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Summary. We use a spectral method to solve numerically two nonlocal, nonlinear,
dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long
Wave equations. The proposed numerical method is able to capture well the dynamics
of the solutions; we use it to investigate the behaviour of solitary wave solutions of the
equations with special attention to those, among the properties usually connected with
integrability, for which there is at present no analytic proof. Thus we study in particular
the resolution property of arbitrary initial profiles into sequences of solitary waves for
both equations and clean interaction of Benjamin-Ono solitary waves. We also verify
numerically that the behaviour of the solution of the Intermediate Long Wave equation
as the model parameter tends to the infinite depth limit is the one predicted by the theory.
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1. Introduction

In this paper we shall consider two model equations that describe the one-way propa-
gation of long waves in weakly nonlinear, dispersive media. The equations are of the
form

ut + ux + uux + Aux = 0, (1.1)

whereu is a real-valued function of(x, t) ∈ (−∞,∞)×[0,∞), andA is a linear operator
whose action onux models the dispersive effects. Perhaps the best known example of an
equation of the type (1.1) is the Korteweg-deVries (KdV) equation, which was originally
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derived a century ago as a model of surface water waves that propagate in one direction
along a horizontal channel and that have small amplitude and long wavelength relative
to the depth of the water in the channel.

The KdV equation is the PDE that corresponds to choosingA as the differential
operatorA f (x) = fxx(x) in (1.1). Other choices include appropriatenonlocal (inte-
grodifferential) operators, whose symbolα(ξ) (defined byFA f (ξ) = α(ξ)F f (ξ), F
the Fourier transform) is no longer a polynomial inξ ; the form ofα(ξ) can be chosen to
model particular dispersion relations.

The specific equations of the type (1.1) that we shall consider in this paper, namely
the Benjamin-Ono (BO) and the Intermediate Long Wave (ILW) equations, have such
nonlocal dispersive terms. The BO equation [8], [29], was derived by Benjamin as a
model for internal waves in an incompressible stratified fluid with a density that varies
only in a layer (pycnocline) whose thickness is much smaller than the total depth. (The
wavelength of these waves is large with respect to the thickness of the layer.) We shall
write it in the form

ut + ux + uux + Huxx = 0, (1.2)

whereH is the Hilbert transform defined by the principal value integral

H f (x) = − 1

π
p.v.

∫ ∞
−∞

f (y)

x − y
dy.

Existence and uniqueness of global solutions of the initial-value problem for the BO
equation have been established by Iorio [17] and by Abdelouhab et al. [1]. In the latter
reference, the continuous dependence of the solution on the initial data is also established.

The ILW equation [19], [22], is also a model for the propagation of long internal waves
in an incompressible, stratified fluid, whose density varies again in a thin pycnocline
located, for example, between a heavier and a lighter layer. The form of the ILW that
we will use is that of [1]; it corresponds to an ILW derived by Kubota et al. [22], when
the pycnocline is located at the bottom, below a layer of lighter fluid whose thickness is
proportional to a positive parameterδ. In this form, the equation is

ut +
(

1+ 1

δ

)
ux + uux + Kuxx = 0, (1.3)

whereK is the integral operator

K f (x) = − 1

2δ
p.v.

∫ ∞
−∞

coth
π(x − y)

2δ
f (y)dy.

The global well-posedness of the initial-value problem for the ILW equation has been
established in [1]; there, it is also shown that asδ → ∞, its solutions converge, in an
appropriate sense, to corresponding solutions of the BO equation. In addition, it is shown
in [1] that suitably scaled solutions of the ILW converge asδ → 0 to solutions of the
KdV equation; see also [34] for a discussion of the relevant physical modelling.

These long wave model equations share with the KdV and other nonlinear dispersive
wave equations the remarkable property that their nonlinear and dispersive terms are
balanced in a manner that allows the existence of solitary wave solutions. Formulae
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for such solutions were found in [8] and [19] for the BO and the ILW, respectively. The
defining property of these solitary waves is that they are exceptionally stable: They travel
at constant speed for long distances without undergoing any visible alterations in shape.
This was already observed by Benjamin in his experiment with internal waves reported
in [8]; we refer the reader to the bibliography of [6] for other references to existing
experimental evidence. Orbital stability for these solitary waves has been rigorously
established for the BO in [9] and [6], and for the ILW in [6] and [5]. It should also be
noted that an added feature attesting to the stability of the solitary waves is that any
initial waveform carrying sufficient mass is eventually resolved into a number of solitary
waves plus a trailing, oscillatory, dispersive tail. This property, which the BO and ILW
share of course with other nonlinear dispersive wave equations, has also been observed
in experiments and in computations, cf. e.g. [22], [26], and Section 5 of the paper at
hand.

It is well known that when two solitary wave solutions of a class of equations including
KdV interact with each other, they emerge from the interaction unchanged in shape and
speed (modulo possible phase shifts). Moreover this interaction does not introduce any
other alteration in the surrounding environment of the waves, for example in the form of
a dispersive tail. When solitary wave solutions of a particular equation have this property
of “clean interaction”, the underlying nonlinear equation is calledintegrable, and the
solitary wavessolitons. Thus, clean interaction observed e.g. beyond numerical doubt in
a computational experiment may serve as an indication of possible integrability.

