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Summary. Takens Embedding Theorem forms the basis of virtually all approaches to
the analysis of time series generated by nonlinear deterministic dynamical systems. It
typically allows us to reconstruct an unknown dynamical system that gives rise to a given
observed scalar time series simply by constructing a new state space out of successive
values of the time series. This provides the theoretical foundation for many popular
techniques, including those for the measurement of fractal dimensions and Liapunov
exponents, for the prediction of future behaviour, for noise reduction and signal separa-
tion, and most recently for control and targeting. Current versions of Takens Theorem
assume that the underlying system is autonomous. Unfortunately this is not the case for
many real systems; in the laboratory we often force an experimental system in order for
it to exhibit interesting behaviour, whilst in the case of naturally occurring systems it

is very rare for us to be able to isolate the system to ensure that there are no external
influences. In this paper we therefore prove two versions of Takens Theorem relevant to
forced systems: one applicable to the case where the forcing is unknown, and the other
to the situation where we are able to determine independently the state of the forcing
system (usually because we are responsible for the forcing ourselves). In a subsequent
paper we shall show how to extend these results to give an analogue of Takens Theorem
for randomly forced systems, leading to a new framework for the analysis of time series
arising from nonlinear stochastic systems.

1. Introduction

Takens Embedding Theorem provides the theoretical foundation for the analysis of time
series generated by nonlinear deterministic dynamical systems. Since its publication in
1980, it has stimulated a vast range of applications in fields ranging from fluid dynamics
through electrical engineering, to biology, medicine, and economics. In particular, it has
led to both a re-examination of old data sets and the construction of new experiments,
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with the aim of detecting and perhaps even taking advantage of deterministic behaviour
in time series that were previously thought to be random (for a good overview, see e.g. Ott
et al. [1994]). One might thus even say that this one theorem has given rise to virtually a
new branch of nonlinear dynamics, often informally calidotic time series analysis

Informally, Takens Theorem says that if we take a scalar obseryabfethe state
x of a deterministic dynamical system, thigpically we can reconstruct a copy of the
original system by considering blocks(xt), ¢ (Xt+7), ¢ Xtt2¢)5 - - - » @(XKe4@d—1)7)) Of d
successive observations @f for d sufficiently large. Here, is the state of the system
attimet, andt > 0 is some sampling interval.

For Takens Theorem to be valid, we need to assume that both the dynamics and the
observations are autonomous, that is, independent of time and of any outside influence.
In particular, we suppose that there is some mappisgch that;. . = f (x;), and that
¢ depends omx only.

Unfortunately, this is not the case in many real systems. Thus, in the laboratory we
often force an experimental system in order to elicit interesting behaviour, whilst in the
case of naturally occurring systems, it is very rare for us to be able to isolate the system
to ensure that there are no external influences. Thus many real systems are often best
modelled by equations of the form

Xerr = T (X Yo,
yt+f = g(yt)»

wherex;, as before, represents the state of the system we are interestedyindascribes

the state of some forcing system. The best known example of this is the case of periodic
forcing with some period > 0. In this casey; is given by the phasg = t/T(mod 1

of the forcing at time andg is simply a rigid rotation of the unit circle

Xtpr = F (X, 6),
Oy = O+ TlT (mod J).

At first sight, it might seem that we can apply Takens Theorem to forced systems by en-
larging our concept of the state of the systerxto y; ). The dynamics is then given by the
pair(f, g), and our observation of the system is given by the funafiox, y;) = ¢(X;).

The problem with this argument is the wdxgbical in the statement of Takens Theo-
rem. In particular, the theorem does not state that given &)\go) and anyy, we can
reconstruct the dynamics from a time seriegigbut merely that we can do so for some
(f, g) andy that can be chosen arbitrarily close(tfy, go) and+o. Now, observe that
even if( fp, go) andyrg are of the form above for forced systems (i.e., vgglindependent
of x andy/ independent of), there is no reason why this should be true for the nearby
(f, g) andvy . Indeed, for typical f, g) andy in the neighbourhood affy, go) andrg,

g will be a function ofx as well asy andyr will depend ony.

As an example, suppose that we attempted to apply Takens Theorem to a periodically
forced system, and for simplicity ignore perturbations iandg. Then we would be able
to conclude that arbitrarily close to our observation functlgix, 6) = ¢o(Xx) there was
an observation functio#r (x, 8) for which reconstruction was possible, but unfortunately
typically v would have nontrivial dependence @nin other wordspur measurements
would be dependent on the phase of the forcingnost practical applications, this will
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not be the case: e.g., if we measure the displacement of a forced pendulum, or a voltage
in a forced electronic oscillator, we do not expect our measurement apparatus to give
explicitly time-dependent results.

Thus to summarize, forced systems and their observation functions are not typical in
the space of all systems and all observation functions, and hence if we attempt to use
Takens Theorem to justify our analysis of observed data, the conclusions that we arrive
at are not the ones we would usually desire.

The aim of this paper is therefore to investigate to what extent Takens Theorem
remains valid if we restrict ourselves to the space of forced systems and their observation
functions. It turns out that, apart from minor restrictions on the forcing sygteme can
in fact prove an exact analogue of Takens Theorem relevant to this case that allows us to
reconstruct bothf andg from a typical observable that is independent of. We also
prove a second version of this theorem that is more appropriate to situations where we
already know the statg of the forcing system; this will typically be the case where we
are responsible for the forcing ourselves, as in many laboratory experiments.

The one serious difficulty with these theorems is that in the case of periodically forced
systems the forcing dynamiés, ., = 6; + /T (mod 1) does not satisfy the conditions
that we need to impose am if t/T is rational with a “small” denominator. We can
overcome this by weakening our notion of “reconstruction” in this case, but nevertheless
we must stress that care needs to be taken in applying Takens Theorem to periodically
forced systems where the sampling interval is rationally related to the forcing period. It
would be interesting to see whether it is possible to prove a “full” Takens Theorem in
this case.

The paper is organized as follows: In the next section, we give a precise statement
of Takens Theorem, and discuss more fully its significance and its applications. In the
following section we develop the formalism of forced systems, give precise statements
of the two theorems we prove, present a number of examples that demonstrate the need
for restrictions on the forcing system, and examine in detail the case of periodically
forced differential equations. Takens’ original proof consisted essentially of an easy
local argument followed by a standard globalization procedure. Unfortunately, many
technical details get in the way and obscure the fundamental concepts behind the proof.
This would be even worse if we attempted this kind of approach in the forced case.
Instead we base our proofs on Abraham’s Parametric Transversality Theorem, which
provides a powerful technique for gluing together local results and was in fact already
used in this context by Aeyels [1981]. For the benefit of the reader unfamiliar with
Abraham’s Theorem, we outline the basic ideas behind transversality in Appendix A.
To apply the Parametric Transversality Theorem, we need to regard spaces of functions
between manifolds as infinite dimensional manifolds. There is a well developed theory of
such function manifolds, and we gather together the results needed here in Appendix B.
Appendix C contains a variety of technical calculations used throughout the paper. In
Section 4, we present a self-contained proof of the standard Takens Theorem, using
Abraham'’s Parametric Transversality Theorem. The reason for giving yet another proof
of Takens Theorem is primarily to illustrate our approach to embedding theorems using
transversality. The same ideas arise again in Sections 5 and 6, which contain proofs of
the two versions of the forced Takens Theorem. However, given the added technical
complexities involved in the forced theorems, we believe that it is helpful to the general
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reader to see these methods first presented in Section 4, in the simpler setting of the
unforced case.

2. Takens Theorem

The behaviour of many real systems is believed to be at least approximately described
by a deterministic finite-dimensional dynamical system. By this we mean that the state
of the system is determined at any given instant by a polging on am-dimensional
manifold M that will often be some subset B. The time evolution of the system is
given by a mapf: M x R — M such that if the system is in statg at timet, then it

is in statef!(xq) at timety + t. In most applications, the mafd will be obtained as the
solution of some ordinary differential equation h

2.1. Observed Time Series

In many practical situations we do not have access to thexstatd can merely observe
some functionp(x) of it. Herep: M — R is called themeasurement functiomand
it corresponds to measuring some observable property of the system such as position
or temperature. The evolution of this quantity with time is then givew b (X)). In
practice we can only observe this at discrete time intervals. For simplicity we assume
that these intervals are all the same so that in fact we observe the segyeneax,)
forn=1,2, ..., wherex, = f""(xg) andt > 0 is thesampling interval For obvious
reasons{g,} is called atime series By rescaling time we may as well assume that
T = 1, so that the sequence of states} is given by the discrete dynamical system
Xnt1 = f(X,) wheref = flandf"isjust f composed times.

The observed measurementis one-dimensional whilst, in general lies in some
higher dimensional space. At first sight it might thus appeargha&ontains relatively
little information about the behaviour of, and that the fact thap, originates in the
deterministic process$" is of little use. However, Takens [1980] (see also Eckmann
and Ruelle [1985], Sauer et al. [1991], Noakes [1991], and Huke [1993]) proved a
remarkable theorem showing that for typidabndg it is possible to reconstrudt up
to some (unknown) smooth coordinate change.

2.2. Delay Embedding

More precisely, fix somd (called theembedding dimensidpm@nd define thelelay em-
bedding mapb;,: M — RY by

D, (X) = (P(X), e(F (X)), ..., p(FI 2N

Suppose thaM is compact, letD" (M) be the set of’" diffeomorphisms ofM, and

C" (M, R) the set of observation functions o, both endowed with thé" topology.
Recall that this is the topology of uniform convergence of a map and its derivatives up
tor ™ order; thus two functions are close in this topology if they and their derivatives are
uniformly close (see, e.g., Hirsch [1976] for a precise definition).
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Next we need to give a rigorous definition of genericity. We say that a property is
genericin a function space’ if it holds on aresidualsubsetd C X, that is, on a subset
that contains a countable intersection of open dense sets.BiabE) andC' (M, R) are
complete metrizable spaces, such a set is itself dense by Baire’s Theorem (e.g., Hirsch
[1976]). This definition of generic is one of the most commonly used notions of “typical”
in the field of dynamical systems (though not the only one; e.g., see Sauer et al. [1991]).
Finally, recall that a smooth map: M — N between manifold$ andN is called
anembeddingf it maps M diffeomorphically onto its image; iM is compact, this is
equivalent to bothl and its derivativel, W being injective (i.e., 1 1) on the whole of
M. Takens Embedding Theorem then states:

Theorem 2.1(Takens [1980]). Let M be a compact m dimensional manifold. Then if
d > 2m+ 1, the set of f, ¢) for which the magb; , is an embedding is open and dense
inD" (M) x C"(M, R) forr > 1.

Note that Takens first proved this for> 2, but it is relatively easy to extend this
tor = 1 (see Huke [1993], or Section 4 below). A weaker version of this theorem was
proved independently by Aeyels [1981], who considered the case where the sampling
was not carried out at regular intervals, and showed that for generic choices of sampling
times® was injective (and stated that it was also immersive). Thisis in fact much easier to
prove, since one can ignore both periodic points of period lesstheamd pairs of points
(x, x") such thak’ = fi(x); as we shall see below, these are precisely the two classes of
points that cause us the most difficulty in the proof of Takens Theorem and its extensions.
Nevertheless, itis clear that Aeyels’ work contains all the fundamental ingredients needed
to develop a dynamical-systems-based approach to time-series analysis.

It turns out to be possible to give a simple characterization of the sefof which
s, is an embedding. In particular, as Huke [1993] points out, Takens in fact deduces
Theorem 2.1 from the following “unstated Takens Theorem™:

Theorem 2.2. Suppose that fe¢ D' (M) has only a finite number of periodic orbits

of period less than d, and the eigenvalues of each such periodic orbit are distinct. If
d > 2m+ 1, then there is an open and dense sep & C' (M, R) for which @ , is an
embedding.

Note thatf satisfying the conditions of this theorem are open and den&e ().
This is a simple generalization of the first part of the Kupka-Smale Theorem (e.g., Smale
[1963]); a proof is also given in Section 4 below. The condition on the eigenvalues may
seem a little strange, but is in fact almost a necessary condition for embedding. Thus:

Lemma 2.3. Suppose that £ D" (M) has a fixed point 2 M such that T f has two
linearly independent eigenvectors with the same eigenvalue. $hgrfails to be an
immersion at x for all € C" (M, R).

Proof. Letvg andv; be two linearly independent eigenvectors with eigenvaluehen
we can find constantsy, c; # 0, such thatyTyp(vo) + C1Txp(vy) = 0. Letu =
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Covg + C1v1. ThenT, fi(u) = A'u, and hencély (¢ o f)(u) = A'Typ(u) = 0. Thus,
Ty ®t,,(u) = 0, and hencdy &5, is not 1— 1. O

More generally, ifx is a periodic point of period| < d, then®s , fails to be an
immersion ak if there are more thagq linearly independent eigenvectorsBff  with
the same eigenvalue, and will be an immersion for an open densesiétioére areq or
less such eigenvectors. One can also take account of nontrivial Jordan Normal Forms. It
does not seem worthwhile, however, to include such detailed conditions in the statement
of Takens Theorem, and the condition given in Theorem 2.2 represents a reasonable
compromise between ease of presentation and the sharpest possible result.

2.3. Implications of Takens Theorem

Informally, Takens Theorem says that for typidaindg, the imaged (M) of M under

® = @y, is completely equivalent t¥ itself, apart from the smooth invertible change

of coordinates given bgp. Furthermore, sincé has a smooth inverse, we can define the
mapF = ®o f o ®~1 on®(M). ThenF is the same dynamical system as the original
system given byf on M, but seen in the new coordinates given by the coordinate change
®. In particular, all the coordinate-independent propertieB ahd f will be identical.

This includes such features as the numbers and topological types of fixed points, periodic
orbits, and other invariant sets as well as such geometric invariants as the eigenvalues
of fixed and periodic points, and the correlation dimension and Liapunov exponents of
corresponding invariant measures (e.g., see Eckmann and Ruelle [1985], Grassberger
et al. [1992], Abarbanel et al. [1993], or Ott et al. [1994]). Thus, in particular, one can
measure quantities such as the correlation dimension or the Liapunov expongénts of
and be certain that these are the same as those of the original (unknown) $yJtieis

is important because these invariantdotan be estimated directly from the observed
time seried¢,}. This is because if we define the poiiate RY by the delay coordinates

Zy = (¢ns Pnils - - - s (Pn+d—1)T, then

Zn = (@(f"(X0)), (" (X0)), ..., ("L (x0)))T

(@), @(F (X)), -+ o, p(FI 1))
= ®(Xy).

Thusz, is in the image ofb and so we can applk to it:

F(zy) = ®o fo® (zy)
= ®ofod Y D(xy))
= ®o f(Xp)
= <D(Xn-kl)

= Zn41.

Thus the dynamics of on ® (M) simply consists of slidingl successive elements of
the time serie$ypn} along by one time step, i.e.,

F ((pn, §0n+1, L) (pn+d—1) == (§0n+1, (er—Za ey §0n+d)
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As we noted above, this is completely equivalent to the original dynaxpigs= f (x,)
up to the coordinate change, and all the coordinate invariant propertiesfofand f
are identical. Yet, whilst the original dynamics was unobservable, the dynamics in terms
of F andz, is expressible purely in terms of the observed time sdrgs Thus if we
have a sample ofp,}, we can deduce many of the propertiesFgfand hence off .
Thus to summarize, Takens Theorem allows us to reconstruct the unknown dynamical
system that gave rise to the time series simply by constructing a new state space out of
successive observations of the time series.

There are of course many practical obstacles that need to be surmounted if one is
to use this in practice. Thus, for instance, we usually do not kmpvand hence do
not know what value of embedding dimensidrwe should use. Similarly the choice
of sampling intervak can significantly affect the performance of practical techniques.
Such difficulties can however be overcome (e.g., see Abarbanel et al. [1993], or Ott et al.
[1994]), and today the estimation of fractal dimensions or Liapunov exponents from
time series is a fairly straightforward matter.

One can also go further, and attempt to forecast future values of the time series. In
particular, consider the map. Its firstd — 1 components are trivial, since they consist
of just shifting the argument d¥ by one time step. Denote the last componen dfy
G: ®(M) — R. ThenG(¢n, ¢ni1, .- -5 ¥nid—1) = @nid, OF in other wordsG simply
predicts the time serigg;,} one time step ahead! Thus the time sefigg is completely
deterministic and hence in principle entirely predictable (though &#nd henceF is
chaotic there is an upper limit on how far into the future we can predict in practice). Of
course, we usually do not kno@, but once again we can estimate it from a sample of
the time series. Not only can this be useful in itself, but it also forms the basis of a variety
of techniques for noise reduction, signal separation, control, and synchronization (again,
see Abarbanel et al. [1993] or Ott et al. [1994]).

3. Forced Systems

In many applications, one encounters systems that are driven by some secondgsystem
By far the best known case is that of periodic forcing. This arises in many laboratory
experiments, where some kind of forcing is required to elicit nontrivial dynamical be-
haviour. Thus, for instance, a quick glance at a reprint collection such as Ott et al. [1994]
reveals a large number of papers involving periodic forcing (e.g., Moon and Holmes
[1979], Flepp et al. [1991], Sommerer et al. [1991], Papoff et al. [1992], Ditto et al.
[1990], Hunt [1991], Gills et al. [1992], Shinbrot et al. [1992]). Indeed virtually all me-
chanical and electrical oscillators need to be driven if they are not simply going to rest at
a trivial equilibrium, and the same can be said of lasers and related devices. At the other
end of the applications spectrum, it would be surprising if for instance the population of
a given species within some ecosystem was not sensitive to the annual seasonal cycle;
a closely related example is given by the well-known fact that measles epidemics are
affected by the scholastic year [Grenfell, 1992].

A simple generalization of periodic forcing is that of so-called quasi-periodic forcing,
i.e., forcing by two periodic signals atincommensurate frequencies. This often appears to
lead to very interesting dynamical behaviour (e.g., Romeiras et al. [1987]). Aninteresting
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example of more or less arbitrary forcing occurs in the context of synchronization (Pecora
and Carroll [1990], [1991]), where a given system is used to drive a separate copy of a
part of itself. This has potential applications to communications systems (e.g., Cuomo
and Oppenheim [1993], Hayes et al. [1993]). Another situation where arbitrary driving
dynamics can arise is in the adaptive prediction of chaotic time series (Stark [1993],
Stark and Davies, [1994]) and more generally in the recursive filtering of such time
series (e.g., Badii et al. [1988], Broomhead et al. [1992]).

3.1. Skew Products

If we want to study such forced systems using the techniques of nonlinear dynamics,
we have to turn them into autonomous systems in the usual way by expanding the phase
space and incorporating the forcing dynamics. As already described in the introduction,
this leads to a dynamical system bhx N of the form

Xiv1 = T(Xi, %),
Vi1 = g¥).

Herex;, as before, represents the state of the system we are interestedgmeanelsents

the forcing dynamics. In the same way that in the unforced ¢asas required to be a
diffeomorphism, we shall need the mép M — M to be a diffeomorphism oM for

everyy € N, wherefy is defined byfy(x) = f(x, y). This will be the case, for instance,

if the underlying dynamics is in fact given by a differential equation (whose timep

is f, see e.g., Example 3.1 below); this would seem to be a reasonable hypothesis in
most of the examples described above. We shall employ the no@atigl x N, M)

for the set of such inC"' (M x N, M). We shall also need to be a diffeomorphism of

N, which in turn means that the pdif, g) is a diffeomorphism oM x N. In line with
common usage, we shall call the péaft g) a skew product o x N.

Example 3.1. A particularly illustrative example arises in the case of periodically forced
ordinary differential equations:

dx Wit

at = x, ),
whereW (x, t) is a time-dependent vector field that is periodic in time, sothag, t +
T) = W(x,t) for some period > 0. Let f 3 be the solution of the differential equation,
so thatfS(x, t) is the state of the system at tirhe- s, if the system was in state at
timet.

Suppose that we observe a measurement fungtidd — R with a sampling inter-
val T > 0. Then thé ™ observation in our time series is given pyf 7 (x, 0)) = ¢(X;)
wherex; satisfiesxj ;1 = f(x, t) with tra=t+z.Butfo(x,t) = fr(x,t+T),
and hence if we writ®, = t;/T we get the skew product o x T?, whereT? is the
unit circle, given by

Xip1 = F(Xi,t),
b1 = b+ ow (mod D,
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where f(x,0) = f*(x,0T) andw = 7/T. In this case, thereforeg is simply a rigid
rotation of the circle through the angle If the sampling intervat is incommensurate

to the period T, thenw is irrational and the orbit of any is dense inT?!, whilst if

the sampling interval is rationally related to the forcing period, thes rational and
every orbit ofg is periodic. In many circumstances, particularly within the context of a
laboratory experiment, one will of course sample at the forcing period, sa thail
andg is the identityg(6) = 6.

3.2. Embedding Skew Products

Given how common forced systems are, and the factthatin analysing time series produced
by them it is normal to at least implicitly appeal to Takens Theorem, it is natural to
ask what this theorem can tell us about delay embeddings of skew products. At first
sight, there is no difficulty in applying the theorem to this case; aftef aly) is a
diffeomorphism ofM x N, and if bothM andN are compact, then sold x N. We can

thus conclude that “typically” the mapsgy,: M x N — RY is an embedding, where

ds 4. IS given by

gy (X, Y) = WX, Y), Y ((f, DX, y)), ¥ ((f, DX ), ..., v ((f, 0% x, y)h

Unfortunately, as already indicated in the introduction, the notion of typical that is given
by Takens Theoremto us here is not the one that we usually want in practical applications.
More precisely, the theorem says tldatg , is an embedding for an open dense subset
of D"(M x N) x C" (M x N, R), whilst we want it to be an embedding for an open dense
setinD"' (M x N, M) x D'(N) x C" (M, R). Thus, since&C" (M, R) is not generic in

C"(M x N, R),andD" (M x N, M) x D"(N) is not generic irD" (M x N), we cannot
conclude that typical skew products and typical functiondvbtead to an embedding.

As already mentioned in the introduction, the difference between the two statements
is clearly highlighted in the case of periodically forced systems (as in Example 3.1):
C" (M, R) is the space of ordinary time-independent observation functions, whilst typical
functions inC" (M x T, R) have explicit time dependence (or more precisely, phase
dependence).

We thus conclude that the existing versions of the Takens Theorem are not relevant
to forced systems. The principal aim of this paper is therefore to prove versions of the
theorem applicable to skew products. Since we shall only be concerned with observation
functions of the formp: M — R, we can write the delay maps g, M x N — R% as

Digo%Y) = @(FOX ), o(FP(X, ), ..., o(f 4 Dx, y)T,

where fO: M x N — M is given by fitD(x,y) = f(fO(x,y),d (y)) with
fO(x,y) = x and hencef P(x,y) = f(x,y). Ideally, we would like to conclude
that if d > 2(m + n) + 1, then this is an embedding for geneficand generiap, for

any giveng; in other words, we might hope that there is sufficient freedom in perturbing
f andg to allow us to fix the forcing system. Unfortunately, this is not the case: For
instance, Example 3.3 in Section 3.5 below shows that if wekake T* andg(9) = 6,

then we can construct open setsfadindy for which @¢ ¢, is not an embedding. Recalll
from Example 3.1 that this choice df andg is precisely that which occurs for a period-
ically forced differential equation when the sampling interval is the same as the forcing
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period. The basic idea behind this example is quite simple: Since every pdihtsoh
fixed point ofg, it turns out to be easy to construct an open set ébr which (f, g)
has a one-dimensional set of fixed points. At such points, every compon@mofis
identical, and so i has say a maximum near this sét,g , will be not be 1—- 1. Since
details of this example are somewhat technical and would detract from the exposition
here, they are postponed until Section 3.5 below.

A second, very simple, counterexample shows that we also need to exclude the case
of zero-dimensionaM. This should be no surprise, foril consists of discrete points,
andf: M x N — M is continuous, theri, and hencer 4 ,, must be independent gf

Example 3.2. Take M to be a single point, i.eM = {x}. Then of course there is only
one map iMD"(M x N, M), namely that given byf (X, y) = x. Thus®;4,(M x N)

is the single poin{(c, c, ..., c)'}, wherec = ¢(x). Hence, ifN consists of more than
one point,® 4 , cannot be an embedding for aryg, ¢, let alone a residual set.
More generally, suppose thist = {x1, ..., Xp} consists of a finite number of points.

Let f again be given byf (x, y) = x, for all x € M, and note that any sufficiently small
neighbourhood of in D" (M x N, M) contains onlyf . But®¢ g ,(X) = (G, Gi, ..., G)
wherec; = ¢(x;) and hencebs 4 ,(M x N) consists of preciselp points. Hence, iN
consists of more than one poidt; ¢ , is not an embedding for an open setfgffor any

g andg.

Onthe whole, this counterexample does not particularly concern us since the dynamics
of zero-dimensional manifolds is not exceptionally interesting, and hence the failure of
Takens Theorem in this case is not unduly worrying.

These two pathologies turn out to be the only obstructions to the genericity of embed-
dings for forced systems. We can exclude the first one by requiring the periodic orbits of
short period ofj to be isolated; and as it turns out, we also need nondegeneracy conditions
on their eigenvalues. The condition we impose is the same as thatromheorem 2.2,
but for technical reasons we require that it hold up to periddThe precise version of
Takens Theorem for skew products that we prove here is thus given by the following.

Theorem 3.1(Forced Takens Theorem)Let M and N be compact manifolds of di-
mension n> 1 and n, respectively. Suppose that the periodic orbits of petiditl of

g € D" (N) are isolated and have distinct eigenvalues, where 8(m + n) + 1. Then
forr > 1, there exists an open and dense setfofp) € D' (M x N, M) x C"' (M, R)
for which the mapbs 4 ., is an embedding.

The proof is given in Section 5, whilst Proposition 4.1 below shows that the get of
satisfying the conditions of this theorem is open and dengZ {iN).

Giventhe discussionin Section 3.2, itwould be interesting to see whether Theorem 3.1
generalizes to fully coupled systems, i.e., wherie not independent of. Informally
this would say that one can reconstruct coupled dynamical systems by observing a single
subsystem. The appropriate conjecture would be®qgt, is an embedding for an open
dense set of(f, 9), ) € D'(M x N) x C"'(M, R). It seems likely that it should be
possible to prove this using similar technigues to those developed here, and this issue
will be addressed in a subsequent paper.
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3.3. Bundle Embeddings

The Forced Takens Theorem above shows that we can typically reconstruct the joint
dynamics of a forcing and a forced system from a time series of an observable of the
forced system alone. It is applicable to situations where the forcing is unknown, which
will be the case in many practical applications.

Sometimes, however, we may be in possession of independent knowledge of the state
y of the forcing system. This will for instance be the case if we control the forcing, as
in many laboratory experiments. If this is so, it seems that it should be unnecessary to
have to reconstruct the forcing dynamics.

Thus, rather than requiringt 4, to embedM x N, we might simply ask that it
should embed eadd x {y}. More precisely, if we define@¢ g, y: M x {y} - RY by
D g4y(X) = Pt g,(X,y), then we would wantb¢ 4,y to be an embedding for each
y € N. We shall call such &5 4, v abundleor fibre embedding

An embedding of this kind is sufficient for instance if we have independent knowledge
of yi = g'(y) and want to predict the time seri@sx;). Thus, as in Section 2, let

z = (%), o(FP 0, ¥)), .., o(F 9D 05, yT
= Dt g,(X, Vi)

Then if for somed both ®¢ 4, v and®y g, y,,, are embeddings d¥l x {y;} andM x
{vi+1}, respectively, we have

—1
Ziy1=Prggy.o fyo(Prgey) (),

where fy, (x) = f(X, yi). Thus, if we letGy: RY — R be the last component of
@t ggy.q 0 fy 0 (Prgey) L we have

¢ird = Gy (@i, Gig1, .-+, Gitd-1),

where as usual = ¢(x;). Then, in principle, given enough data we can estingtas
a function fromR? x N, and use this to predict the time series.

