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Summary. Takens Embedding Theorem forms the basis of virtually all approaches to
the analysis of time series generated by nonlinear deterministic dynamical systems. It
typically allows us to reconstruct an unknown dynamical system that gives rise to a given
observed scalar time series simply by constructing a new state space out of successive
values of the time series. This provides the theoretical foundation for many popular
techniques, including those for the measurement of fractal dimensions and Liapunov
exponents, for the prediction of future behaviour, for noise reduction and signal separa-
tion, and most recently for control and targeting. Current versions of Takens Theorem
assume that the underlying system is autonomous. Unfortunately this is not the case for
many real systems; in the laboratory we often force an experimental system in order for
it to exhibit interesting behaviour, whilst in the case of naturally occurring systems it
is very rare for us to be able to isolate the system to ensure that there are no external
influences. In this paper we therefore prove two versions of Takens Theorem relevant to
forced systems: one applicable to the case where the forcing is unknown, and the other
to the situation where we are able to determine independently the state of the forcing
system (usually because we are responsible for the forcing ourselves). In a subsequent
paper we shall show how to extend these results to give an analogue of Takens Theorem
for randomly forced systems, leading to a new framework for the analysis of time series
arising from nonlinear stochastic systems.

1. Introduction

Takens Embedding Theorem provides the theoretical foundation for the analysis of time
series generated by nonlinear deterministic dynamical systems. Since its publication in
1980, it has stimulated a vast range of applications in fields ranging from fluid dynamics
through electrical engineering, to biology, medicine, and economics. In particular, it has
led to both a re-examination of old data sets and the construction of new experiments,
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with the aim of detecting and perhaps even taking advantage of deterministic behaviour
in time series that were previously thought to be random (for a good overview, see e.g. Ott
et al. [1994]). One might thus even say that this one theorem has given rise to virtually a
new branch of nonlinear dynamics, often informally calledchaotic time series analysis.

Informally, Takens Theorem says that if we take a scalar observableϕ of the state
x of a deterministic dynamical system, thentypically we can reconstruct a copy of the
original system by considering blocks(ϕ(xt ), ϕ(xt+τ ), ϕ(xt+2τ ), . . . , ϕ(xt+(d−1)τ )) of d
successive observations ofϕ, for d sufficiently large. Herext is the state of the system
at timet , andτ > 0 is some sampling interval.

For Takens Theorem to be valid, we need to assume that both the dynamics and the
observations are autonomous, that is, independent of time and of any outside influence.
In particular, we suppose that there is some mappingf such thatxt+τ = f (xt ), and that
ϕ depends onx only.

Unfortunately, this is not the case in many real systems. Thus, in the laboratory we
often force an experimental system in order to elicit interesting behaviour, whilst in the
case of naturally occurring systems, it is very rare for us to be able to isolate the system
to ensure that there are no external influences. Thus many real systems are often best
modelled by equations of the form

xt+τ = f (xt , yt ),

yt+τ = g(yt ),

wherext , as before, represents the state of the system we are interested in, andyt describes
the state of some forcing system. The best known example of this is the case of periodic
forcing with some periodT > 0. In this caseyt is given by the phaseθt = t /T(mod 1)
of the forcing at timet andg is simply a rigid rotation of the unit circle

xt+τ = f (xt , θt ),

θt+τ = θt + τ /T (mod 1).

At first sight, it might seem that we can apply Takens Theorem to forced systems by en-
larging our concept of the state of the system to(xt , yt ). The dynamics is then given by the
pair( f, g), and our observation of the system is given by the functionψ(xt , yt ) = ϕ(xt ).

The problem with this argument is the wordtypical in the statement of Takens Theo-
rem. In particular, the theorem does not state that given any( f0, g0) and anyψ0 we can
reconstruct the dynamics from a time series ofψ0 but merely that we can do so for some
( f, g) andψ that can be chosen arbitrarily close to( f0, g0) andψ0. Now, observe that
even if( f0, g0) andψ0 are of the form above for forced systems (i.e., withg0 independent
of x andψ0 independent ofy), there is no reason why this should be true for the nearby
( f, g) andψ . Indeed, for typical( f, g) andψ in the neighbourhood of( f0, g0) andψ0,
g will be a function ofx as well asy andψ will depend ony.

As an example, suppose that we attempted to apply Takens Theorem to a periodically
forced system, and for simplicity ignore perturbations inf andg. Then we would be able
to conclude that arbitrarily close to our observation functionψ0(x, θ) = ϕ0(x) there was
an observation functionψ(x, θ) for which reconstruction was possible, but unfortunately
typicallyψ would have nontrivial dependence onθ . In other words,our measurements
would be dependent on the phase of the forcing. In most practical applications, this will
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not be the case: e.g., if we measure the displacement of a forced pendulum, or a voltage
in a forced electronic oscillator, we do not expect our measurement apparatus to give
explicitly time-dependent results.

Thus to summarize, forced systems and their observation functions are not typical in
the space of all systems and all observation functions, and hence if we attempt to use
Takens Theorem to justify our analysis of observed data, the conclusions that we arrive
at are not the ones we would usually desire.

The aim of this paper is therefore to investigate to what extent Takens Theorem
remains valid if we restrict ourselves to the space of forced systems and their observation
functions. It turns out that, apart from minor restrictions on the forcing systemg, we can
in fact prove an exact analogue of Takens Theorem relevant to this case that allows us to
reconstruct bothf andg from a typical observableϕ that is independent ofy. We also
prove a second version of this theorem that is more appropriate to situations where we
already know the statey of the forcing system; this will typically be the case where we
are responsible for the forcing ourselves, as in many laboratory experiments.

The one serious difficulty with these theorems is that in the case of periodically forced
systems the forcing dynamicsθt+τ = θt + τ /T (mod 1) does not satisfy the conditions
that we need to impose ong if t /T is rational with a “small” denominator. We can
overcome this by weakening our notion of “reconstruction” in this case, but nevertheless
we must stress that care needs to be taken in applying Takens Theorem to periodically
forced systems where the sampling interval is rationally related to the forcing period. It
would be interesting to see whether it is possible to prove a “full” Takens Theorem in
this case.

The paper is organized as follows: In the next section, we give a precise statement
of Takens Theorem, and discuss more fully its significance and its applications. In the
following section we develop the formalism of forced systems, give precise statements
of the two theorems we prove, present a number of examples that demonstrate the need
for restrictions on the forcing system, and examine in detail the case of periodically
forced differential equations. Takens’ original proof consisted essentially of an easy
local argument followed by a standard globalization procedure. Unfortunately, many
technical details get in the way and obscure the fundamental concepts behind the proof.
This would be even worse if we attempted this kind of approach in the forced case.
Instead we base our proofs on Abraham’s Parametric Transversality Theorem, which
provides a powerful technique for gluing together local results and was in fact already
used in this context by Aeyels [1981]. For the benefit of the reader unfamiliar with
Abraham’s Theorem, we outline the basic ideas behind transversality in Appendix A.
To apply the Parametric Transversality Theorem, we need to regard spaces of functions
between manifolds as infinite dimensional manifolds. There is a well developed theory of
such function manifolds, and we gather together the results needed here in Appendix B.
Appendix C contains a variety of technical calculations used throughout the paper. In
Section 4, we present a self-contained proof of the standard Takens Theorem, using
Abraham’s Parametric Transversality Theorem. The reason for giving yet another proof
of Takens Theorem is primarily to illustrate our approach to embedding theorems using
transversality. The same ideas arise again in Sections 5 and 6, which contain proofs of
the two versions of the forced Takens Theorem. However, given the added technical
complexities involved in the forced theorems, we believe that it is helpful to the general
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reader to see these methods first presented in Section 4, in the simpler setting of the
unforced case.

2. Takens Theorem

The behaviour of many real systems is believed to be at least approximately described
by a deterministic finite-dimensional dynamical system. By this we mean that the state
of the system is determined at any given instant by a pointx lying on am-dimensional
manifold M that will often be some subset ofRk. The time evolution of the system is
given by a mapf t : M × R→ M such that if the system is in statex0 at timet0 then it
is in statef t (x0) at timet0+ t . In most applications, the mapf t will be obtained as the
solution of some ordinary differential equation onM .

2.1. Observed Time Series

In many practical situations we do not have access to the statex and can merely observe
some functionϕ(x) of it. Hereϕ: M → R is called themeasurement function, and
it corresponds to measuring some observable property of the system such as position
or temperature. The evolution of this quantity with time is then given byϕ( f t (x0)). In
practice we can only observe this at discrete time intervals. For simplicity we assume
that these intervals are all the same so that in fact we observe the sequenceϕn = ϕ(xn)

for n = 1,2, . . ., wherexn = f nτ (x0) andτ > 0 is thesampling interval. For obvious
reasons{ϕn} is called atime series. By rescaling time we may as well assume that
τ = 1, so that the sequence of states{xn} is given by the discrete dynamical system
xn+1 = f (xn) where f = f 1 and f n is just f composedn times.

The observed measurementϕn is one-dimensional whilstxn in general lies in some
higher dimensional space. At first sight it might thus appear thatϕn contains relatively
little information about the behaviour ofxn and that the fact thatϕn originates in the
deterministic processf n is of little use. However, Takens [1980] (see also Eckmann
and Ruelle [1985], Sauer et al. [1991], Noakes [1991], and Huke [1993]) proved a
remarkable theorem showing that for typicalf andϕ it is possible to reconstructf up
to some (unknown) smooth coordinate change.