Integrability is a very special and important property; cf. [4], [28] for general dis-
cussions of its manifestation and of solitons. An integrable equation admits an infinite
number of conservation laws and it can be written as the compatibility condition of two
linear equations, called the Lax pair. This last property is the basis of the spectral analysis
of these equations and for the definition of inverse scattering transformations [11].

The best known integrable PDE is the KdV equation. Indeed, KdV was the first
equation for which spectral transform techniques yielded a complete analysis, started in
[16], of all the features of integrability. Recently, a new approach to spectral analysis
has widened the wealth of results for local integrable equations [13], [14]. The BO
and ILW equations are known to be integrable in some sense, cf. e.g. [2], [21], but the
nonlocal character of their dispersive terms makes the analytical investigation of these
equations much more difficult and the results so far obtained are not as satisfactory as in
the case of integrable equations with local terms; for example, the integrability results
derived in [2] are formal. Rigorous results concerning the inverse scattering transform
method for BO require a certain small norm assumption that excludes solitary waves
[12]. Recently, some progress has been made [20] which seems to indicate that the small
norm assumption can be dropped. At present, though, many properties of solitary wave
solutions, among which clean interaction and asymptotic properties such as the number
of solitons emerging from a given initial profile, have not yet been established rigorously.
The situation for the ILW equation is similar.

For the above reasons, it is especially important to have a reliable and efficient nu-
merical method to study these nonlocal integrable equations and the behaviour of their
solutions; although the properties of solitary wave solutions exhibited by local inte-
grable models are expected to hold in these cases as well, there is at present no proof that
they do.
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The preceding discussion of the equations under consideration and their solitary
wave solutions properly applies to the initial-value problem, i.e., the problem of finding
solutions of (1.2) or (1.3) forx ∈ R and t > 0, given appropriate initial conditions
u(x,0) defined on the real line. For the purposes of solving them numerically, we shall
pose the equations on finitex-intervals [−L , L], and assume that the initial conditions,
and, for eacht > 0, the solutionsu(., t), are smooth periodic functions of period 2L.
In the periodic case the dispersive operatorsH andK have different representations (cf.
Section 2 and [1], [3]), which reduce to their definitions on the real line asL → ∞.
In addition, the real line formulae reduce to the periodic ones when one appliesH and
K formally to periodic functions. We note that the associated initial–value and periodic
boundary–value problems have been proved in [1] to be globally well-posed.

In this paper we shall approximate numerically, by a periodic code, solutions of the
initial-value problem that decay to zero as|x| → ∞. Such solutions include the solitary
waves of BO and ILW on the real line and the byproducts of their interactions. It is
known that solitary waves decay quadratically inx for the BO, and exponentially for
the ILW (cf. Section 4). Hence, by taking the interval [−L , L] large enough in each
numerical experiment, so that the solution remains sufficiently small at the endpoints,
we can approximate in a satisfactory manner the generation and interaction of real line
solitary waves for finite time intervals. Control of the boundary values is of course harder
to maintain in the BO case of algebraic decay.

The presence of the nonlocal terms in (1.2) and (1.3), which have a convenient Fourier
representation in the periodic case (cf. Section 2), makesspectral-type methodsthe
techniques of choice for approximating their solutions. Spectral methods for nonlinear
dispersive wave equations, with nonlocal terms different from the ones considered herein,
were used in the computational study of Fornberg and Whitham [15]. The split-step
scheme advocated in [15] was used by Kubota et al. in [22] to integrate numerically in
time the ILW equation in the case of two initial profiles, of short and long wavelength
respectively. In [18], James and Weideman compared, in a computational study of the
BO, a spectral method equipped with the usual Fourier basis in space, with one with a
rational function basis on a nonuniform grid. The latter scheme is a natural candidate in
view of the algebraic decay of the BO solitary waves, and it was argued in [18] that it has
some advantages for small-time calculations. However, for longer time spans the Fourier
method proved superior, provided the length of the spatial periodicity interval and the
number of Fourier points were taken sufficiently large. The BO equation was also solved
by a spectral method by Miloh et al. [26], wherein the authors verified computationally
a formula giving the approximate number of solitary waves in which an initial profile is
resolved fort > 0.

We are aware of three works containing rigorous convergence results for numeri-
cal methods for nonlinear, nonlocal dispersive wave equations. Pasciak [30] analyzed
semidiscrete spectral methods for aregularizedanalog of (1.1), whereinAux is replaced
by−But , with B a pseudodifferential operator generalizing, e.g.,d2/dx2. In a work more
relevant to the equations considered in the paper at hand, Thom´ee and Vasudeva Murthy
[35] analyze a fully discrete finite difference method for the initial–value and periodic
boundary–value problems for the BO. The method is unconditionally stable and is shown
to be of second-order accuracy in space and time, inL2. It is based on a Crank-Nicholson
time-stepping scheme, which is coupled with a “hybrid” spatial discretization, wherein
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the nonlinear term is approximated by conservative differencing and the nonlocal, inte-
gral term by means of the midpoint quadrature formula which is interpreted as a discrete
convolution and computed by discrete Fourier transforms. In [33] we provedL2 error
estimates for the semidiscrete Fourier-Galerkin spectral method for the BO equation.
(See also [32]).