The main benefit of this approach is that we do not waste resources in trying to
reconstruct the dynamics gf which we already know. In particular, since we are only
trying to embed am dimensional manifold, we would expect it to be sufficient to take
d > 2m+ 1 rather thard > 2(m+ n) + 1 as above. This in fact turns out to be the case.
Since itis always desirable to work with the small@gtossible, this can be a significant
advantage even if is not particularly large.

The one drawback is that it is not possible to ensuredhat, y is an embedding for
ally € N. In particular, Example 3.4 below shows that it is possible to construct an open
set of f, g, andy for which ¢ ¢, y fails to be an embedding at isolatgddepending on
f, g, andy). The best that we can do is show that it is an embedding for “typicalne
would expect this to be sufficient in applications since it will allow us to constayct
and make predictions for all “typicaly, in the same sense as one can use the standard
Takens Theorem to constru@tfor “typical” f andg.

SinceN is finite-dimensional, there are two possible notions of “typical&ither
all y in an open dense set, or gllin a set of full Lebesgue measure. In fact the latter
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implies the former. In particular, the continuity @% 4 ., y and the density of embeddings

in C" (M, RY) implies that the set of for which @ 4, y is an embedding is open. Also,

a set of full Lebesgue measure is necessarily dense since if it were not then its
complement would contain an open set and hence have positive Lebesgue measure. The
theorem we thus prove is as follows.

Theorem 3.2(Bundle Delay Embedding Theoreml.et M and N be compact mani-
folds of dimension i+ 1 and n, respectively. Suppose thatd?m + 1 and the closure

of the set of periodic orbits of period d of g € D" (N) has zero Lebesgue measure in

N. Then for r> 1, there exists a residual set 6f, ) € D' (M x N, M) x C"(M, R)

such thatfor any f, ¢) in this set there is an open dense set of y of full Lebesgue measure
such thatds 4 ., y iS an embedding.

The proof is given in Section 6. We can slightly weaken the conditiog ¢m the
requirement that the closure of the set of periodic orbits of periatis nowhere dense
to give a residual set aff, ¢) for which ®¢ 4 , , is an embedding for an open dense set
of y, butin this case we need> 2n. Itis an open question to what extent any conditions
ong are necessary. In particular, one might hope that it might be possibte fgy, y to
typically be an embedding for ajj. There appears to be no obvious counterexample to
this conjecture, and in particular systems of the type considered in Example 3.1 fail to
be 1— 1 only by mapping points with different values to the same point, and are thus
irrelevant here.

Finally, we remark that we have only been able to provedhata bundle embedding
for aresidual set of andg. This is a weaker result than in the standard Takens Theorem
and Theorem 3.1 above, whebeis an embedding for an open dense sef @ndg. In
fact, in all three cases we only prove the existence of a residual set. However, for the latter
two theorems we can then appeal to the fact that the (mhap) — @ is continuous and
that embeddings are opendh(M, RY) to deduce that the set 6f, ¢) such thatb is an
embedding is also open. This argument fails for Theorem 3@ {f, , is an embedding,
then certainly it is an embedding for a neighbourhood fofp). However, the size of
this neighbourhood depends gnand hence there is no way of ensuring that there is
a neighbourhood for which we get an embedding for typicarhis line of reasoning
suggests one possible version of the theorem that gives embeddings for an open dense
set of systems: Given ardy> 0, there exists an open and dense s&tfop) for which
s 4.0,y is an embedding for a set gfof Lebesgue measure-15 (see Section 6.4).

It remains to be seen whether the distinction between open dense and residual is a
significant one in applications. Certainly, many other results in nonlinear dynamics are
restricted to a residual set of systems, and “residual” is widely accepted as a useful
definition of “typical.” Of course, if it proves unsatisfactory in this case, one can always
increase the embedding dimension from21 to 2(m+n)+1, inwhich case Theorem 3.1
ensures thabs 4, y is an embedding for alf for an open dense set 6f, ¢).

3.4. Periodically Forced Differential Equations

In this section we want to discuss the implications of the results stated above to period-
ically forced differential equations, continuing the analysis begun in Example 3.1. We
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also give detailed descriptions of the two examples (3.3 and 3.4) referred to in Section 3.2
and Section 3.4, respectively. Recall that the first of these shows that some restrictions
on g are necessary in Theorem 3.1, and the second that we cannot expect to embed every
fibre in Theorem 3.2.

As described in Example 3.1, periodically forced differential equations correspond
to the caseN = T! andg(f) = 6 + t/T, wherer is the sampling interval andl is
the forcing period. We thus see that whefl is a rational with denominator less than
d, every point inT* will be periodic (forg) with period less thaml, and hence the
hypotheses of Theorems 3.1 and 3.2 will unfortunately not be satisfied.

This is potentially a serious problem, since a very popular, and quite natural, choice
is to sample at the forcing frequency, so th&f = 1, g = Id, and every point ifft is
a fixed point. As Example 3.3 below shows, if the flow has a periodic orbit of pdriod
that has a nontrivial projection ontd, then for an open set @f, ®¢ 4, will fail to be
1 — 1, and hence fail to be an embeddinghdfx T*.

Fortunately, in most practical applications this is not a great drawback. This is because
when one takes = T, one is usually thinking in terms of reconstructing the so called
stroboscopic map for the system, which is in effect the Posoaap for the section
0 = 6y (for some constarty). Thus, one is trying to embel x {6p} for a singled,,
rather than the whole o1 x T:. In such a case, we just have the single nfgpto
deal with (wherefy, (x) = f (X, 6p)), and can justify the embedding procedure using the
standard Takens Theorem. Thus for a residual séf,aindy, the corresponding delay
map (which is justb¢ 4 , ,) Will be an embedding.

The same idea can be used whefi is a rational with denominator less than
Thus suppose that/T = p/g, with 1 < q < d. Given6p, defineé,, ..., 6q_1 by
Oi+1 = 9(6;), andby = g(64—1). Then the orbit of) is restricted taN = {6y, .. ., 6q-1},
which is a zero-dimensional manifold. Triviallg,has only a finite number of periodic
points, and thus by Theorem 3.1 there is a dense open deswth thatd; g , embeds
M x N =M x {0, ...,604-1}. Thus as long as we are satisfied with reconstructing the
dynamics orM x N only, Theorem 3.1 is perfectly adequate.

Recently, however, there has been considerable interest in embedding the whole of
M x T?, for instance when it is desired to reconstruct the braid structure of the periodic
orbits (e.g., Papoff et al. [1992], Tuffilaro et al. [1995] and the references therein). In
such cases it is usual to highly oversample the time series, i.e., ta takd /q, with
g large, ort/T irrational. By Theorem 3.1 the corresponditbg 4, is generically an
embedding.

Note also that Theorems 3.1 and 3.2 are phrased in terms of a residuaf setolst
in practice we want genericity in terms of the original vector figld Thus, denote
the set of periodically time-dependent vector fieldsdyM x T!, T M) (where we
normalize the forcing period to T = 1), and for¥ € C"(M x T, T M) define the
delay embedding map by

Dy (X, 0) = (P(X), p(F7(X, 8)), ..., (F7 4D (x, 0T,

where f! is the flow generated by, so thatft(x, ) is the state of the system at time
6 +t (mod ) if the state wax at timeg. It is then relatively straightforward to give the
following analogue of Theorem 3.1.
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Theorem 3.3. Let M be a compact manifold of dimensioreml. If gz is not an integer
foranyl < q < d,and d> 2m+ 3, then forr > 1 there exists an open and dense set of
(W, p) € C"(M x T, TM) x C"(M, R) for which®y , is an embedding of M T?. If

7 = 1/q for somel < q < d, and d> 2m + 1, then for r > 1 there exists an open and
dense set af¥, ) € C" (M x T, TM) x C" (M, R) for which®y , is an embedding of

M x {90, ey Qq_l}.

We indicate the main modifications to the proof of Theorem 3.1 required to prove this
in Section 5.11.

Finally, we give a detailed description of the two examples referred to above. The first
constructs open sets dfandg for which @ 4 , is not an embedding in the cale= T*
andg(9) = 0, whilst the second gives an open setfof), andy for which ¢ 4 , | fails
to be an embedding for evegy Of necessity, these examples are somewhat technical,
and the casual reader may prefer to jump straight to Section 3.5.

Example 3.3. Take N = T! andg(9) = 6, and letM be any compact manifold. Let
f be any diffeomorphism oM that has a hyperbolic fixed point. Given f, we can
trivially construct afg: M x N — M by fo(x, 6) = f(x) Then(fo, g) = (fo, Id) is
a skew product oM x N = M x T?, and(xo, #) is a fixed point for every e T?.
Such fixed points are not hyperbolic, but the geff x T* is a normally hyperbolic
invariant circle (e.g., Ruelle [1989]). Now, normally hyperbolic invariant manifolds are
structurally stable under perturbations. Thus there is an open neighbourhobd,
in D2(M x T, M) such that for allf in ¢/ there is a( f, Id) invariant circle close to
{Xo} x T*. Furthermore this circle is the graph of some functiori’* — M that satisfies
the equatiorf (x (8), 0) = x (). Fix6,andletz = (x (), 6).1f v € T,(M x T'), we can
write itasv = (v1, v2) withvy € T, )M andv, € T, T, and define the partial derivatives
of fatzby T;,f(v1) = T,f(v1,0) and T, f (v2) = T,f (0, vy). Differentiating the
equationf (x(6),0) = x (), we obtainTy ;f o Tyx + To.f = Tyx. Thus if To . f is
injective (i.e., has rank 1) thef x is injective, and hencg is a local embedding in the
neighbourhood of. Choose somd close tofp such thatf (Xp, 8) = Xo andT,, f is
injective. Thusy (8) = Xp and Ty x is injective. Then there is an open neighbourhood
V of 6 in T? such thaty (V) is a one-dimensional submanifold Bf, with xo € x (V).
Observe that for any point € x (V) there exists somé < V such thatf (x, ) = X,
and henceby g , (X, 0) = (p(X), p(X), ..., p(X))' foranyp: M — R.

Choose an observation functignthat has a nondegenerate maximunxatDe-
note the level surfaces a@f by Lc,, thusLc, = {x € M: ¢(x) = c}. Then for
C # ¢(Xo) sufficiently close tap(Xp), the setl ¢, is an embeddeth — 1 dimensional
sphere (enclosingp). For an open dense set ofthe curvey (V) will intersectLc,,
transversally at two (or more) points. Call thegeandx;; thuse(X1) = ¢(x2). Also
by the above there exists, 6, € V such thatf (xy, 61) = x; and f(Xg, 62) = Xo.
Hence ®1 g, (X1, 01) = (9(X0), 9(X1), ..., (X)) = (9(X2), p(X2), ..., ()" =
dr g0 (X2, 02), and sod ¢ , is Not 1-1, and hence not an embedding. Now observe that
the manifoldsr o x (V) andL, depend smoothly ori andy, and hence will intersect
in at least two points for an open neighbourhoodfadindg. Thus®¢ 4, will not be
an embedding for alf andg’ in such an open neighbourhood.
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Example 3.4. (I am very grateful to an anonymous referee for suggesting this example.)
Again takeN = T?! but now letg®) = 6 + » (mod D with w arbitrary (so that

in particular we can choose so that there is an open neighbourhoodyaduch that

no map in this neighbourhood has a periodic orbit of period 3 or less). We also take
M = TYand f(x, 0) = x + p(6) (mod 1), for somep: T* — R. Initially we shall take

o = 1/2, independent of, and then perturb it slightly to givé somed dependence.
Now choosep: T' — R such thatp(0) = ¢(1/2) = 0, ¢ is positive and has a unique
maximum on [01/2] atx = 1/4,p(1/4+ §) > ¢(1/4 - §) for all § € (0, 1/4), and

¢(X) = —p(1/12— x) for all x € [1/2, 1]. Letd be the minimum embedding dimension
required by Theorem 3.2, so that= 3, and let®; 4,4 be the corresponding delay
map. Sincef is independent ob, so is ®¢ 4, 4. Furthermore, sinc&; g ,4(0) =

Dt g.00(1/2 = (0,0, 0)f, we see thatb¢ 4, ¢ fails to be 1-1 and hence an embedding
for all g € T2. This is not that surprising, sinckis so “nongeneric”; however, we shall
show that if we slightly perturlp, then there is an open neighbourhood of the resulting
f (and ofg andy as above) such that the delay map still fails to emBec {6} for at

least one.

To see this, denote the first two component®ef; , o by @ = (&1, d2): T! — R2.
Observe thatb(0) = ®(1/2) = 0. The conditions o imply that forx € (0, 1/4), we
have®1(x) > —®,(x) > 0, and forx e (1/4, 1/2), we have—®,(x) > ®1(X) > 0.
The image of [01/2] under® is thus a loop from(0, 0) lying in the fourth quadrant.
The conditionp(x) = —¢(1/2— x) implies that the image of [1/2] is this loop rotated
throughs, and hence lying in the second quadrant. The whole ind&&) is thus a
“figure eight” with the two arms crossing transversally at the origin.

Because of this transversality and sirizgy , o depends smoothly ofy, g, ¢, ando,
the image of the first two components &f g , ¢ Will still be such a “figure eight” for
all sufficiently closef, g, ¢, and6. Fix somefy and choose: T — R sufficiently
close to 1/2 for this to hold for the resultinigand so thap (6g) = 1/2, p is increasing
on an interval §p — 8, 6o + 8] for somes > 0 andp(8) = p(0 + w) = p(6 + 2w) for
0 € [6p — 68,60 + 8]. This last condition can be satisfied since we have assumed that
g has no periodic orbits of period 3 or less, and hence the inter@gals B, 69 + §],
[60+ @ — 8,00+ w+ 8], and Po + 2w — §, 6y + 2w + §] can be chosen distinct.

Observe that for any € [6p — 8, 6p + 8] we havedi g, o(X) = (p(X), (X +
2(0)), o(X + 20(O)))T, with p(#) close to 1/2,0(0) < 1/2 ford e Gy — 8, 6p), and
p(6) > 1/2 forf e (8o, Bo+s]. Denote the first two components of theg 4 , » by CB,,,@.
Consider first the case € [0y — 8, 6p). By the above, the image @p,g is a “figure
eight”. It is easy to see that the self-intersection cannot occur in the region> O.
This is because the self-intersection must occur close to the origin bxatdai0, 1/4),
we havep(X + p(0)) > (X + 1/2) > —p(x) and forx € (3/4 — p(0), 1/2), we have
e(X + p0)) < (X + 1/2) < —p(x). Hence the self-intersection must occur in the
second quadrant and in particular correspong;te& (—¢, 0) andx; € (1/2, 1/12+ ¢)
for some smalls > 0. Considering the third component df; 4,4, we then have
o(Xg + 20(0)) < 0 ande(X2 + 2p(0)) > 0. Turning now top € (¢o, o + 8], the
same argument shows that the intersection occurs in the fourth quadrant, so that now
X1 € (0, &) andx; € (1/12—¢, 1/2), and hence (X1 +2p(9)) > 0andp(x2+20(0)) < 0.

We thus see that aspasses throughy, ¢ (X1 + 20(0)) — ¢(X2 + 20(#)) undergoes a
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change of sign. Since(xy + 20(0)) — ¢(X2 + 2p(0)) depends continuously ah it
must pass through 0, which correspondsbgy , 0 (X1) = Pr,g.4,0(X2); by the above,
this of course takes place @&t

Now observe thak; andx, depend continuously of, g, andg. Hence for a suf-
ficiently small open neighbourhood df, g, and¢, we can findd; and 6, such that
(X1 + 20(01)) — (X2 + 20(61)) < 0 andp(xXy + 20(62)) — (X2 + 2p(62)) > 0, and
hence & < (61, 0») such thatp(x, + 20(61)) = e(X2 + 20(61)), or in other words
D g.0.0(X1) = Prg.0,0(X2) Hence, as claimed, we have an open neighbourhodd gf
ande such thatbs 4 , o fails to be 1-1 for at least orte

3.5. Stochastic Forcing

In many applications the assumption that the forcing is generated by a finite-dimensional
deterministic systemis notareasonable one, and itwould be extremely useful to develop a
framework for reconstructing systems driven by far more general processes. Particularly
examples include stochastic dynamical systems (which we think of as deterministic
systems driven by some stochastic process), input-output systems (as considered for
instance by Casdagli [1992]) and irregularly sampled time series. Since it is possible to
extend Theorem 3.2 to cover this case, we give a brief overview of this approach. Full
details will be contained in a sequel to this paper, jointly with D. Broomhead, M. Davies,
and J. Huke.

A standard approach to modelling such systems is through the use of shift spaces.
Thus let X be some topological space, and defiie= X* to be the space of bi-
infinite sequences of elements ¥with the product topology. Let: ¥ — X be the
standard shift map; thus [w)]; = [«]i_1, Where p]; is thei!" component ofv. Then
if f eD'(Mx X, M), we getthe skew product system,

X = f(X, wp),

o — o(w).

Since the spacE contains all possible sequences of elements,ithis gives us a very
general model of systems driven by arbitrary sequences. Observe that one could more
generally takef € D"(M x X, M) and replace th& dynamics byx — f (X, w). If
f only depends on a finite number of componentspthen such a generalization is
straightforward to incorporate, whilst if it depends on an infinite number it is very unclear
under what conditions reconstruction would still be possible.

So far we have consideregas simply an arbitrary sequence. If, in addition, we have
a probability measuree on X, then the corresponding product measusgon X is
invariant undew, giving rise to an interpretation of the above dynamics as a stochastic
process. If we define the mafy,: : M — M by f, (X) = (X, w), then one can
think of such a process as applying a different nigpat each time step, witly chosen
randomly with respect tp at each time step. One often tak€s= D' (M) here (so that
fo = wi (X)), inwhich case the resulting system is callegdiadom diffeomorphisite.g.
Kifer [1988]). Furthermore, whep consists of a finite number of discrete atoms, one
obtains ariterated function systenin the sense of Barnsley [1988] (see also Norman
[1968]).
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Whilst these kinds of systems do not encompass all possible cases of stochastic dy-
namics, they include a sufficiently rich class of systems to be both useful and interesting.
Itis also possible to consider more general shift invariant measurEstoan just those
given as product measures of a measur¥de.g., corresponding to Markov processes).

Example 3.5. As a simple example, the reader might find it helpful to consider the case
of an irregularly sampled periodic orbit of a differential equation. Restrict the dynamics
to the periodic orbit and take our coordinate on the orbit to be just the phasg', so

that the dynamics is just given By= 1. Suppose we observe the system at a sequence
oftimes{t;: i € Z}and letw; =t —tj,1 (mod 1). Then, within the above framework we
haveM = X = Tt and f,, (8) = 6 + w; (mod ). This is just a rotation of'* through

the anglew; and corresponds to the tinag map of the flowd = 1. The dynamics of

6 is therefore given by 1 = 6 + [0/ (w)]o (Mod D = 6 + w; (modJ. If one then
assumes that say the are uniformly independently distributed @1, this corresponds

to taking. as the Lebesgue (or more correctly, Haar) measufglon

The natural concept of equivalence for two skew product systearsd f’ (over the
sameX) is that of a bundle conjugacy, that is, a nfagl x ¥ — M such thath,, is
a homeomorphism for eaeh (where as usudi, (x) = h(x, w)) and such thath, Id)
conjugates the skew dynamics(df Id) with the dynamics of f', Id), i.e.,

(f,o) o (h,Id) = (h,Id) o (', 5).
This can be seen to be equivalent to
fw ©] hw = hg(w) [¢] fC;,

and is analogous to the concept of bundle embedding in Section 3.3. Ideally we would
like f, oh, =hs)o f, to hold for everyw € X, butin general as in Section 3.3 (recall
Example 3.4) this is too ambitious, and we have to be content with a conjugacy only
for “typical” w, i.e., for generiav in the topological setting, or for almost evenywith
respect tqus in the measure theoretic context. Note that even when, as in our tase,
depends only oy, we still allow h to depend on the other componentswof

Now suppose that we observe the dynamics using some fungetidh — R. If we
definef,, o, = fy 0---o f,,, where, as abovd,, (x) = f (X, wi), then the usual delay
embedding can then be written

Pt p0(X) = (9(X), 9(fae (X)), ..., @(Foy .00 (X))

By analogy to Theorem 3.2 above, if we wish to reconstruct the dynamics of our system
using delay coordinates, then it is reasonable to regirgto be a bundle embedding,

i.e., @t 4., should be an embedding (in the usual sense) for “typiealRecall that in
Theorem 3.2 we made no attempt to reconstruct the forcing dynayyéecel as a conse-
guence, the embedding dimensibmwas independent of the dimensiomf the forcing
system. Since the only difference between the setting here, and that of Theorem 3.2,
is that we have replaced the finite-dimensional dynargiby the infinite-dimensional

shift mapo, it is not unreasonable to expect that we should still get a bundle embedding
here. In fact, it turns out that as long as we take= N, a finite-dimensional compact
manifold, it is straightforward to modify Theorem 3.2 to give the following.
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Theorem 3.4. Let M and N be compact manifolds of dimensior-n and n, respec-

tively. Suppose that & 2m + 1. Then for r > 1, there exists an open dense set of
(f,9) € D'(M x N, M) x C" (M, R) such that for any f, ¢) in this set there is an open
dense set ab in ¥ such thatd , , is an embedding. If in addition is a measure on

N that is absolutely continuous with respect to Lebesgue measure, we can ensure that
o5, is an embedding for s -almost allw.

A proof of this theorem will be given in a subsequent paper, written jointly with
D. Broomhead, M. Davies, and J. Huke. This also includes generalizations to cover the
case of noise on the observation functign

We can think of the systems covered by this theorem as ones whose dynamics is given
by a finite parameter family of diffeomorphisms &M, with the parameters being an
i.i.d. random process with an absolutely continuous distribution. This would seem to be
a sufficiently rich class of systems to encompass many applications to real systems, and
the above theorem thus represents the first tentative step towards developing a theory of
embedding nonlinear stochastic dynamical systems.

To conclude this section, we discuss the interpretation of Theorem 3.4 in the context
of delay reconstruction of time series; this is virtually identical to that for Theorem 3.2
given in Section 3.3. Thus, suppose thais such thatd¢, , and ®¢, ;) are both
embeddings oM. Then the magF, = @t (@) © fuy © (dnf,w,w)‘l is well defined and
is a diffeomorphism betweed; , ,(M) C RY and®+,, () (M) C RY. Let (X, o' (w))
be an orbit of( f, o), so thatx; ;1 = f (X, wj), and as usual defing = ¢(x) andz =
(@is Git1, - -5 Qird—1). Thenz, = Oy, ;i) (%), and hence D¢ , 5i(,,) ANd D+, 5i+1(,)
are both embeddings, we have

Zi1 = Prpoiti (Xitd),
= Pt g oi+1(w) (for (%)),
= D10 0(@) (for (Prypoi @) (Z))),
= Fiw(2).

Therefore in exact analogy to the standard Takens framewgi, is just the map that
shifts ablock of the time series forward by one time step, and h@ngcg 1. . . . , @i+d—1)
— (¢it1, ¥it2, - - - ¢i+d) iS bundle conjugate to our original dynamits. Note how-
ever, that wheread,, only depends onw; = o' (w)o, the mapF,i, depends on
Wi, w1, -- ., wi+d—1- AS usual, the firsd — 1 components of, are trivial. If we
denote the last component B,: ®¢, (M) — R then

@i+d = Goi(o)(@is Pittls -« Pitd—1)-

If we write out the dependence ot (w) explicitly, we get

Gird = G(@i, Yit1, -+ Pitd—1, Dis Vit1, - - Ojyd—1)-

In the case of one-dimensiona)l, the existence of such a function was conjectured
by Casdagli [1992]. From another point of view, processes that satisfy this equation
(again for a one-dimensionai) are well known in signal processing under the name
of Nonlinear Auto-Regressive Moving Average (NARMA) models (e.g., Billings et al.
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[1988]). Note however, that in the case of NARMA processes, one usually assumes that
G depends smoothly on all its arguments, whilst we can say nothing about the regularity
of its dependence of;, wj11, ..., wii+q_1; iINdeed,G is only defined for almost every

Wi, Wit1, . .., wi+d—1 With respect to the product measuyrg on N9.

4. Proof of the Standard Takens Theorem

Takens Embedding Theorem can be thought of as an extension of the Whithey Embedding
Theorem, which says that the set of embeddings of a compact maMfaidR® is open

and dense i€" (M, RY) if d > 2m + 1. Unfortunately, maps of the forrd; , form a

very special subset af (M, RY), and hence we cannot deduce Takens Theorem directly
from the Whitney Theorem. However, since the ngdpy) — s, is continuous (by
Corollary C.3, in Appendix C below), Whitney’s Theorem does at least immediately
imply that the set of(f, ¢) such that® f, ¢ is an embedding is open iB" (M) x

C" (M, R). The main task in proving Takens Theorem is thus to demonstrate that there is
sufficient independence in the component®gj, to ensure that the set ¢f, ¢) giving

an embedding is dense ™ (M) x C" (M, R).

This is completely straightforward at those poirts M that do not lie on a periodic
orbit of f of period less than or equal th Then the pointx, f (x), ..., f9-1(x) are
distinct, and hence we can pertyrindependently in the neighbourhood of each of these
points (intuitively this is obvious; a rigorous argument can be found in Appendix C.3
below). Thus, informally, given any: M — RY, we can find @: M — R such thatin
aneighbourhoot of x the mapd¢ , agrees withl. Since the map — &+, is smooth,
this means that the set pffor which @« , is an embedding restricted W is dense by
Whitney’s Theorem. We then need to piece together these local embeddings into a global
one. At this stage a further problem arises, namely to show®hgt(x) # s ,(X")
for pointsx andx’ such thatx = f¥(x’) for somek # 0 such that-d < k < d.

The difficulty with such points is that perturbations fnand¢ do not affect®s ,(x)

and &5 ,(x’) independently. The vast part of the proof of Takens Theorem is taken in
overcoming this, and in dealing with the short periodic orbitsfofAs we shall see,
exactly the same issues will arise in the proofs of the forced theorems in the next two
sections.

4.1. Main Proof

SinceM is assumed compact, to show tigat, is an embedding it is sufficient to show
that it is both injective and immersive. As already mentioned above, since the map
(f, ¢) — ®¢, is continuous, the set 6ff, ¢) such thatb¢ , is an embedding is open by
Whitney’s Theorem, and it remains to show that it is dense (we shall in fact demonstrate
that it is residual). Finally, sina€ (M, N) is dense irC"' (M, N) for allr > r’, we only
need to prove the theorem for all sufficiently lamget turns out that we shall need at
leastr = 3.

The first step is to construct a set(df ¢) such thatbs , is an embedding on the set
of short periodic orbits of . For convenience, we shall deal with all orbits of period less
than 2. This differs from the approach of Takens [1980] and Huke [1993] who only
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consider periods up t@. The advantage of the present approach is that it avoids having
to deal separately with points and x’ such thatx = fk(x’) andx, x’ periodic with
periodq such thad < q < 2d. Furthermore, when we come to the proof of the forced
theorem in Section 5, there seems to be no way of avoiding taking all periods dp to 2
Since the present section is intended to provide an introduction to the techniques used
to prove the forced version of the theorem, it seems preferable to use the same condition
here.

We construct the required set 6f, ¢) by restricting to thosef that only have a
finite number of periodic orbits of period less thad. 2t is then a relatively simple
matter to perturlp in the neighbourhood of each such orbit to ensuredhatis 1-1 on
the set of such orbits. Showing th&t , is immersive takes somewhat more effort; the
argument is motivated by the theory of Vandermode determinants, though we do not use
this explicitly.

