional or local fire

Fig. 8 Overview

chart illustrating a peat

humification in the DYS2

profile, b the loss on ignition in

the DYS2 profile, c PARs of the

DYS2 profile, d the ratio of

evergreen groups to deciduous

groups, e temperature changes

of winter half-years in eastern

China (Ge et al. 2002), f d18O
record from Wanxiang Cave

(Zhang et al. 2008)
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activity (Minckley et al. 2007; Sadori and Giardini 2007;

Egli et al. 2012; Zhao et al. 2012). Combined with pollen

data, charcoal can be used to reconstruct fire history,

palaeovegetation and palaeoenvironmental changes (Pat-

terson et al. 1987; Lv et al. 2002). In this context, charcoal

can not only indicate the long-term fire regime and climate

changes, but also the dynamic intensity of human activities

(Jiang et al. 2008; Marquer et al. 2008). The pollen per-

centages of dry land herbs, trees and shrubs, and Poaceae

were compared with charcoal ([50 lm) accumulation rates

and d18O from the Wanxiang cave (Fig. 9; Zhang et al.

2008). From this, we found that the charcoal accumulation

rates can precisely indicate the frequency and intensity of

fires, which are closely linked with human activities in our

study area. Figure 8 shows positive d18O, suggesting a

weaker monsoon since 1,000 cal BP, corresponding to a low

pollen percentage of trees and shrubs. Moreover, Poaceae

pollen and the charcoal accumulation rates ([50 lm)

increase and reach their peaks during this period, which

suggests increased human activities since 1,000 cal BP.

The population of Quanzhou City, which falls within our

broad study area, increased rapidly during the Sui and Tang

dynasties (Chen and Chen 2011). According to historical

documents, many people moved to Quanzhou in the early

Tang dynasty, resulting in a great expansion of farming in

the surrounding regions (Chen and Chen 2011). The

population doubled during the Song and Yuan dynasties

(Chen and Chen 2011) and the increasing population had

major impacts on the vegetation and the environment.

The natural vegetation in our study area is mostly

coniferous and broadleaved mixed forest and broadleaved

forest with some pine forest. It is known that the forest of

Dehua County became an important source of fuel for the

development of the ceramics industry from the Song

dynasty onwards (Chen and Chen 2011). Increasing char-

coal accumulation rate may therefore be linked to the

clearance of trees for fuel. Liu and Qiu (1994) reported

similar vegetation changes and speculated that human

activities were the cause of vegetation degradation. Addi-

tionally, several environmental archaeology studies into the

Fujian shell mound have suggested that people abandoned

aquatic resources in the region after 2,000 cal BP, due to the

expansion of paddy rice culture (Cai 1998; Qu and Chen

2010). Therefore, the sharp decrease of woody plants

identified here may conceivably be linked to human

activities.

Conclusions

In this study, a 4,350 year history of vegetation and climate

changes was reconstructed based on pollen, LOI and

humification records in peat sediments. We conclude:

Fig. 9 Map showing changes in dry land herbs, trees and shrubs, Poaceae pollen, charcoal concentration ([50 lm), and the d18O record from

Dongge Cave (Wang et al. 2005) during the last 4,350 years (red shading highlights the influence of human activities)
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1. Vegetation was dominated by evergreen forests,

mainly composed of broadleaved trees during the

period 4,350–1,000 cal BP, indicating a warm and wet

climate. From 1,000 to 550 cal BP, a cool but dry

climate can be inferred from the decreased pollen

percentages and PARs of trees, shrubs and wetland

herbs. The pollen percentage and PAR of dry land

herbs, as well as LOI, increased between 1,000 and

550 cal BP. Finally, a higher pollen abundance of dry

land and wetland herbs, along with low pollen

percentage and PAR of trees and shrubs, low

absorbance and LOI, suggest a cooler but wetter

climate after 550 cal BP. In the future, further analysis

of modern pollen assemblages is necessary, to permit a

quantitative reconstruction of palaeoclimate based on

the pollen database of East Asia.

2. Climate events of the warm period from AD 670 to 960,

the MWP (AD 1050–1520) and the LIA (AD 1580–1850)

can be identified from our records, with the climate of

each period being characteristically warm and wet,

warm and dry, and cold and wet, respectively. In this

study, the chronology of these climate events may not

be adequately robust, as there are as yet no accurate

dates for them. However, we can identify the period in

which the climate events took place from reconstruc-

tions of late Holocene vegetation and climate change.

3. Human activities may have had a very significant

impact on the natural vegetation during the last 1 ka.

Pollen and charcoal signals indicate strong human

influence since 1,000 cal BP, which may be linked to

the development of the porcelain industry in Dehua

County and the rapidly increasing population within

Quanzhou City in our study region.
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