In the paper at hand we use a fully discrete spectral collocation method to study
numerically the BO and ILW equations. The paper is organized as follows. In Section 2,
we set the notation, describe the initial–value and periodic boundary–value problems,
and survey briefly the theory of existence and uniqueness of its solutions. In Section 3,
we define two spectral discretization schemes in the spatial variable, namely the standard
Fourier-Galerkin and a collocation method. We use the latter scheme in our computations,
coupling it with an explicit, fourth-order Runge-Kutta scheme for the discretization of
the temporal variable. In Section 4 we present numerical results that validate the accuracy
and stability of the fully discrete scheme; specifically, we compute the temporal order
of convergence to find that it is the expected one, we compare the computed solutions
with the exact form of the solitary waves in various error measures, and we check the
numerical conservation of some of the invariants of the equations. Finally, in Section 5
we present the results of our detailed numerical study. For the BO equation we investigate
numerically the resolution into and interaction of solitary waves. We first consider the
resolution of an arbitrary initial waveform of sufficient mass into solitary waves; we
show the results of several experiments, indicating that the number of resolved solitary
waves confirms the predictions of [24], [26], [27]. Then we consider the interaction of
BO solitary waves of different amplitude; the outcome of these experiments provides
evidence of the fact that the interaction of two BO solitary waves leaves them unaltered,
except for a phase shift. In our experiments we did not detect the appearance of a
dispersive tail, consistent with the integrability of the BO equation. We have obtained
similar soliton interaction results for the ILW equation, but we show here the BO case,
which is harder to integrate as the solution decays in space quadratically. For the ILW
equation we investigate numerically the resolution property: As in the BO case, we
observe how an initial Gaussian waveform is resolved into one or more solitary waves
plus a dispersive tail. Then we consider the asymptotic behaviour of solutions of the ILW
equation as the parameterδ becomes large; from the modelling point of view, one should
recover the deep water model, the BO equation (see e.g. the discussion in [34]; this is
analytically proven for the Cauchy problem posed on the real line [1]). We integrate the
BO and the ILW equations starting with the same initial profile up to the same final time,
and we observe very good agreement of the final profiles forδ = 100 and agreement
within graph thickness forδ = 1000.

A large part of the work presented is taken from the thesis of Pelloni [31]. A prelim-
inary version of some of the BO computational results appeared in [33].

2. Notation and Preliminary Results

We shall consider functions that are periodic of period 2π . The function spaces we
use areL2 and the Sobolev spacesHr for integerr ≥ 0; these spaces will always be
considered on [−π, π ] and their elements will be periodic functions. We denote by(·, ·)
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the standardL2 inner product; this yields a norm inL2 which we denote by‖ · ‖. The
norm inHr , denoted‖ · ‖r , is defined by

‖ f ‖r =
(∑

k ε Z

(1+ k2)r | f̂ (k)|2
)1/2

. (2.1)

As usual, we denote bŷf (k), k ε Z, the Fourier coefficients off :

f̂ (k) = 1

2π

∫ π

−π
e−ikx f (x)dx.

We recall that the Fourier coefficients of the pointwise productf g are given by the
convolution of the Fourier coefficients off andg, defined by

( f̂ ∗ ĝ)(k) =
∑

m,n ε Z;m+n=k

f̂ (m)ĝ(n).

We also need to consider discrete analogues of the quantities defined above. To this
end, for a positive integerN, consider the spaceSN defined by

SN = span{exp(ikx): k ε Z, −N ≤ k ≤ N}. (2.2)

Given the Fourier points

xj = ( j − N)π

N
, j = 0, . . . ,2N,

and given f and g two continuous 2π -periodic functions, we define the sesquilinear
form

( f, g)N = 2π

2N + 1

2N∑
j=0

f (xj )g(xj ). (2.3)

Thediscrete Fourier coefficientsof f are

f̃k = 1

2N + 1

2N∑
j=0

f (xj )e
−ikxj , k = −N, . . . , N,

and it is then easy to verify that the trigonometric polynomial

PI f (x) =
N∑

k=−N

f̃keikx (2.4)

interpolatesf at the pointsxj . The trigonometric polynomialPI f is thediscrete inverse
Fourier transformof f and can be computed effectively, given the values off at the
pointsxj , by the FFT algorithm.

On SN , the sesquilinear form (2.3) is an inner product and gives rise to the following
L2 discrete norm:

‖ f ‖N =
(

2π

2N + 1

2N∑
j=0

| f (xj )|2
)1/2

.
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We shall also consider theH1 discrete norm

‖ f ‖1,N =
(

2π

2N + 1

2N∑
j=0

(1+ j 2)| f (xj )|2
)1/2

.

It is known (cf. [10], [25]) that if f is in SN , then‖ f ‖ = ‖ f ‖N and‖ f ‖1 = ‖ f ‖1,N .
With this notation in place, we consider the initial–value and 2π -periodic boundary–

value problems for the BO and ILW equations; thus we seek a real-valued function
u(x, t), 2π -periodic inx, that satisfies{

ut + α(δ)ux + uux + T uxx = 0, x ε [−π, π ], t ≥ 0,
u(x,0) = u0(x), x ε [−π, π ].