We proceed by defining

D" = {f € D' (M): all periodic orbits off of periodq < 2d are isolated and
hyperbolic and each has distinct eigenvajues

Note that we do not actually need the hyperbolicity of the periodic orbits in the proof
of Takens Theorem, but have no independent way of proving that the $exwfh that
periodic orbits of a given period are isolated is dense. Furthermore, by the Hartman-
Grol3man Theorem (e.g., [Irwin, 1980], [Ruelle, 1989]), a hyperbolic periodic orbit is
isolated from periodic orbits of any fixed period, and hence the requirement that the short
periodic orbits are isolated in the definition®f is superfluous. We include it in order

to emphasize its significance in the proof of Takens Theorem. Also note that we shall
not need the condition that orbits of perigdor d < g < 2d have distinct eigenvalues,

and as discussed already in Section 2.2, eveq ford this condition is slightly stronger

than necessary. However, for clarity of presentation we prefer to dBfirss above.

The fact that the set of such that the periodic orbits of a given period are hyperbolic
forms the first part of the Kupka-Smale Theorem (e.g., Smale [1963]). It is then a simple
matter to perturlf further to ensure that the eigenvalues of each such orbit are distinct,
thereby giving

Proposition 4.1. D" is open and dense iR" (M) forr > 2.

We give a direct proof of this in Section 4.2 below. Given d&ng D", let Ps be the
set of periodic points of of period less than@® We now aim to construct an open and
dense sefd; C C' (M, R) such that®¢ , is 1-1 and immersive (i.eT @, is 1-1) on
Pi. Sincey is the first component ob+ ,, the injectivity of ®¢ , follows immediately
from

Proposition 4.2. The set ofp such thaip is 1-1 onPs is open and dense i&f (M, R).

SincePs consists of a finite number of points, this is intuitively obvious, though a
rigorous proof is given below in Section 4.2, where we also prove
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Proposition 4.3. The set ofp such that T+ , has rank m for all xe P; is open and
dense irC' (M, R).

Since®;+ , is an immersion ax if and only if T, ®; , has rankm, this shows that the
setAs of ¢ such thatd; , is an embedding o is open and dense @ (M, R). One
minor issue then remains: For ariye D we have shown thatl; is open and dense in
C" (M, R), but in the statement of Takens Theorem we use an open and dense subset of
D' (M) x C" (M, R). We thus require

Lemma 4.4. The set
E={(f,p): f D", ¢e A}
is open and dense iR (M) x C" (M, R).

The proof is again given in Section 4.2 below.

From now on we shall restrict ourselves(th ¢) € £'. We shall show tha®+ , is
an embedding for an open dense subséY diy considering two maps ando from £’
into appropriate spaces of maps betw&tandR?, and their tangent bundles. The first
of these mapg: & — CH(T M, TRY) is defined by

p(f, @) =T s,

whereTM = {v € TM:|jv| = 1} is the unit tangent bundle d¥1, and T &;, is
just the restriction tof M of the tangent bundle mapds,: : TM — TRY. Thus
ev,(f, ¢, v) = Ty®s,(v). Let L be the 0 section iTRY, i.e.,L = {0, € TRY}, where
0y is the zero inTyRY. Note thatdr , is an immersion if and only if the image ¢ ,,
does not intersedt. We prove the following in Section 4.3 below.

Proposition 4.5. The map e, is transversal to L.

Now, by Corollary C.5gv, isCtif r > 3, and ifd > 2m — 2, then 1> dimTM —
codimL. We may thus apply the Parametric Transversality TheoresnTdis allows us
to conclude that the set 6f, ¢) such thap (f, ¢) is transversal td is open and dense in
E". Butfor anyv € T M, the dimension oT, (T M) is 2m — 1, and hence the dimension
of its imageT, (T ®¢,,) (T, (T M)) is at most 2n— 1, whilst the dimension of, L isd for
anyu e L. Hence ifT @, (v) € L, T,(T ®¢,)(T,(T M)) + T,L has dimension at most
2m—1+d. If d > 2m, this is strictly less than® which is the dimension of,(TRY),
and hencd, (T @s,,)(T,(T M)) + TuL cannot possibly spaf,(TRY). Thus ifd > 2m,
the only way thafl s, can be transversal o is if its image does not intersett i.e.,
if @, is an immersion. We have thus shown that the s&tfop) such thatds , is an
immersion is open and denseéh.

Let us now turn to demonstrating the injectivity®f ,. For this we consider the map
o: & — CY(M x M\ A, RY x RY) defined by

o (f, )X, X) = (P, (X), Pt (X)),
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where A is the diagonal inM x M. Let A = {(z,2): z € RY} be the diagonal in
RY x RY, and observe thabs , is injective if and only if its image does not intersect
In Section 4.4 we shall show

Proposition 4.6. The map e, is transversal toA.

By Corollary C.3ev, isCtforr > 2, and dimM x M\ A —codimA = 2m—d < 1,
if d > 2m — 1. We may thus apply the Parametric Transversality Theorem to deduce
that the set of f, ) such thatr (f, ¢) is transversal ta is residual ing" .

But now, just as above, we count dimensions: The dimensidip ofM x M\A) is
2m, and hence the dimension®f x (o (f, ))(Tx x (M x M\ A)) is less than or equal to
2m. The dimension oT, ;A isd and thus if 2n+d < 2d, transversality of ( , ¢) to A
implies that the image af (f, ) cannot intersecA. But this is precisely the condition
for ®;, to be 1-1, and hencedf > 2m+ 1, injective maps are residual & and hence
residual inD" (M) x C" (M, R).

This completes the proof of Takens Theorem. We make one final comment: In the
proofs of the transversality @b, andev, below, we only make use of perturbations in
@. Thus for a fixedf € D', ev, andev, will be transversal td. and A, respectively,
when considered as functionsg@fnly. This immediately gives a proof of a version of
the “unstated” Takens Theorem ([Huke, 1993]):

Theorem 4.7. If f € D", then there is an open and dense set of observation functions
¢ € C" (M, R) for which ®¢ , is an embedding.

Note that this is slightly weaker than Theorem 2.2, since the definitidR' oplaces
restrictions on periodic orbits of all periods up th, 2ather than justl, which is the case
in Theorem 2.2.

4.2. Embedding the Short Periodic Orbits

4.2.1. Isolating the Periodic Points.Although Proposition 4.1 is a simple corollary of
the Kupka-Smale Theorem, we give a detailed proof. This is because very similar ideas
arise in Section 5 in the proof of the Forced Takens Theorem in a context where we
cannot deduce the required result from the Kupka-Smale Theorem. It thus seems helpful
to introduce the techniques that we shall use there, within the much simpler setting of the
unforced case. The proof is actually our first application of the Parametric Transversality
Theorem.

Define

Bq = {f € D'(M): all periodic orbits of period < q are isolated and hyperbojic
with By = D" (M) by default.

Lemma4.8. B, is open and dense iR (M) forallqg > 1,r > 2.

Proof. By induction. Suppose the lemma holds for somqe 1. ThenB, is a Banach
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manifold and we may apply the Parametric Transversality Theoremifg — C" (M, M x
M) given byp () = (19, id). The evaluation map v, (f, x) = (f%(x), X). By Corol-
lary C.2,ev, is C1. The periodic points of of periodq correspond to points of intersec-
tion of the image of ( f) with the diagonalA = {(x, X): x € M} C M x M. Thisis a
closed submanifold of1 x M of codimensiomm, with Ty xA = {(v, v): v € TxM}. To
show thatev,, is transversal ta\ at (f, x); it is sufficient to show that itv,(f, X) € A
then the image of x (ev,) contains the spadgu, 0): u € T,M}. By Corollary C.2 we
have

q
T x(€vy) (1, Ox) = (Z Ty F97 (n(x%i-1)), Ox>
i=1

wherequ(fO) = Id. First suppose that has least period. Then the pointg; = f'(x),

i =0,...,9—1are disjoint, and by Corollary C.12, given amg TxM, we can find a
n € TiBg suchthah(Xq-1) = u € T,,M = TyM andn(x;) = O, fori =0,...,q-2.
For such an, we haveTs y(ev,)(n,0) = (u,0), and hencel x(ev,) (Ts x(Bg x M))
contains the spadgu, 0): u € TyM} as required. Now suppose thahas least period
p <(d. Then

p .
Trx(€v,)(n, 0) = <Z TOT P (i), ox> ,
i=1

where

k
TR — T, f p(j—l)’
whereq = kp. Sincex is periodic of periodk, none of the eigenvalues @ f P have
unit modulus (by the inductive hypothesis). The eigenvalue$ ©f are of the form
144+ - -+AK=1 forx an eigenvalue of, f P. Since(1+A+- - -+ (1—1) = (1-215),
we see that all of the eigenvaluesf are nonzero, and hen@é is invertible. Now
we proceed as before: The poings= f'(x),i =0,..., p— 1 are distinct, so given
anyu € T,M, we can find & € T By such that)(xp_1) = (T®)"tu e T M = T,M
andn(x) =0y, fori =0,..., p— 2. For such &, we haveT; x(ev,)(n, 0) = (u, 0),
as required.
We have thus shown thab, is transversal to the diagonal in M x M. SinceA
is a closed submanifold dl x M of codimensionm, the Parametric Transversality
Theorem implies that the set df € D' (M) for which (f9,id) is transversal t\ is
open and dense far > 0. But if (f9,id) is transversal ta\, then(f9,id)~%(A) is
a submanifold ofM of codimensiorm, and hence of dimension 0. It is thus a finite
set of isolated points (recaM is compact). But( f9,id)~%(A) is nothing more than
the set of periodic points of of periodq. To complete the inductive step we need to
show that we can further restrict the set oo make the periodic orbits of periagl
hyperbolic. Suppose thdy € By such that((fp)9, id) is transversal ta\. Then by the
Transversal Isotopy Theorem (Appendix A) there is an open neighbouddaafdf,
such that everyf in U/ has the same number of periodic points of peoas fo. We
can thus perturlfy by an arbitrarily small amount in the neighbourhood of each such
periodic orbit (using Corollary C.18 if we want to be completely rigorous) to givé an
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such that these periodic orbits are hyperbolic. TBys, is dense in3,. Conversely, if
for some fy all the periodic orbits of period are already hyperbolic, then they will be
hyperbolic for all sufficiently closé and hencés.1 is open in3y. We have thus shown
that B41 is open and dense ifi;, and since3; is open and dense iR (M), Bq1 is
also open and dense T (M), thus completing the inductive step. O

Proof of Proposition 4.1. Observe that we can trivially modify the last step in the proof

of Lemma 4.8 to require the eigenvalues of any periodic orbit of peritmbe distinct.

Taking the intersection of all such sets fpx 2d, we obtain precisel$", and since the
intersection of a finite number of open and dense sets is open and dense, this completes
the proof. O

4.2.2. Injectivity on the Periodic Points.

Proof of Proposition 4.2. The setP; consists of a finite number of points; write these
asxo, ..., X_1. Letp: C"(M, R) — RK be given byp(¢) = (¢(X0), . .., 9(X_1)). Let

Ax be the open and dense subseRbigiven by Ay = {(Yo, . .., Yk_1) € RK: yi # y; if

i # j}. Thenp~1(Ay) is precisely the set ap such thatp is 1-1 onP;. By Corollary

B.3 the mayp is continuous and henge 1 (Ay) is openinC' (M, R). By Corollary C.13

o is a submersion, and by a version of the implicit function theorem (e.g., see Abraham
and Robbin [1967] or Lang [1972]) any submersion is a local fibration, i.e., there are
local coordinate® = (g1, ¢2) onC" (M, R) such thafo is locally a projection onto the

first factor. Therefor@—1(Ay) is also dense, as required. O

4.2.3. Immersing the Periodic Points.

Proof of Proposition 4.3. Let V,* = L(TyM, T, R) and defineg; € V;* by a =
Ty ¢ o T f! for anyi. Then thei™™ component off, @, (v) is & (v), and to show that
T ®t,, has rankm it is sufficient to show thaéig A - - - A @am—1 # 0.

Suppose thak has minimal periody. Sincexo, ..., Xq—1 are distinct, the maps
Teo®s - - -» Tx,¢ €an be adjusted independently, or more precisely by Corollary C.18
the mapy — (T, ..., Tx,,9) is a submersion. Bl f' is a linear isomorphism for
eachi, and therefore the map: C"(M,R) — VJ x .-+ x Vq-1 given by p(p) =
(Txo®s -+ Txqu® © Tx fa-1y = (ap, ...,8q-1) is also a submersion. The fact that
a A --- A am_1 # 0 for an open and dense setdh(M, R) then follows immediately
from the following.

Lemma 4.9(Huke, [1993]). Let V be a vector space withmV =m.Let AV — V
be an invertible linear map with distinct eigenvalues. Letngr + s, with0 < s < q,
and let \4, ..., Vy—1 be any collection of one-dimensional linear spaces. Defjfhe=V
LNV,V)). Forany a= (ap,...,a8q-1) € Vg X -+ x Vo1 letwa € V§ A--- AVE_
be given bywa = @ A -+ Aag1 Ao AA---Adq10AA---Aago ATl A
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o ANage1o ATl Aago AT A Aas 1 o AT Thenw, # O for an open dense set of
(ao,...,aq_l)evg‘><-~-><Vq*7l.

Proof. Letey, ..., en_1 be a basis oV. SinceV§ A --- A V7_; is one-dimensional,
wa # 0ifanonly ifwa(ey, ..., em_1) # 0. Now,wy(ey, ..., €n_1) = detB, whereB
is anm x m matrix such thaBjj = ax o AP(g) wherei = gqp+k, with0 < k < q.

Thus B;; is a linear combination 0By, ..., Bxm-1, and hence de is a polynomial
in thegqm variablesBgy, ..., Bom-1, ..., By—10, ..., Bg—1m-1. Since the mapy —
By.0. - - - » Bum—1is anisomorphism o¥,* andR™, we need to show that this polynomial
is nonzero for an open dense se(Bhy, . .., Bg—1.m—1) iInRI™.

Recall that the set of roofs1(0) of any polynomialg which does not vanish iden-
tically is a closed nowhere dense set. This is becgus€0) is trivially closed sincex
is continuous and it must have empty interiorglfvere identically zero on some open
neighbourhood, then all its derivatives there would vanish; hence its Taylor expansion
would vanish identically. But this Taylor expansion is jgsitself, and hence would
vanish everywhere.

It thus remains to construct a singl, . .., 8g—1) such thatw,(ey, . . ., ém-1) # 0.
This is done as follows: Choose aaysuch thaig(gj) # Oforall j =0,...,m— 1.
Fori <sleta, = ago A"V andfors <i < q—1leta, = ago AST". Theg; fori > q
are then of course given ly + kg = & o Afor anyi andk. Note that ifs < g then
ag-10 A"t = ago A" tandifs = g thenas_10 A" = ago A™ 1. Thusay, ..., an_1 are
a permutation ofy, . .., ago A™ ! and hencer, = +agAago AA--- Adgo A" L. But
by Lemma 4.10 belovag, ago A, ..., ago A™ ! are linearly independenté(g) # 0
forall j =1,...,m. Thuswsy(ey, ..., en_1) # 0, as required. O

Lemma 4.10. LetV beavectorspacewithmV = m.Let AV — V beaninvertible
linear map with distinct eigenvalues; & — R be any linear map such thata) # 0
for all eigenvectors of A. Thenthe seta,@A, ..., ao A" ! are linearly independent.

Proof. Suppose not. Then there exists . . ., am_1 With at least one; # 0, such that

m—1 ]
Zajao Al =0.
j=0

LetAq, ..., Ay be the eigenvalues k. Since the\; are distinct we can find a basis of
V consisting of eigenvectots, ..., vy of A (if some of thex; are complex, we simply
work with the complexification o¥/). Then foralli = 1, ..., mwe have

m—1 )
Zajao AJ(Ui) =0.

j=0

But Al (v;) = (Aj)lv; andsoforany =1,..., m,
m—1 ) m—1 )
Y ajac Al(w) = a@w) Y aj(u)]
i=0 j=0

a(vi) p(ai),
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wherep(}) is the polynomiab(A) = ag+a1A+- - - am_1(A)™ L. Buta(v;) # 0 sincey;

is an eigenvectow of A and henceg (i) = 0forall A4, ..., Ap. Thea; are distinct and
thus p(A) hasm distinct roots. This contradicts the fact that it is a nontrivial polynomial
of degree at mosh — 1, and hence can have at mast- 1 roots. O

4.2.4. Proof of Lemma 4.4.The density of€" follows immediately from that o'
and.A;s. Thus given any fo, ¢o) € D" (M) x C" (M, R), first perturbfy by an arbitrarily
small amount to give ari € D', and then make an equally small perturbation to give a
(VNS As.

To show that" is also open, note that ify € D" then everyf in the neighbourhood
fo has the same number of periodic orbits of period less thas fy, and the positions
of the orbits depend continuously dn Thus ifgg is 1-1 onPs,; theng will be 1-1 onP;
for all (f, ¢) sufficiently close ta( fg, o). Furthermore T, ®¢ , depends continuously
onx, f, andy, and hence ifb¢, ,, is immersive orPs, then®; , is immersive orPs
for all (f, ¢) in a sufficiently small neighbourhood 6fg, ¢9). O

4.3. Transversality of ey

Proof of Proposition 4.5.1f ev, (f, ¢, v) € Lwith (f, @) € &, v € TxM, thenx cannot
lie on a periodic orbit of period d. This is because iff, ¢) € £, then by definition
if x is a periodic orbit of periodk d, thenT,®+ , has rankm and hencdy &+ ,(v) # 0
for all v # 0. Thusev, is trivially transversal td_ at such periodix.

By Corollary C.8,

o (Tx§(v))
o (Tx, & (v1))
Tf,(p.v(evp)(of s 5, Ov) = :

9

(T 1 (Vg_1))

wherex, = fi(x) andv; = Ty fi(v). Denotev’ = Ty®¢,v. If X is not a peri-
odic orbit of period< d, then the points, i = 0,...,d — 1, are distinct. Also,
sincev # 0, and f is a diffeomorphism, we haveg = O foralli = 0,...,d — 1.

Hence by Corollary C.16, given anys, ..., Ug_1) = u € T,(TRY) there exists
at¢ € T,(C"(M,R)) such thatw(Tx&(vi)) = u; fori = 0,...,d — 1, or in other
words such thaty , , (ev,)(0f, &, 0,) = u. ThusTs , ,(ev,) is surjective, and hence itis
transversal to any submanifold RY; in particular it is transversal tb as required]

4.4. Transversality of ey

Proof of Proposition 4.6. Suppose thaév, (f, ¢, X, X') € A with (f,¢) € £ . Then
ds,(X) = P (X)), and hencep(x) = @(x'), butx # Xx'. Thus, at least one of or
x’ is not a periodic point of periog 2d, since if (f,9) € &', ¢ is injective on the
set of such periodic points. Thus, without loss of generality, we may assume that the
pointsx, = fi(x),i =0,...,d — 1, are distinct. Lez = ®;,(x) = ®¢,(x), then
T.2A = {(u, u): u € T,RY}. We need to show that the image®f, .« x (ev,) contains
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a complement to this space. Note thaki), £(x) € TR, which is a one-dimensional
space. Let be a basis vector fofy R, and lete® be the vectoxO, ...,e,...,0"
TyRY. Thene©, ..., €D forms a basis fo,RY. For ease of notation writ& =
(f, ¢, X, X"). Then by Corollary C.3,

£(X) £(x)

&(x1) &(X)
Tz(ev,)(0f, &, Oy, Oy) = . , .

txaen) \exxy)

First suppose thafx, Xy, ..., Xd—1} N {X', X{, ..., Xj_,} = @. Then using Corollary
C.12, foreach = 0,...,d — 1 we can find & e T,(C" (M, R)) such that; (x;) =
&,&(x) =0forj #i,and&(x) =0forall j =0,...,d — 1. For such & we have
Tz(ev,)(0f, &, Ox, Oy) = (1), 0,), and hence the image ®E (ev, ) contains the space
T,RY x {0y}, which is clearly a complement (T&,ZA, as required.

It remains to deal with the case = fi(x) forsome—(d —1) < j <d—1,j #0.
Sincex’ cannot then be a periodic orbit of peried2d we can assume without loss of
generality (interchangingandx’ if necessary) that' = f1(x) forsome0O< j <d—1.
Note that if f' (x’) = x for somei > 0, theni + j > 2d, sincex is not periodic with
period less than@ Hence(x, X1, ..., Xj—1} U {X', X; ..., Xj_,} are disjoint. Hence for
0 <i < jwecanfindasabovesae T,(C" (M, R)) such thallz (ev,)(Os, &, O, Ox) =
eV, 0,). Now proceed by induction. Our inductive hypothesikasthat forall 0< i <
k there exists § < T,(C" (M, R)) and au; € T,RY such thail (ev, ) (O, &, O, Ox) =
(& + uj, Uj). By the above this holds fde = j — 1 (with all theu; = 0,).

The inductive step then proceeds as follows: Sifitel (x') = f'(x), the points
{X, X1, ..., Xg—1} U {x{H, ..., X)_,} are disjoint, so we can finda € T,(C" (M, R))
such thatgy(x) = &, & (X)) = 0 fori # k, and¢(x)) =0fori =d —j,...,d — 1.
The remaining valueg(x/) fori =0,...,d — j — 1 are determined by, = f'(x') =
FIH9(x) = X1 j, sothati(x,_;) = &k(X) = &andz(x) = ¢k(Xi1j) = Ofori # k—].
Putting all this together we gétz (v, )(0f, &k, Ox, Ox) = (&, &—j). By the inductive
hypothesis there existgia ; such thallz (ev, ) (0f, &—j, Ox, Ox) = (8k—j+Uk—j, Uk—j).
ThusTz(evs)(Or, (Ck+&k—j), Ox, Ox) = (&+&—j+Uk—j, &—j+Uk—j). Thiscompletes
the inductive step withi, = e j + ux—;j.

We have thus shown thatthe |magé’etev<,) contains a vector of the forfe +u;, uj)
foralli =0,...,d-1.But(u;, uj) € T, ,A,andhencee®, 0,) Im(Tz(ev,))+ Ty, LA
Thus IrT(T~(ev(,)) + TZZA contalnst]R@| x {0y}, which is a complement ofF;, ,A, as
required. O

5. Proof of Takens Theorem for Skew Products

This follows very similar lines to the proof of the standard Takens Theorem given in the
previous section. First, observe that since the (fap) — ®g 4, iS continuous, the set

of (f, ¢) such thatd¢ 4, is an embedding is open. Secondly, sigteM, N) is dense
inC"' (M, N) for allr > r’ we only need to prove the theorem for all sufficiently large
r. It turns out we shall need> 2d.
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As in the standard Takens Theorem, the main problem is dealing with points such that
X = X; withi # j. Of coursex; is now defined by = f O (x, y), and hence there are
far more such points than just the periodic pointg fofg), as was the case in Section 4.
This is the fundamental issue that makes the proof of the forced version of the theorem
so much more delicate than that of the standard version.

Our approach here is to ensure that these problem points occur on families of sub-
manifoldsW, of M x N and then to deal with each of these separately. Bécls
characterized by the set of paiis j) for whichx; = x;. The key point is that the more
such pairgi, j) there are, the smaller the dimension of the correspondin@nd hence
the fewer independent componentsdf, , are required to embed it. It thus turns out
that as long as divl > 1, the loss of independence due to each relatios: x; is
compensated for by the drop in the dimensiomgf

We shall construct th&/, (and ensure that they are submanifolds) by using the Para-
metric Transversality Theorem to get a residual sef dbr which the mapr(f) =
(fO fO @ @Dy M x N - M%is transversal to an appropriate subman-
ifold of M. A straightforward argument (Lemma 5.12 below, which itself is a simple
consequence of Corollary C.5) shows that is submersive except at periodic points
of period less thawl. It turns out thatW, need not be a manifold at such points. This
is to be expected, since at periodic points, the condios: x; immediately implies
Xi + k = x; + k for anyk, and hence relations of the forxn= x; are not independent.

We thus first have to exclude the periodic points of pegod d from W, and deal with
them separately, just as in the standard Takens Theorem.

Finally, we remark that since th&, are constructed by a transversality argument, we
could avoid explicit construction of these manifolds by combining this argument with
the proof of the transversality of ®¢ 4, and @4, x ®fgq,. Whilst this leads to a
slightly shorter proof, we prefer not to use this approach here since we believe that the
construction of théV, (and their generalizations) gives much more geometric insight
into the principles behind the proof. It turns out, however, that this unified approach is
necessary in the proof of Theorem 3.2 in the next section, and hence the interested reader
is referred to that section to see how such an integrated argument works.

5.1. Main Proof

5.1.1. Periodic Orbits. Our first task, as in Section 4, is to show that for a dense
open set off, the periodic orbits of any given period are isolated, and each one has
distinct eigenvalues. In proving injectivity at pairs of poiris y), (X', y') such that

X', y) = (f, 9)%(x, y), it will turn out to be necessary to require this for all periods less
than &. We thus define

D' = {f e D'(M x N, M): all periodic points of f, g) of periodq < 2d
are isolated and hyperbolic, have distirct
coordinates and each has distinct eigenvglues

In Section 5.2 we prove the following:

Proposition 5.1. D" is open and dense iR" (M x N, M) forr > 2. Furthermore, for
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any f € D there is an open neighbourhood ' (and henceD' (M x N, M)) such
that all maps in this neighbourhood have the same number of periodic orbits of each
period less thar2d.

Foranyf e D' let P® f, g be the set of periodic points ¢f, g) of period less than
r,for 1 <r < 2d, and for convenience denoR 4 = P{7. We shall first show that

Dy, is 1-1 onPj% for an open dense set x C"(M, R).

Since all points n‘Pf g) have differenk coordinates, the projection: M x N — M
is1-1 onP(Zd) By a similar argument to the proof of Proposition 4.2 (in Section 4.2.2),
the set ofp € C"(M, R) that take distinct values ornl(P(Zd)) is open and dense in

C"(M, R). Call this setd; 4. For anyy € Ay g, the functiony o 7y is 1-1 onP%’) But
@ oy is precisely the first component & o ¢ and hencebs 4, is also 1-1 for all such
¢. Then, as in the proof of Lemma 4.4, it is easily seen that the sgt, @f) such that
Dy g, isalso 1-1 0r1P<2 ) is open and dense i (M x N, M) x C"(M, R).

Now let us turn to the immersivity obs g, on the periodic orbits. It turns out we
only need consider periods up doin this case. Fix soméfg, ¢g) € D" x C"' (M, R).
We will construct an( f, ¢) arbitrarily close tq( fo, o) for which ®¢ ¢ , is immersive on
Pi . It will turn out to be convenient foff to have the same periodic orbits &s thus
define

D' (Pi.g) = {f € D": f(x,y) = fo(x, y) forall (x,y) € P, g}
By Corollary C.13 this is a submanifold &1" . Similarly let
C"(M,R; Pt g) = {9 € M, R: (X) = go(x) for all X € w1(Psg)}.
A rather long and technical argument in Section 5.2 below gives the following.

Proposition 5.2. Given (fo, go) € D" x C" (M, R) and any(x, y) € Px, g, there is
an open dense set B (Ps,g) x C"' (M, R; Ps, ) such that for all(f, ) in this set
TX.chf'ng IS 1'1.

Observe that by Proposition 5.1, for alye D' (Py, 4) sufficiently close tof, we
haveP; g = Py, . Hence the set dff, ¢) such thatb¢ ¢ , is immersive orPs 4 is dense.
This set is also open, by the same argument as in Section 4.2.4. Thus in a sufficiently
small neighbourhood ofp in D', the positions of the points iR 4 depend continuously
on f. SinceTy y @+ 4 , depends continuously oy, f,andy, if @y, g 4, isimmersive on
Pro.g thends 4, isimmersive orP; ¢ for all (f, ¢) in a sufficiently small neighbourhood
of (fg, o). We thus have

Corollary 5.3. The setof f, ) € D" x C" (M, R) such thatb; ¢ , is immersive for all
(X, y) € Pi 4 is open and dense iB" x C"' (M, R).