2.2. Delay Embedding

More precisely, fix somed (called theembedding dimension) and define thedelay em-
bedding map8 f,ϕ : M → Rd by

8 f,ϕ(x) = (ϕ(x), ϕ( f (x)), . . . , ϕ( f d−1(s)))†.

Suppose thatM is compact, letDr (M) be the set ofCr diffeomorphisms ofM , and
Cr (M,R) the set of observation functions onM , both endowed with theCr topology.
Recall that this is the topology of uniform convergence of a map and its derivatives up
to r th order; thus two functions are close in this topology if they and their derivatives are
uniformly close (see, e.g., Hirsch [1976] for a precise definition).
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Next we need to give a rigorous definition of genericity. We say that a property is
genericin a function spaceX if it holds on aresidualsubsetA ⊂ X , that is, on a subset
that contains a countable intersection of open dense sets. SinceDr (M) andCr (M,R) are
complete metrizable spaces, such a set is itself dense by Baire’s Theorem (e.g., Hirsch
[1976]). This definition of generic is one of the most commonly used notions of “typical”
in the field of dynamical systems (though not the only one; e.g., see Sauer et al. [1991]).

Finally, recall that a smooth map9: M → N between manifoldsM andN is called
anembeddingif it maps M diffeomorphically onto its image; ifM is compact, this is
equivalent to both9 and its derivativeTx9 being injective (i.e., 1− 1) on the whole of
M . Takens Embedding Theorem then states:

Theorem 2.1(Takens [1980]). Let M be a compact m dimensional manifold. Then if
d ≥ 2m+1, the set of( f, ϕ) for which the map8 f,ϕ is an embedding is open and dense
in Dr (M)× Cr (M,R) for r ≥ 1.

Note that Takens first proved this forr ≥ 2, but it is relatively easy to extend this
to r = 1 (see Huke [1993], or Section 4 below). A weaker version of this theorem was
proved independently by Aeyels [1981], who considered the case where the sampling
was not carried out at regular intervals, and showed that for generic choices of sampling
times8was injective (and stated that it was also immersive). This is in fact much easier to
prove, since one can ignore both periodic points of period less thand, and pairs of points
(x, x′) such thatx′ = f i (x); as we shall see below, these are precisely the two classes of
points that cause us the most difficulty in the proof of Takens Theorem and its extensions.
Nevertheless, it is clear that Aeyels’ work contains all the fundamental ingredients needed
to develop a dynamical-systems-based approach to time-series analysis.

It turns out to be possible to give a simple characterization of the set off for which
8 f,ϕ is an embedding. In particular, as Huke [1993] points out, Takens in fact deduces
Theorem 2.1 from the following “unstated Takens Theorem”:

Theorem 2.2. Suppose that f∈ Dr (M) has only a finite number of periodic orbits
of period less than d, and the eigenvalues of each such periodic orbit are distinct. If
d ≥ 2m+ 1, then there is an open and dense set ofϕ ∈ Cr (M,R) for which8 f,ϕ is an
embedding.

Note that f satisfying the conditions of this theorem are open and dense inDr (M).
This is a simple generalization of the first part of the Kupka-Smale Theorem (e.g., Smale
[1963]); a proof is also given in Section 4 below. The condition on the eigenvalues may
seem a little strange, but is in fact almost a necessary condition for embedding. Thus:

Lemma 2.3. Suppose that f∈ Dr (M) has a fixed point x∈ M such that Tx f has two
linearly independent eigenvectors with the same eigenvalue. Then8 f,ϕ fails to be an
immersion at x for allϕ ∈ Cr (M,R).

Proof. Let v0 andv1 be two linearly independent eigenvectors with eigenvalueλ. Then
we can find constantsc0, c1 6= 0, such thatc0Txϕ(v0) + c1Txϕ(v1) = 0. Let u =
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c0v0 + c1v1. ThenTx f i (u) = λi u, and henceTx(ϕ ◦ f i )(u) = λi Txϕ(u) = 0. Thus,
Tx8 f,ϕ(u) = 0, and henceTx8 f,ϕ is not 1− 1.

More generally, ifx is a periodic point of periodq < d, then8 f,ϕ fails to be an
immersion atx if there are more thanq linearly independent eigenvectors ofTx f q with
the same eigenvalue, and will be an immersion for an open dense set ofϕ if there areq or
less such eigenvectors. One can also take account of nontrivial Jordan Normal Forms. It
does not seem worthwhile, however, to include such detailed conditions in the statement
of Takens Theorem, and the condition given in Theorem 2.2 represents a reasonable
compromise between ease of presentation and the sharpest possible result.

2.3. Implications of Takens Theorem

Informally, Takens Theorem says that for typicalf andϕ, the image8(M) of M under
8 = 8 f,ϕ is completely equivalent toM itself, apart from the smooth invertible change
of coordinates given by8. Furthermore, since8 has a smooth inverse, we can define the
mapF = 8 ◦ f ◦8−1 on8(M). ThenF is the same dynamical system as the original
system given byf on M , but seen in the new coordinates given by the coordinate change
8. In particular, all the coordinate-independent properties ofF and f will be identical.
This includes such features as the numbers and topological types of fixed points, periodic
orbits, and other invariant sets as well as such geometric invariants as the eigenvalues
of fixed and periodic points, and the correlation dimension and Liapunov exponents of
corresponding invariant measures (e.g., see Eckmann and Ruelle [1985], Grassberger
et al. [1992], Abarbanel et al. [1993], or Ott et al. [1994]). Thus, in particular, one can
measure quantities such as the correlation dimension or the Liapunov exponents ofF ,
and be certain that these are the same as those of the original (unknown) systemf . This
is important because these invariants ofF can be estimated directly from the observed
time series{ϕn}. This is because if we define the pointzn ∈ Rd by the delay coordinates
zn = (ϕn, ϕn+1, . . . , ϕn+d−1)

†, then

zn = (ϕ( f n(x0)), ϕ( f n+1(x0)), . . . , ϕ( f n+d−1(x0)))
†

= (ϕ(xn), ϕ( f (xn)), . . . , ϕ( f d−1(xn)))
†

= 8(xn).

Thuszn is in the image of8 and so we can applyF to it:

F(zn) = 8 ◦ f ◦8−1(zn)

= 8 ◦ f ◦8−1(8(xn))

= 8 ◦ f (xn)

= 8(xn+1)

= zn+1.

Thus the dynamics ofF on8(M) simply consists of slidingd successive elements of
the time series{ϕn} along by one time step, i.e.,

F(ϕn, ϕn+1, . . . , ϕn+d−1) = (ϕn+1, ϕn+2, . . . , ϕn+d).
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As we noted above, this is completely equivalent to the original dynamicsxn+1 = f (xn)

up to the coordinate change8, and all the coordinate invariant properties ofF and f
are identical. Yet, whilst the original dynamics was unobservable, the dynamics in terms
of F andzn is expressible purely in terms of the observed time series{ϕn}. Thus if we
have a sample of{ϕn}, we can deduce many of the properties ofF , and hence off .
Thus to summarize, Takens Theorem allows us to reconstruct the unknown dynamical
system that gave rise to the time series simply by constructing a new state space out of
successive observations of the time series.

There are of course many practical obstacles that need to be surmounted if one is
to use this in practice. Thus, for instance, we usually do not knowm, and hence do
not know what value of embedding dimensiond we should use. Similarly the choice
of sampling intervalτ can significantly affect the performance of practical techniques.
Such difficulties can however be overcome (e.g., see Abarbanel et al. [1993], or Ott et al.
[1994]), and today the estimation of fractal dimensions or Liapunov exponents from
time series is a fairly straightforward matter.

One can also go further, and attempt to forecast future values of the time series. In
particular, consider the mapF . Its firstd − 1 components are trivial, since they consist
of just shifting the argument ofF by one time step. Denote the last component ofF by
G: 8(M) → R. ThenG(ϕn, ϕn+1, . . . , ϕn+d−1) = ϕn+d, or in other words,G simply
predicts the time series{ϕn} one time step ahead! Thus the time series{ϕn} is completely
deterministic and hence in principle entirely predictable (though iff and henceF is
chaotic there is an upper limit on how far into the future we can predict in practice). Of
course, we usually do not knowG, but once again we can estimate it from a sample of
the time series. Not only can this be useful in itself, but it also forms the basis of a variety
of techniques for noise reduction, signal separation, control, and synchronization (again,
see Abarbanel et al. [1993] or Ott et al. [1994]).

3. Forced Systems

In many applications, one encounters systems that are driven by some second systemg.
By far the best known case is that of periodic forcing. This arises in many laboratory
experiments, where some kind of forcing is required to elicit nontrivial dynamical be-
haviour. Thus, for instance, a quick glance at a reprint collection such as Ott et al. [1994]
reveals a large number of papers involving periodic forcing (e.g., Moon and Holmes
[1979], Flepp et al. [1991], Sommerer et al. [1991], Papoff et al. [1992], Ditto et al.
[1990], Hunt [1991], Gills et al. [1992], Shinbrot et al. [1992]). Indeed virtually all me-
chanical and electrical oscillators need to be driven if they are not simply going to rest at
a trivial equilibrium, and the same can be said of lasers and related devices. At the other
end of the applications spectrum, it would be surprising if for instance the population of
a given species within some ecosystem was not sensitive to the annual seasonal cycle;
a closely related example is given by the well-known fact that measles epidemics are
affected by the scholastic year [Grenfell, 1992].