(2.5)

Hereα(δ) is a coefficient equal to 1 for the BO and to 1+ 1
δ

for the ILW case, andu0 is
a real-valued, 2π -periodic function on [−π, π ], describing the initial form of the wave.
The nonlocal operatorT is the appropriate form of the operatorsH andK (see Section 1)
when they act on 2π -periodic functions on [−π, π ]. For f in L2, it is well-known that
in the BO case (cf. e.g. [1]) the Fourier representation ofT f is the trigonometric sum

T f (x) = i
∑
k ε Z

sgn(k) f̂ (k)eikx, (2.6)

while for the ILW equation (cf. [3], [1])T f is given by

T f (x) = i
∑

k ε Z\{0}
coth(kδ) f̂ (k)eikx. (2.7)

From these expressions, it is easy to verify that in both casesT is antisymmetric inL2,
and that it commutes with differentiation.

The well-posedness of the initial-value problem (2.5), withT given by (2.6) or (2.7),
was analyzed in Section 9 of [1]. For example, in Theorem 9.1 of [1] it is proved among
other things that ifu0 ∈ Hr , wherer ≥ 2, then there is a unique solutionu of (2.5)
continuous and bounded on [0,∞) with values inHr .

We finally note that, being integrable, both the BO and the ILW equations have
infinitely manyinvariants; the first three are

Integral mean:
∫ π
−π u(x, t)dx.

L2 norm:
∫ π
−π u2(x, t)dx.

Third invariant:
∫ π
−π [uxT(u)− 1

3u3] dx.

The invariance of these expressions is easily shown for smooth solutions by using
periodicity and the properties of T. More on the BO and ILW invariants can be found
in [1].
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3. The Discrete Scheme

Space Semidiscretizations

We shall now approximate the solutions of (2.5) in space by elements of the finite-
dimensional spaceSN defined in (2.2), leaving for the time being the temporal variable
continuous. We shall consider two suchsemidiscretizationsof (2.5).

Thesemidiscrete Fourier-Galerkin (spectral)approximation to (2.5) is a mapU from
[0,∞) to the real-valued elements ofSN such that, for allϕεSN :{

(Ut + α(δ)Ux +UUx + TUxx, ϕ) = 0, t ≥ 0,
U (·,0) = PNu0,

(3.1)

wherePN denotes the orthogonal projection ofL2 ontoSN .
By choosingϕ = eikx for k = −N, . . . , N, we see that (3.1) is an initial–value

problem for an ODE system for the Fourier coefficientsÛ (k, t) of U (x, t), which, by
standard ODE theory, has a unique solution at least locally in time. The existence of a
solution for allt ≥ 0 is a consequence of the fact that (3.1) is conservative inL2. In fact,
this semidiscretization preserves the first three invariants of (2.5). The proof of this fact
follows exactly its continuous counterpart.

In [33] (and in full detail in [32]) we analyze the convergence of this scheme using
the techniques of [7]. We prove that ifu0 belongs toHr for somer ≥ 2, then, for each
0≤ t∗ <∞ it holds that

max
0≤t≤t∗

‖u−U‖ ≤ C

Nr−1
. (3.2)

This rate of convergence in theL2 norm matches the rate proved e.g. in [23] for spectral
(Galerkin) approximations of the KdV equation with initial data inHr .

The Fourier-Galerkin scheme just described has the attractive property of possessing
at least some of the conservation laws of the equation. Nevertheless, to be able to use such
a scheme in practice, one needs to compute the Fourier coefficients of the initial value
u0 exactly; more importantly, the computation of the nonlinear term as a convolution
product is expensive. Thus, in actual computations, one usually resorts to acollocation
scheme (see e.g. [10], [25]).

Given SN as before, we define thecollocation semidiscreteapproximation to the
solution of (2.5) as the mapU from [0, T ] to the real-valued elements ofSN such that
for all j = 0, . . . ,2N,{

(Ut + α(δ)Ux +UUx + TUxx) (xj ) = 0, t ≥ 0,
U (xj ,0) = u0(xj ).

(3.3)

Recall that(·, ·)N denotes the discrete inner product onSN defined by (2.3);PI is the
interpolation operator at the Fourier pointsxj defined by (2.4), and∂N is the composition
∂x PI . (Note that ifϕ ∈ SN , (PI v, ϕ)N = (v, ϕ)N for all continuousv, andϕx = ∂Nϕ.)
Then the ODE system (3.3) can be equivalently formulated as the problem of finding the
mapU as above, which, for allϕ in SN , satisfies{

(Ut + α(δ)Ux +UUx + TUxx, ϕ)N = 0, t ≥ 0,
U (0) = PI u0.