5.1.2. The Set§V,. Having dealtwith the periodic orbits, we next show how to construct
theW,.Letl ={ly, 15, ..., l,} beapartition of0, ..., d—1}, and define the associated
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equivalence relation-; on{0,...,d — 1} byi ~, i’ if and only ifi, i’ are in the same
element of the partition. We then define the 8gtby

W, = {(X,y) € M x N: xi = X ifand only ifi ~ i'}.

Recall that for anyf € D", the setP; 4 of periodic points of period less thahis finite,
and henc&M x N)\Ps 4 is an open submanifold d#l x N. Define

Wi = Win(M x N)\Psg.
Then,

Proposition 5.4. Foraresidual setof fe D', if W, is nonempty then itis a codimension
(d — «)m submanifold ofM x N)\Px 4.

The proof is given in Section 5.3. Given any partitibras above, let); be a set
containing precisely one element from edgHor k = 1, ..., «. There will typically
be many ways to choose suchla but we arbitrarily select just one. Clearly has
a elements. Write these a& = {j1, j2,..., Jo} With j1 < jo < -+ < 4. Note
that if (x, y) € Wi, then the points,, X;,, ..., X;, are distinct and any otheg for
j =0,...,d—1isequaltoone of these. In other words, the{ggt. . ., Xq4_1} contains
preciselya distinct points. Now, 2din, +1=2m+n—d—-aom +1<d-—
2(d—a)m=(d—ao)(1-2m)+« < «. Thus it seems plausible that genericatly ,,
should embed eadW, . It turns out however that thé/, are not quite the right object to
consider, since to show immersivity &f 4 , we need to work in the unit tangent bundle
T(M x N) of M x N, and to show injectivity we need to work witM x N) x (M x N).
We thus need to define appropriate generalization&/othat give decompositions of
T(M x N)and(M x N) x (M x N), respectively.

5.1.3. Immersivity. We firstconsidell (M x N). Letl’ = {i1, i», ..., ig} be any subset
of J, (possibly empty). LeffwI ((M x N)\P: 4) be the restriction of the unit tangent
bundle of(M x N)\P; 4 to W, . Define the set

T ={ve Ty (M x N)\Pig): ifi €J, thenT fOv =0, ifand only ifi € 1'}.

Thus|’ specifies those points K),, X;,, - . ., X;, whereT f® vanishes. We do not care
whatT @ does foii ¢ Ji, since we cannot pertugbindependently at the corresponding
Xi. The union of theT, | over allI” gives Ty, (M x N)\Psg) (recall that we include
the casd’ = @) and hence the union of tig - over alll andl’ is T((M x N)\Ps g).
Lety = o — B. In Section 5.4 below, we prove the following.

Proposition 5.5. For aresidual set of fe D', if T,.;- is nonempty then itis a codimen-
sion(d — y)m submanifold o (M x N)\Ps o).

By taking the intersection over dlland|’ we get a residual set df for which T, -
is a submanifold for all andl’. Fix an f in this set. Note thad, \|’ hasy elements.
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Write these ash\I" = {jg, jz,..., ], } with j; < j, < --- < j. Define the map
¢| i Mx N—RY by

Dy 110(X, Y) = (90G), p(Xj)). ... OGN

Observe that if for some € T, |- we haveTx y, @, 1.1/ (v) # 0, thenT y, Pr.q.,(v) # 0.
Thus if Tix,y)®@y,1.1-(v) # Oforallv e 'I~'|,|/ and alll andl’, then®s 4, is immersive
at (x, y). Thus, to show the immersivity b g , on the whole of M x N)\P 4, it is
sufficient to show that the image of eafh.f underT @, - does not intersect the zero
section inTRY.

Define the map: C" (M, R) — CX(T, ., TR?) by

p(@) =Td, .

LetL, - be the zero section imR”. In Section 5.5 below we prove
Proposition 5.6. The map e, is transversal to |- forall | and I".

By Corollary C.5gv, isCtif r > 3. The dimension ofy 1 is2m+2n—1—(d—y)m
and the codimension df, ;- is y, and thus

dimT, ;. —codimL,; = 2m+2n—1—(d —y)m—y
<d-2-d-ym-y
<d-y)Q-m—
< 0,

sinced > y andm > 1. Hence by the Parametric Transversality Theorem, there is a
residual set of for which'dew_ 1.1 istransversal th, ;.. Now, just as in the proof of the
standard Takens Theorem, we count dimensionsdlfT, ;. then dimT, (T /) = 2m+
2n—1—(d—y)mand hence the dimension of itsimage is at most2n—1— (d—y)m,
whilst the dimension off, L, ;- isy foranyu € L, .. Hence ifu = f@w,“f(v) =0,
thenT, (T @,.1.1)(T,(Ti1))+ Tyl has dimension atmost2+-2n—1—(d—y)m+y.
But from the inequality above, we haven2-2n — 1 —(d — y)m+y < 2y, and hence
T, (Td>¢| 1)(T, (T| )+ Tuly cannotspafru(TRV) Thus |fT<I>¢,, |- is transversal to
L., thenits image cannotintersdgt .. Hence for a residual set of T<I>¢,,.,. (v) #0
forall v € T,,,.. Taking the intersection over dl| I’, we get a residual set gfsuch that
'chf_g,(p(u) # Oforallv € (M x N)\Ps g), and henced; ¢ , is immersive as required.

5.1.4. Injectivity. To prove the injectivity ofp¢ ¢ , for a residual set, we want to con-
struct a set of manifoIdWLR c W, x (M x N) that play an analogous role to tfie,.f
above. HereR is a subset of), x J; and we want points irW. r to satisfyx; = X/,
forall (i,i’) € R (where as usua = f@(x, y) andx' = f<')(x y")). Unfortunately
when we attempt to construw| R Using a similar argument to that fd¥ ., we run
into difficulties at pairs of pointgx, y), (X', ') such that eithe(x’, y') is perlodlc of
period less thad, or such thatx’, y') = (f, g)*(x, y) for somek with —d < k < d.
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In particular, the appropriate evaluation map can fail to be transversal at such points.
This lack of transversality is actually to be expected for essentially the same reasons as
discussed above in the context\Wwf and the difficulties played by periodic orbits in its
construction. Thus, for instance, (@, y') = (f, 9)¥(x, y), thenx; + k = x/ for all i.
Hence if(j + k, j) € Rfor somej, then(i + k, i) € Rforalli. The relations irR are
therefore not independent in this case, leading to a loss of transversality. We therefore
need to treat such points separately and will define two other families of submanifolds
W; , andWi g (g in which they lie. The treatment of these is very similar to that of
W, g, but there appears to be no convenient way of unifying all three cases. Furthermore,
whilstin the case oiV| g andW, (g it is sufficient to exclude periodic orbits of period
less thard, in the case of/N\/r.(k), we need to exclude all periods updot k. This was
the reason why we gave a separate proof of injectivityﬁﬁ?g) X Pf(i?) rather than just
for Pf,g X ,Pfyg.

First, we construct/N\/.,R. Let R = {(i1,i9), (i2,15), ..., (igss i/’sR)} be a subset of
Ji x J; (possibly empty) and define

Wik = {((x y), (X, ¥)) € Wi x (M x N)\Prg,
X', y) # (f, 9*(x, y) for anyk such that-d < k < d and
if (i,i") € J x Jy thenx; =x/, ifandonlyif (i,i’) € R}.

Note that this definition is independent of the choicelafAlso observe that for some
choices ofR, W, g must necessarily be empty. Thus, for instancei.if’) € R and
(j,i") € Rfor somei # j we must have; = x/, = x;, for all (x, y), (X', ¥)) € W, r.
On the other hand, by the definition df, x; # x; for alli, j € J, such that # j, and
henceW, r = @. However, since we cannot guarantee for &thatW, g is nonempty
for a residual set off we do not bother to exclude thogefor which V~\/|,R is always
empty. Letour = o — Bgr. A similar proof to that of Proposition 5.5, given in Section 5.6
below, leads to

Proposition 5.7. For a residual set of fe D', if W, g is nonempty then it is a codi-
mension(d — ar)m submanifold ofM x N)\Ps g x (M x N)\Px g.

Next, we turn to the case where ong®f y) or (X, ¥') is periodic. By interchanging
(x, y) and(x’, y') if necessary, it suffices to restrict attention(d x N)\Ps 4 x Ps g.
Let R = {(i1,i7), (i2,15), ..., (igy, i;,R,)} be a subset o, x {0,...,q — 1} (possibly
empty) and for 1< q < 2d define

Wir@ = ((5Y), (X, ¥) € W x (M x N),
(X', y) is periodic of minimal period) and
if (,i"yeJ x0,...,q—1thenx; = x, ifand onlyif (i,i’) € R},

As before, we do not bother to exclude the cases wilrg ( has to be empty. Let
ar = o — Br. A similar argument to the proof of Proposition 5.6 (found in Section 5.7)
gives the following.
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Proposition 5.8. For a residual set of fe D', if W.,R/,(q) is nonempty, then it is a
codimensiond — ag)m+ m+ n submanifold ofM x N)\Ps 4 x (M x N).

The additionaim + n in the codimension arises from the fact that periodic orbits of
periodq are isolated, and thus have codimens'mmr nin M x N.

Finally, we treat points such thax’, y') = (f, g)¥(x, y) for somek # 0 such that
—d < k < d. Without loss of generality (mterchanguﬁg, y) and(X’, y') if necessary),
we may assume thiat> 0. Letl = {Iy, I, ..., I3} be a partition of0, ..., d +k — 1}.
Observe that the only condition ahin Proposition 5.4 is thatV, does not contain
periodic orbits of period d. Hence this proposition implies that

= {(x,y) € (M x N)\PUWf g: x; = x if and only if
i,i’ are in the same element bf

for aresidual set of € D" is either empty, or a codimensigd + k — &)m submanifold
of (M x N)\P@+0 £ g. We then define

V~V|~ (k) = {(X9 y)v (f’ g)k(xv Y) (Xv y) € V~V|~}

Since(f, g) is a diffeomorphism, this is a submanifold @ x N)\P“’*k) f,gx (M x
N)\PE+0 f, g whenevedW; is. Its dimension is then the same as tha\bf and hence
its codimension igd + k — &)m+ m+n.

Since the definitions of the variol® are somewhat intricate, we give a detailed
argument to show that the union B’ x P{%’ and the set¥V r, Wi r.q), andW,
overalll, R, R, k, andq, mcludesthe whole affM x N) x (M x N))\A up toaninter-
change of(x y) and(x’, y') if necessary. Thus consider an arbitr@ry y), (X', y)) €
(M x N) x (M x N))\A If both (x, y) and (X', y’) are periodic of periodk 2d,
then((x, y). (X, y)) € P x P33’ If only one is periodic, say without loss of gen-
erality (x’, y'), then if the periodq < d, then((x,y), (X,¥y)) € V~\/|,R/,(q), with |
determined by the relations amondss, ..., Xq_1} and R' by the relations between
{Xo, ..., Xd—1} and{xg, ..., xc’]_l}. If the periodq of (X', y') is such thatl < q < 2d,
then((x,y), X, Y)) € V~\I|,R with | and R determined similarly. If neithe¢x, y) and
(x', y) are periodic of periock 2d, thenif(x’, y') = (f, g)*(x, y) for somek # 0 such
that—d < k < d we have eithe((x, y). (X', ¥)) € W, or (X', ¥). (X, ¥)) € W}
for an appropriatd, and if (X', y') # (f, @)K(x, y), then((x, y), (X, ¥)) € W, r.

By taking a finite intersection we get a residual sef of D" such that all th&V are
submanifolds. Fix one such. For each of th&V, g, W, &), andW; ,, we shall now
show that there is a residual setk A; 4 such that their image undér; g , x @14,
does not intersect the diagonal Rff x RY. As usual, we will do this by showing
transversality for an appropriate evaluation map, followed by counting dimensions.

Firstlet us considew, r. Fixaparticulad andR and recall that we have chosenfin
such thaW.,R is a codimensiolid — «g)m submanifold, wherer = « — Br. Note that
we only need consider the cgég < «, forif Br > « andV~\/.,R were nonempty, then its
dimension would berd +2n — (d — (¢ — Br) M <2m+2n—dm=<d—-1—-dm=<
d(1—m) — 1 < 0. Hence if we define

Jr={i €J: (i) ¢ Rforanyi’ € J},
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we see that), r is nonempty. Lety’ be the number of elements i g and note that
Y = a— Br. Write J g = {j, i3, ..., I,/ }, with j{ < j; <--- < ],. Define the map
CD%LR: Mx N — RV/ by

1RO Y) = (@), 90K), - 9(x ).

If @y rRXY) # Py RX,Y), then®gg (X, y) # Prg,(X,Y). Define the map
o: C"(M,R) — C*(W, r, R” x R”") by

0(90)()(7 yv X,v y/) = (CDQDJ,R(X’ y)v q><p,|,R(X/7 y/))

Since for(x, y, X', y') € W, g, the pointsxj;, Xj, ..., X are distinct and disjoint from
x!,, X/ xJ’ , it is straightforward to show the following.
”

/ /
[ER Y

Proposition 5.9. The map e, is transversal to the diagonaﬂy, inR” x R forall |
and R.

The proof appears in Section 5.8 below. By Corollary @3, is Cltifr > 2. The
dirrlension ofW, ris 2m + 2n — (d — ag)m whereag = o — Br and the codimension
of A, isy’. Thus, since/’ > aR,

dimW, g — codimA,, = 2m+2n—(d —ag)m—y’
<d-(d-arpm-y -1
< d-ar)(1-m -1
< 0.

Hence, by the Parametric Transversality Theorem, there is a residuakstdrofhich
o (p) is transversal ta\,.. Now, once again, we just count dimensions: The dimension
of Txyy,x/,y/(VN\/LR) is 2m + 2n — (d — ag)m and hence the dimension of its image is
less than or equal toni2 4+ 2n — (d — «g)Mm. The dimension ofI'Z,ZA,,/ is y’ for any
(z.2) € A,. Thus if @, 1 r(X, y) = @, r(X,Y) s0 thato (p)(X, Y, X,Y) € A,
thenTy y.x.yo (@) (Tyx.y (Wi R) + T2,A,. has dimension at most2+ 2n — (d —
ar)M+ y'. From the inequality aboven2+ 2n — (d — aRr)M + y’ < 2y’, and hence
T y.x.y 0 (@) (Tx y.x.y (Wi R)) + T2 2A,» cannot spaif, ,R” . Thus ifo (¢) is transversal
to A, then it cannot intersed, . Hence for a residual set pfwe haved,, | r(X, y) #
@, r(X,y) forall (x,y,x,y) € W g.

Next, we turn toV, g ). The argument is very similar to that fav, . Thus let

Jr=1{i€d: (i) ¢ Rforanyi’ € J}.

As before, without loss of generality we can restrict ourselveggo < «, and so
assume thall|  is nonempty. Let/" be the number of elements if ; and note that
Yy = a— Br Write J/ g = {j1, ]2, - - - j;,}, with j; < j; < -+ < j; and define the
map®,r: M x N - R” by

DR (X Y) = (9, 9(X12). - 9(x;7))'.
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ando’: C"(M,R) — C" (W, r, (@), R” x R”) by
o (@)X Y, X, Y) = (@1 (X, Y), Py r(X,Y)).

If (x,y,x,Yy) e V~\/|,R/,(q), then the pointsqi, Xjgs - - xj;, are distinct and(ji/ #* xj’ for

all jf € J/gandj € {0,...,d — 1}. The latter follows from the fact thag, # x;
forall j € {0,...,q — 1}, and since(x’, y) has periodq, xj/ = x/ modq for all

j €{0,...,d—1}. Hence we proceed exactly as above, and in Section 5.9 below we
show the following.

Proposition 5.10. The map €, is transversal to the diagonaly’ in R’ x R’ for all
I, R,andg.

By Corollary C.3gv, isCtif r > 2. The dimension df\/,qR/_(q) ism+n—(d—agr)m.
Thus, since/’ > ag,
dimW, g — codimA,» = m+n—(d —ar)m—y’
d-—d—-—ar)M—y " —m—-n
d—ar)l—m)—m-—n
0.

N A

A

Hence, by the Parametric Transversality Theorem there is a residualg&ofvhich
o'(p) is transversal to Ay’ Counting dimensions, the dimension of
To2Ay + Ty xy o (0) (Teyx.y (Wi R () iS atmosm-+n—(d—agr)m-+y’ which from
the inequality above is strictly less thap’2Hence ifo (¢) is transversal tdyr, it cannot
intersectAV/ and so we conclude that for a residual sejpofre have®, | r (X, y) #
D, r(X,Yy), and thusbs g , (X, ¥) # Pt g,(X, y) forall (x,y, X, y) € W r (-
Finally, we deal with; .. Recallthal = {i1, I, ..., [z} isapartitionof0, ..., d+
k — 1}. Let I” be a subset of defined by

"={iel:in{d. . d+k—1 =2}

Let J; be a set containing the largest elemghfrom eachi; € I. Re-orderl’
so thatj; < j; < --- < Jy, wherey is the number of elements il . Note that
in forming I we exclude at mosk elements ofl, and hencey > & — k. Hence if
I” = @, we must havé — k < 0 and ifW; ,, were nonempty, its dimension would be
2m+2n— (d+k—a)ym+m+n) <m+n—-dm<d(l—-m)—m—n < 0. Hence
without loss of generality we can restrict ourselves to tHosech thaty > 0. We then
defined, ,: M x N — R” by

@, (X, Y) = (@), 9(X), ., 90,
ando”: C"(M,R) — C" (W} 4. R x R7)

o (@)X Y, X, Y) = (@, 1 (X, y), D, (X, Y)).

A slightly more delicate argument than the previous two propositions then yields
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Proposition 5.11. The map e, is transversal to the diagonaﬁ); inR” x R for all
I and k.

The proof is given in Section 5.10 below. By Corollary Ge3, isCtif r > 2. The
dimensions oW, ® andA are respectively® + 2n — ((d + k — ¢)m+ m+ n) and
¥, and sincex — k < y < d the usual computation gives

2m+2n— (d+k—a)ym+m+n) —

dimW; ,, — codimA,

<d—-dm+@—-km—-py-m-n
<d-9)A-m—-m-—n
< 0.

Hence, by the Parametric Transversality Theorem there is a residuagseroihich
o”(p) is transversal ta\ ;. Then, as above, the dimensionTQfy x (Wr ) ism+n—
((d+k—a)m) and the dimension &, ;A ; is 7. Sincem+n— ((d+k—&)m)+7 < 27,
the only way that" (¢) can be transversal Tﬁ\],; is by not intersectingﬁ);. Hence for a

residual set o, we haved, r(x,y) # @, (X', y) forall (x,y, x,y) € Wf_(k)! and

thus®r g4 (X, y) # Prg, (X, Y) forall (x,y, x, y) € W; .
This concludes the proof of Theorem 3.1.

5.2. Embedding the Short Periodic Points

5.2.1. Isolating the Periodic Points.

Proof of Proposition 5.1. This follows very similar lines to the proof of Proposition 4.1,
though it is technically somewhat messier. Our first task, as before, is to show that for a
dense open set df, the periodic orbits of any given period are isolated and hyperbolic. If
(X, y) is periodic undet f, g), then obviouslyy is periodic undeg. By hypothesis, such

y are isolated. Fix one sugh and forq > 1, lety  be the set off € D' (M x N, M)

for which for allk > 1,k < g, the set ofx such that(x, y) is periodic of periok is a

finite set of isolated points, and such that these points are hyperbolic.

Denote byT; (v, f® andT,,« y, f © the “partial derivatives” off ¥, i.e., by defini-
tion T:L,(x,y) f o w) = T(Xﬁy) f(k)(v, 0 andey(X,y) f u) = T(X.y) f o O, u) forv e TyM
andu € TyN. Then the eigenvalues fx y,(f, g)¥ are the union of the eigenvalues of
Ty f o andTyg". Since by hypothesig is a hyperbolic periodic orbit af, to show
that(x, y) is hyperbolic it is thus sufficient to show th& f ® has no eigenvalues
that are a root of unity. By default we defilg 1 = D' (M x N, M).

Our inductive hypothesis is th#y 4 is open and dense i®' (M x N, M). This
holds trivially forg = 1, so now suppose that it holds for some- 1. We shall apply
the Parametric Transversality Theorem with By 4 — C"(M x {y}, M x M) given
by p(f) = (f@, £©), so that the evaluation map és,(f, x,y) = (f@(x,y), x).
Note thatp is thus just two components of the mapin the previous section. Let
A = {(x, X): X € M} be the diagonal ifM x M; we aim to show thagv, is transversal
toit.
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Let Tt x y(ev,)(n, 0) = (uq, 0). Thus by Corollary C.5, we have

q .
Ug = D Toeyn FOP (X1 ¥i-1). 0)

i=1

p .
=Y T Top P 0041, ¥i1), 0),
i=1

wherep is the least period ofX, y), Tix.y,) f@(u, 0) = u and

k
TO — Z(Tl,(x,y) f (p))J*J-’

j=1
whereq = kp. If k = 1, T® = Id and hence is invertible, otherwig, y) is periodic
of period p < q, and hence by our inductive hypothesis none of the eigenvalues of
Tix.y) f (P are roots of unity. The eigenvalues ©f¥ are of the forms(x) = 1+
A+ -+ A1 for 1 an eigenvalue oy ) f P, ands(A)(1 — &) = (1 — A¥). Thus
s(1) # 0 for A an eigenvalue ofy « y, f P, and so the eigenvalues & are nonzero.
HenceT® is invertible, and given any € T¢M, we can choosg € T; 5, such that
n(Xp-1, Yp-1) = (T®)7L(v) andn(x;,y;) = 0fori = 0,..., p— 2. For such a,
we haveTsx y(ev,)(n,0) = (v, 0). Since(v, v) € Ty xA, we have(0, v) € Ty xA +
ImageTs x y(ev,). Together th&v, 0) and(0, v) generatd,M x T,M and hencev, is
transversal ta\, as required.
Thus, by the Parametric Transversality Theorem, there is an open and dense subset of
By q such that f @, f©@) s transversal ta\. For such maps the set @, f ©)=1(A)is
a codimensiom submanifold oM x {y}, and hence is a finite number of isolated points.
But (f@, f©@)=1(A) is precisely the set of periodic orbits of perigdn M x {y}. To
complete the inductive step we need to show that we can further restrict the fsé of
ensure thaly (x,y) f @ has no eigenvalues that are a root of unity; this is done in exactly
the same way as in Proposition 4.1.
We have thus shown th#, 4,1 is open and dense iy 4, and since3y q is open
and dense iD" (M x N, M), By q+1 is also open and dense Tl (M x N, M), thus
completing the inductive step. Now, by taking the intersection oBtjyeovery a periodic
orbit of g, andq < 2d, we obtain an open and dense sulisgtof D" (M x N, M) which
has only a finite number of periodic orbits of periqd< 2d, and such that these are
all hyperbolic. Again as in Proposition 4.1 we can easily restrict ourselves to an open
and dense subsBt, of B,y for which the eigenvalues of any such periodic orbit are all
distinct. Also, by the Transversal Isotopy Theorem, sufficiently small perturbations to
f e B5, do not change the number of periodic orbits of each period less than 2
Finally, to obtainD" it remains to restrict3}, further to ensure that coordinates
of any two distinct periodic points of periods less thaha2e different. Observe that if
f e B,y andx is a periodic point of period less thad,2hen by the Implicit Function
Theoremx depends smoothly of. Since by the above small perturbationsfofio not
change the number of such periodic orbits, we seeThés open inB;,;. Conversely
if f e By, then using Corollary C.13 we can move theoordinates of the periodic
points of f as follows: Suppose that(x_1, ¥i—1) = X and f(x, yi) = X1, with
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(Xi—1, ¥i—1) # (X, ¥i). Then by Corollary C.13, i&/ is sufficiently close to; we can
find an f’ such thatf’(xi_1, yi—1) = X/, f'(X\,¥i) = X1 and f’ = f at all other
periodic points off. Thus f’ has the same periodic orbits dsexcept that we have
shiftedx; to x{. This argument fails ifx;, yi) = (x, y) is a fixed point, but in that case
we can still choosd’ close tof such thatf’(x, y) # x, and hencéx, y) is no longer a
fixed point of f’. Hence if f had two (or more) fixed point&, y) and(x, y’) with the
same first coordinate, we can ensure {ixaty) is the only fixed point off " whose first
coordinate isx. Given anyf e B, we therefore can find an arbitrarily cloge all of
whose periodic points of period less thashzave distinct first coordinates, and thus in
other wordsD" is dense in3,,. O

5.2.2. Embedding the Periodic Points.

Proof of Proposition 5.2. Recall that a sufficient condition foky y®+ 4, to be 1-1 is
for the firstm + n components off, y®1 4, to be linearly independent. Th& such
component is given by, = Typ o Ty, f" € L(TyM x TyN, T,«)R). Note that
we may write this asy = Tx¢ o Tx )71 o Ty (f, g)' and thus in effect we are
restricted to observation functiods M x N — R such thafl(y W lies in the subset
of L(TyM x TyN, R) of the formTy, ¢ o Tx yy1. The only way thafy, ¢ can “observe”
TyNisthus vial .y, f ), in particulary g o Ty f (v, U) = T (T x.y) F O (v, 0+
T2.xy) FP(0, u)). In effect therefore, the proof below shows that we can nigke o
T2y f © be whatever we want by an appropriate choic&qf; v f at each(x;, ;).
Supposex, y) has minimal period). Since(Xo, Yo), - .., (Xq—1, Yq—1) are distinct,
the mapsTy,, ..., Tx,_,¢ can be adjusted independently, and similarly Tgx,.y,) f,
ooy Toxq1yq.0) T+ AS in Section 4.2, to show that the first + n components of
T,y Pt g, are linearly independent we need to show thabif= ag A -+ A @myn-1
thenwa(€y, . . ., €myn1) # O for some basis 6fxM x TyN. Leta® € RM, AD ¢ R™<M,
andB®" e R™" fori = 0,...,q — 1, be the matrices representiigy, T, y) f
andT, v, f with respect to the base§’, ..., v% , andul), ..., ul), ; of TyM and
Ty N, respectively, wherév(”, u'") = T, (. 9)' (). As we shall see for a partic-
ular choice of basis (and hence for any basis) and any ghNenwa(ey, . . ., €nin_1)
is a polynomial in the coefficients af’ and B® (it is of course also a polynomial
in the coefficients ofA®, but we do not need to vary these, and hence for simplicity
we shall keep them fixed). By Corollary C.18 the maps> (@@, ...,«@ V) and
fi> (A9 ... AC@-D BO  B@-D)yare submersive. Thus to prove the lemma all
we need to do is to show that this polynomial is not identically zero, or in other words
that for somg( f, ¢), the corresponding, # 0. As in the proof of Proposition 4.3, we
shall do this by constructing af, ¢) for whichws = +ag Aago AA--- Aago AL,
SinceTy vy fO(C” has distinct eigenvalues, we can choose a baSighdfconsisting of
eigenvectorsyo, .. ., vm—1 0f Ty (x y) fo(‘”, with corresponding eigenvalugs, . .., Am_1.
Similarly choose a basis df,N consisting of eigenvectors ofy, . . ., Unyn—1 Of TygY,
with corresponding eigenvalugs,, . .., Amn—1. Defineu; =0forj =0,..., m—1,
then for any choice ob; for j =m, ..., m+n — 1 we get a basisy, ..., &nyn_1 for
TxM x TyN defined byg; = (vj, u;). We shall constructy, .. ., vmsn—1 below.
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Now defineej(i) fori =0,...,m+n—1, by ej(i) = Ty (f, 9) (g). Then since
Ty (f,09) isan isomorphlsrre{)” , €&l is a basis off, M x Ty, N for eachi.
Denotee” = (v", uf"), note thatv('“” sl forj =0,....m—1, andu"¥ =
Aj J()forall j.