A simple generalization of periodic forcing is that of so-called quasi-periodic forcing,
i.e., forcing by two periodic signals at incommensurate frequencies. This often appears to
lead to very interesting dynamical behaviour (e.g., Romeiras et al. [1987]). An interesting
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example of more or less arbitrary forcing occurs in the context of synchronization (Pecora
and Carroll [1990], [1991]), where a given system is used to drive a separate copy of a
part of itself. This has potential applications to communications systems (e.g., Cuomo
and Oppenheim [1993], Hayes et al. [1993]). Another situation where arbitrary driving
dynamics can arise is in the adaptive prediction of chaotic time series (Stark [1993],
Stark and Davies, [1994]) and more generally in the recursive filtering of such time
series (e.g., Badii et al. [1988], Broomhead et al. [1992]).

3.1. Skew Products

If we want to study such forced systems using the techniques of nonlinear dynamics,
we have to turn them into autonomous systems in the usual way by expanding the phase
space and incorporating the forcing dynamics. As already described in the introduction,
this leads to a dynamical system onM × N of the form

xi+1 = f (xi , yi ),

yi+1 = g(yi ).

Herexi , as before, represents the state of the system we are interested in, andg represents
the forcing dynamics. In the same way that in the unforced casef was required to be a
diffeomorphism, we shall need the mapfy: M → M to be a diffeomorphism ofM for
everyy ∈ N, where fy is defined byfy(x) = f (x, y). This will be the case, for instance,
if the underlying dynamics is in fact given by a differential equation (whose timeτ map
is f , see e.g., Example 3.1 below); this would seem to be a reasonable hypothesis in
most of the examples described above. We shall employ the notationDr (M × N,M)
for the set of suchf in Cr (M × N,M). We shall also needg to be a diffeomorphism of
N, which in turn means that the pair( f, g) is a diffeomorphism ofM × N. In line with
common usage, we shall call the pair( f, g) a skew product onM × N.

Example 3.1. A particularly illustrative example arises in the case of periodically forced
ordinary differential equations:

dx

dt
= 9(x, t),

where9(x, t) is a time-dependent vector field that is periodic in time, so that9(x, t +
T) = 9(x, t) for some periodT > 0. Let f s be the solution of the differential equation,
so that f s(x, t) is the state of the system at timet + s, if the system was in statex at
time t .

Suppose that we observe a measurement functionϕ: M → R with a sampling inter-
val τ > 0. Then thei th observation in our time series is given byϕ( f i τ (x,0)) = ϕ(xi )

wherexi satisfiesxi+1 = f t (xi , ti ) with ti+1 = ti + τ . But f τ (xi , ti ) = f τ (xi , ti + T),
and hence if we writeθi = ti /T we get the skew product onM × T1, whereT1 is the
unit circle, given by

xi+1 = f (xi , ti ),

θi+1 = θi + ω (mod 1),
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where f (x, θ) = f τ (x, θT) andω = τ /T . In this case, therefore,g is simply a rigid
rotation of the circle through the angleω. If the sampling intervalτ is incommensurate
to the period T, thenω is irrational and the orbit of anyθ is dense inT1, whilst if
the sampling interval is rationally related to the forcing period, thenω is rational and
every orbit ofg is periodic. In many circumstances, particularly within the context of a
laboratory experiment, one will of course sample at the forcing period, so thatτ = T
andg is the identityg(θ) = θ .

3.2. Embedding Skew Products

Given how common forced systems are, and the fact that in analysing time series produced
by them it is normal to at least implicitly appeal to Takens Theorem, it is natural to
ask what this theorem can tell us about delay embeddings of skew products. At first
sight, there is no difficulty in applying the theorem to this case; after all( f, g) is a
diffeomorphism ofM×N, and if bothM andN are compact, then so isM×N. We can
thus conclude that “typically” the map8 f,g,ψ : M × N → Rd is an embedding, where
8 f,g,ψ is given by

8 f,g,ψ (x, y) = (ψ(x, y), ψ(( f, g)(x, y)), ψ(( f, g)2(x, y)), . . . , ψ(( f, g)d−1(x, y)))†.

Unfortunately, as already indicated in the introduction, the notion of typical that is given
by Takens Theorem to us here is not the one that we usually want in practical applications.
More precisely, the theorem says that8 f,g,ψ is an embedding for an open dense subset
ofDr (M×N)×Cr (M×N,R), whilst we want it to be an embedding for an open dense
set inDr (M × N,M) × Dr (N) × Cr (M,R). Thus, sinceCr (M,R) is not generic in
Cr (M × N,R), andDr (M × N,M)×Dr (N) is not generic inDr (M × N), we cannot
conclude that typical skew products and typical functions onM lead to an embedding.
As already mentioned in the introduction, the difference between the two statements
is clearly highlighted in the case of periodically forced systems (as in Example 3.1):
Cr (M,R) is the space of ordinary time-independent observation functions, whilst typical
functions inCr (M × T1,R) have explicit time dependence (or more precisely, phase
dependence).

We thus conclude that the existing versions of the Takens Theorem are not relevant
to forced systems. The principal aim of this paper is therefore to prove versions of the
theorem applicable to skew products. Since we shall only be concerned with observation
functions of the formϕ: M → R, we can write the delay map8 f,g,ϕ : M × N → Rd as

8 f,g,ϕ(x, y) = (ϕ( f (0)(x, y)), ϕ( f (1)(x, y)), . . . , ϕ( f (d−1)(x, y)))†,

where f (i ): M × N → M is given by f (i+1)(x, y) = f ( f (i )(x, y), gi (y)) with
f (0)(x, y) = x and hencef (1)(x, y) = f (x, y). Ideally, we would like to conclude
that if d ≥ 2(m+ n) + 1, then this is an embedding for genericf and genericϕ, for
any giveng; in other words, we might hope that there is sufficient freedom in perturbing
f andϕ to allow us to fix the forcing system. Unfortunately, this is not the case: For
instance, Example 3.3 in Section 3.5 below shows that if we takeN = T1 andg(θ) = θ ,
then we can construct open sets off andϕ for which8 f,g,ϕ is not an embedding. Recall
from Example 3.1 that this choice ofN andg is precisely that which occurs for a period-
ically forced differential equation when the sampling interval is the same as the forcing
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period. The basic idea behind this example is quite simple: Since every point ofN is a
fixed point ofg, it turns out to be easy to construct an open set off for which ( f, g)
has a one-dimensional set of fixed points. At such points, every component of8 f,g,ϕ is
identical, and so ifϕ has say a maximum near this set,8 f,g,ϕ will be not be 1− 1. Since
details of this example are somewhat technical and would detract from the exposition
here, they are postponed until Section 3.5 below.

A second, very simple, counterexample shows that we also need to exclude the case
of zero-dimensionalM . This should be no surprise, for ifM consists of discrete points,
and f : M×N → M is continuous, thenf , and hence8 f,g,ϕ , must be independent ofy.

Example 3.2. TakeM to be a single point, i.e.,M = {x}. Then of course there is only
one map inDr (M × N,M), namely that given byf (x, y) = x. Thus8 f,g,ϕ(M × N)
is the single point{(c, c, . . . , c)†}, wherec = ϕ(x). Hence, ifN consists of more than
one point,8 f,g,ϕ cannot be an embedding for anyf, g, ϕ, let alone a residual set.

More generally, suppose thatM = {x1, . . . , xp} consists of a finite number of points.
Let f again be given byf (x, y) = x, for all x ∈ M , and note that any sufficiently small
neighbourhood off inDr (M×N,M) contains onlyf . But8 f,g,ϕ(xi ) = (ci , ci , . . . , ci )

whereci = ϕ(xi ) and hence8 f,g,ϕ(M × N) consists of preciselyp points. Hence, ifN
consists of more than one point,8 f,g,ϕ is not an embedding for an open set off , for any
g andϕ.

On the whole, this counterexample does not particularly concern us since the dynamics
of zero-dimensional manifolds is not exceptionally interesting, and hence the failure of
Takens Theorem in this case is not unduly worrying.

These two pathologies turn out to be the only obstructions to the genericity of embed-
dings for forced systems. We can exclude the first one by requiring the periodic orbits of
short period ofg to be isolated; and as it turns out, we also need nondegeneracy conditions
on their eigenvalues. The condition we impose is the same as that onf in Theorem 2.2,
but for technical reasons we require that it hold up to period 2d. The precise version of
Takens Theorem for skew products that we prove here is thus given by the following.

Theorem 3.1(Forced Takens Theorem).Let M and N be compact manifolds of di-
mension m≥ 1 and n, respectively. Suppose that the periodic orbits of period< 2d of
g ∈ Dr (N) are isolated and have distinct eigenvalues, where d≥ 2(m+ n)+ 1. Then
for r ≥ 1, there exists an open and dense set of( f, ϕ) ∈ Dr (M × N,M) × Cr (M,R)
for which the map8 f,g,ϕ is an embedding.

The proof is given in Section 5, whilst Proposition 4.1 below shows that the set ofg
satisfying the conditions of this theorem is open and dense inDr (N).