(3.4)
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To see this, fork = −N, . . . , N, chooseϕ = eikx in (3.4). Then for the discrete
Fourier coefficients ofU we have by definition(U, ϕ)N = 2πŨ (k) (suppressing the
t-dependence). Similarly, the discrete Fourier coefficients of∂NU are given byikŨ (k).
Defineτ(k) = i sgn(k) for the BO case, andτ(k) = i coth(kδ), k 6= 0, τ(0) = 0 for the
ILW case; then the discrete Fourier coefficients ofT∂2

NU are−k2τ(k)Ũ (k). A discrete
inverse transform then yields the valuesUx(xj ) andTUxx(xj ), j = 0, . . . ,2N, which
appear in the system (3.3). The same standard ODE arguments used for the Fourier-
Galerkin approximation yield the existence of a solution of (3.3) locally in time.

This scheme does not preserve the invariants of the equation, except the mean; one
could modify the nonlinear term by writing it asuux = (1/3)uux + (1/3)(u2)x, and then
approximating it by(1/3)PI (UUx) + (1/3)∂N(U2). The scheme obtained in this way
preserves theL2 norm (which would allow one to extend the existence argument to all
t ≥ 0), but it fails to preserve either the first or third invariants; moreover it implies one
extra nonlinear computation. Although we do not have at present a convergence estimate
for the collocation scheme (3.3), our numerical experiments (cf. Section 4) suggest that
it approximates the solution of (2.5) well and that it preserves the first three invariants
to a high degree of accuracy. Thus we use (3.3), rather than the Fourier-Galerkin or the
modified collocation scheme, as it is computationally faster and gives accurate results.

Time Discretization

To discretize the system of ODE’s (3.3) in the temporal variable, we used the classical,
explicit, four-stage, fourth-order Runge-Kutta method, which in the case of the ODE
initial-value problem

y′ = f (y, t), t ≥ 0,

y(0) = y0,

yields approximationsyn to y(tn), wheretn = n1t , n = 0,1, . . . , given by the formulas

yn+1 = yn + 1t

6

4∑
j=1

f (tn, j , yn, j ),

yn,1 = yn, tn,1 = tn,

yn,2 = yn + 1t

2
f (tn,1, yn,1), tn,2 = tn + 1t

2
, (3.5)

yn,3 = yn + 1t

2
f (tn,2, yn,2), tn,3 = tn + 1t

2
,

yn,4 = yn + 1t

2
f (tn,3, yn,3), tn,4 = tn +1t.

When we apply this scheme to the ODE system represented by (3.3) we obtain approx-
imationsUm ∈ SN of U (tm) for m = 0,1,2, . . . . Since this ODE system (as well as
its Galerkin counterpart (3.1)) is stiff, we cannot expect explicit time-stepping methods
like (3.5) to be stable unless we impose mesh conditions involvingN and1t . The re-
gion of absolute stability of the Runge-Kutta method (3.5) includes an interval of the
imaginary axis that is symmetric about the origin; thus it follows from the form of the
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system (3.3) that a constraint of the type1t N2 ≤ C∗, for some constantC∗, will be
sufficient to guarantee stability of at least the linearized analog of (3.3). We observed in
our numerical experiments that such a condition is sufficient in the case of the nonlinear
ODE system as well. We also note that the stability constraint that1t N2 be small is not
a serious drawback here, because spectral methods do not require largeN to achieve
good accuracy in approximating smooth solutions of problems in one spatial dimension,
such as the ones under consideration.

4. Validation of the Fully Discrete Scheme

We validated the method described in the previous section in three different ways, namely
by checking the temporal convergence rate, by verifying that theL2 norm and a discrete
version of the third invariant of the numerical solution remain very close to constant as
t grows, and by monitoring various types of error. We did this for both the BO and ILW
equation, but record here only the BO results.

We start with the temporal convergence rate. For the Runge-Kutta method used we
expect this rate to be equal to four. To be able to compute the rate accurately, we solved
numerically nonhomogeneous problems of the form

ut + ux + uux + Huxx = f (x, t), (4.1)

where the nonhomogeneous termf is determined by imposing that some known simple
periodic function is an exact solution of (4.1). In such a computation, one needs to
ensure that the spatial error is small and does not pollute the temporal error. We recall
that the spatial rate of convergence for spectral methods is exponential in the case of
smooth solutions; this has been proved, cf. (3.2), for the Fourier-Galerkin method, and
it is reasonable to expect that the same holds for the collocation scheme (3.3).

In the particular test we report, we impose thatu = Asin(x− t) is an exact solution;
then, sinceH(sinx) = − cosx, we havef (x, t) = Acos(x − t) sin(x − t). Given two
numerical solutions for the problem corresponding to the sameN and different time
steps1t1 and1t2 with errorsε1 andε2 evaluated at the same value oft , the temporal
rate of accuracy may be computed as

log
ε1

ε2
/ log

1t1
1t2

,

provided that the spatial error is negligible. Table 1 shows the experimental temporal rate
of accuracy as measured by the (normalized)L2 error of the fully discrete approximation
U = Um at timet = tm, defined by

E0(t) = ‖U − u(t)‖
‖u0‖ ,

for a run withA = 0.1 on a spatial interval [−π, π ] at t = tm = 20. We tookN = 128;
for these parameters we estimated (by taking1t very small) the spatial error to be about
8.0E−10. Hence we have confidence in the computed temporal rates of Table 1, which
show that the theoretical rate of four emerges clearly.
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Table 1. Normalized L 2 errors
and temporal convergence rates at
t = 20 (BO).