Step 1 Let f beany mapi(Ps, g) suchthaly  y) fo = To, o4,y - Slncev(') ,(T']) 1

is a basis fofT,, M, we can expandy, .y, f(u}')) foranyforj =m,...,m+n— 1 as

i i+1) 41 i+ (i+1
T2,(xi,m)f(uf))=Bj(o Tyt +B(m)l Kaing

This definesB| for j =m,....m+n—1andk =0,....,m— 1, and for alli. Then
define

5 (0) @ (Q)
Bl = /\,- o B )-

Note thatho, ..., Am—1 are eigenvalues ofy  y) fo(“), andin, ..., Amin_1 are eigen-
values ofTyg%, and hence by our conditions dig andg, all the; are distinct; thus

A # Mif | # k. Next defineB|/ for alli by

B(|'(+1) B(') + B(HL]-)
J

Finally construclv]—(i) foranyi andanyj =m,...,m+n—1hy
v =BV + -+ Bl (5.2.1)
Note that by definition
i+q+D) (+q+1 1 1
T2 ) f (u(|+q)) Bj(;‘H:H‘ )U(()I-HH ) 4. BJ(In-:qI ) r(\':Q-F )
and since{ 9k = r0l) fork =0, ..., m — 1 we have
)\4] T2,(xi,yi) f (uj(i)) B(|+q+1))\' (H'l) + .. BJ('Jqurl))\m_lvr(]iqi‘i-)’
and so comparing coefficients
A Bj<li(+1> = A Bj(li<+q+1)'
Next we show by induction that
éj(li() — (B(I +l) S+ Bj(li(+q))' (5.2.2)

)\i
This holds fori = 0, by definition, so suppose that it holds for soime 0. Then
éj(li(+1) — B(') + B<u+1>

— )\’k()\'j _ )\’k)fl(B‘(i-Fl) S B +q)) + B(|+1)
— w0 = M) TABIZ 4+ BT+ (L= (O — Mo HBLY)
= Ak(Aj — Ak~ (B|+2 4 B|+q + )‘j)‘;lBj(li(-i_l))

= g — M) HBIZ + -+ BT+ BT,
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where the last step follows from B ™ = 1B/ ™. Thus (5.2.2) holds for all > 0.
But, by definition,

5 (1+0) 53) @ +1) (i +a)
= BY + (4 - )\k)kle“)
—14/(03)
= Ajkk Bjk .

In other wordsB{)) satisfies the same periodicity condition ti}’ does:
5(1+Q) Y0)
Ak Bjk = Aj B]-:( .
Recallthatsinc@y .y, fo = Ty f andvl’, ..., v\, areeigenvectors @, ) fo,
we havey. "% = 3l fork =0,...,m— 1. Thusforj =m,....m+n—1,

i+ _ R+ (i+q) 5 (+0) (I+q)
vj B' +oeet B] m-1Ym-1

— (B(l) (l) 4t B(lm 1Ur(TI1) )
= nu.

Hencev! *® = 2ju/" for j = 0,...,m+n—1,ande” = (", u") is an eigenvector
of Ty, y(f, @) forall j =0,..., m+n—1 _ _
Also sinceTy x y) T is linear, andly v f (vﬁ')) = v,(('H) fork=0,...,m—1,we
have forj =m,..., m+n—1
T1x, y.)f(v(')) = Tl,(xi,yi)f(éj(;)vg) +oee B(Im WD)
= é'(I)Tl oo TG+ + B| o1 Taoew F R
5(3(+1)

_ RO, (+D @)
- Bjo Vo +- +Bjm 1Vm-1-

Then
vj(i+1) _ I§»(i+l) (i+1)+ S+ B](Ir:l_l)l r(]|1+:1I)
- (B(') + B0 g ™ (B + B DR
= Tl,(x.fy.)f(v' )+T2,(x,,y,)f(uj(l))
= Toey (D", u)
and hence

ej<i+1> _ (vf‘“), u?”l))

= Toey(f. 90" ub)
Toxyn (F, g)(ej(l)),

for j =m,..., m+n—1; we of course already had this relation foe= 0, ..., m— 1.
To conclude, we have shown that Wimﬁ) defined forj = m,...,m+n — 1 using
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(5.2.1), it obeys exactly the same relationshipﬁy(asfor j =0,...,m—1. Note that
we could have deflneq") by v(') O1d =T x .y F DY To 06 4 f@(u(") however,
we shall need the coordlnate based expression derived above in What follows.
Step 2 Definea” = Tep@) fori = 0,....q—1,j = 0,....m— 1. Then
we claim thata)a(eo, ..., Emin-1) IS @ polynom|al In{(x('). i =0....9-1,j =
0,...,m— 1}. Recall thatw, = ag A --- A 8min_1 whereai = Ty@ o Ty FO.
Thusws(ey, . .., €min_1) = deta wherea., = Ty@ o Ty o Tix, y)(f 0)' (g). But

Toy(F. ) (g) =€ = v, ul"), and hencdiy v 10 Ty (. ) () = v Thus

aij = T,

fori,j =0,....m+n—1. Clearlye;; =’ fori =0,....q—1,j =0,....,m-1,
and so it remains to show that for othieand j, «;; is a linear combination of the(”
This follows immediately from the relations

O _ M (l) 0] 0]
v = By v -+ B ‘m_1Y

m-1°

and
(i+q) _ 4. ()
v _A,vj ,

and of course the linearity &, ¢.

Step 3 We construct af ®) such that the correspondlng det~ 0. By Corollary C.18,
the mapy — (Txl(p(v i =0,. ..,q—1j=0,...,m—1) is a submersion, and
hence a local surjecnon Applying this in a neighbourhood of the map 0, we see
that givens > 0O sufficiently small we can obtain@such that foi = 0,...,q — 1,
j=0,....m-—1,

Top!) =,

where we define” fori =0,...,q—1,j =0,....m+n—1by

M _ ()»j)i“lr, if i <s,
% —3{(xj)5+'f, it i>s,

wherem +n = gr + s with 0 < s < g. We extend the definition af" to i =
q,...,m+n—1by

ot-(iJrQ) = )\-a-(i),
forj =0,....m+n—1. Notethatfonj_o .,m+n—1, we can write
ozj(') (O)A"(') whereo is some permutation dD, ..., m+ n — 1} independent of ,
such thata(O) — 0. Also observe that smaq('*q) A v(') we haveTxlw(v('"Lq))
M Teo") = A = o™, and hence by induction

Too) =of,
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foralli =0,...,m+n—1,andj =0, ..., m— 1. We shall show below that with a
particular choice ij(l'() we obtainTXiw(vj(')) = sozj(l) forj=m,....,m+n—1and
somes > 0.

Next, we shall need to constructia € D(Py, ) such thatTyy y)f1 = 0 for
i =0,...,9— 1. We do this as follows: L&lJ;, 8;) be a chart folN centred at;, such
that8; (U;) is the unit disc inR". By shrinking thel; if necessary, we may assume that
they are disjoint, and that the only periodic orbitgbf period less thaw contained
inU; isy. Letw;: N — [0, 1] be aC* function such thaW; is identically 1 in a
neighbourhood of;, and such that its support is containedJin Observe that iz € U;
then(1 — ¥ (2))6i (2) € Bi(Ui). Thus we may defing: N — N by

B — Vi (26 (2); if zeU,
Z, otherwise.

o-|

Note that¢ is C" and¢ = Id outside of the union of th&J;. Furthermore; (z) = v;
in an open neighbourhood of eagh Thus definef;: M x N — M by fi(w, 2) =
fo(w, £(2)). Thenfi(e, 2) = fy(e, £(2)), and hence (e, 2) is a diffeomorphism oM
forallze N, thusf; € D' (M x N, M). Also sincez (y) = y for any periodic orbit of
g of period less thanl, we havefi(w, z2) = fo(w, 2) for all (w, 2) € Py, g, and hence
f1 € D(Py,q). Finally, f1(w, 2) is independent of for z in the neighbourhood of each
yi and hencdy,x y) f1 = 0 as required.

By Corollary C.18, the mag — (B©, ..., B@~D) is submersive o®(P%, o), and
hence surjective in a neighbourhoodfaf Thus given any sufficiently smadl > 0, we
can findf such thatfoi =0,...,9—2,

il _ . (aj(i+1> ~ ozj(i))
jo - (i+1) ’
)

o)
)

with aj(i) as above, and

[CR)
@_ (M %
B, =¢ a0 |
Ao ag

with Bj(li(+l)=0foralli =0,....,q-1,j=m,...,m+n—1,andk =1,..., m—1.
Thenforallj =m,...,m+n—1,

(@-1 (-1 @-2 e 0)
B_(l)+...+B_(q)=g ﬁ_aj +aj _Ol]- ...+aj__aj_
Jo Jo A0 a(()q—l) Ol(()q_l) a(()q—Z) Ol(()l) a(()O)

Aj
el—-1),
Ao

sincea® = s forall j =0,....m+n— 1. Thus by (5.2.2),

éj(oo) — )LO(}‘J — do) — l(Bj(Ol) N Bj(oq))

= ero(Aj — 20) (A — Ao)rot

8’
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forall j =0,...,m+ n— 1. Next, we show by induction that
0)
BO —
| N
0 aOI

This holds fori = 0 by the above. Suppose now that it holds for sérse0. Then,

530+ /) (i+1)
Bjo - B'o + B

ozj(i ) o j(i +1) ozj(i )
=&—+4€| 5 — —=
a® PO R

0 0 0
a_(i+1)
= & J. ,
ac()l+l)
as required. Since by definitioB"™" = ... = B} = 0fork = 1,...,m -1 and
alli, (5.2.2) also give8§) = Ofork = 1,....m— 1.
Finally, we can evaluat@xi<p(vj('>) forj=m,....,m+n—1. Smcev(') B(” 4
+B() vl ;. we have
0)
) o
0) 0
Uj =&—— (I) UO
forall j =m,...,m+n— 1, and hence sinc‘e(iq)(vg)) =al’, we get

M

) o
Too) = e =5 Tyo(vg)) = e’

(l)
%o

Thus, as promised, with our choice Bjﬂ) we get

Txlw(v(')) = ea(')

foralli =0,....m+n—-1andj = m,...,m+ n — 1. Recall that by definition
Toe() = foralli =0,....,m+n—1andj =0, ..., m—1andthusd, (") =
ca’ foralli,j = 0,....m+n— 1, whereg. = 1for j = 0,....m— 1 and
¢ =eforj =m,...,m4n— 1 Also recall thataj(” = aj(°>kj"i) whereo is a
permutation of(0, ..., m+ n — 1}. Sincea;(g) = Txi(p(vj(i)) ando©@ = 0, we have
a(g) = -(O))\‘-’(i) = ao(e))f’(') ao(k"(')e). But g is an eigenvector oA =

Ty (f, g)q W|th elgenvaluek,, and scxao(k"(')ej) = ag(A°Ve). Now, ey, . .., min_1
are a basis oTyM x TyN, ando is independent of, and hencey = a o A°") where
a = a = Typ o T yym1. Thus for this choice of f, ) the firstm 4+ n components
ao, . .., ampn—1 Of Ty Py, are a permutation @y, ago A, ..., a0 A™"=1 and hence,
as claimedw, = +ap A 80 AA -+ A dgo A™L. Sinceao(g) = ¢jo[” # 0 forall j,
Lemma 4.10 implies thab, # 0, as required. O
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5.3. Construction ofW,

Define the map: D' (M x N, M) — C4(M x N, M%) by
‘L'(f) — (f(O)’ f(l)’ 1:(2)’.”7 f(dfl)).

We show thatv, is C? and compute its tangent map in Corollary C.5 in Appendix C. If
we denote théth component of by 1;, then this gives
i
Tf,X,yeU'L’i (771 0X1 Oy) = T(xj,yi) f(I_J)(n(Xjflv ijl), 0)
j=1

As an immediate consequence, we obtain the following.

Lemma 5.12. Ty y(€v,) is surjective at al(x, y) ¢ Py g.

Proof. If (X, y) is not periodic of period| < d, the points{(x;, y;): i =0, ...,d — 1}
are distinct, and hence by Corollary C.12 we can figdaT: D" (M x N, M) such that
n takes on whatever values we want on tlxe yi). Thus, given any; € Ty, M with
1 <i <d -1, choose; such thaty(xi_1, Yi—1) = vi, n(Xi, ¥i) = — Ty F (i, 0),
andn(xj,y;)) = 0forj # i —1i. ThenTsyy(ev:)(n,0,0) = (O,...,v,...,0) €
TM x ... x TuM ... x Ty, ,M. Similarly, given anyv, € Ty,M, pick n such that
n(Xo, Yo) = —Tix.yo) T (v0, 0) @andn(x;, y;) = 0 for j # 0. Then by Corollary C.5,
Trx,y(€v:) (1, vo, 0) = (v, 0, ..., 0). Thus, Ty« y(€v,) is surjective, as claimed. O

This gives, as a straightforward corollary, the following.

Proof of Proposition 5.4. Definev: D' (M x N, M) — C4(M x N, (M x N)%) by
v(f) =qd, (f, 9. (f 9% ... (f.g"™.
Let A, be the codimensiofd — o«)m submanifold ofVi¢ defined by
Ay ={(20, 71, ..., Zg-1) € M%: z =z, ifand only ifi ~; i’}
andO© the codimension 0 (open) submanifold(®1 x N)¢
O = {(wo, ..., wg_1) € (M x N)%: w; # w; foranyi #i’}.

ThenW, = (z(f), v(f))"1(A,; x©).By Corollary C.5gv, isC?, and a similar argument
shows thaev, is alsoCY. Thus,ev, ., is €Y, and dim(M x N) — codim(A; x O) =
m+n— (d —a)m < m+n < d. SinceO has codimension &y, ., is transversal to

A x Oifand only ifev, is transversal ta\ for all (x, y) such thaev, (f, X, y) € O;in
other words, allx, y) such thatx, y) is not periodic unde¢f, g) with period less than

d. But by Lemma 5.12T; , y(€v.) is surjective at all such points, and hence transversal
to any submanifold oMY, Thusev,, is transversal td\; x O, and hence by the
Parametric Transversality Theoremthereis aresidual detoD such thatz (f), v(f))

is transversal to\, x @, and henca, is a codimensiond — «)m submanifold of

(M x N)\Ps g. O
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5.4. Construction ofT; |/

Proof of Proposition 5.5. Define
Arr = {(Uo, U1, ..., Ug_1) € Ty, M%: if i € J;, thenu; € Oy ifand only ifi € 1"},

where Q, is the zero section ii M. ThenA, | isa cod[mensiomd — y)msubmanifold
of T MY. Define the map’: D"(M x N, M) — C41(T(M x N), TMY) by

() =T O TIO T2, T0D)

where as usudl f@ is the restriction ofT f© to TM. Let v: D'(M x N, M) —
C4M x N, (M x N)9) and© be as in Section 5.3 above. Defirle D' (M x N, M) —
CHT(M x N), (M x N)dy by v'(f) = v(f)omxn, Wherery .y is the tangent bundle
projection. Thus

V(D)) = (X, ), (X2, Y1), - .., (Xd—1, Ya-1)),

forall v € Txy(M x N). ThenT,;» = [¢/(f),v'(F)]7X(A1r x O). Lemma C.9 in
Appendix C shows thagv! is C¢~* and hence so i8v(,,/. Also dimT(M x N) —
codimA,r x 0) =2m+2n—1— (d — y)m < d — 1. Thus to prove the proposition

it is sufficient to show thagv. . is transversal t&\, |, x O and then apply the Para-
metric Transversality Theorem. As in Section 5.3, si6thas codimension @u

is transversal t@\| - x O if and only ifev, is transversal ta\, . for all (x, y) such that

(X, y) is not periodic unde¢ f, g) with period less thad. In fact, the next lemma shows
thatev, is submersive at all such points, and hence is transversal to any submanifold,
as required.

Lemma 5.13. The map T,(ev,/) is surjective at allv € 'fxyy(M x N) with (X, y) ¢
Pt g-

Proof. If (X, y) is not periodic with period less that then the point§(x;, yi): | =

0,...,d — 1 are distinct. Sincéf®, g') is a diffefomorphism and # 0, we have
v # O for alli. Thus by Corollary C.16 we can findrasuch thatw (T, v n(vi)) for
i =0,...,d— 1takes on whatever values we want. Hence given some T, (T M)

forl<i <d-—1,choose € TiD'(M x N, M) such thaflx,_, v n(vi—1) = o (w),
T(xi’yiﬂ](vi) = _T(m(x,y),O)(T f)(a)(w|), 0) andT(xj,yj)T](Uj) = 0 for J 7& i — 1, i. Then
Tiy(ev)(1,0 = (O, ...,wi,...,0 € T\ (TM) x - - X T, (TM)--- x T, ,(TM).
Also, given any wg € T,(TM), take n such that Ty yon(vo) =
—Toox..0) (T ) (@ (wo), 0) and Ty, .y )n(vj) = O for j # 0. ThenTs ,(€v.)(n, wo) =
(wo, ..., 0). Thus,T; , (ev,) is surjective, as required. O
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5.5. Transversality otv,

Proof of Proposition 5.6. Exactly as in Corollary C.8 we have by Lemma B.11

CU(ijif(Ujl’))
o (Ty, £(v))
Tga,v(evp)(fv Ov) = 2.

3

w(TxJ/,g(Uj;,))

wherevj = Ty, 9 (v), andx; = fU7(x, y). By the definition ofT, |/, the points
Xi;, Xj;, ..., X arealldistinct, andy, # Ofori = 1,..., y". ThusT, ,(ev,) is surjective
by Corollary C.16, and hence in particular it is transversal t¢ as required. O

5.6. Construction ofW, r

Proof of Proposition 5.7.Lett: D" (M x N, M) — C%(M x N, M%) andv: D"(M x
N, M) — C4(M x N, (M x N)9) be as in Secton 5.3, and defitieD' (M x N, M) —
CH(M x N) x (M x N), M4 x M%) andd: D" (M x N, M) — C4((M x N) x (M x
N), (M x N)¥ x (M x N)¥) by 7(f) = ©(f) x (f) andd(f) = v(f) x v(f),
respectively. Thus

T(f)y = (fO D §@  f@D)y 5 (fO @ @ f@-Dy

5(f) = (d, (f,9), (f, 9% ..., (%™ x (d, (f,9), (f, @3 ..., (f,9*™),

so that

D)Xy, X, y)
= (((X,¥), (X1, Y1), -« s (Xd=1,Yd—1))s (X, Y), (XL YD), - oy (X1, Yg-1)))-

Let

AR = {20, . 241, 2., Z4 1) € MI X MY (20,...,24.1) € Ay, and if
(i,i") € J x J thenzy =z, ifand only if (i,i") € R},

and

O = {(wo, ..., wd—1, Wg, ..., Wy_1) € (M x N)Y x (M x N)¢:
wi # wi, w| # wj, foranyi # i’ andw; # wj, for anyi,i’}.

ThusA | ris acodimensiofd —ar)msubmanifold oM® x M9, and®’ is a codimension
0 (open) submanifold ofM x N)4 x (M x N)d.

ThenV~V.,R =[Z(f), 1(F)]7X(A|.r x O). By Corollary C.5ev; isCY, and a similar
argument shows thab; is alsoC?. Also dim(M x N) x (M x N)—codim(A|, Rx®’) =
2m+-2n—(d—ar)M < 2m+2n < d. Thusifev; 3 istransversalta | g x O’, the propo-
sition will follow immediately by the Parametric Transversality Theorem. As in Sec-
tion 5.3, sinc&)’ has codimension 0, the transversalitgofto A| g x O’ is equivalent to
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the transversality odv; to A| ratallE = (f, X, y, X, y) suchthab(f)(X, y, X', y) €
O'. This follows by a slight extension of Lemma 5.12. Thsf ) (X, y, X', y') € O"im-
plies thatthe point&(x;, yi): i =0, ..., d-1Ju{(x, y):i=0,..., d—1} are disjoint.
Hence as in Lemma 5.12, given anye T, M, we canfind & € TfD"(M x N, M)
suchthafz(ev:)(n,0,0,0,0) = ((Oy, - - -, Vi, ...\ oxdfl),(oxé, ...,OX;H)) ifi > 0and
Tz (evz)(n, vo, 0,0, 0) = ((vo, Ox,, . .., Oy, ,), (Oxé, R Oxéfl)) if i = 0. Similarly, given
anyv € TxM, we can findy’ € TyD"(M x N, M) such thaflTz (ev;)(’, 0,0, 0, 0) =
((Oxgs - -+, Oxy 1), Oxo, ..., 0, .., OxlfH)), if i > 0 andTz(evz)(n',0,0,v5,0 =
((Oxys -+, Oxyy), (g, Oxé, R Ox(/H)) if i = 0. The set of all such vectors spah#? x
T MY, and hencdz(ev;) is surjective, as required. O

5.7. Construction oMW, r (g

Proof of Proposition 5.8. This is a simple modification of Proposition 5.7, using also a
part of the proof of Proposition 5.1. First, as in Proposition 5.1Xif y') has periody
under( f, g) theny’ must have period underg (though not necessarily minimal period
q). By our hypothesis og, such periodic orbits are isolated, so fix one sych

Instead of andp, we shallusé’: D' (MxN, M) — C4((M x N)x (M x{y'}), M9x
M%) andi’: D" (M x N, M) — C4((M x N) x (M x {y'}), (M x N)4 x (M x N)3x M)
given by

F(f) = (f(O)’ f(l)’ f(z),---, f(d—l)) % (f(O)’ f(1)7 f@

5(f) = (d, (f,9), (@2 ..., (9™
x (Id, (f,9), (f,9)% ..., (f, )% x f@,

The additional ternf @ in 7" will be used to ensure the periodicity 6f, y'). Let

f(q—l))’

.....

Ar = {(z0, ..., 21,2 ..., Zy_ ) € M x M% (20, ..., Z4_1) € A, and
if (i,i"e J x{0,...,q9—1}thenz =7z ifandonlyif(i,i’) € R},

and

Oq = {(wo, ..., wd-1, Wp, - .-, Wq_1, Z3) € (M x N)¥ x (M x N)3 x M:
wi # wy foranyi #1i’, wj # w], for anyi, i’,
wi # w], foranyi # i’ suchthatO<i,i’ <q, and
m1(wp) = 74},

wherer;: M x N — M is projection onto the first factor. Thus, r is submanifold of
M9 x MY of dimension(e + q — Br)M, and hence of codimensigd + q)m — (« +
g — Br)M = (d — ar)m, whilst Oy is a codimensiom submanifold of(M x N)d x
(M x N)¥ x M. HenceA| g x Oq has codimensiotd + 1 — ar)m.

Note that ifevy (f, X, y, X', ¥') € Oq, then(f, 9)3(x, y) = (f D (X', y), g4(y)) =
(X, y), but (f, @) (x,y) # (x,y) foralli = 1,...,q — 1, and hence&x’, y)) is
periodic of minimal periodj. ThusV~\/|,R/,(q) = [#(H), V(D] A r x Oq). Hence
if (7'(f),V'(f)) is transversal tA| g x Oq, then V~\/|,R4,(q) will be a codimension
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(d + 1 — ar)m submanifold of(M x N) x (M x {y'}), and hence a codimension
(d — ar )M+ m+ n submanifold of M x N) x (M x N).

As in Section 5.6ev; andev; areC?. Also dim(M x N) x (M x N) —codim(A| g x
Op) =2m+2n— (d —ar)M < 2m+ 2n < d. Thus if ey i) is transversal to
A r x Oy, the proposition will follow immediately by the Parametric Transversality
Theorem. Unfortunately, sin@; is not automatically transversal @@, itis no longer
sufficient to concentrate just @o;/, as it was in Section 5.6. We thus proceed as follows.

First, observe thatévy (f, X, y, X', y') € Oq,thenthe point§(x;, yi): i =0,...,d—

1 U{,yi):i=0,...,q9—1} are all disjoint. Thus, as in the proof of Proposi-
tion 5.7, given any; € Ty M, i > 0, we can find ay € TsD'(M x N, M) such
that n(Xi_1, Yi—1) = vi, n(Xi, i) = =T,y F (i, 0), n(xj,y;) = 0for j #i —1,i
and n(xj’, yj’) =0forj =0,...,q— 1. Then if we denoteE = (f,x,y,X,VY),
we haveTg(ev#)(n,0,0,0,0) = (O, ..., Vi, ..., 04 ,), 0) where @ = (O, ...,
Oy ). Furthermore, since f, g = (f© g9, we haveTz(evy)(n,0,0,0,0) =
((Ox: Oyp). - (01, 0y, .o (Ox ;. Oy, ). (04, Oy)) Where Q, = ((Og.0y).

.,(Oxéfl,oyéil)). Similarly, given anyvy € Ty, M, pick n such thatn(xe, Yo) =
—Toxo,y0 F(v0, 0), (X, y)) = 0 for j # 0andn(x,y)) = 0forj =0,....,9—

1. ThenTg(ev#)(n, vo, 0,0,0) = ((vo, ..., Ox,_,), 0z) and Tz (evy) (1, vo, 0,0,0) =
((vo, Oyy)s - - -+ (Oxy 15 Oy 1), (Our, Ox;)). Now, ((Uo, .. ., Ug—1), Our, Ox) € TOq forany
(Uo, ..., Uq—1) With u; € T, (M x N) and hence we see that Image(ev: 7)) +
T(Ar x Oq) containsT M x {07} x T(M x N)¥ x {0/} x {0y ).

Similarly, givenv] € TxM, we can find ap € TyD'(M x N, M) such that
Tz(evz)(n,0,0,0,0) = (0, (OX,... fv--woxg,l)) ifi > 0, andTz(ev:)(n, 0, 0, vy,

0) = (0, (vp, Oxé, e q71)) if i =0, where @ = (O, ..., 0 ). As before we have
Tz(evi)(n,0,0,0,0) = (04, ((Ox, Oy), ..., (v, Oy), ..., (Oxg,p Oy;H)), Oy ifi >0,
and Tz(evy)(n, 0, 0, vj, 0) = (0y, ((vp, Oy;). ...,(OX'; ,Oyéil)),oxa) if i = 0, where
Ow = ((Oxoa Oyo)’ N (Oxd,p Oyd,l))-

However, at this stage we cannot proceed as above, since it is not true that
0y, (Ug, ..., U q 1), Ox )eTOq forany(ug, ..., q_1)W|thu € Ty (M x N). Instead
we have(0,, (ug, ... q 1), T1(Up)) € TOq. Fortunately, by the proof of Proposition
5.1,if f € D" and (x y') is periodic of periodq, then given anyw, € Ty M, we
can findn € TyD" (M x N, M) such thatTs vy (ev,)(n, 0) = (v,’l, 0) Where,o(f) =
(f@, £©), Furthermore, since the sgtx, y;): i = 0,...,d — 1} is disjoint from
{(X,y):1=0,...,q},wecanchoosg(x;, y;) = Oforalli. For such &, we then have
Tz(€vy)(,0,0,0,0) = (O, ((Ox, Oy), Uy, ..., Ug-1), vg) for some{l]’l,...,l]afl}
(depending omy). So now, given any(Uy, - . . , qu—l)’ vg), choose) € TyD' (Mx N, M)
suchthaflz(evy)(n, 0,0, 0, 0) = (0,, ((Oxé, Oyé), ap, ..., Ga_l), ”a —m1(up)) for some
{a, ..., ﬂa_l}. Since we have0,,, (uy, u; — Uy, ..., ua_l — Uq_l), m1(uy) € TOq.
Adding these together, we conclude that0,, ((ug, ..., uafl), vé)) €
ImageTz(evy)) + TOq as required.