Given the discussion in Section 3.2, it would be interesting to see whether Theorem 3.1
generalizes to fully coupled systems, i.e., whereg is not independent ofx. Informally
this would say that one can reconstruct coupled dynamical systems by observing a single
subsystem. The appropriate conjecture would be that8 f,g,ϕ is an embedding for an open
dense set of(( f, g), ϕ) ∈ Dr (M × N) × Cr (M,R). It seems likely that it should be
possible to prove this using similar techniques to those developed here, and this issue
will be addressed in a subsequent paper.
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3.3. Bundle Embeddings

The Forced Takens Theorem above shows that we can typically reconstruct the joint
dynamics of a forcing and a forced system from a time series of an observable of the
forced system alone. It is applicable to situations where the forcing is unknown, which
will be the case in many practical applications.

Sometimes, however, we may be in possession of independent knowledge of the state
y of the forcing system. This will for instance be the case if we control the forcing, as
in many laboratory experiments. If this is so, it seems that it should be unnecessary to
have to reconstruct the forcing dynamics.

Thus, rather than requiring8 f,g,ϕ to embedM × N, we might simply ask that it
should embed eachM × {y}. More precisely, if we define8 f,g,ϕ,y: M × {y} → Rd by
8 f,g,ϕ,y(x) = 8 f,g,ϕ(x, y), then we would want8 f,g,ϕ,y to be an embedding for each
y ∈ N. We shall call such a8 f,g,ϕ,y abundleor fibre embedding.

An embedding of this kind is sufficient for instance if we have independent knowledge
of yi = gi (y) and want to predict the time seriesϕ(xi ). Thus, as in Section 2, let

zi = (ϕ(xi ), ϕ( f (1)(xi , yi )), . . . , ϕ( f (d−1)(xi , yi )))
†

= 8 f,g,ϕ(xi , yi ).

Then if for somed both8 f,g,ϕ,yi and8 f,g,ϕ,yi+1 are embeddings ofM × {yi } andM ×
{yi+1}, respectively, we have

zi+1 = 8 f,g,ϕ,yi+1 ◦ fyi ◦ (8 f,g,ϕ,yi )
−1(zi ),

where fyi (x) = f (x, yi ). Thus, if we letGyi : Rd → R be the last component of
8 f,g,ϕ,yi+1 ◦ fyi ◦ (8 f,g,ϕ,yi )

−1, we have

ϕi+d = Gyi (ϕi , ϕi+1, . . . , ϕi+d−1),

where as usualϕi = ϕ(xi ). Then, in principle, given enough data we can estimateGy as
a function fromRd × N, and use this to predict the time series.

The main benefit of this approach is that we do not waste resources in trying to
reconstruct the dynamics ofg, which we already know. In particular, since we are only
trying to embed anm dimensional manifold, we would expect it to be sufficient to take
d ≥ 2m+1 rather thand ≥ 2(m+n)+1 as above. This in fact turns out to be the case.
Since it is always desirable to work with the smallestd possible, this can be a significant
advantage even ifn is not particularly large.

The one drawback is that it is not possible to ensure that8 f,g,ϕ,y is an embedding for
all y ∈ N. In particular, Example 3.4 below shows that it is possible to construct an open
set of f, g, andϕ for which8 f,g,ϕ,y fails to be an embedding at isolatedy (depending on
f, g, andϕ). The best that we can do is show that it is an embedding for “typical”y. One
would expect this to be sufficient in applications since it will allow us to constructGy

and make predictions for all “typical”y, in the same sense as one can use the standard
Takens Theorem to constructG for “typical” f andϕ.

SinceN is finite-dimensional, there are two possible notions of “typical”y: either
all y in an open dense set, or ally in a set of full Lebesgue measure. In fact the latter
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implies the former. In particular, the continuity of8 f,g,ϕ,y and the density of embeddings
in Cr (M,Rd) implies that the set ofy for which8 f,g,ϕ,y is an embedding is open. Also,
a set of full Lebesgue measure inN is necessarily dense since if it were not then its
complement would contain an open set and hence have positive Lebesgue measure. The
theorem we thus prove is as follows.

Theorem 3.2(Bundle Delay Embedding Theorem).Let M and N be compact mani-
folds of dimension m≥ 1 and n, respectively. Suppose that d≥ 2m+ 1 and the closure
of the set of periodic orbits of period≤ d of g∈ Dr (N) has zero Lebesgue measure in
N. Then for r≥ 1, there exists a residual set of( f, ϕ) ∈ Dr (M × N,M) × Cr (M,R)
such that for any( f, ϕ) in this set there is an open dense set of y of full Lebesgue measure
such that8 f,g,ϕ,y is an embedding.

The proof is given in Section 6. We can slightly weaken the condition ong to the
requirement that the closure of the set of periodic orbits of period≤ d is nowhere dense
to give a residual set of( f, ϕ) for which8 f,g,ϕ,y is an embedding for an open dense set
of y, but in this case we needr ≥ 2n. It is an open question to what extent any conditions
on g are necessary. In particular, one might hope that it might be possible for8 f,g,ϕ,y to
typically be an embedding for allg. There appears to be no obvious counterexample to
this conjecture, and in particular systems of the type considered in Example 3.1 fail to
be 1− 1 only by mapping points with differenty values to the same point, and are thus
irrelevant here.

Finally, we remark that we have only been able to prove that8 is a bundle embedding
for a residual set off andϕ. This is a weaker result than in the standard Takens Theorem
and Theorem 3.1 above, where8 is an embedding for an open dense set off andϕ. In
fact, in all three cases we only prove the existence of a residual set. However, for the latter
two theorems we can then appeal to the fact that the map( f, ϕ) 7→ 8 is continuous and
that embeddings are open inCr (M,Rd) to deduce that the set of( f, ϕ) such that8 is an
embedding is also open. This argument fails for Theorem 3.2: If8 f,g,ϕ,y is an embedding,
then certainly it is an embedding for a neighbourhood of( f, ϕ). However, the size of
this neighbourhood depends ony, and hence there is no way of ensuring that there is
a neighbourhood for which we get an embedding for typicaly. This line of reasoning
suggests one possible version of the theorem that gives embeddings for an open dense
set of systems: Given anyδ > 0, there exists an open and dense set of( f, ϕ) for which
8 f,g,ϕ,y is an embedding for a set ofy of Lebesgue measure 1− δ (see Section 6.4).

It remains to be seen whether the distinction between open dense and residual is a
significant one in applications. Certainly, many other results in nonlinear dynamics are
restricted to a residual set of systems, and “residual” is widely accepted as a useful
definition of “typical.” Of course, if it proves unsatisfactory in this case, one can always
increase the embedding dimension from 2m+1 to 2(m+n)+1, in which case Theorem 3.1
ensures that8 f,g,ϕ,y is an embedding for ally for an open dense set of( f, ϕ).

3.4. Periodically Forced Differential Equations

In this section we want to discuss the implications of the results stated above to period-
ically forced differential equations, continuing the analysis begun in Example 3.1. We
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also give detailed descriptions of the two examples (3.3 and 3.4) referred to in Section 3.2
and Section 3.4, respectively. Recall that the first of these shows that some restrictions
on g are necessary in Theorem 3.1, and the second that we cannot expect to embed every
fibre in Theorem 3.2.

As described in Example 3.1, periodically forced differential equations correspond
to the caseN = T1 andg(θ) = θ + τ /T , whereτ is the sampling interval andT is
the forcing period. We thus see that whenτ /T is a rational with denominator less than
d, every point inT1 will be periodic (for g) with period less thand, and hence the
hypotheses of Theorems 3.1 and 3.2 will unfortunately not be satisfied.

This is potentially a serious problem, since a very popular, and quite natural, choice
is to sample at the forcing frequency, so thatτ /T = 1, g = Id, and every point inT1 is
a fixed point. As Example 3.3 below shows, if the flow has a periodic orbit of periodT
that has a nontrivial projection ontoM , then for an open set ofϕ, 8 f,g,ϕ will fail to be
1− 1, and hence fail to be an embedding ofM × T1.

Fortunately, in most practical applications this is not a great drawback. This is because
when one takesτ = T , one is usually thinking in terms of reconstructing the so called
stroboscopic map for the system, which is in effect the Poincar´e map for the section
θ = θ0 (for some constantθ0). Thus, one is trying to embedM × {θ0} for a singleθ0,
rather than the whole ofM × T1. In such a case, we just have the single mapfθ0 to
deal with (wherefθ0(x) = f (x, θ0)), and can justify the embedding procedure using the
standard Takens Theorem. Thus for a residual set offθ0 andϕ, the corresponding delay
map (which is just8 f,g,ϕ,θ0) will be an embedding.

The same idea can be used whenτ /T is a rational with denominator less thand.
Thus suppose thatτ /T = p/q, with 1 ≤ q < d. Given θ0, defineθ1, . . . , θq−1 by
θi+1 = g(θi ), andθ0 = g(θq−1). Then the orbit ofθ0 is restricted toN = {θ0, . . . , θq−1},
which is a zero-dimensional manifold. Trivially,g has only a finite number of periodic
points, and thus by Theorem 3.1 there is a dense open set off such that8 f,g,ϕ embeds
M × N = M × {θ0, . . . , θq−1}. Thus as long as we are satisfied with reconstructing the
dynamics onM × N only, Theorem 3.1 is perfectly adequate.