1t E0(t) Rate

0.0571 1.35875E-3
4.07

0.0380 2.60613E-3
3.79

0.0327 1.45799E-3
3.99

0.0286 8.42387E-3

Spatial error∼ 8.0E − 10

Since our main goal in the paper at hand is to study numerically the generation and
interaction of solitary wave solutions of the Cauchy problem for the BO and the ILW
equations, we compared such exact solutions with the approximations generated by our
numerical scheme evolving from initial data of the form

BO : u0(x) = us(x,0) = 4c

c2x2+ 1
,

ILW : u0(x) = us(x,0) = c

cosh
(

c
2x
) .

These initial values give rise to solitary wave solutions on the real line fort ≥ 0, [8],
[19], given by the formulas

BO : us(x, t) = 4c

c2(x − ct)2+ 1
, (4.2)

ILW : us(x, t) = c

cosh
(

c
2(x − (1+ c

π
)t)
) . (4.3)

Herec is a positive velocity parameter; in the ILW equation, we made the particular
choiceδ = π /c for the parameterδ. The decay of the tails of the BO solitary wave is then
algebraic, as|x| → ∞, whereas for the ILW solitary wave, the decay is exponential.

The functionsus solve the initial-value problem on the real line and are not periodic.
For the BO,us(x, t) is a rational function which does not decay to zero very rapidly for
eacht . We use it as an “exact” solution for our periodic problem, noting thatus(x,0) is
even, so that its values at the endpoints of any interval [−L , L] are equal. By choosing
this interval large, these values can be made small enough forus(x,0) to be considered
as a periodic function for computational purposes. In addition, takingL large enough
ensures that for the time scales of our numerical experiments, the periodic problem
approximates the problem on the real line well; for a discussion relevant to this point
see also [18]. Of course, the ILW solitary wave solutions decay to zero very rapidly
and thus can be considered periodic, provided that the interval [−L , L] is large enough.
Therefore the BO is computationally more difficult; for this reason we report here only
BO error calculations.
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Table 2. Invariants and various er-
rors. BO solitary wave,c = 0.2,
t = 50.

‖U (0)‖ 2.24197903
‖U (50)‖ 2.24197903
|I (0)| .0104904531
|I (50)| .0104904787

L2 error E0(50) 1.95272377E-4
H1 error E1(50) 1.95273090E-4
Amplitude error 1.84473864E-6

Phase error 2.25048192E-5

To treat problems on [−L , L] in the code, we rescale the problem by a parameter
ε = π

L ; this amounts to solving numerically over [−π, π ] the equation

ut + ε (α(δ)ux + uux)+ ε2T uxx = 0,

with appropriately transformed initial conditions.
To test the conservation properties of the scheme we performed several numerical

experiments using as exact solutions the solitary wave profilesus given by (4.2). Some
typical output is shown in Table 2; it corresponds to a run approximating the solitary
wave for BO withc = 0.2 on the interval [−L , L] = [−150,150] up tot = 50, with
N = 512 and1t = 0.5.

The first two entries of Table 2 are theL2 norms of the approximate solution att = 0
andt = 50 respectively. The next two are the absolute values, at these two instances of
time, of a discrete version of the third invariant. Since the (negative of the) third invariant
can be written as(u2,u) + (u, Hux), it is natural to define its discrete analogue as the
sum of the two inner products(U2,U )N + (U, HUx)N , and to compute its value by the
expression

I (t) = 2π

2N + 1

2N∑
j=0

[
1

3
U3(xj )+U (xj )HU (xj )

]
.

It is evident that both these quantities are conserved accurately by the fully discrete
scheme.

The last four entries of Table 2 are the values att = 50 of various measures of error
for this run. In addition to the normalizedL2 errorE0(t) defined previously, we compute
three other quantities of interest, namely:

• ThenormalizedH1 error

E1(t) = ‖U − u(t)‖1
‖u0‖1 .

• Theamplitude error, defined as

Eamp(t) =
∣∣∣∣maxx |u(t)| −maxx |U (t)|

maxx |u(t)|
∣∣∣∣ .
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Fig. 1. Exact vs. approximate solution. BO solitary wave,c = 0.2,
t = 50.

To compute a good approximation of the amplitude of the approximate solutionU ,
for which we have values only at a discrete set of points, we pass a fourth-order
interpolating polynomial through five points near the peak ofU and then take the
maximum value of this polynomial as the actual maximum of the wave; the value of
x at which this maximum is achieved is denoted byxmax. With this in hand, we can
also compute
• Thephase error, defined as

Eph(t) = |xp − xmax|,
wherexp is the point at which the exact solitary wave solution has its peak at timet .

All these errors are quite small. Figure 1 shows the superimposed graphs of the
numerical and exact solutions for this run att = 50.

5. Numerical Study of Solitary Waves

In this section, we report on the outcome of various numerical experiments we performed
using the scheme previously described and tested.

Results for the BO Equation

It is well-known that solitary waves for the BO equation are orbitally stable [9], [6].
To our knowledge, this important property is one of the very few special properties of
solitary wave solutions that have been proved rigorously in the case of the BO equation.
Here we study numerically the behaviour of these solutions, with the aim of establishing
computational evidence for two other properties.