We thus conclude that Images (eviz i) + T(A| r x Og) contains{0,} x T M x
{0,} x T(M x N)¥ x T M. Since we have already shown that it containd® x {0,} x
T(M x N)¥ x {0,} x {0}, we conclude thagvz i) is transversal ta\| g x Oy, as
required. O

-1
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5.8. Transversality otuv,
Proof of Proposition 5.9. As in Corollary C.3, we have

£\ (5O

£(Xj) ()
Tz(evy)(X,0,0,0,0) = : , :

s ) \eox)

By the definition ofW;  the pointsx;;, Xj;, ..., xj; are distinct andx;;, xj;, ..., Xj: } N
Y
{xj/,, xJ/ e, xj’, } = @. Thus, using Corollary C.12, given any J; g, we can find a
1 2 4
& € Tw(Cf(M,yR)) such thatTg (ev,)(&,0,0,0,0) = (g, 0), whereg is theith unit

vector inTR?". Also (&, &) € TA,. for anyi, and hence Imag@z(ev,)) + TA,» =
TR x TR?", as required. O

5.9. Transversality okv,.

Proof of Proposition 5.10.As in Section 5.8,

g\ (505

§(xj;) §(x5)
Tz(ev,)(£,0,0,0,0) = S N

s0g) ) \ex )

If (x.y.X.y) € Wi r.q are distinct andxj;. Xj;. ... X, } N (%o, X, ... Xg 4} =
2. But (X', y') is periodic with periodq, and henceq € {X;, X1, ..., X, 4} for any
e it g j;/}. Hence{xji,sz/,...,x,-;/} n {xj/i,xj’z/,...,xj/;/} = @. Thus, as
in Section 5.8, given any € J; r, we can find a§ € T,(C'(M,R)) such that
Tz(ev,)(£,0,0,0,0) = (&,0), and thus Imag@z(ev,)) + TA,» = TR x TR’
as required. O

5.10. Transversality oév,
Proof of Proposition 5.11.As usual, we have
£(xj;) §(x)

£(Xj;) §(x)
Tz(ev,)(,0,0,0,0) = . )

s0q) ) \eox )

with % = X4k If (X, ¥, X', ¥) € W 4, then the pointgx;;. x;;, ..., x;, } are distinct.
By Corollary C.12, given anyj/ € J;, we can find &; € T,(C" (M, R)) such that
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() =1 andé;jir(x,-) =O0forallj € {0,...,d+ k — 1} such thatx,—i/ # Xj, in other
words, such thaj ¢ [;. In particularx;: # X, for all j{, € J; such thai 7 i’. Thus
Tz(ev,) (&, 0,0,0,0) = (&, u), wheree is thei th unit vector inTR” and the(i")th
component ot is 1 if and only ifx; = x]/ = Xjj\ - Butx = x;, if and only if
j/’ +k e I, and thus

u® = Z e

i i) ke

Now, recall thatj/ is the maximal element df andk > 0. Thus if j/, + k € [j, then
ji, < j/ and hencé’ < i. In particularu® = 0, and hencdz(ev,)(&1,0,0,0,0) =
(e1, 0). Now proceed by inductioq. Our inductive hypothesis is that for a givweith
1 <i < y,we have(e,0) € TA; + ImaggTz(ev,)) for all i’ such thati’ < i.
Then by the aboveie, u?) € ImageTz(ev,)). Sincej, + k e I impliesi’ < i,
we see that® is the sum of a set aé. over some set of < i. Hence the inductive
hypothesis implies thau®, 0) € TA; + ImageTz(ev,)). But (u®, u®) e TA;.
Hence(e , 0) = (&, u)+u®, 0)—u®, u) e TA; +ImagaTz(ev,)), asrequired.
Thus by induction(g, 0) € TA; + Image Tz (ev,~)) for all i, and sincee, g) €
TA;, we conclude thaT A; 4 Imag&Tz(ev,»)) = TR” x R”, and henceev, is
transversal ta A ;, as required. O

5.11. Periodically Forced Differential Equations

The proof of Theorem 3.3 has exactly the same structure as the proof of Theorem 3.1, re-
placing the maps @ by f . Essentially the only modification required is that instead of
showing thakv,, ev,: are surjective on appropriate domains (as in Sections 5.3 and 5.4),
we need to demonstrate the surjectivity of the map¥,x,0) +—

(X, f7(x, 0), ..., f794-D(x, 0))and(¥, v) —~ (X, Tf7(v), ..., Tf7@=D()). This fol-

lows by straightforward extensions of Lemmas 31.7 and 31.11 of Abraham and Robbin
[1967]. Similar modifications are also required to Sections 5.6 and 5.7.

6. Proof of the Bundle Embedding Theorem

The proof of Theorem 3.2 is closely related to the proof of the Forced Takens Theorem
(Theorem 3.1) given in Section 5. Thus, the first part of the argument is to show that
for a residual set off andg, T4, is transversal to the zero section TRY and
Dt g, x Pfg, is transversal to the diagonal Rf' x RY. The basic idea behind this is
the same as that in Section 5; though there are a number of useful simplifications: (a) we
can completely ignore periodic orbits; (b) when analysing , x ®r g, we can restrict
to pairs of pointgx, y) and(x’, y’) such thaty = y’; (c) we do not need to treat pairs
such that(x’, y') = (f, g)¥(x, y); and (d) when proving immersivity we can restrict to
vectors of the forngv, 0y) and, sincel fO (v, 0y) # 0if v # 0, we need not bother with
the construction of tha, ..

Once we have shown the transversalitf di; 4 , anddy 4, x ¢ 4, we complete the
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proof by treatingy as a parameter and applying the Parametric Transversality Theorem
to the mapg/ > T @ g,y andy — @ g,y X @y g,y This shows thal @¢ 4, y and
Dt g,y x Pf g,y are transversal to the zero sectioMiR? and the diagonal iR? x RY,
respectively, for a residual set gf By counting dimensions, this immediately implies
the immersivity and injectivity ofb¢ 4, y, as required.

Exactly as in Section 5, the main obstacle is generated by points suck thax;
with i # j. Unfortunately, we cannot use exactly the same approach as we did there to
deal with these points. To explain this, consider just the case of immersivity. Suppose
we try and proceed as before, so that we define submaniftjdsach characterized
by the set of pairgi, j) for which x;, = x;. We can certainly then show th@atb, ; is
transversal to the zero sectionTiiR® and thal\f\/hy =W, N(M x {y}) is a codimension
(d — «)ym submanifold for a residual set @f Thus it seems plausible that generically
®,, | should be immersive o\My if « > 2(m— (d — a)m), which is always satisfied if
d > 2m+ 1. The problem arises in the definition of the map-> 'I~'<I>¢,|,y. The domain
of Td, yis TW;y = TW, N (TM x {y}) and hence depends gn This makes it
impossible to apply the Parametric Transversality Theorem directly. A similar problem
arises withy — &, r x ®, 1 r. One way around this difficulty would be to extend
the Parametric Transversality Theorem to cover this case. We shall use a more direct
approach that avoids this issue by combining the construction aMheith the proof
of transversality. As we have already remarked in the introduction to Section 5, the same
method can be used there.

6.1. Preliminaries

As in the previous section, we only need prove the theorem for sufficiently taiige
this case > 2n. However, the passage to lower degrees of smoothness is not quite so
trivial in this case, and hence is given in a separate section (Section 6.4).

Recall thatd¢ g, y(X) = Pr,g,,(X, ¥); sinceg is assumed fixed, we shall drop it from
the notation and writ®; , ,(x) and®s ,, respectively. Since we only need to prove the
theorem for a set of of full Lebesgue measure, we can completely ignore the closure
759 of the set of periodic orbits af of period less thad. Thus instead of working with
(M x N)\Ps g, we consideM x (N\759). For notational convenience, we shall define
N = N\759. By our hypothesis this is an open dense submanifoltl obf Lebesgue
measure 1.

Note that sinced: 4,y depends continuously oy and embeddings are open in
C" (M, RY), the set ofy such thatd; ¢ , v is an embedding is open in botth and N.
Furthermore a set of Lebesgue measure is necessarily dense (as otherwise its complement
would contain an open set and thus have strictly positive measure). Thus it suffices to
prove that the set of such thatd¢ g, y is an embedding has full Lebesgue measure in
N (and hence iN) for a residual set of ande.

As in Section 5, lel = {l4, |5, ..., |5} be a partition of0, ..., d — 1}, and~, be
the equivalence relation defined by-, i’ if and only ifi, i” are in the same element of
the partition. Recall thaj, is a set containing precisely one element from ekclor
k=1,...,a. Asusual, write these a = {j1, jo, ..., jo} With j1 < jo < -+ < jqu.
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6.2. Immersivity of®

As in Section 5, the basic idea is to makes , transversal to the zero sectionTiR¢
and then count dimensions. For a giver N, define the map®i, 0 M x N - R
and®t,y: M x {y} - R* by

i1 (X, Y) = (@), Xy, - -, o N,
Dt 1,y(X) = Pr (X, Y),

wherex; = f®(x, y). Observe that if for some € TxM we haveds , | y(v) # 0, then
T ®t,0,y(v) # 0. Hence if for allv € T«M, we haveT, @+, 1 y(v) # O for somel, then
s, y IS immersive ak.

Define the map: D' (M x N, M) x C" (M, R) — C" (T M x N, TR%) by

p(f,o)(v,y) = TxPsy, (v, 0y)
= Txcbf.qz,l,y(v),

and as usual lett; be the zero section ifiR*. Sincer > 2n, ey, is C"! by Lemma
C.9. As in Section 5.3, define: D' (M x N, M) — C"(M x N, M%) by t(f) =
(fO f@ @ -1y LetA, bethe codimensiod — «)m submanifold ofvi¢
defined as before by

A ={(z1, 2, ...,29) € MY z =z ifand only ifi ~, i'}.

Note that since we repla¢®l x N)\ Pz g by M x N =Mx (N\759), whichisindependent
of f, we can dispense withand©. Then Corollary C.5 implies tha, is C". Define
. D'(M x N, M) - C"(TMx N, MY by 7/(f) = 7(f) oty wherery: TM > M
is the tangent bundle projection. Then. is alsoC". Finally defineo’: D' (M x N, M) x
C"(M,R) — C"(TM x N, TR* x M%) by

o'(f, o), y) = (p(f,9)(v, y), T'(F)(v, y))
= (qu)f,zp,l.y(v):f(f)(xv y),

wherex = ty (v), i.e.,v € TyM.

Proposition 6.1. The map e, is transversal to L. x A forall I.

Proof. Suppose thatv, (f,¢,v,y) € L x A;. Then p(f,¢)(v,y) € L, so
p(f,@)(v,y) = 0, and we may writeev, (f, ¢, v,y) = (0, 2) for somez € A.
SincePrg C M x Py, if (X,y) € M x N then(x, y) ¢ Pigq. Lemma 5.12 thus im-
plies thatTy , y(ev,) is surjective and hence giveri € T, A, there exists &y, w) €
T D' (M x N, M) x T(T M) such thafl , y(ev, ) (n, w, 0y) = U'. LetE = (f, ¢, v, y).
Then for any¢ € T,C" (M, R), we have by linearity

TE (evp)(nﬂ X, w, Oy) = TE (evp)(r’ﬂ va w, Oy) + Ta(evp)(of ’ Sﬂ Ovs Oy)
= UO + TS(evp)(Of ’ 55 Ova Oy),
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for someug € T(TR*), and just as in Section 5.5,

(T, £ (v},)

o (T, £ ()
Ta(ev,) (01 £, 0,,0,) = :

o (Ty, &(vj,))

wherex; = f4)(x, y) as usual but now; = Ty, f (v, 0y). Sincer (f)(x, y) € Ay,
the pointsx;,, X;,. .. .. X;, are all distinct. For a fixeg, " is a diffeomorphism and
vl = 1 and hencey; # Ofori = 1,...,y. Thus, by Corollary C.16, given any
u € ToL,, there exists § € T,C" (M, R) such thafTg(ev,)(0t, &, 0,, 0y) = U — Uo.
HenceTz(ev,)(n, &, w, 0y) = u and soTz(ev,)(n, &, w, Oy) = (u, u’). ThusTg(ev,)
is surjective, and in particular transversaltp x A, as required. O

Observe that diff M x N — codimL; x A, =2m—1+n— (d — &)m — a, and

2m—-14+n—-d—-aom-a <d—-2—-(d—-a)m—a-+n
< d-a)l—m)y—2+n
< n-—1, (6.2.1)

andev, is C"~1. Thus by the Parametric Transversality Theorem there is a residual set
of (f,p) € D'(M x N, M) x Cr(MJ R) for which p’(f, ¢) is transversal td.| x A;.
Fix any such( f, ), and defingp”: N — C" (T M, TR* x MY) by

"MW = p'(f, ), y)
= (Tx@t,p,1,y(v), T(F)(X, ¥)).

Thenev, (y, v) = p'(f, ) (v, y) and hencev, is transversal ti.; x A,. Alsoev, is
C",and using (6.2.1), we have difM —codimL, xA; = 2m—1—(d—a)m—a < 0 <
n. Therefore, by the Measure Theoretic Finite-Dimensional Parametric Transversality
Theorem (Appendix A),”(y) is transversal td.;, x A, for a set of full Lebesgue
measure of/ in N.

The dimension of Mis2m—1andthatof.; x A ise+dm—(d—a)m = (M+1)a.
By (6.2.1), In — 1 < (d — a)m+ « and hence difif M + dimL; x A, =2m— 1+
M+Da < (d—ao)M+a+ M+ Da = 2« +dm = dimTR” x M%. Hence, as
usual, if the image of M intersected_; x A, the intersection could not be transversal.
Thus for a residual set of, the image ofT M does not intersect, x A,. Hence,
eitherT ®¢, y(v) € Ly orc(f)(x,y) ¢ A,. Butforevery(x,y) e M x N, we have
t(f)(X,y) € A, for somel, and hencd &« y(v) ¢ L, for a residual set oy, for
allv e TyM, for all x € M for somel. Butif Ty®¢ | y(v) € Ly, thenTy®s, y(v) #0
and hencebs , y is immersive, as required.

6.3. Injectivity of ®

As in Section 5, we aim to mak®; , x @t , transversal to the diagonAI in RY x RY.
Let R = {(i1,17), (i2,i5), ..., (igg, i/’gR)} be a subset of; x J; (possibly empty) and as
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before define
Jr={i € J: (,i") ¢ Rforanyi’ € J}.

Note that, unlike in Section 5, for the moment we cannot exclude the hase= &.
Let ' be the number of elements ih r and note thay’ > ar = o — Br. If ¥’ > 0,
write i r = {j{, I ---, I with j; < j; < -+ < ],, and as in Section 5.1, define
the mapsbs, | r: M x N — R” and®, y; r: M x {y} — R” by

Prp 1 ROGY) = (@), 9Ky Oy ),

@iy 1 Ry(X) = Pry1Rry(X, Y).
If ¥/ = 0 defined, | r: M x {y} - R° = {0} by ®¢, r(X,y) = O for all x, y.
Observe that itbt , | R(X, Y) # P .1 (X, Y) then®s g , (X, y) # Prg,(X, y). Thus
if for all (x,x) € (M x M)\A, we haveds , | ry(X) # Pty Rry(X) for somel, R,
then®y , y is injective onM.

Defineo: D" (M x N, M) x C"(M,R) — C"(M x M)\A x N,R”" x R”') and

7. D'(M x N, M) = C"(M x M)\A x N, M? x M%) by

o(f, o)X, X, y) = (Py.1.rRX, Y), Py 1 .R(X, Y)),
t(Hx X,y = (x FPy) L TPy, L TP y) L 9Py,
ando’: D' (M x N, M) x C" (M, R) — C"((M x M)\A x N, R” x R x M9 x M%)
by
o'(f, @) = (a(f, ), t()).
By Corollaries C.5 and C.&v, andev, areC" (sincer > 2n). From Section 5.6, recall
thatA| g is a codimensiorid — «g)m submanifold ofM® x M¢ defined by

AR = {20 . 2412 .... 24 ) € MI x M% (20,....25-1) € Ay, and
if (i,i") € J x J, thenz =z, ifandonlyif (i,i") € R},

and letA,, be the diagonal ifR”" x R”".

Proposition 6.2. The map e, is transversal to&y/ x Ay rforalll, R

Proof. Suppose thaev, () € A, x A for someE = (f,¢,x,X,y), with

X, X,y) € (Mx M\A) x N. Firstwe showthatif (f)(x, X', y) € Al R, thengiven any

(U 0') = ((Ug, Ug, ..., Ud—1), (Ug, U3, ..., U5 1)) € (TyyM x -+ - x Ty, 1M)x(TX M x
><TX M))we can f|nd ap € TiD' (M x N, M) suchthafl; x v y(ev-) (1o, Ug, Uy, 0)
= (0,0 ) By Corollary C.5 we have

Tf,X,X'.y(eUT) = ((TIO(X’ y)7 sty r)d—l(x’ y))a (77(,)()(/, y)7 R} néj—l(x/a y)))7
wheren; andn; satisfy

Ni41(X, Y) = n(X%i, Vi) + Ty F i (X, y), 0),
ni/-‘rl(x/a y) = 77(X|/» yl) + T(xl/y.) f(n:(xlv y)’ O)a
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with of courseng = n = 0. Fory € N the points{y;: i =0,...,d — 1} are disjoint,
and hencéxi, yi) # (X, Yir), (X, ¥i) # (X, Yir) and(Xi, yi) # (X, yir) foralli #1i’.
Furthermore since # x’ (recall we only considetx, x’) € (M x M\ A)) and(f, g) is
a diffeomorphism, we havé, yi) # (X, yi) for all i. Hence the point§(x;, yi): i =
0,....,d=1}U{(x,y):i=0,...,d— 1} are all disjoint. Thus, using Corollary C.12
as usual, we can findpe Tt D" (M x N, M) such that(x;, y;) fori =0,...,d -1
take on whatever values we want, and such ti@f, y;) = O fori = 0,...,d — 1.
Then, asin Lemma5.12, given aiye (Tx,M x - - - x Ty, , M) we can find & such that
Ts x,x,y(€V:) (7, Ug, Oy, Oy) = (U, Ox) where @ = (oxé,...,oxéfl). Similarly, given
V'S (TyM x .-+ x Ty M) we can find &’ such thafT; x x y(ev:) (7', Ox, Ug, 0y) =
(0%, 0"), where 0= (Oy,, ..., Oy, ,). HenceT; y x y(ev:)(n + 1, Ug, Ug, Oy) = (G, T"),
as required.

Now let us turn to the other componentdaf If y* = 0, this is trivial, and hence the
surjectivity of Ty  x y(€v) is sufficient to ensure the transversalityenf,. If ¥’ > 0,
denoteev, (8) = (2,2, X, X) € A, x A r, Wwherex = (Xg, X1, ..., Xg_1) andx’ =
(X§s X5 - - -+ X4_1). By linearity we have

TE(eU;)(ns s’ qu UE), Oy) = TE (eUU’)(nv O(pv U(), ué)s Oy) + TE(eva")(Of ’ gv 0)(7 OX” Oy)
= (J)O’ 'lI}é), Dv L_J/) + TE(evU/)(Of ’ S’ O)(v OX/’ Oy),
for some(wo, wp) € Tz, (R” x R?'). By definition
Tz(evs ) (01, &, Oy, O, Oy) = (Tz(ev,)(0f, &, Ox, Oy, oy)7 Tf,x,x’,y(evr)(of , Ox, Ox, Oy))
= (Tz(evy) (01, &, Ok, Ox, Oy), (Ox, Ox)).

Finally, as in Section 5.8, we have

£(x;) §04)

£(xj;) £(xj,)

TE(ev(I)(Of’EaOX7OX/aOy) = : ’ :
§(xy,,) £, )
”
Sincer (f)(x, X', y) € A rthepoints;, x;;, ..., X, aredistinctand;,, X;;, ..., Xj }N
i, x , X/, } = @. Thus, using Corollary C.12, given afy, w’) € T,R" x T,R"’
1

IR

we can find & e T,(C" (M, R)) such thatTz(ev,)(0f, &, O, Oy, Oy) = ((W — wo —
(W' — wg)), 0,). Thus

TE(evG’)(nv %-7 Uo, Uo, Oy) = (1110, J)(/)v G’ l],) + ((ID - IZ)O - (lD, - II)O)), Oz, (OX» OX’))
= (W — 0" + wp), wy, G, T).

But (w' — wg, w' — wp) € TenA,», and hencaw, ', U, ') € ImageTz(ev,)) +
TzA,, as required. -
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We have dimM x M)\A x N — codimA, x A g =2m+n—y —(d —ar)m.
Sincey’ > aR, we get

2m+n—y —(d—arim < d—-1—(d —arim—y'+n
< @d-ar)(-m)—1+n
< n (6.3.1)

Sinceev, isC", the Parametric Transversality Theorem implies that thereis aresidual set
of (f,¢) € D' (M x N, M) x C" (M, R) for whicho'(f, ¢) is transversal ta\,» x A g.
Fix any such( f, ¢), and define”: N — C"((M x M)\A,R" x R x M% x M%) by

a"(N(x, X)) = o'(f,o)(x, X', y)
= (Pt p,1,Ry(X), Pip1.ry(X), T(F)(X, X, ).

Thenev,(y, X, X') = o'(f, )(X, X', ¥), and henceuv, is transversal tofk),r X A} R.
Also ev, isC", and using (6.3.1), we have difil x M)\ A — codimAyf x A r < 0.
Thus by the Measure Theoretic Finite-Dimensional Parametric Transversality Theorem,
there is a set of of full Lebesgue measure iN such that”(y) is transversal td&yf X
A r. Thedimension ofM x M)\ A is 2mand that ofA,,/ x Ay risy’'+2dm—(d—ag)m.
By (6.3.1) we have®— (d —ar)m < y’ and hence ditM x M)\A+dim A, x A| g =
2m+y’+2dm—(d—ar)M < 2y'+2dm = dimR? xR" x M9 x MY, Thus, as usual, if
theimage of M x M)\ A intersectedSy/ x A| R, the intersection could not be transversal.
Thusforaresidual set gf theimage ofM x M)\ A does not interseéiy/ x A r-Hence,
either(®s o1 Ry(X), Pt g1 Ry(X)) ¢ Ayr ort(f)(x,Xx,y) € A r. Note, incidentally,
thatify’ = Othen by definition(®r , 1 r y(X), Pt e.1,rRy(X)) =(0,0) € Ayf, and hence
for our choice off we haver (f)(x, x',y) ¢ A, rforall I, Rsuch that’ = 0. Hence
although we could not a priori exclude this case, it does not in fact arise.

To conclude the proof, we note that for evéry x', y) € (M x M)\ A) x N we have
(f)(x, X', y) € A rforsomel andR, and hencg®¢ , | ry(X), Pt p1,rRy(X)) & AV/
for somel andR. Thus for a residual set §f ®¢ g, y(X) # Pr g,,y(X) forall (x, x’) €
(M x M)\ A, as required.

6.4. Lower Degrees of Smoothness

Finally, we show how to deduce Theorem 3.2 fort < 2n, from the above proof for
r > 2n. Fixr such that 1< r < 2n and denoteé3" = D'(M x N, M) x C" (M, R).
For (f,¢) € B let N(f,¢) C N be the set ofy such thatds 4,y is an embedding,
and letB(f, ) = N\N(f, ¢). Note that sincebs 4, y depends continuously onand
embeddings are opendhi(M, R9), the setN( f, ¢) is necessarily open. Given an- 0,
define thes-neighbourhood oB( f, ¢) by B(f, ¢, &) = {y € N: d(y, B(f, ¢)) < &}.

Let £ be the set of f, ) in B" for which w(N(f, )) = 1, whereu is Lebesgue
measure. By the abov&" is dense in3?". Since the latter is dense B we see that
£ is dense iMB3". But£2" ¢ £, and hence' is dense inB3". This space is separable
and hence we may choose a countablg©gt ¢;) € £": i € N} that is dense if8". For
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anyi, we have

B(fi,¢) =(") B(fi, ¢, ),
e>0

and sincew(B(fi, ¢i)) = 0, we haveu(B(fi, ¢i,¢)) — 0 ase — 0. Hence, given
8 > 0, we may choose an(i,§) > 0 such thatu(N\B(fj, ¢, (i, 8))) > 1 — 6.
Now, N\B(fi, ¢, &) is closed and hence compact. Using the continuit® gf , y with
respect tof, ¢, andy and the density of embeddings@h(M, RY), we can find an open
neighbourhoodV'(fi, ¢i, 8) of (fi, ¢) in B such thatd; 4, y is an embedding for all
(f,9) € N(fi, ¢i, 8) andy € N\B(fi, ¢, (i, 8)). Since{(fi, ¢j): i € N}isdensein
B", the union ofA/( f;, ¢;, §) is open and dense i". Thus if we lets,, be a sequence
such tha8,, — 0 and define

N =MUNi, ¢i, 80,

neNieN

we see thatV is residual. Now if(f, ¢) € N/, then there exists a sequerigesuch
that (f, ¢) € N(fi,, ¢i,, 8n) for eachn. Hence®s 4, y is an embedding for aly €
NA\B(fi,, ¢i,, €(i, n)) for eachn. Hence if we define

N'(f, ¢) = [ N\B(fi,, i, &G, 8n)),

neN

thenN'(f, 9) € N(f, ). Sincen(N\B(fi,, ¢i,. £(i, 81))) — 1 asn — oo, we have
w(N'(f,9)) = 1 and hencar(N(f, ¢)) = 1. Thus(f,¢) € &, and soN C &'.
Therefore€" contains a residual set, as required.

Appendix A. Transversality

If M andN are finite-dimensional manifolds, ¢ N a submanifold and: M — N a
smooth map, we say thgtis transversato L (written asgyL) if for all x € g~*(L) the
tangent spacgy, N atg(x) is spanned by the imadgg(T,M) of the tangent space at
x under the derivative of and the tangent spadg,L to L, i.e.,

TgxyN = Tgy L + Txg(TxM). (Al)

This sum need not be direct and no condition is imposed,@{TyM) if g(x) ¢ L.
If (A1) holds only for allx € g~*(L),K for some subseK c M we say thatg is
transversal td on, or alongK (written asgqs, L).

One important consequence of transversality is tha if, theng=1(L) is a subman-
ifold of M ([Thom, 1954 and 1956]). This is a generalization of the well-known fact that
if Txg is surjective (so thag(x) is a regular value of)), theng=1(g(x)) is a submanifold
of M.

The notion of transversality gives a formal meaning to the notion of “typical inter-
section,” as in statements such as “a line and a surfag typically meet in isolated
points.” The theorem that lies behind such intuition is Thom’s Transversality Theorem.
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Transversality Theorem. [Thom, 1954 and 1956]he set of g which are transversal
to L C N isresidual inC" (M, N), r > 1.

This is a straightforward consequence of the Morse-Sard Theorem, which says that
foranyg € C" (M, N), withr > maxX0, dim M — dim N}, the set of regular values df
(pointsg(x) for x such thafT,g is surjective) is residual il.

The notion of transversality can be extended to infinite-dimensional manifolds (mod-
elled on Banach spaces). If eitidror N is finite-dimensional, then we can use condition
(A1) unchanged, but if both are infinite-dimensional then we also require “splitting’ con-
ditions on the kernel and image ®g. More precisely, we say thatis transversal to
L c Nifforall x € g~*(L) we have

(Tx@) *(Tyx L) has a closed complementTaM, (A2a)
Txg(TxM) has a closed subspaWesuch thailyyN = Ty L + V. (A2b)

The reason that these additional conditions are not required when at least idnerof

N is finite-dimensional is that finite dimensional subspaces are always closed and have
closed complements, aiidl,g) ~* of a closed subspace is closed. This will always be the
setting in which we employ transversality in this paper, and hence conditions A2 never
need to be verified explicitly.