Recently, however, there has been considerable interest in embedding the whole of
M ×T1, for instance when it is desired to reconstruct the braid structure of the periodic
orbits (e.g., Papoff et al. [1992], Tuffilaro et al. [1995] and the references therein). In
such cases it is usual to highly oversample the time series, i.e., to takeτ = T /q, with
q large, orτ /T irrational. By Theorem 3.1 the corresponding8 f,g,ϕ is generically an
embedding.

Note also that Theorems 3.1 and 3.2 are phrased in terms of a residual set off , whilst
in practice we want genericity in terms of the original vector field9. Thus, denote
the set of periodically time-dependent vector fields byCr (M × T1, T M) (where we
normalize the forcing periodT to T = 1), and for9 ∈ Cr (M × T1, T M) define the
delay embedding map by

89,ϕ(x, θ) = (ϕ(x), ϕ( f τ (x, θ)), . . . , ϕ( f τ(d−1)(x, θ)))†,

where f t is the flow generated by9, so that f t (x, θ) is the state of the system at time
θ + t (mod 1) if the state wasx at timeθ . It is then relatively straightforward to give the
following analogue of Theorem 3.1.



268 J. Stark

Theorem 3.3. Let M be a compact manifold of dimension m≥ 1. If qτ is not an integer
for any1≤ q < d, and d≥ 2m+3, then for r≥ 1 there exists an open and dense set of
(9, ϕ) ∈ Cr (M × T1, T M)× Cr (M,R) for which89,ϕ is an embedding of M× T1. If
τ = 1/q for some1≤ q < d, and d≥ 2m+ 1, then for r≥ 1 there exists an open and
dense set of(9, ϕ) ∈ Cr (M ×T1, T M)× Cr (M,R) for which89,ϕ is an embedding of
M × {θ0, . . . , θq−1}.

We indicate the main modifications to the proof of Theorem 3.1 required to prove this
in Section 5.11.

Finally, we give a detailed description of the two examples referred to above. The first
constructs open sets off andϕ for which8 f,g,ϕ is not an embedding in the caseN = T1

andg(θ) = θ , whilst the second gives an open set off, g, andϕ for which8 f,g,ϕ,y fails
to be an embedding for everyy. Of necessity, these examples are somewhat technical,
and the casual reader may prefer to jump straight to Section 3.5.

Example 3.3. Take N = T1 andg(θ) = θ , and letM be any compact manifold. Let
f̂ be any diffeomorphism ofM that has a hyperbolic fixed pointx0. Given f̂ , we can
trivially construct a f0: M × N → M by f0(x, θ) = f̂ (x). Then( f0, g) = ( f0, Id) is
a skew product onM × N = M × T1, and(x0, θ) is a fixed point for everyθ ∈ T1.
Such fixed points are not hyperbolic, but the set{x0} × T1 is a normally hyperbolic
invariant circle (e.g., Ruelle [1989]). Now, normally hyperbolic invariant manifolds are
structurally stable under perturbations. Thus there is an open neighbourhoodU of f0

in D2(M × T1,M) such that for all f in U there is a( f, Id) invariant circle close to
{x0}×T1. Furthermore this circle is the graph of some functionχ : T1→ M that satisfies
the equationf (χ(θ), θ) = χ(θ). Fix θ , and letz= (χ(θ), θ). If v ∈ Tz(M×T1), we can
write it asv = (v1, v2)with v1 ∈ Tχ(θ)M andv2 ∈ TθT1, and define the partial derivatives
of f at z by T1,z f (v1) = Tz f (v1,0) andT2,z f (v2) = Tz f (0, v2). Differentiating the
equation f (χ(θ), θ) = χ(θ), we obtainT1,z f ◦ Tθχ + T2,z f = Tθχ . Thus if T2,z f is
injective (i.e., has rank 1) thenTθχ is injective, and henceχ is a local embedding in the
neighbourhood ofθ . Choose somef close to f0 such thatf (x0, θ) = x0 andT2,z f is
injective. Thusχ(θ) = x0 andTθχ is injective. Then there is an open neighbourhood
V of θ in T1 such thatχ(V) is a one-dimensional submanifold ofM , with x0 ∈ χ(V).
Observe that for any pointx ∈ χ(V) there exists someθ ∈ V such thatf (x, θ) = x,
and hence8 f,g,ϕ(x, θ) = (ϕ(x), ϕ(x), . . . , ϕ(x))† for anyϕ: M → R.

Choose an observation functionϕ that has a nondegenerate maximum atx0. De-
note the level surfaces ofϕ by Lc,ϕ , thus Lc,ϕ = {x ∈ M : ϕ(x) = c}. Then for
c 6= ϕ(x0) sufficiently close toϕ(x0), the setLc,ϕ is an embeddedm− 1 dimensional
sphere (enclosingx0). For an open dense set ofc, the curveχ(V) will intersect Lc,ϕ

transversally at two (or more) points. Call thesex1 andx2; thusϕ(x1) = ϕ(x2). Also
by the above there existsθ1, θ2 ∈ V such that f (x1, θ1) = x1 and f (x2, θ2) = x2.
Hence8 f,g,ϕ(x1, θ1) = (ϕ(x1), ϕ(x1), . . . , ϕ(x1))

† = (ϕ(x2), ϕ(x2), . . . , ϕ(x2))
† =

8 f,g,ϕ(x2, θ2), and so8 f,g,ϕ is not 1-1, and hence not an embedding. Now observe that
the manifoldsπ ◦ χ(V) andLc,ϕ depend smoothly onf andϕ, and hence will intersect
in at least two points for an open neighbourhood off andϕ. Thus8 f ′,g,ϕ′ will not be
an embedding for allf ′ andϕ′ in such an open neighbourhood.



Embedding Forced Systems 269

Example 3.4. (I am very grateful to an anonymous referee for suggesting this example.)
Again takeN = T1 but now let g(θ) = θ + ω (mod 1) with ω arbitrary (so that
in particular we can chooseω so that there is an open neighbourhood ofg such that
no map in this neighbourhood has a periodic orbit of period 3 or less). We also take
M = T1 and f (x, θ) = x+ ρ(θ) (mod 1), for someρ: T1→ R. Initially we shall take
ρ = 1/2, independent ofθ , and then perturb it slightly to givef someθ dependence.
Now chooseϕ: T1 → R such thatϕ(0) = ϕ(1/2) = 0, ϕ is positive and has a unique
maximum on [0,1/2] at x = 1/4, ϕ(1/4+ δ) > ϕ(1/4− δ) for all δ ∈ (0,1/4), and
ϕ(x) = −ϕ(1/2− x) for all x ∈ [1/2,1]. Let d be the minimum embedding dimension
required by Theorem 3.2, so thatd = 3, and let8 f,g,ϕ,θ be the corresponding delay
map. Since f is independent ofθ , so is8 f,g,ϕ,θ . Furthermore, since8 f,g,ϕ,θ (0) =
8 f,g,ϕ,θ (1/2) = (0,0,0)†, we see that8 f,g,ϕ,θ fails to be 1-1 and hence an embedding
for all q ∈ T1. This is not that surprising, sincef is so “nongeneric”; however, we shall
show that if we slightly perturbρ, then there is an open neighbourhood of the resulting
f (and ofg andϕ as above) such that the delay map still fails to embedT1× {θ} for at
least oneθ .

To see this, denote the first two components of8 f,g,ϕ,θ by 8̃ = (8̃1, 8̃2): T1→ R2.
Observe that̃8(0) = 8̃(1/2) = 0. The conditions onϕ imply that forx ∈ (0,1/4), we
have8̃1(x) > −8̃2(x) > 0, and forx ∈ (1/4,1/2), we have−8̃2(x) > 8̃1(x) > 0.
The image of [0,1/2] under8̃ is thus a loop from(0,0) lying in the fourth quadrant.
The conditionϕ(x) = −ϕ(1/2− x) implies that the image of [1/2,1] is this loop rotated
throughπ , and hence lying in the second quadrant. The whole image8̃(T1) is thus a
“figure eight” with the two arms crossing transversally at the origin.

Because of this transversality and since8 f,g,ϕ,θ depends smoothly onf, g, ϕ, andθ ,
the image of the first two components of8 f,g,ϕ,θ will still be such a “figure eight” for
all sufficiently close f , g, ϕ, andθ . Fix someθ0 and chooseρ: T1 → R sufficiently
close to 1/2 for this to hold for the resultingf and so thatρ(θ0) = 1/2,ρ is increasing
on an interval [θ0 − δ, θ0 + δ] for someδ > 0 andρ(θ) = ρ(θ + ω) = ρ(θ + 2ω) for
θ ∈ [θ0 − δ, θ0 + δ]. This last condition can be satisfied since we have assumed that
g has no periodic orbits of period 3 or less, and hence the intervals [θ0 − δ, θ0 + δ],
[θ0+ ω − δ, θ0+ ω + δ], and [θ0+ 2ω − δ, θ0+ 2ω + δ] can be chosen distinct.