The first one is theresolution property: An arbitrary initial profile of large enough
size is resolved into one or more pulses, which are exact solitary wave solutions of the
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Fig. 2. BO—Resolution of the Gaussianu0(x) = e−x2/144, t = 200.
Exact solution superimposed on the larger resolved pulse.

BO equation, plus a dispersive tail. This property shows that solitary waves play a very
special and important role among all solutions of model equations for long waves, and
it has been proved analytically for other integrable equations.

We checked the resolution property numerically by choosing as initial profile the
Gaussianu0(x) = exp(−x2/144).We let the code run up tot = 200 on [−150,150], with
N = 512 and1t = .025. By that time (see Figure 2) the Gaussian profile had resolved
itself into two clearly defined separate pulses travelling to the right, plus a dispersive
oscillating tail. We computed the elevation of the rightmost peak of the numerical solution
and superimposed on the graph a BO solitary wave of the same amplitude. Figure 2
shows that the two waves are identical to graph thickness. In Figure 3 we show the
outcome of a similar comparison by superposition for the second, smaller pulse; again
the graph shows clearly that the smaller pulse is to a good approximation a BO solitary
wave.

The resolution question has been previously addressed in [24], [26], and [27]. In
these papers, the authors derive a formula which gives approximately the number of
BO solitary waves that will be formed from a given initial waveformu0. (In [26], this
formula is also verified by a numerical solution of the BO equation.) In the particular
case of a Gaussian of the formu0(x) = Aexp(−(x/σ)2), the approximate number of
solitary wavesNsol expected to eventually appear is given by

Nsol = A
σ

4
√
π
. (5.1)

In our case,A = 1 andσ = 12, giving an approximate value of 1.7, which should be
rounded to 2, and agrees with our experimental finding.

We verified the validity of this formula further by running two more experiments,
shown in Figure 4. In the first one, the initial profile is a Gaussian of amplitudeA = 1
and widthσ = 9, which yieldsNsol ∼ 1.3; the parameters of the run areN = 512,
1t = 0.025, L = 150. At timet = 250, one solitary wave is clearly visible, followed
by a tail that is dispersing behind. The largest oscillation behind the main peak is indeed
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Fig. 3. BO—Resolution of the Gaussianu0(x) = e−x2/144, t = 200.
Exact solution superimposed on the smaller resolved pulse.

decaying, as we verified by checking the solution at previous times: Its height was equal
to 0.2550, 0.2345, and 0.2200 at timest = 150,t = 200, andt = 250, respectively. In the
second one, the initial profile is a Gaussian of amplitudeA = 1 and widthσ = 20, which
yields Nsol ∼ 2.8; the parameters of the run areN = 1024,1t = 0.025, L = 200.
At time t = 300, three solitary waves have been resolved, followed by a dispersive
tail.

The second property we investigate is thesoliton property. We say that an equation
has this property when two solitary waves that are exact solutions of the equation have
a “clean” interaction, in the sense that they are not altered after interacting (modulo
phase shifts) and do not leave dispersive oscillations in their wake. It is well-known that
this is true for several local integrable models admitting solitary wave solutions, e.g. the
KdV equation. Since BO is also integrable, we expect this property to hold; and this
is indeed what is indicated by our numerical experiments. We studied the dynamics of
this phenomenon, and followed the changes in amplitude and phase after interaction had
occurred for a few pairs of interacting solitary waves of different amplitudes. Pursuing
further the analogy with the KdV case, we expect that the amplitudes of the two waves will
be altered during the interaction, but will subsequently return to their original values.
The only permanent change, after interaction has occurred, is expected to be a fixed
phase shift, to the right for the larger solitary wave, and to the left for the smaller
one.

We report in Table 3 data of two different experiments with interacting pairs of solitary
waves; in both casesN = 1024 and1t = 0.02. The length 2L of the spatial interval was
equal to 300 for the first and 500 for the second case. In both examples, the wave of larger
amplitude starts behind the smaller wave; after some time has elapsed, interaction occurs,
and then the two waves emerge with the small one behind the large one. In Table 3, we
list the initial location of the two waves, and in Figure 5 we show the evolution of one
of these pairs of solitary waves (with initial amplitudesA1 = 4 andA2 = 1), at four
instances around the time of interaction.
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Fig. 4. BO—Resolution of the Gaussianu0(x) = e−x2/81 at t =
250 (above) and of the Gaussianu0(x) = e−x2/400 at t = 300
(below).

The data of Table 3 indicate clearly that after interaction has occurred, the only
permanent change is a shift in the phase of the two solitary waves. As expected, the
large wave in both cases has been shifted forwards by an amount indicated in the
column “phase shift 1,” and the small one backwards, by an amount indicated in the
column “phase shift 2.” The amplitude of the two waves changes around the time of
interaction; the smaller wave is found to be slightly taller soon after interaction has
occurred, while the large wave is a bit shorter. Nevertheless, if we let the solution
evolve for longer times, the amplitudes slowly but steadily seem to return to the original
values.