One of the most useful applications of the notion of transversality in infinite dimen-
sions is Abraham’s Parametric Transversality Theorem (Abraham [1963], Abraham and
Robbin [1967], Quinn [1970]; also see Hirsch [1976] and Palis and de Melo [1982] for
the case where A is finite-dimensional). We make extensive use of this theorem in this
paper, in the form given in Abraham and Robbin [1967]:

Parametric Transversality Theorem. Let.4, M, and N b&" manifolds ang: A —

C' (M, N) be amap such that the evaluation mapeAx M — N givenbye,(a, x) =
p(@)(x)isC'. Let L ¢ N be a submanifold of finite codimension p in N. Suppose that
A and M are second countable (i.e., their topology has a countable base), that M has
finite dimension m with = max0, m — p}, and that @, is transversal to L. Then the

set of a such thagb(a) is transversal to L is residual ipd. Furthermore if L is closed

and M is compact, then the set of such a is open.

The significance of this may perhaps best be illustrated if wd_let {y € N}
be a single point. The theorem then says that if perturbations indatid x (where
y = p(a)(x)) are able to generate the wholelgiN, then for a generia perturbations in
x alone giveTyN, i.e., Typ(a) is surjective. For a more general submanifbldve have
the statement that if perturbations in batlandx are able to generate a complement to
TyL in TyN, then for a generia it is sufficient to consider perturbations xnalone to
obtain this complement.

The proof of the Parametric Transversality Theorem is based upon Smale’s Density
Theorem (Smale [1965]), which is an infinite-dimensional generalization of the Morse-
Sard Theorem. The underlying idea is very simple: Smgeis transversal td., the set
(evp)‘l(L) is a submanifold ofA x M. Letw: A x M — A be the projection onto
the first factor. A simple unravelling of the definitions shows thét) is transversal
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to L if and only if a is a regular value ofr restricted to(evp)‘l(L). But by Smale’s
Density Theorem the set of such regular values is residudl iote that if A is in fact
finite-dimensional we can instead apply the standard Morse-Sard Theorem to obtain the
following:

Measure Theoretic Finite-Dimensional Parametric Transversality Theorem. Let

A, M, and N beC' manifolds ando: A — C'(M, N) be a map such thatg is C".

Let L ¢ N be a submanifold of finite codimension p in N. SupposeAhand M are
finite-dimensional, that = max{0, m — p} where m is the dimension of M and that
ev, is transversal to L. Then the set of a such thé) is not transversal to L has zero
Lebesgue measure jA. Furthermore if L is closed and M is compact, then the set of
such a is open.

As far as we are aware, there is no published statement of this version.

Recall (e.g., Abraham [1963], Eells [1966], Eliasson [1967], Foster [1975], Franks
[1979], and see Appendix C below) thatNf is compact andN is finite-dimensional,
thenC" (M, N) for any 0< r < oo has the structure of @ Banach manifold. Taking
A = C" (M, N), with p the identity (giving the trivial evaluation map, (f, x) = f(x)),
we see that the Parametric Transversality Theorem immediately implies Thom'’s original
Transversality Theorem.

A further important property of transversal intersection is that in some sense it is
structurally stable. This is best expressed by the following.

Transversal Isotopy Theorem. (Abraham and Robbin, [1967Det A, M, N, L, and

o be as in the Parametric Transversality Theorem. Suppose that L is closed and M is
C"+2 and compact. Suppose that for sorge=aA, p(ap) is transversal to L. Then there is

an open neighbourhood U of & A such thatforallac U, p(a) is transversal to L and

p(@) (L) isC" ! isotopic top(ag) *(L). This means that there is@*maph M x

[0, 1] — M such that He, t) is a diffeomorphism of M for all £ [0, 1], h(e, 0) = Id,

and h(e, 1) mapsp (a)~1(L) ontop (ag) "1(L). In particular p(a) (L) andp(ag) (L)

are diffeomorphic.

Appendix B. Geometry of Function Spaces

In applying the Parametric Transversality Theorem, the first step is always to show that
an appropriate function space is in fact a smooth manifold, and that the appropriate
evaluation function is sufficiently smooth. In this appendix we collect together a number

of the underlying results that permit us to do this.

Much of this material requires familiarity with more advanced concepts of differential
geometry, such as connections and exponential maps, than the remainder of the paper. It
is rather unfortunate that these are used extensively in the construction of the manifold
structure on function spaces and in the analysis of the composition and tangent operators,
even though the subsequent results can be stated without reference to such terms. Thus
for instance whilst a Riemannian structure appears necessary to construct a manifold
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structure orC" (M, N), once constructed this is independent of the choice of original
Riemannian structure. Once we have proved the results in this appendix therefore, we
need not make use of such differential geometric tools elsewhere in the paper, and a
reader unfamiliar with such concepts can safely skip most of this appendix.

B.1. Function Spaces as Manifolds

It has long been known that K1 is compact, then subject to some mild conditions on

N, the spac&’ (M, N) for any 0 < r < oo has the structure of a Banach manifold.

The earliest such results are due to Eells [1958] and Palais [1968]. Since then, many
extensions and generalizations have appeared (e.g., see Eells [1966], Eliasson [1967],
Foster [1975], Franks [1979]). For the purposes of this paper, the version due to Eliasson
is the most useful.

Theorem B.1. (Eliasson [1967]5uppose that M is a compaCt® Riemannian mani-
fold and N is a paracompact>* Banach manifold, without boundary, admitting’ &
connection and a Finsler structure. Théh(M, N) forany0 < r < oois aparacompact

C* Banach manifold that admits@* connection and a Finsler structure. The manifold
structure orC' (M, N) isindependent of the choice of Riemannian structure on M and N.

In order to describe this structure @h(M, N), recall (e.g., [Hirsch, 1976]) that
given a mapf € C"(M, N), the pull-back bundlef’: f*TN — M is the vector
bundle given byf*TN = {(x,v) € M x TM: f(x) = =y(v)} and f (X, v) = X,
wherety: TN — N is the tangent bundle afi. Informally, f*T N is the bundle over
M whose fibre(f*T N)x overx € M is T;xN. The space of" sections off*T N,
endowed with th&€" norm, is a Banach space which we den@téef *T N). This turns
out to be the tangent spad@eC’ (M, N) of C"(M, N) at f. The union over allf of the
T:C" (M, N) is thusC" (M, T N). This is given the structure of the tangent bundle of
C" (M, N) by z¢: C"(M, TN) — C" (M, N) defined byt () = tn-n.

To describe howC" (M, N) is a manifold modelled o€" (f*T N), first note that
if n € C"(f*TN), thenn(x) = (X, 7(x)) for some mapj: M — TN such that
n(X) € Trxy)N for all x € M. It shall be convenient to identify and7 and hence think
of the space of sections d*T N asC"(f*TN) = {n € C"(M, TN): Ty on = f}.
This allows us to define a chadnt: /s — Vi for C' (M, N) centred atf, whereVs
is a sufficiently small neighbourhood of the zero sectio@'iaf *T N), U; = hf‘l(Vf),

andhy is defined byh;*(n) = expy on, with expy: TN — N the exponential map
obtained from the connection dW (e.g., [Lang, 1972] or [Irwin, 1980]). Recall that
if we denote the restriction of expto the fibre overf (x) by exp @ TregN — N,
then exp, maps a sufficiently small neighbourhood ¢f,Q diffeomorphically onto its
image. This ensures thlat1 is a homeomorphism, with; itself given byh; (g)(x) =
(expf(x))*l(g(x)) for g € Us. Observe that, as required, gxpn is indeed &' map
from M to N. Furthermore, if @ is the zero section i@" (f*T N), so that Q) = Oz (x),
thenh;(0s)(x) = expy (0f ) = expy(Ofx) = f(x). Thush(f) = 0;.

To confirm that this indeed confers a manifold structur€'qM, N), itis necessary to
verify thatif f, f" € C" (M, N) withi/;s N\U; # @, then the transition mdp)f/ohf‘l isC*®
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onh¢ (Us NUs-). This follows (e.g., see [Foster, 1975]) from the smoothness gf sitze
ht o hi*(m) = (expr) ™" o (Id, expy on), where(expr) (X, y) = (expr. (X)) (Y.

Note that any finite-dimensional manifold for & k < oo can be given a compat-
ible C* Riemannian structure (e.g., Hirsch [1976]) and hence adndif§ aonnection
and a Finsler structure. Any Hausdorff separable manifold is paracompact, and hence in
particular if N is compact, oN = R" for somen, thenN is paracompact.

An immediate consequence of the above theorem is tHdti§ a smooth compact
manifold, thenC' (M, M) andC" (M, R) are Banach manifolds, forany8 r < oo.
Also, it is well known (e.g., Eells [1966]) that as topological spaces they are separable.
Since the set of diffeomorphisn@¥ (M) is open inC" (M, M), this itself is a separable
manifold.

Finally, note that in the statement of the Parametric Transversality Theorem, it is
not necessary fo€' (M, N) to be a manifold, and hence in particulél, need not
be compact. In such a case, A — C"'(M, N) may simply be defined as a map,
not even necessarily continuous. In particular, the theorem places no regularity condi-
tions onp, but merely orev,. Thus, for instance, the theorem can be used in situa-
tions whereM is an open submanifold of a compact manifdid, 4 = C"'(M’, N)
andp: C"(M’, N) — C"(M, N) involves the restriction of € C"(M’,N) to f|y €
C"(M, N). The simplest example is whepedoes nothing else, so that it is simply the
natural inclusiorC’ (M’, N) c C" (M, N). The mapev,: C"(M’, N) x M — N is then
justev,(f,x) = f(x). A more complex example, especially relevant to this paper, is
for instance given bgv, (f, X) = (1 (x)) for somey € C" (N, R).

B.2. Smoothness of the Composition Operator

The other essential component of our proofs of various versions of Takens Theorem
will be the smoothness of the mapping, ¢) — & ,. Observe that each component

of this just consists of the composition @fwith some power off . Its smoothness thus
follows from the following well-known result, due in various forms to Eells [1966],
Foster [1975], and Franks [1979].

Theorem B.2. Suppose that M and N are compat® manifolds and L is &>
manifold, modelled on a Hilbert space. Then the composition atag’ (M, N) x
C"tK(N, L) — C"(M, L) given byo (f,g) = go f isC¥, and

Trgo(m,5)=¢of+Tgon.

Itisimportantto note the loss of smoothness here; thisis due to th@tgrithus in the
casek = 1,if o (f, g) isto be inC" (M, L), we must havd; go (17, ¢) € C"((go )*TL)
and hence in particuldfgo h must beC", and hencg must beC™ 1. Similarly fork > 1,
thekth derivative ofo will require thekth derivative ofg.

Taking M = {x} to be a single point, and using the natural identificatibn=
C°({x}, N) we get the obvious corollary:
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Corollary B.3. If N is compact then the evaluation mag e\ x CX(N, L) — L given
by ev(x, g) = g(x) isC¥, and

Txgev(v, &) = £(X) + Txg(v).

B.3. The Tangent Map

To prove the immersivity ofb; , in various situations, we shall need to consider the
map(f, ¢) = T ®¢,, and in particular we shall need to compute the tangent map to the
corresponding evaluation map. A crucial element in this calculation is the tangent map
Tio’'tothe map’(f) = T f. To obtain this we are in effect differentiating the derivative
operator. Note that this is very different from the second derivativg, éfe., T o’ and

T (T f) are very different objects.

B.3.1. The Range of the Tangent OperatorBefore we can begin to compuigo’,

we need to determine an appropriate domain and range for the operatédfhilst

the choice ofC" (M, N) as the domain o0&’ is obvious, the selection of its range is
more problematical. Thus, sineé(f) is aC'~! map betweed M andT N, we might

be tempted to simply také"~1(T M, T N). Unfortunately, sincd M is not compact,

this space has no natural manifold structure and we have no way of discussing the
differentiability of o'.

SinceT f is linear on fibres, it is determined by its action on the unit tangent bundle
TM = {v € TM: |jv|| = 1}. One possible solution is therefore to W8e(T M, T N)
as the range of’. SinceT M is compact, this has a natural manifold structure. This
is consistent with our use aef’ throughout the remainder of the paper, since in deter-
mining the immersivity ofb¢ , we only applyT ®¢ , to unit tangent vectors and hence
regard the domain adv,» asT M x C" (M, N). This approach, however, has a serious
drawback, namely the difficulty of composing map<Cim(T M, T N) with those in
C"~Y(T N, TL). In particular, if F(v) = 0 for anyv € T M, then there is no way of
formingGo F.

Amore natural and elegant approach is to make full use of the lineaiity ahd let the
range ob’ be the space of vector bundle maps betwedhandT N, that s, the space of
mapsF: M — N such thatF is fibre preserving (i.eF (TxM) C Ts ) N for somef e
C"(M, N)) and linear on each fibrg M. For a fixedf we can think of the space of such
maps as the Banach space of sections of the linear map bdctlel, f*T N). Recall
that this is defined as follows: E andE’ are vector bundles ovéM , thenL(E, E’) is the
vector bundle whose fibré(E, E')x overx € M is just the spac&€(Ey, E;) of linear
mappings fronEy to E,. A sectionF € C"~1(L(T M, £*T N)) throughZ(T M, f*T N)
can be written a& (x)(v) = (x, Fx(v)) for some linear magpy: TxM — T;xN. Then
F: TM — T Ndefined byF (v) = F,,, ) (v) is a vector bundle map ovér. Conversely
such anF gives rise to a sectiok € C""1(L(TM, f*TN)) by F(x)(v) = (X, F(v)).

We shall henceforth identifff andF. Note that we take the smoothness of the section
F to be different from the smoothness of the underlying niag/hich is precisely the
case withT f. Such “mixed smoothness” bundle maps are studied in Foster [1975] and
Irwin [1980].
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Following Eliasson [1967], we shall denote the union of el(L(T M, f*T N))
overall f € C"(M, N) by C""1(L(T M, C" (M, N) « T N)) and use this as the range of
o’. For convenience, we shall denote this spac®851(T M, T N) and also use the
notationVB; (T M, T N) for C"~*(L(T M, f*T N)). SinceVB ~*(T M, T N) consists
of sections of bundles ovev, i.e., of maps whose domain M, it is reasonable to
expect that it can be given a manifold structure. In fact, Eliasson [1967] shows that
VB ~Y(TM, TN) is naturally a vector bundle ovel (M, N), where the fibre over
f eC"(M,N) isjustVB?‘l(T M, T N). Furthermore, he shows thatis aC* section of
this bundle. Our principal aim in the remainder of this section is to derive an expression for
To’. To do this it is more convenient to use the manifold structur® Bir (T M, T N)
induced by its vector bundle structure, rather than the vector bundle structure itself. It
also turns out to be preferable to use charts centreéffgrrather than P as is done by
Eliasson.

Since, as discussed above, an elemen?Bf~1(T M, T N) may be regarded as a
map fromT M to T N, we expect by analogy with Section B1 that the manifold structure
VB (T M, T N) will be modelled on a suitable space of maps ffbiM into the tangent
bundleT (T N) of T N. To proceed further, we therefore have to describe the structure of
T (T N) in more detail. The reader may find it helpful to consult, for instance, Abraham
and Robbin [1967] or Irwin [1980] for particularly clear accounts of this material.

B.3.2. Properties of T (T N). We shall denote the standard vector bundle structure of
T(TN)overT Nbyzrn: T(TN) — T N. Suppose thafly N, «) is alocal trivialization
for TN, whereU is an open neighbourhood N, TyN = (ty) 3(U) = TU is the
restriction ofT N to U anda: TyN — U x V is a local vector bundle isomorphism
ontoU x V, whereV is the Banach space on whidt is modelled. Therm« is an
isomorphismTa: T(TyN) — T(U x V). Identifying T(U x V) with TU x TV,
usinga to identify TU with U x V, and then using the natural identification DV
with V x V, we see that locallif (T N) has the formrJ x V x V x V, so that we may
take as local coordinatey, vy, vo, v3) With y € N, vy, v2, v3 € V. Note that contrary
to appearances, this does not givél N) the structure of a vector bundle ovisr, in
particular, coordinate changes contain a bilinear termin the lastg)&gordinate (e.g.,
see Abraham and Robbin, [1967]).

Observe thaty is asmooth map and hence we cantake its tangenTmgpT (T N) —
T N. It turns out that this also giveéB(T N) a vector bundle structure ovérN, which
is not the same structure agn: T(TN) — T N. Thus in local coordinates we have
'CTN(y, V1, U, U3) = (y, v1) andTrN (y, V1, U2, U3) = (y, V2). Note thatrN o TTN =
n o TTn. When we need to distinguish between the two structures, we shall write
(T(TN), trn) and (T(TN), Ttyn), or simply justzry and Tzy. Fibres in the two
respective structures can be denotedmas)~*(u) and (Tzy) " 1(u). When we write
T(T N) on its own, we always imply the standard structarg, and in particular we
shall usually denotéry n)~1(u) by Ty (T N).

Itturns out that the two structures are isomorphic, with a natural vector bundle isomor-
phism given by the so-callezhnonical involutiono: T(T N) — T (T N). This satisfies
TNy = Tty o w andw o w = Id, and hence alsery o @ = Ty. In local coordinates
it is given byw(y, v1, vz, v3) = (Y, v2, v1, v3). We shall make considerable usewf
throughout the paper.
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Next, given au € TyN, we wish to define thevertical subspacen T,(T N) as
the space ofw e T,(T N) satisfyingTzy(w) = Oy. In local coordinates we have
{we Tu(TN): Ten(w) =0y} ={(y,0,0,v3) e U x V x V x V}, whereu = (y, 0).
This suggests the following alternative characterization, which we shall make use of
later:

LemmaB.4. {w e Ty(T N): Trn(w) = Oy} = Tu(TyN).

Proof. Sincery(u) = yforallu € TyN, we havd oy (w) = Oy for all w € T(TyN),
and in particulaiT Ty (Tu(TyN)) = {Oy}. HenceT,(TyN) C {w € Ty(TN): Ten(w) =
Oy}. Conversely, ifw € Ty(T N) butw is not tangenttdyN, i.e.,w ¢ T,(TyN), choose
a smooth pathy: [0,1] — T N such thaty(0) = y andTpy = w. Then this path is
not tangent tdlyN, and hence projecting down td, we see thaty o y is a smooth
path in the neighbourhood of 0 which is not constant thereTa@n o y) # Oy. Thus
Ten(w) = Ten(Toy) = To(zn o ) # 0y. Hence{w € Ty(TN): Ton(w) = 0y} C
Tu(TyN), as required. |

Although Ty (TyN) is all that we require to describe the vector bundle structure on
VB ~Y(T M, TN), in order to compute an expression b’ it will also be necessary
to define the spaces

Wyu = {w e To(TN): Toy(w) = u'}.

ThusTy(TyN) = W0, andw (W, ) = Wy y. Note that sincey o Tty = v © TN,

we must havery (u) = tny(U") for this definition to make sense. In local coordinates
Wouw = {(y,0,0,v3) e U xV xV x V},whereu = (y, 0) andu’ = (y, 0’). We thus
see that\, v is nonempty for any, U’ € T N satisfyingzy (u) = tn(U'). Also observe
that wheread,(TyN) is a vector subspace & (T N), the spacaV,  for u’ # 0 is not,
since

LemmaB.5. If w; € WU,Ull wy € Wu,uz- and iy, > € R, theniiwy + dowy €
WU,()»1U1+)~2U2) :

Proof. By definition, Tty is linear on fibres ofr . Hence ifwy, w, € Ty (T N), we
haveT tny(Arwy + Apwo) = M Ton(wr) + 22T Ty (w2) = A1Ug + AgUg, as required.

Finally, we turn to the exponential map dnT N). Recall that exp is a smooth
map exgp,: TN — N, and hencd expy mapsT (T N) to T N. Note that by definition
T expy is linear on fibres ofry, i.e., onT,(T N) for anyu € T N. Since exp is a
diffeomorphism on a neighbourhood gf i Ty N, we immediately have

Lemma B.6. Foru e TyN sufficiently small, the map &xpy is a linear isomorphism
between J(TyN) and Texpuy N

Corollary B.7. For u € TyN sufficiently small, and any’ue TyN, given anyv €
Texpwy N, there exists a unique € W, v such that Texpy (o) = v.
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Proof. To show existence pick an arbitragy € W, (recall that this set is non-
empty). Using Lemma B.6, choosey € Tu(TyN) = W, o such thatT expy(wo) =
v — T expy(w'). Then, if we setw = wo + w’, we havew € W, by Lemma B.5.
Furthermore, sinc& expy is linear onT,(T N), we haveT expy (w) = T expy (wo) +
Texpy(w') = v — Texpy(w) + Texpy(w') = v, as required. Uniqueness follows
similarly, for suppose thab, w’ € W, with T expy(w) = T expy(w’) = v. Then by
LemmaB.5w —w’ € W, ¢ and by the linearity ol exp,;, we haveT expy(w —w’) =
T expy(w) — T expy(w') = v — v = Oexpy. HeNnce by Lemma B.w — w’ = 0, as
required. O

Denote the map fromto w by Wy, : Texpuy N — W, . We haveT expy oWy v = Id,
and sinceT exp is linear this gives the following “linearity” property:

LemmaB.8. If vy, v, € Texp(u)N andii, Ay € R, thenllfu_’()tluﬁ_;hzuz)()nlvl + dovo) =
)Ll"pu,u1(vl) + )\Z\IJu.uz (v2).

Proof. Letw = AWy, (v1) + A2Wyu,(v2). Then by Lemma B.5w € Wy, ¢u;+3u0) -
On the other hand, by the linearity off expy, we have Texpy(w) =
AT expy(Wyu, (v1)) + 22T expy(Wuu,(v2)) = A1vi + Azvp. But, by definition,
Wy Gat+agtn) (A101 + A2v2) is the unique point iy ,u,+,u,) WhOse image under
T expy iS A1v1 + A2v2, and therefore we must have= W ., u,+1,u,) (A1v1 + A2v2), @S
required. O

Finally, Eliasson [1967] shows that the connectionToN giving rise to exp, in-
duces a connection dn(T N), whose corresponding exponential map we denote gxp
T(TN) — T N. By comparing local expressions, Eliasson [1967] then proves the fol-
lowing crucial lemma:

Lemma B.9. Letexpry, T expy, andw be defined as above. Thexp;y = T expy cw.

Corollary B.10. For u € TyN sufficiently smallexp;  is a linear isomorphism be-
tween W, and Texpu) N.

B.3.3. The Structure of the Space of Vector Bundle MapsWe are now in a position
to describe the structure an3' (T M, T N) due to Eliasson [1967]. To do this, &t
be a chart foc" (M, N) centred atf, as in Section B.1 and denote the bundle aligve
(i-e., the union of th&/By~*(T M, T N) overg € Us) by VB, *(T M, T N). We begin
by describing a chart deB{;l(T M, T N) centred on @. By analogy to Section B.1 we
want this to take the forrf, : VB{Ajl(T M, TN) — Vo, , whereHo, ,({) = expry o¢
and)y, is an open neighbourhood of the origin in an appropriate Banach space of maps
fromT Mto T (T N) satisfyingrryo¢ = 0f. However, we also need to impose additional
conditions in order to ensure that gxpo¢ € VB ~1(T M, T N), i.e., that it maps fibres
into fibres and is linear on each fibre.

Thus suppose th& e VBa‘l(T M, T N) with g € U; given byg = expy on, where
n € C"(f*T N) and that we have a such that expy o = G andtry o ¢ = 0;. Then
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by Lemma B.9,T expy(w(¢(v))) = G(v) € Tyx) N. By definitionT expy (Tu(T N)) C
Texpwy N for anyu € TN, and hence exp(rrn(w (¢ (v)))) = g(x) for all v € TyM.
Thustrn(w(¢(v))) = n(x) for all v € TyM, and sincerry o w = Ty, We see that
Z(TxM) C (Ttn)~t(n(x)), or in other words; maps fibres off M into fibres of T zy.
Sincerty o ¢ = Of, we therefore have(v) € W, x), and by Corollary B.9; is given
by ¢ (v) = w(¥,x,0(G(v))). This immediately implies that is linear as a function of
v. Conversely we see that if we haveaT M — T (T N) satisfyingzty o ¢ = 0 and
mapping fibres ofr M linearly into fibres ofT zy then exg y o¢ € VB 1T M, TN).

We next need to develop a notation tosatisfying such conditions. For later use, it
will be convenientto do thisinthe general caggo¢ = F, ratherthan justy yo¢ = 0.
With the usual identifications on pull-back bundles, we can denote the spasetich
mapT,M linearly into (T zy) (5 (x)) for a givenn by C"1(L(T M, n*(Tzy))), where
n*(Tzyn) is the pull-back ofTty: T(T N) — T N. We shall denote the union of the
CYHL(TM, n*(Tn))) overally € C"(F*TN) by C"H(L(TM, C"(F*T N)*(Tn))).
Note that this is not a Banach space since we have no way of adding two functions over
differentn. However, if we fix somé- ¢ VB}fl(T M, T N) and restrict to those which
lie over F (i.e., satisfyrrn o ¢ = F), then we do get a linear structure as we shall see
below. We shall denote the space of such map@’Fbﬁ(ﬁ(T M, C"(F*T N)*(Tn))) =
{c € C""HL(TM,C"(F*TN)*(Ttn))): Trn o & = F). If we take local coordinates in
T (T N), then maps in this space have the fartn) = (f (x), Fx(v), 7(X), ¢x(v)) where
v € TxM, andFy, ¢4 are linear maps frormiyM to V such thatF (v) = (f (x), Fx(v))
andn(x) = (f(x), 77(x)). Observe that (v) € We ), nx)-

The vector space structure Gh‘l(ﬁ(T M, C" (f*T N)*(T zn))) is that induced from
fibres of rry. Thus if ¢ € CEHL(TM, n*(Tty))), ¢/ € CEHL(TM, (7)*(T))),
andi, A € R, thenz(v) € Wr) n00 ande’'(v) € Wey, 0. We can therefore define
AL +)»,§/ USing LemmaB.5 by)\g +)\,§,)(U) = AL(v) +)\,§,(U) € WF(U),(An(X)+A’n’(X))-
We thus see thatthe definition@ﬁfl(ﬁ(T M, C" (f*T N)*(T zn))) involves the interplay
of two separate linear structures: Whereas the additignasfd¢’ uses the structure in
Tew) (T N), the linearity of eacly is defined in terms of the structurezy) ~1(n(x)).

In particular, ifv, v’ € TyM, then¢(v), ¢(v") € (Tty)"2(n(x)), and hence we form
A¢(v) + A'¢(v') using the addition and scalar multiplication(ifizy) ~1(17(x)).

If we denote the union ofCrFfl(ﬁ(T M, n*(Tn))) over n € Vi hy
C’Ffl([,(T M, V#(Ttn))), we see that the chart farB'~1(T M, T N) described above
hasV,, = C{)f*l(ﬁ(T M, V#(Ttn))). Observe that this is a vector bundle oV¥gr, with
the fibre over; being simplycgjl(ﬁ(T M, n*(T =n))). Furthermore, we have already
shown above that if € C{ *(L(T M, n*(Ttn))) ands’ € Co (LT M, (0)*(Ttn))),
then (A + A'¢") € C{ H(L(T M, (An + X'n)*(Tty))). Thus this bundle structure is
consistent with the linear structure df,, and can be used to give a trivialization of
Vo, . To do this, all that we need is a linear isomorphism between an arbitrary fibre
Co, H(L(T M, n*(Tty))) and the fibreCy*(L(T M, 05 (Tty))) over & e C'(f*TN)
(note that we use the symbqglfor both maps WB&‘l(T M, T N)andinC" (f*T N); this
slight abuse of notation should cause no difficulties). Such an isomorphism is obtained
from the natural isomorphism betwe&p(TyN) and To(TyN) which we shall denote
by E,. In local coordinates we hav@,(y, 4, 0, v3) = (v, 0, 0, v3). A coordinate-free
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expression fol&, is thus given byE,(w) = w — Oy, where @ is the origin inT,(TyN)
and the subtraction is carried out using the linear structu(é'im)*l(oy) (note that
both Ty (TyN) and To(TyN) lie in (TrN)*l(Oy)). This formula is however potentially
misleading, since it hides the linearity &f, with respect to the standard structures in
Tu(TyN) andTo(TyN).