Observe that for anyθ ∈ [θ0 − δ, θ0 + δ] we have8 f,g,ϕ,θ (x) = (ϕ(x), ϕ(x +
ρ(θ)), ϕ(x + 2ρ(θ)))†, with ρ(θ) close to 1/2,ρ(θ) < 1/2 for θ ∈ (θ0 − δ, θ0), and
ρ(θ) > 1/2 for θ ∈ (θ0, θ0+δ]. Denote the first two components of the8 f,g,ϕ,θ by 8̃ρ,θ .
Consider first the caseθ ∈ [θ0 − δ, θ0). By the above, the image of̃8ρ,θ is a “figure
eight”. It is easy to see that the self-intersection cannot occur in the regionϕ(x) ≥ 0.
This is because the self-intersection must occur close to the origin but forx ∈ (0,1/4),
we haveϕ(x + ρ(θ)) > ϕ(x + 1/2) > −ϕ(x) and forx ∈ (3/4− ρ(θ),1/2), we have
ϕ(x + ρ(θ)) < ϕ(x + 1/2) < −ϕ(x). Hence the self-intersection must occur in the
second quadrant and in particular correspond tox1 ∈ (−ε,0) andx2 ∈ (1/2,1/2+ ε)
for some smallε > 0. Considering the third component of8 f,g,ϕ,θ , we then have
ϕ(x1 + 2ρ(θ)) < 0 andϕ(x2 + 2ρ(θ)) > 0. Turning now toϕ ∈ (ϕ0, ϕ0 + δ], the
same argument shows that the intersection occurs in the fourth quadrant, so that now
x1 ∈ (0, ε) andx2 ∈ (1/2−ε,1/2), and henceϕ(x1+2ρ(θ)) > 0 andϕ(x2+2ρ(θ)) < 0.
We thus see that asθ passes throughθ0, ϕ(x1 + 2ρ(θ)) − ϕ(x2 + 2ρ(θ)) undergoes a
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change of sign. Sinceϕ(x1 + 2ρ(θ)) − ϕ(x2 + 2ρ(θ)) depends continuously onθ , it
must pass through 0, which corresponds to8 f,g,ϕ,θ (x1) = 8 f,g,ϕ,θ (x2); by the above,
this of course takes place atθ0.

Now observe thatx1 andx2 depend continuously onf , g, andϕ. Hence for a suf-
ficiently small open neighbourhood off , g, andϕ, we can findθ1 and θ2 such that
ϕ(x1+ 2ρ(θ1))− ϕ(x2+ 2ρ(θ1)) < 0 andϕ(x1+ 2ρ(θ2))− ϕ(x2+ 2ρ(θ2)) > 0, and
hence aθ ∈ (θ1, θ2) such thatϕ(x1 + 2ρ(θ1)) = ϕ(x2 + 2ρ(θ1)), or in other words
8 f,g,ϕ,θ (x1) = 8 f,g,ϕ,θ (x2) Hence, as claimed, we have an open neighbourhood off , g,
andϕ such that8 f,g,ϕ,θ fails to be 1-1 for at least oneθ .

3.5. Stochastic Forcing

In many applications the assumption that the forcing is generated by a finite-dimensional
deterministic system is not a reasonable one, and it would be extremely useful to develop a
framework for reconstructing systems driven by far more general processes. Particularly
examples include stochastic dynamical systems (which we think of as deterministic
systems driven by some stochastic process), input-output systems (as considered for
instance by Casdagli [1992]) and irregularly sampled time series. Since it is possible to
extend Theorem 3.2 to cover this case, we give a brief overview of this approach. Full
details will be contained in a sequel to this paper, jointly with D. Broomhead, M. Davies,
and J. Huke.

A standard approach to modelling such systems is through the use of shift spaces.
Thus let X be some topological space, and define6 = XZ to be the space of bi-
infinite sequences of elements inX with the product topology. Letσ : 6 → 6 be the
standard shift map; thus [σ(ω)] i = [ω] i−1, where [ω] i is thei th component ofω. Then
if f ∈ Dr (M × X,M), we get the skew product system,

x 7→ f (x, ω0),

ω 7→ σ(ω).

Since the space6 contains all possible sequences of elements inX, this gives us a very
general model of systems driven by arbitrary sequences. Observe that one could more
generally takef ∈ Dr (M × 6,M) and replace thex dynamics byx 7→ f (x, ω). If
f only depends on a finite number of components ofω, then such a generalization is
straightforward to incorporate, whilst if it depends on an infinite number it is very unclear
under what conditions reconstruction would still be possible.

So far we have consideredω as simply an arbitrary sequence. If, in addition, we have
a probability measureµ on X, then the corresponding product measureµ6 on 6 is
invariant underσ , giving rise to an interpretation of the above dynamics as a stochastic
process. If we define the mapfωi : : M → M by fωi (x) = f (x, ωi ), then one can
think of such a process as applying a different mapfωi at each time step, withωi chosen
randomly with respect toµ at each time step. One often takesX = Dr (M) here (so that
fωi = ωi (x)), in which case the resulting system is called arandom diffeomorphism(e.g.
Kifer [1988]). Furthermore, whenµ consists of a finite number of discrete atoms, one
obtains aniterated function systemsin the sense of Barnsley [1988] (see also Norman
[1968]).
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Whilst these kinds of systems do not encompass all possible cases of stochastic dy-
namics, they include a sufficiently rich class of systems to be both useful and interesting.
It is also possible to consider more general shift invariant measures on6 than just those
given as product measures of a measure onX (e.g., corresponding to Markov processes).

Example 3.5. As a simple example, the reader might find it helpful to consider the case
of an irregularly sampled periodic orbit of a differential equation. Restrict the dynamics
to the periodic orbit and take our coordinate on the orbit to be just the phaseθ ∈ T1, so
that the dynamics is just given bẏθ = 1. Suppose we observe the system at a sequence
of times{ti : i ∈ Z} and letωi = ti − ti+1 (mod 1). Then, within the above framework we
haveM = X = T1 and fωi (θ) = θ + ωi (mod 1). This is just a rotation ofT1 through
the angleωi and corresponds to the timeωi map of the flowθ̇ = 1. The dynamics of
θ is therefore given byθi+1 = θi + [σ i (ω)]0 (mod 1) = θi + ωi (mod 1). If one then
assumes that say theωi are uniformly independently distributed onT1, this corresponds
to takingµ as the Lebesgue (or more correctly, Haar) measure onT1.

The natural concept of equivalence for two skew product systemsf and f ′ (over the
same6) is that of a bundle conjugacy, that is, a maph: M × 6 → M such thathω is
a homeomorphism for eachω (where as usualhω(x) = h(x, ω)) and such that(h, Id)
conjugates the skew dynamics of( f, Id) with the dynamics of( f ′, Id), i.e.,

( f, σ ) ◦ (h, Id) = (h, Id) ◦ ( f ′, σ ).

This can be seen to be equivalent to

fω ◦ hω = hσ(ω) ◦ f ′ω,

and is analogous to the concept of bundle embedding in Section 3.3. Ideally we would
like fω ◦hω = hσ(ω) ◦ f ′ω to hold for everyω ∈ 6, but in general as in Section 3.3 (recall
Example 3.4) this is too ambitious, and we have to be content with a conjugacy only
for “typical” ω, i.e., for genericω in the topological setting, or for almost everyω with
respect toµ6 in the measure theoretic context. Note that even when, as in our case,f
depends only onω0, we still allowh to depend on the other components ofω.

Now suppose that we observe the dynamics using some functionϕ: M → R. If we
define fωi ...ω0 = fωi ◦ · · · ◦ fω0, where, as above,fωi (x) = f (x, ωi ), then the usual delay
embedding can then be written

8 f,ϕ,ω(x) = (ϕ(x), ϕ( fω0(x)), . . . , ϕ( fωd−2...ω0(x))).

By analogy to Theorem 3.2 above, if we wish to reconstruct the dynamics of our system
using delay coordinates, then it is reasonable to require8 f,ϕ to be a bundle embedding,
i.e.,8 f,ϕ,ω should be an embedding (in the usual sense) for “typical”ω. Recall that in
Theorem 3.2 we made no attempt to reconstruct the forcing dynamicsg, and as a conse-
quence, the embedding dimensiond was independent of the dimensionn of the forcing
system. Since the only difference between the setting here, and that of Theorem 3.2,
is that we have replaced the finite-dimensional dynamicsg by the infinite-dimensional
shift mapσ , it is not unreasonable to expect that we should still get a bundle embedding
here. In fact, it turns out that as long as we takeX = N, a finite-dimensional compact
manifold, it is straightforward to modify Theorem 3.2 to give the following.
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Theorem 3.4. Let M and N be compact manifolds of dimension m≥ 1 and n, respec-
tively. Suppose that d≥ 2m + 1. Then for r ≥ 1, there exists an open dense set of
( f, ϕ) ∈ Dr (M×N,M)×Cr (M,R) such that for any( f, ϕ) in this set there is an open
dense set ofω in 6 such that8 f,ϕ,ω is an embedding. If in additionµ is a measure on
N that is absolutely continuous with respect to Lebesgue measure, we can ensure that
8 f,ϕ,ω is an embedding forµ6-almost allω.

A proof of this theorem will be given in a subsequent paper, written jointly with
D. Broomhead, M. Davies, and J. Huke. This also includes generalizations to cover the
case of noise on the observation functionϕ.

We can think of the systems covered by this theorem as ones whose dynamics is given
by a finite parameter family of diffeomorphisms onM , with the parameters being an
i.i.d. random process with an absolutely continuous distribution. This would seem to be
a sufficiently rich class of systems to encompass many applications to real systems, and
the above theorem thus represents the first tentative step towards developing a theory of
embedding nonlinear stochastic dynamical systems.