A few comments on the accuracy of this numerical experiment are in order. Recall
that the amplitude and phase of the numerical solution are computed with the aid of
an interpolating polynomial of degree four near the apparent maximum; nevertheless,
if the true numerical maximum occurs between the Fourier nodes at which the discrete
solution is computed, a small error may be introduced. In addition, as we have remarked
earlier, near the endpoints of the interval there is an error introduced by the periodic
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Table 3. Amplitude and phase shift for interacting pairs of BO solitary waves.

Interaction 1

For t = 0: peaks at−100, 0, of amplitudeA1 = 4, A2 = 1, resp.

Time Amplitude 1 Amplitude 2 Phase shift 1 Phase shift 2

160 3.8503 1.0202 0.496 −0.496
180 3.9479 1.0057 0.369 −0.370
200 3.9733 1.0019 0.325 −0.331
220 3.9869 1.0001 0.300 −0.301
240 3.9937 1.0001 0.296 −0.300

Interaction 2

For t = 0: peaks at−200,−50, of amplitudeA1 = 3, A2 = .4, resp.

Time Amplitude 1 Amplitude 2 Phase shift 1 Phase shift 2

300 2.9373 0.4052 0.431 −0.428
350 2.9829 0.4042 0.420 −0.422
400 2.9904 0.4028 0.450 −0.448
450 2.9979 0.4003 0.498 −0.487
500 2.9992 0.4001 0.500 −0.500

approximation of a nonperiodic waveform; this error also affects the amplitude computed
for large times, when the faster wave is near the right end of the interval, or has been
wrapped around to re-enter at the left. For this reason the computation is performed
only up to a time when the large solitary wave is still sufficiently far from the right
endpoint.

Modulo these remarks, the qualitative outcome of the experiment is quite clear and
matches precisely the expected behaviour of solutions of integrable equations.

The related, next series of experiments suggest that after the interaction, when the
two solitary waves have reappeared essentially unaltered in shape, no other disturbance

Fig. 5.BO—Solitary wave interaction.A1 = 4, A2 = 1.
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Fig. 6.BO—Solitary wave interaction: absence of dispersive tail.

Fig. 7. BO—Solitary wave interaction: absence of dispersive tail.
Enlargement of part of Figure 6 att = 380.

is generated. The outcome of this experiment is shown in Figures 6 and 7. The ini-
tial profile, dotted in Figure 6, is again a couple of BO solitary waves of amplitudes
A = 4 and A = .8, whose centers are located atx = −156.25 andx = 0 re-
spectively. The full line shows the solution att = 380, i.e. at a time after the large
wave has overtaken the small one; in Figure 7 we show part of the same picture in
a larger scale. It is evident that there is no hint of any oscillation behind the solitary
waves after they have interacted. The run was made on the interval [−250,250], with
small steps, namelyN = 2048 and1t = 0.001. TheL2 norm of the wave is well
preserved by the numerical scheme; in fact, we find that|‖u0‖ − ‖U (t)‖| ≤ 10−8 at
t = 380. We conclude that this experiment provides clear numerical evidence of the
fact that, as in the case of the KdV, the interaction of two BO solitary waves does
not produce any alteration in the surrounding environment in the form of a dispersive
tail.

Results for the ILW Equation

In the case of the ILW equation we focus our attention on two issues: the resolution
property and the limit of the solutions asδ→∞.
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Fig. 8. ILW—Resolution of the Gaussianu0(x) = e−x2/25, t = 100.

We first report a computation of the evolution of a Gaussian initial profile, as evidence
for the resolution property. (Note that the ILW solitary waves are known to be stable for
all positive values ofδ, [6], [5].)

We took the Gaussianu0(x) = exp(−x2/25) as the initial profile on [−150,150],
and integrated the ILW equation withδ = π /c with our code, usingN = 512 and
1t = 0.05, up to a timet = 100. By that time, a single solitary pulse had clearly formed
and separated from the oscillatory part of the solution. We then compared the leading
wave with the exact solitary wave solution of ILW of the form (4.3) having the same
amplitude. The resulting graphs are plotted in Figure 8. It is evident that what is produced
is a solitary wave, to graph thickness, and that it is followed by an oscillatory part. We
let this solitary wave travel for larger values oft and we observed no change in its shape
or speed, of course before its interaction with the trailing tail took place.

The second issue we address is the limit of solutions of the ILW equation as the
depth parameterδ becomes large. We expect these solutions to approach solutions of the
deep water model, i.e. of the BO equation. A rigorous proof of this fact, for the Cauchy
problem for the BO equation on the real line, is presented in [1]. The result proved in
Theorem 8.1.1 of [1] is that foru0 in Hr , r ≥ 2; the solution of the ILW equation with
parameterδ approaches the solution of the BO equation corresponding to the same initial
data, asδ→∞. (The limit is inHr uniformly on bounded time intervals.)

In Figure 9 we show the evolution of an initial BO solitary wave of unit amplitude
computed by integrating numerically the BO and the ILW equations in two cases corre-
sponding toδ = 100 andδ = 1000 in the ILW. The parameters of the run wereN = 256,
1t = .01, and the execution is stopped att = 400. The agreement of the two solutions
is visibly better whenδ = 1000.
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Fig. 9.Behaviour of ILW asδ→∞, t = 400.
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