An isomorphism betweeﬁr LT M, n*(Twn))) andC Ye(Twm, 07 (Ttn))) is
then given byE({) = wo B, o w o ¢, where g, is glven by E,x on each fibre
T.00(TroN). This gives the trivializatiorE: Vo, — Vi x C{ (L(T M, 05 (T )
defined byE(¢) = (1, E(¢)). SinceHy, is fibre preserving and is linear on each
fibre of VB, *(T M, T N), we obtain the required trivializatioB of V5], (T M, TN)
by conjugatingE with (hy, Ho,). An explicit expression foi€ is given by 2(G) =
(expy, eXpry) cw o B, o W, o o G. Itis straightforward, but tedious, to verify that this
satisfies the necessary conditions to m&&&—1(T M, T N) a vector bundle (Eliasson
[1967]).

Next, we want to derive an expression fof with respect to the above local co-
ordinates. If, as aboveg = exp, on, theno’(g) = T expyoTn = expryow o Tn.
Unfortunatelytrn ow o Tnp = Ttyo Tnp = T(ty o) = Tf, and hencev o Ty ¢
Vo, = Co H(L(T M, n*(Tty))) (recall that this is characterized byy o ¢ = 0f). In

fact woTnelly L(L(TM, n*(Tyn))). We thus need to construct an appropriate iden-

tification between these two spaces. To do this, defing, € C; HL(TM, n*(Tn)))
by @Tf.n(v) = w(an(x),Tf(u)(og(x))) so that eXpN(®Tf,,,(v)) = Og(x) Note that®
is not quite the same as Eliasson’s intertwining operatan fact 6(n(x))T f(v) =
VU11,(v) — O11,(v), Wheredry,(v) is the unique point iVt ;) N kerK where
K: T(TN) — TN is the connection ol N giving rise to exp. By Lemma B.9,
(@o Ty —Or,) € Cy (L(TM, n*(Tr))), and by Lemma B.9 and the linearity
of T expy on fibres ofrry we have expy(wo Tn — Ot¢ ) (v) = €xXpryowo Tn(v) —
exprn(®T1,(v) = o’(9) — 0y = o’(g). Hence the local expression for with re-
spect to the chart given Yo, is simplyo’(n) = w o Ty — O7¢,. If we wish to use the
coordinates given by the trivialization MBL,jl(T M, T N), we simply compose with
expry 08, givingo'(n) = expyy o8y 0 (wo Ty —BO7¢,). This is essentially the formula
given by Eliasson who writesg(w o Tn) + 6(n(x))T f(v) instead olw o Ty — O7y,
wheremg(w o Tn) = w o Ty — ¥1¢,(v) is the projection ot o Ty onto the vertical
subspacd,x) (Tgx) N) obtained from the splittind, o (T N) = T, (Tgo N) @ kerK.
Also Eliasson use$ expy rather than expy, thereby eliminating the need far (see
below).

Unfortunately, this expression is not particularly convenient if we wish to compute
To’, since this requires us to calculate the derivabygw o Tn — O+ ,). Whilst the first
termis linear im, there appears to be no way of computihgdr ¢ ,. Fundamentally, this
problem arises becaus, , being centred at;Q rather tharT f does not lead to a good
model for the tangent spacelaf, i.e.,Cgfl(ﬁ(T M, C"(f*T N)*(Tzy))) does notgive a
good representation % VB ~1(T M, T N). Itis thus preferable to seek a chart centred
atT f. We have in fact already carried out all the necessary work to construct such a chart,
particularly in Lemma B.7. This implies that givéh € VB~ LT M, TN) with g € Us
there exists a unique € Cr7 (L(T M, C" (f*T N)* (TrN))) such thatG = expyy o,
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and conversely the same argument asC‘{grl(L(T M, C"(f*T N)*(T zn))) shows that
if ¢ € C'T‘fl(ﬁ(T M, C"(f*T N)*(Tty))), then exgy o¢ € VB 1T M, TN). Hence
we have the chart(r: Urs — Vr, WhereH;1(¢) = expryof andlrs = Uy, =
VB, /(T M, TN) are as before, but noWr; = C; 1 (L(T M, Vi (T ).

As already observed above,o Tn € CQ}l(E(T M, V#(Tn))), and hence in the

coordinates provided by this chart we simply havén) = w o T#. Sincew o Tn is
linear inn, we haveDgo'(n) = w o Ty, giving the following lemma:

LemmaB.11. Let ¢”: C"*Y(M,N) — C'(L(TM,C" (M, N)*TN)) be the map
o'(f) =Tf. Thens’ isC*> and if we identify F; VB ~1(T M, T N) with CQ‘fl(ﬁ(T M,
C"'(f*TN)*(Tzy))) we have

Tio'(n) =wo Tn.
By combining this with Corollary B.3, we also immediately get the following

Corollary B.12. Ti,€ev,/ (£, U) = o(Txn(v)) + T, (T f)(u).

Example B.1. Itmay help to clarify these expressions if we consider the bhseV, a
Banach space. Then we have natural identificatiods\ofvith V x V, andT (T V) with
V x V x V x V. The canonical convolution is just(ug, Uz, Uz, U3z) = (Ug, Uz, Uz, U3).

The space’’ (M, V) is itself a Banach space, so tHBE" (M, V) = C"(M, V) x
C"(M, V). The tangent spac&C' (M, V) is given by T;C"' (M, V) = {(f,7): 7 €
C"(M, V)}. A vector bundle magF € VB ~1(TM, TV) can be written a¥ (v) =
(f(x), Fx(v)), wheref € C"(M, V) andFy is a linear map fronTyM to V for each
X € M. In particular, we have’(f) = (f, T f). This is linear inf, and hence if we
taken = (f,7) € T;:C" (M, V) we getTio’'(n) = (f, T f, 7, Tx7). On the other hand,
Tn = (f, 7, Txf, Txn), and henc8:o’(n) = w o T, as required.

In comparing this calculation to the general case above, the reader may find it help-
ful to take the standard Riemann structure\dmvhich gives exp (U, U1) = Ug + Ug,
T exp, (Up, U1, Uz, U3) = (Ug + Uz, Uz + U3) and hence exg, (Uo, U1, Uz, U3) = (Up +
Uz, Up + Ugz). Note that exp is a global isomorphism betwedn, VvV andV. Also ob-
serve that the tangent spakeVB' ~X(T M, T V) takes the fornrTe VB 1{(TM, TV) =
{(f, Fx, 7, Zx)}, wheregy is linear inv. O

This particular example could be used as the basis of a proof of Lemma B.11 for
a much wider class o, in particular for anyN that is an embedded submanifold of
a Banach space and has a tubular neighbourhood. This includes all finite-dimensional
manifolds, since by the Whitney Embedding Theorem (Hirsch [1976]) any such manifold
can be embedded in some Euclidean space. Franks [1979] in turn shows thativghen
an embedded submanifold ¥fand has a tubular neighbourhood, tii&M, N) is an
embedded submanifold ¢f (M, V) (he states the result for finite dimensiomd) but
his proof merely requires the existence of a tubular neighbourhood). This in fact is how
he proves thaf" (M, N) is a manifold. It seems reasonable to expect that under these
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conditionsVB' (T M, T N) should be an embedded submanifolddf —1(T M, T V).
If this is the case, then Example B.1 gives a direct proof of Lemma B.12.

Finally, we point out that in constructing the manifold structur&/@i—(T M, T N),
we could usd expy to construct the charts, instead of exp This gives an isomorphic
structure to that presented here, with the roléBxf andrr \ interchanged. In particular,
the spaceZ’F‘l(E(T M, C"(f*T N)*(Tzn))) giving the local chart aF is replaced by
{ e C"HLTM,C (F*TN)*(T(TN)))): Tryo¢ = F}. Itis straightforward to verify
that this leads to the formulk o'(n) = Tn in Lemma B.12. In the context of Example
B.1this amounts to identifying: VB (T M, T V) with the spacé( f, 77, Fy, &x)} rather
than{(f, Fy, 17, ¢x)} as above. Clearly, the choice of one or the other of these is a matter
of arbitrary convention and has no significant consequences as long as we are consistent
in our usage.

Appendix C: Technical Calculations

In this appendix we prove a variety of technical results concerning properties of the map-
pingp(f, ¢) = @+, which are used throughout Sections 4—6. Some are simple corollar-
ies of the general results presented in Appendix B, and the remainder use straightforward
arguments from elementary differential topology. We make the standing assumption that
M is compact.

C.1. Smoothness dv,

Recall that by Theorem B.2 composition is a smooth mapping. As a simple consequence
we get

Lemma C.1. The mapo;i: C* (M, M) — C"(M, M) given byp; (f) = flisC". If we
denote x= f'(x) andn; = T; ;i (), thenny = 0 and

ni(X) = n(Xi—1 + Ty, f (ni—1(X)). (C.1.1)

Proof. By inductionon. Sinceog(f) = Idforall f, pgisC", andng = 0. Now suppose
thatp;_1 for somei > 1isC". Sincef! = f o fi-1 we havep; (f) = o (pi_1(f), f)
whereo: C"(M, M) x C*(M, M) — C"(M, M) is composition. By Theorem B.2,
o is C' and hence by the chain rujg is C". Theny; is given byn = Tipi(n) =
To wtio(i—1,n) = Tfoni_1+no fi-1, Evaluating this ak gives the required
formula. O

Corollary C.2. If p; is as above, themg, isC" and

Tixev, (7,00 = Y T £ (n(%-1) (€12
j=1

Proof. Observe thagv,, (f, X) = pi (f)(X) = ev(X, pi (f)) whereev: M x C"(M, M)
— Misthe evaluation functiongiventey(x, f) = f (x). Thusby Corollary B.3and the
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chain ruleev,, isC" andT; xev,, (1, v) = 1 (X)+Tx f ' (v). ThusT; xev,, (1, 0x) = 7i (X),
and (C.1.2) follows by induction. O

In practice (C.1.2) will turn out to be less useful than (C.1.1). We shall never need
to evaluateT; yev, (17, v) for v £ 0,i > 1. Either of the above formulae can be used to
computel , xev, whereo(f, ¢) = &y ,. We shallin fact only need to evaluake, xev,
on vectors of the forngO¢, &, Oy), for& € T(pC2r (M, R). This is given by a particularly
simple expression:

Corollary C.3. Letp: C* (M, M) x C* (M, R) — C"(M, R%) be given by (f, ) =
®,. Thene, isC" and

Tt .x€0r (Of, X, 0g) = (E(X), E(X0), - .., E(Xa—1)) .

Proof. We haveo(f, ¢) = (¢ o po(f), ..., 9 o pg_1(f)) and hence is C" by Theo-
rem B.2, with Ty ,p(0r. &) = (£ 0 po(T)..... & 0 pg_1(F)" + (T, 0 no(0r)..... T, 0
14-101)) = (€ o po(f),....& o pa_1(f)T. Sinceev,(f, ., x) = @7, (X) =
ev(x, p(f,¢)), Corollary B.3 implies thatev, is C" and Tt xev,(0,£,04) =

Tao(r.€ O Trpp©Of, 6) = Tipp(0r, £)(X) = (E(X), E(X0), ..., E(Xg—1)" as re-
quired. O

We next need the analogues of these expressions for skew product systems. Thus
definet: C¥ (M x N, M) — C"(M x N, M9) by

() =(fO, @D @ §0-1y

where we recall thaf (t) = f o (f® ¢') and f ©(x, y) = x. Lemma C.1 then gives

Corollary C.4. Letr: CZ (M x N, M) = C"(M x N, M) be the ith component of t,
sothatrj(f) = f®, Thenr; isC", and if5; = Tt 1 (1), then

nisr=n0(fV,g)+Tfom,0),

with no = 0, and hencey; = 7.

Proof. Observethatf,g') = (f,g)'. ApplyingLemmaC.1t¢f, g) weimmediately
see that;j isC" and @11, 0) = (3, 0) o (f, @)' + (T f, Tg) o (i, 0). The first component
of this is the required formula. O

Corollary C.5. The map & isC" and T x yevy (1, O, Oy) is given by
i
Troxy€n (7, 0. 0y) = Y Ty F P (X5, y-1). 0).
=1

Proof. This follows by applying Corollary C.2 tof, g). O
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Finally, we get the analogue of Corollary C.3:

Corollary C.6. Letp: C¥(M x N, M) x C¥(N) xC¥ (M, R) — C" (M, R%) be given
byp(f,9,¢) = ®tg,. Thene, isC" and

Tt g.0x.y€0, (0, Og, &, Oy, Oy) = (£(X), E(X1), ..., E(Xg_1)".

C.2. The Tangent Map to the Tangent Operator

Next, we require the analogues of the above formulag'idr, ¢) = T ®¢ ,. These follow
from Lemma B.11. Recall thatB" (TM, TM) = C"(L(T M, C" + 1(M, M)*T M)) is

the space of vector bundle maps betwded and T M, so that if f € C"*1(M, M)

thenTf € VB (TM, TM), and thats”: C"t1(M, M) — VB (TM, TM) is the map
o'(fy=TH.

Lemma C.7. Letp/: CZ+Y(M, M) — VB'(TM, TM) begivenby/(f) = T f'. Then
p] isC". If we denote) = Tt p{(n) thenn]; = w o Ty and

N =woT,oT(F"™ Y +woT(THowon ;.

Proof. We havep] = ¢’ o pj with p; as above. By Lemma B.14&, is C*, whilst by
Lemma C.1p; isC" and hence soig/. Theny = Tip{(n) = To o Tipi () = wo Ty;.
Sincen; = n by Lemma C.1, this immediately give$ = » o T,, as required. Also by
LemmaC.lwehaveo Ty =woT(o {1+ Tfoni_1) =woT,oT(flH +wo
TTHowowoTni1=woTnoT(fi ) +woT(Tflowo ni_,, as required. O

Corollary C.8. Letp’: DZ*tL(M, M) x CZ*L(M,R) — C"(T M, TRY) be given by
p'(f,¢) =Td¢,. Thene, isC" and

Ti.p.080y (01, £, 0,) = (@(Ty&(v), @(T& (VD). ..., & (Ty_EWi—)),
where x = fi(x) andv; = Ty f' (v).

Proof. We havep'(f, ¢) = (6'(¢) o po(T), ..., 0’ (¢) o pj_,(f)). By Lemma B.11,
o’ is C*, and hence by Theorem B.2 and Lemma @.7is C", with Tt ,0'(0s, &) =
(woTEopy(f),. .., a)oTEopéfl(f))T—i-(T (Tp)ong©s), ..., T(Tyony_1(05)) = (wo
Téopy(f),...,woTE opé_l(f))T. Sinceev, (f, ¢, v) = TP ,(v) = ev(v, p'(f, ),
andT M is compact, Corollary B.3 implies thav,, is C" andT; , ,ev, (0, &, 0,) =
To.o(t.0)€(0y, Tr 0" (01, 8)) = Trup'(0f,6)(v) = (@o T&E 0 py(f),...,w0TE o
Pa_1 (NN = (@MW), @(TE@1), ..., o(Tx_E(vi-1)))', asrequired. O

Finally, as in Section C.1, we derive the skew product analogue of Lemma C.7. Define
the mapr’: CZ*1(M x N, M) — VB (T(M x N), TM%) by

() = (TfOTIO, T@ . Ty

and denote itsth component by;. Then
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Lemma C.9. The mapr’ isC'. Letn] = T;7/(n), thenny = 0 and
Ma=woT,oT(fY g)+woT(THo(on,0),

where as in Corollary C.45; = T; i (n) with 7, (f) = f©. Furthermore, e isC" and
Tf,v(evr")(n’ 0,) = TI{(U)-

Proof. Applying Lemma C.7 to(f®, g') = (f,9)' we get(n/,0) = w o T(n,0) o
T(fD, g)+woT(T(f,9) cwo (n_,,0). Taking the first component (and using the
same symbol for the canonical convolution 6T (M x N)) and T (T M), gives the
required expression. Then, by definitiemri/(f, v) = ev(v, 7/ (f)) whereev: T(M x

N) xC" (T (M x N), TM) — T Mis the evaluation function given &y (v, F) = F(v).
Thus by Corollary B.3 and the chain ruleufl/ is CK ande,U(evflf)(n, 0,) = nj(v) as
required. O

C.3. Submersivity

In order to prove the transversality of various evaluation maps we shall often need to
show the existence of suitable functionsTinD' (M) and T,C" (M, R). In particular,

we shall require the submersivity of the maps— (f(xg),..., f(xj—1)) and f —

(T f, ..., Ty, f) whenxo, ..., X1 are disjoint points. These are all based on the
following simple lemma.

Lemma C.10. Let Uy and U, be open neighbourhoods of some M, with U, c Uy,
whereU; denotes the closure ofiUThen there exists &> functiony: M — [0, 1]
such thatyy = 1 on U; and the support ofs is contained in |J.

For a proof see for instance Hirsch [1976]. Straightforward applications of this gives

Lemma C.11. Let f € C"(M, N).Givenany xe M, v € T;x N, and U C M an open
neighbourhood of x, there exist&afunctionn € C' (f*T N) = T;C" (M, N) such that
n(x) = v and the support of is contained in U.

Proof. Let (r,\_ll(V), o) be alocal trivialization off N for someV c N with f (x) € V.
Suppose that (v) = (f (x), b) for someb € R". Defineno: M — TN by

al(f(y), b, ye fHV),
no(y) = {Of(y), otherwise
Using the lemma, choosg: M — [0, 1] such thaty (x) = 1 and the support of is
contained inf (V) NU. Letn: M — T N be given by;(y) = ¥ (y)no(y). Sincey is
identically zero in an open neighbourhood of any pointin the boundaky V), nisC'.
Furthermore the support gis contained it , andi (x) = ¥ (X)no(X) = a~1(X, b) = v,
as required. O
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Corollary C.12. Given any finite set of distinct pointso, . .., xj_1} C M and any set
ofvi € TrxyN, 1 =0,...,] —1, we can find & € C"(f*T N) such thaty(x) = v
foralli =0,...,] — 1.

Proof. Foreach =0,..., j —1, choose a neighbourhobkl of x; such thai; ¢ U; if
i # . Construc; € C'(f*T N) such thay; (x;) = v; and the support of; is contained
inU;. Thenn = no + - - - + ;-1 has the required properties. O

Corollary C.13. If o, ..., Xj_1 are distinct, then the map: C" (M, N) — NI given

byp(f) = (f(xo),..., f(Xj—1)) is a submersion.

Proof. SinceTsp(n) = (n(Xo), - .., n(Xj—1)), this is just a restatement of the Corollary

C.12. O
The above two corollaries show that we can chopselependently omo, . . ., Xj_1.

We shall need essentially the same resulfTfgr It shall be useful to give two forms of
this result, both based on Lemma C.14 below. First, some notation.

Given anyx € M,y € N, let (U, 8) be a chart centred at and ((zn) " 2(V), @)

a local trivialization forT N, with y € V. Thusg: U — R" with g(x) = 0, and
a: (tn)"H(V) — V x R" such thatr; o « = 1y, anda is a linear isomorphism on
each fibre, where; : V x R" — V is the projection onto the first factor. Denote the
restriction ofe to Ty N by «y; note that this gives an isomorphism betwdeil andR".
Finally leta’: TR" — R" x R" be a (global) trivialization folf R".

Let L(TyM, TyN) be the space linear mafigM — T,N. Note thatT, M consists
of equivalence classed[ 8, v'] with v € R™. This allows us to identifyfy M andR™,
via 8'(v') = [U, B, v']. Hence given anyB € L£(TxM, TyN) and anyb € R", we get a
mapipg =b+ayoBop op: U — R". Sincef(x) =0, we have, g(x) = b.

If f eC'(M, N)such thatf (x) =y, defineny g € T:C' (M, N) by

V(@ (f(@),08(2), zeUnN V),

b.8(2) = {1,0(2)0{_1( f(2),0), otherwise (€31

wherey isidentically 1in aneighbourhood gfand has support containedfn(V)Nu.
Thenny, g has support contained W andny g(X) = a~1(x, b).

Lemma C.14. Withn, g defined as above, we have for ang TxM
Ta.s(v) = Ta (T f (v), (@) 1D, ay 0 B(v))).

Proof. By definition if g: U — R", thenT,g(v) = (')~1(g(x), Dx(g o B~H.v"),
wherev = [U, B8, V'] € TyM. Thusa' o Tx(¢b,8) (V) = ({,8(X), Dx(b+ayo Bob’).v').
Sinceway o B o b is linear, we haveDy (ay 0 Bo f').v" = ay 0 Bo B'(v') = ay o B(v).
Thusa' (Tx(¢h,8) (v)) = (b, ay o B(v)), as required. O

Corollary C.15. Given anyv € TyM with v # 0 and anyw € T,(T N) where u=
Tx f (v), and an open neighbourhood and g M of x, there existy € T;C"' (M, N)
such thatw (Tyxn(v)) = w, and the support of is contained in U.
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Proof. Recall that ifw is the canonical involution ot (T N), thenTty o w = 1N
andw o w = Id. Thus, sincer; o ¢ = 1N, We haveTrw o T = Ty and hence
TrioTaow = 7. By definitionzy y(w) = uand soT o (o (w)) = (U, (') (w2, w3))
for somew,, wz € R". Thusw = o (Ta (U, (') (w2, w3))). Choose = w, andB
to be any map inC(TxM, TyN) such thatx,(B(v)) = ws; this is possible since # 0
anday is an isomorphism. If necessary, shribkso that(U, 8) is a chart for some
B: U — R™ Then if we set) = np g Wwe have as required,

o(T) = o(Ta (T f (), (@)1 (b, ay o B(v))))
o (Ta (U, (@) (w2, w3)))
= w. O

Corollary C.16. Given any finite set of distinct pointso, ..., Xj_1} C M, any set of
vi € Ty, M, v # 0, and any collection ofv; € T, (T N) where 4 = Ty, f (v), we can
find ann € C" (f*T N) such thatw (Tx n(u;)) = w; foralli =0,..., ] — 1.

Proof. Exactly analogous to the proof of Corollary C.12: Foreach O, ..., — 1
constructy; such thato (Ty, 7; (Ui)) = w; andx; is not in the support of; if i # j, then
n = no+ --- + nj—1 has the required properties. O

The above corollary is all we shall need in proving the immersivitybef, at gen-
eral points ofM. However, at periodic points, it will be more convenient to restrict to
perturbations that preserve the position of the periodic point. So, givenx anyM,
y € N, defineC" (M, N; x; y) = {f € C"(M,N): f(X) =y}. If p: C"(M,N) - N
is given byp(f) = f(x), thenC' (M, N; x;y) = p~1({y}) and since by Corollary
C.13,p is a submersior;' (M, N; x; y) is a submanifold of" (M, N). Furthermore,
TiC" (M, N:x: y) = Tp~1(0) = {n € TsC" (M, N): n(x) = 0}.

For anyA € L(TxM, TyN) we may identifyToL(TxM, TyN) with those mapsA
in L(TyM, T(TyN)) such thatrry o A = A. This givesTaL(TyM, TyN) a structure
compatible with that defined aff (L(T M, C" (M, N)*T N)) in Appendix B.3.

Furthermore, ify € T;C" (M, N), we automatically haver n(w o Txn) = Ty f since
ivon = fandrryow = Trn. Also if n(x) = 0y thentrn(Txn(v)) = Oy for
all v e TyM, and henceTl =y (w(Txn(v))) = 0y. But TyN = (tn)X(y), and hence
T(TyN) = (Tn)"1(0y). Thusw(Txn(v)) € T(TyN) for all v € TxM. We have thus
shown that ify € T;C" (M, N; x; y) thenw o Tyn € Tr, 1 L(TxM, TyN).

Recall thatry is an isomorphism betweély N andR", ande’: TR" — R" x R" is
a trivialization forTR". Then(a, ! x oy 0o’ o Tary: T(TyN) — TyN x TyN gives
an induced trivialization foil (TyN). DefineTia = a;l omoa oTayfori =1,2,
wherery, m2: R" x R" — R" are the two projections. Note thatx is just the bundle
projectionzry : T(TyN) — TyN. ThusifA € TAL(TxM, TyN), thenTiz0 A = Aand
A Toa o Ais a (linear) isomorphism betwed L(TyM, TyN) and £(TxM, TyN).
We then get a further corollary to Lemma C.14:
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Corollary C.17. Given any xe M,y € N, letp: f € C"(M, N; x;y) — L(T«xM,
TyN) be defined by (f) = Ty f. Then given any& € T, L(TxM, TyN) and an open
neighbourhood U of x, there existsjae T;C' (M, N; x; y) such that Tp() = A and
the support of; is contained in U.

Proof. By the discussion above,ife T;C' (M, N) andn(x) = Oy, then automatically
wo Tyn € Tr,s L(TxM, TyN). SinceA - T,a o Ais an isomorphism it thus suffices to
show that we can construct such so thatl,a o T p () = Toao A(and whose supportis
contained irlJ). As in Corollary C.15, if necessary shrikkso that U, 8) is a chart for
somes: U — R™and define) = np g withb =0andB = Tox o Ac L(TyM, TyN).
By Lemma B.11, and Lemma C.14 we haVgo(7)(v) = o (Tyn()) = o(Ta™t
(Tx f (v), (@)71(b, @y o B(v)))) for any v € TxM. Since is a trivialization in the
neighbourhood ofy, we haveT, f (v) = a~(y, u;) for someu; € R", and Q =
a~Y(y, 0). Direct calculation shows that for any, uy, uz € R" we haveTa o w o
Ta Ha ™t (y, up), (@) 71Uz, uz) = (@ 2y, up), (@) *(uy, usg))) and Tary o Ta™?
(Oy, (@)"*(uz, uz)) = () ~*(u1, ug). Thus,
Toa o Trp(n)(v) = a;l ompoa’ o Tayowo Tyn(v)

= a;l ompoa’ oTayo o(Ta H(T f (v), (@) 71(0, ay o B(v))))

= a;l omod oTayoTa ta(y,0), (@) *(u1, ay o B(v)))

1

= a, om0 o o (o/)_l(ul, ay o B(v))

y oma(Uy, ayo B(v))
= B(v)

= Toa o Av),

=

and hencd; p(n) = A, as required. O

Finally, we get the usual extension of this result to any finite set of distinct points.
Thus given{xo, ..., Xj—1} C M as above, and any set of poilt{g, ..., yj—1} C N, we
generaliz&€" (M, N; x; y) to

C"(M,N;Xo,...,Xj—1; Yo, ..., ¥j-1) = {f €C"(M,N): f(x) =y
foralli =0,...,j —1}.

Then, as beforeC" (M, N; X, ..., Xj—1; Yo, - - ., ¥j—1) iS @ submanifold of" (M, N)

and its tangent space &tis given by those; € T;C" (M, N) such that)(x;) = O for

alli =0,...,) — 1. An analogous argument to Corollaries C.8 and C.12 gives the
following.

Corollary C.18. Suppose thafxo, ..., Xj—1} C M are distinct. Then the map;: C'
(M, NS Xo, ooy Xj—13 Yoo - -0 Yjm1) = L(ToM, TygN) x -+ x L(Ty, .M, Ty, ,N) given
by pj (f) = (Ty, f, ..., Tx,_, f) is @ submersion.
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