To conclude this section, we discuss the interpretation of Theorem 3.4 in the context
of delay reconstruction of time series; this is virtually identical to that for Theorem 3.2
given in Section 3.3. Thus, suppose thatw is such that8 f,ϕ,ω and8 f,ϕ,σ (ω) are both
embeddings ofM . Then the mapFω = 8 f,ϕ,σ (ω) ◦ fω0 ◦ (8 f,ϕ,ω)

−1 is well defined and
is a diffeomorphism between8 f,ϕ,ω(M) ⊂ Rd and8 f,ϕ,σ (ω)(M) ⊂ Rd. Let (xi , σ

i (ω))

be an orbit of( f, σ ), so thatxi+1 = f (xi , ωi ), and as usual defineϕi = ϕ(xi ) andzi =
(ϕi , ϕi+1, . . . , ϕi+d−1). Thenzi = 8 f,ϕ,σ i (ω)(xi ), and hence if8 f,ϕ,σ i (ω) and8 f,ϕ,σ i+1(ω)

are both embeddings, we have

zi+1 = 8 f,ϕ,σ i+1(ω)(xi+1),

= 8 f,ϕ,σ i+1(ω)( fωi (xi )),

= 8 f,ϕ,σ i (σ (ω))( fωi ((8 f,ϕ,σ i (ω))
−1(zi ))),

= Fσ i (ω)(zi ).

Therefore in exact analogy to the standard Takens framework,Fσ i (ω) is just the map that
shiftsablockof the timeseries forwardbyone timestep,andhence(ϕi , ϕi+1, . . . , ϕi+d−1)

7→ (ϕi+1, ϕi+2, . . . , ϕi+d) is bundle conjugate to our original dynamicsfωi . Note how-
ever, that whereasfωi only depends onωi = σ i (ω)0, the mapFσ i (ω) depends on
ωi , ωi+1, . . . , ωi+d−1. As usual, the firstd − 1 components ofFω are trivial. If we
denote the last component byGω: 8 f,ϕ,ω(M)→ R then

ϕi+d = Gσ i (ω)(ϕi , ϕi+1, . . . , ϕi+d−1).

If we write out the dependence onσ i (ω) explicitly, we get

ϕi+d = G(ϕi , ϕi+1, . . . , ϕi+d−1, ωi , ωi+1, . . . , ωi+d−1).

In the case of one-dimensionalωi , the existence of such a function was conjectured
by Casdagli [1992]. From another point of view, processes that satisfy this equation
(again for a one-dimensionalωi ) are well known in signal processing under the name
of Nonlinear Auto-Regressive Moving Average (NARMA) models (e.g., Billings et al.
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[1988]). Note however, that in the case of NARMA processes, one usually assumes that
G depends smoothly on all its arguments, whilst we can say nothing about the regularity
of its dependence onωi , ωi+1, . . . , ωi+d−1; indeed,G is only defined for almost every
ωi , ωi+1, . . . , ωi+d−1 with respect to the product measureµd on Nd.

4. Proof of the Standard Takens Theorem

Takens Embedding Theorem can be thought of as an extension of the Whitney Embedding
Theorem, which says that the set of embeddings of a compact manifoldM inRd is open
and dense inCr (M,Rd) if d ≥ 2m+ 1. Unfortunately, maps of the form8 f,ϕ form a
very special subset ofCr (M,Rd), and hence we cannot deduce Takens Theorem directly
from the Whitney Theorem. However, since the map( f, ϕ) 7→ 8 f,ϕ is continuous (by
Corollary C.3, in Appendix C below), Whitney’s Theorem does at least immediately
imply that the set of( f, ϕ) such that8 f, ϕ is an embedding is open inDr (M) ×
Cr (M,R). The main task in proving Takens Theorem is thus to demonstrate that there is
sufficient independence in the components of8 f,ϕ to ensure that the set of( f, ϕ) giving
an embedding is dense inDr (M)× Cr (M,R).

This is completely straightforward at those pointsx ∈ M that do not lie on a periodic
orbit of f of period less than or equal tod. Then the pointsx, f (x), . . . , f d−1(x) are
distinct, and hence we can perturbϕ independently in the neighbourhood of each of these
points (intuitively this is obvious; a rigorous argument can be found in Appendix C.3
below). Thus, informally, given any9: M → Rd, we can find aϕ: M → R such that in
a neighbourhoodU of x the map8 f,ϕ agrees with9. Since the mapϕ 7→ 8 f,ϕ is smooth,
this means that the set ofϕ for which8 f,ϕ is an embedding restricted toU is dense by
Whitney’s Theorem. We then need to piece together these local embeddings into a global
one. At this stage a further problem arises, namely to show that8 f,ϕ(x) 6= 8 f,ϕ(x′)
for points x and x′ such thatx = f k(x′) for somek 6= 0 such that−d ≤ k ≤ d.
The difficulty with such points is that perturbations inf andϕ do not affect8 f,ϕ(x)
and8 f,ϕ(x′) independently. The vast part of the proof of Takens Theorem is taken in
overcoming this, and in dealing with the short periodic orbits off . As we shall see,
exactly the same issues will arise in the proofs of the forced theorems in the next two
sections.

4.1. Main Proof

SinceM is assumed compact, to show thatϕ f,ϕ is an embedding it is sufficient to show
that it is both injective and immersive. As already mentioned above, since the map
( f, ϕ) 7→ 8 f,ϕ is continuous, the set of( f, ϕ) such that8 f,ϕ is an embedding is open by
Whitney’s Theorem, and it remains to show that it is dense (we shall in fact demonstrate
that it is residual). Finally, sinceCr (M, N) is dense inCr ′(M, N) for all r > r ′, we only
need to prove the theorem for all sufficiently larger ; it turns out that we shall need at
leastr = 3.

The first step is to construct a set of( f, ϕ) such that8 f,ϕ is an embedding on the set
of short periodic orbits off . For convenience, we shall deal with all orbits of period less
than 2d. This differs from the approach of Takens [1980] and Huke [1993] who only
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consider periods up tod. The advantage of the present approach is that it avoids having
to deal separately with pointsx and x′ such thatx = f k(x′) and x, x′ periodic with
periodq such thatd ≤ q < 2d. Furthermore, when we come to the proof of the forced
theorem in Section 5, there seems to be no way of avoiding taking all periods up to 2d.
Since the present section is intended to provide an introduction to the techniques used
to prove the forced version of the theorem, it seems preferable to use the same condition
here.

We construct the required set of( f, ϕ) by restricting to thosef that only have a
finite number of periodic orbits of period less than 2d. It is then a relatively simple
matter to perturbϕ in the neighbourhood of each such orbit to ensure that8 f,ϕ is 1-1 on
the set of such orbits. Showing that8 f,ϕ is immersive takes somewhat more effort; the
argument is motivated by the theory of Vandermode determinants, though we do not use
this explicitly.

We proceed by defining

Dr = { f ∈ Dr (M): all periodic orbits off of periodq < 2d are isolated and

hyperbolic and each has distinct eigenvalues}.

Note that we do not actually need the hyperbolicity of the periodic orbits in the proof
of Takens Theorem, but have no independent way of proving that the set off such that
periodic orbits of a given period are isolated is dense. Furthermore, by the Hartman-
Großman Theorem (e.g., [Irwin, 1980], [Ruelle, 1989]), a hyperbolic periodic orbit is
isolated from periodic orbits of any fixed period, and hence the requirement that the short
periodic orbits are isolated in the definition ofDr is superfluous. We include it in order
to emphasize its significance in the proof of Takens Theorem. Also note that we shall
not need the condition that orbits of periodq for d ≤ q < 2d have distinct eigenvalues,
and as discussed already in Section 2.2, even forq < d this condition is slightly stronger
than necessary. However, for clarity of presentation we prefer to defineDr as above.

The fact that the set off such that the periodic orbits of a given period are hyperbolic
forms the first part of the Kupka-Smale Theorem (e.g., Smale [1963]). It is then a simple
matter to perturbf further to ensure that the eigenvalues of each such orbit are distinct,
thereby giving

Proposition 4.1. Dr is open and dense inDr (M) for r ≥ 2.

We give a direct proof of this in Section 4.2 below. Given anyf ∈ Dr , letP f be the
set of periodic points off of period less than 2d. We now aim to construct an open and
dense setA f ⊂ Cr (M,R) such that8 f,ϕ is 1-1 and immersive (i.e.,T8 f,ϕ is 1-1) on
P f . Sinceϕ is the first component of8 f,ϕ , the injectivity of8 f,ϕ follows immediately
from

Proposition 4.2. The set ofϕ such thatϕ is 1-1 onP f is open and dense inCr (M,R).

SinceP f consists of a finite number of points, this is intuitively obvious, though a
rigorous proof is given below in Section 4.2, where we also prove
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Proposition 4.3. The set ofϕ such that Tx8 f,ϕ has rank m for all x∈ P f is open and
dense inCr (M,R).

Since8 f,ϕ is an immersion atx if and only if Tx8 f,ϕ has rankm, this shows that the
setA f of ϕ such that8 f,ϕ is an embedding onP f is open and dense inCr (M,R). One
minor issue then remains: For anyf ∈ D we have shown thatA f is open and dense in
Cr (M,R), but in the statement of Takens Theorem we use an open and dense subset of
Dr (M)× Cr (M,R). We thus require

Lemma 4.4. The set

E r = {( f, ϕ): f ∈ Dr , ϕ ∈ A f }
is open and dense inDr (M)× Cr (M,R).

The proof is again given in Section 4.2 below.
From now on we shall restrict ourselves to( f, ϕ) ∈ E r . We shall show that8 f,ϕ is

an embedding for an open dense subset ofE r by considering two mapsρ andσ from E r

into appropriate spaces of maps betweenM andRd, and their tangent bundles. The first
of these mapsρ: E r → C1(T̃ M, TRd) is defined by

ρ( f, ϕ) = T̃8 f,ϕ,

where T̃ M = {v ∈ T M: ‖v‖ = 1} is the unit tangent bundle ofM , and T̃8 f,ϕ is
just the restriction toT̃ M of the tangent bundle mapT8 f,ϕ : : T M → TRd. Thus
evρ( f, ϕ, v) = Tx8 f,ϕ(v). Let L be the 0 section inTRd, i.e., L = {0y ∈ TRd}, where
0y is the zero inTyRd. Note that8 f,ϕ is an immersion if and only if the image ofT̃8 f,ϕ

does not intersectL. We prove the following in Section 4.3 below.

Proposition 4.5. The map evρ is transversal to L.

Now, by Corollary C.5,evρ is C1 if r ≥ 3, and ifd > 2m− 2, then 1> dim T̃ M −
codimL. We may thus apply the Parametric Transversality Theorem toρ. This allows us
to conclude that the set of( f, ϕ) such thatρ( f, ϕ) is transversal toL is open and dense in
E r . But for anyv ∈ T̃ M, the dimension ofTv(T̃ M) is 2m− 1, and hence the dimension
of its imageTv(T̃8 f,ϕ)(Tv(T̃ M)) is at most 2m−1, whilst the dimension ofTuL is d for
anyu ∈ L. Hence ifT̃8 f,ϕ(v) ∈ L, Tv(T̃8 f,ϕ)(Tv(T̃ M))+ TuL has dimension at most
2m− 1+ d. If d ≥ 2m, this is strictly less than 2d, which is the dimension ofTu(TRd),
and henceTv(T̃8 f,ϕ)(Tv(T̃ M))+ TuL cannot possibly spanTu(TRd). Thus ifd ≥ 2m,
the only way thatT̃8 f,ϕ can be transversal toL is if its image does not intersectL, i.e.,
if 8 f,ϕ is an immersion. We have thus shown that the set of( f, ϕ) such that8 f,ϕ is an
immersion is open and dense inE r .

Let us now turn to demonstrating the injectivity of8 f,ϕ . For this we consider the map
σ : E r → C1(M × M\1,Rd × Rd) defined by

σ( f, ϕ)(x, x′) = (8 f,ϕ(x),8 f,ϕ(x
′)),
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where1 is the diagonal inM × M . Let 1̂ = {(z, z): z ∈ Rd} be the diagonal in
Rd ×Rd, and observe that8 f,ϕ is injective if and only if its image does not intersect1̂.
In Section 4.4 we shall show

Proposition 4.6. The map evσ is transversal to1̂.

By Corollary C.3,evσ isC1 for r ≥ 2, and dimM×M\1−codim1̂ = 2m−d < 1,
if d > 2m− 1. We may thus apply the Parametric Transversality Theorem to deduce
that the set of( f, ϕ) such thatσ( f, ϕ) is transversal tô1 is residual inE r .

But now, just as above, we count dimensions: The dimension ofTx,x′(M × M\1) is
2m, and hence the dimension ofTx,x′(σ ( f, ϕ))(Tx,x′(M×M\1)) is less than or equal to
2m. The dimension ofTz,z1̂ is d and thus if 2m+d < 2d, transversality ofσ( f, ϕ) to 1̂
implies that the image ofσ( f, ϕ) cannot intersect̂1. But this is precisely the condition
for8 f,ϕ to be 1-1, and hence ifd ≥ 2m+ 1, injective maps are residual inE r and hence
residual inDr (M)× Cr (M,R).

This completes the proof of Takens Theorem. We make one final comment: In the
proofs of the transversality ofevρ andevσ below, we only make use of perturbations in
ϕ. Thus for a fixedf ∈ Dr , evρ andevσ will be transversal toL and1̂, respectively,
when considered as functions ofϕ only. This immediately gives a proof of a version of
the “unstated” Takens Theorem ([Huke, 1993]):

Theorem 4.7. If f ∈ Dr , then there is an open and dense set of observation functions
ϕ ∈ Cr (M,R) for which8 f,ϕ is an embedding.

Note that this is slightly weaker than Theorem 2.2, since the definition ofDr places
restrictions on periodic orbits of all periods up to 2d, rather than justd, which is the case
in Theorem 2.2.

4.2. Embedding the Short Periodic Orbits

4.2.1. Isolating the Periodic Points.Although Proposition 4.1 is a simple corollary of
the Kupka-Smale Theorem, we give a detailed proof. This is because very similar ideas
arise in Section 5 in the proof of the Forced Takens Theorem in a context where we
cannot deduce the required result from the Kupka-Smale Theorem. It thus seems helpful
to introduce the techniques that we shall use there, within the much simpler setting of the
unforced case. The proof is actually our first application of the Parametric Transversality
Theorem.

Define

Bq = { f ∈ Dr (M): all periodic orbits of periodk < q are isolated and hyperbolic},

with B1 = Dr (M) by default.

Lemma 4.8. Bq is open and dense inDr (M) for all q ≥ 1, r ≥ 2.

Proof. By induction. Suppose the lemma holds for someq ≥ 1. ThenBq is a Banach
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manifoldandwemayapply theParametricTransversalityTheoremtoρ: Bq → Cr (M,M×
M) given byρ( f ) = ( f q, id). The evaluation map isevρ( f, x) = ( f q(x), x). By Corol-
lary C.2,evρ isC1. The periodic points off of periodq correspond to points of intersec-
tion of the image ofρ( f ) with the diagonal1 = {(x, x): x ∈ M} ⊂ M × M . This is a
closed submanifold ofM × M of codimensionm, with Tx,x1 = {(v, v): v ∈ Tx M}. To
show thatevρ is transversal to1 at ( f, x); it is sufficient to show that ifevρ( f, x) ∈ 1
then the image ofTf,x(evρ) contains the space{(u,0): u ∈ Tx M}. By Corollary C.2 we
have

Tf,x(evρ)(η,0x) =
(

q∑
i=1

Txi f q−i (η(xi−1)),0x

)
whereTxq( f 0) = Id. First suppose thatx has least periodq. Then the pointsxi = f i (x),
i = 0, . . . ,q− 1 are disjoint, and by Corollary C.12, given anyu ∈ Tx M , we can find a
η ∈ TfBq such thatη(xq−1) = u ∈ Txq M = Tx M andη(xi ) = 0xi+1 for i = 0, . . . ,q−2.
For such aη, we haveTf,x(evρ)(η,0) = (u,0), and henceTf,x(evρ)(Tf,x(Bq × M))
contains the space{(u,0): u ∈ Tx M} as required. Now suppose thatx has least period
p < q. Then

Tf,x(evρ)(η,0x) =
(

p∑
i=1

T (k)(Txi f p−i (η(xi−1))),0x

)
,

where

T (k) =
k∑

j=1

Tx f p( j−1),

whereq = kp. Sincex is periodic of periodk, none of the eigenvalues ofTx f p have
unit modulus (by the inductive hypothesis). The eigenvalues ofT (k) are of the form
1+λ+· · ·+λk−1, forλan eigenvalue ofTx f p. Since(1+λ+· · ·+λk−1)(1−λ) = (1−λk),
we see that all of the eigenvalues ofT (k) are nonzero, and henceT (k) is invertible. Now
we proceed as before: The pointsxi = f i (x), i = 0, . . . , p− 1 are distinct, so given
anyu ∈ Tx M , we can find aη ∈ TfBq such thatη(xp−1) = (T (k))−1u ∈ Txp M = Tx M
andη(xi ) = 0xi+1 for i = 0, . . . , p− 2. For such aη, we haveTf,x(evρ)(η,0) = (u,0),
as required.

We have thus shown thatevρ is transversal to the diagonal1 in M × M . Since1
is a closed submanifold ofM × M of codimensionm, the Parametric Transversality
Theorem implies that the set off ∈ Dr (M) for which ( f q, id) is transversal to1 is
open and dense forr > 0. But if ( f q, id) is transversal to1, then( f q, id)−1(1) is
a submanifold ofM of codimensionm, and hence of dimension 0. It is thus a finite
set of isolated points (recallM is compact). But( f q, id)−1(1) is nothing more than
the set of periodic points off of periodq. To complete the inductive step we need to
show that we can further restrict the set off to make the periodic orbits of periodq
hyperbolic. Suppose thatf0 ∈ Bq such that(( f0)

q, id) is transversal to1. Then by the
Transversal Isotopy Theorem (Appendix A) there is an open neighbourhoodU of f0

such that everyf in U has the same number of periodic points of periodq as f0. We
can thus perturbf0 by an arbitrarily small amount in the neighbourhood of each such
periodic orbit (using Corollary C.18 if we want to be completely rigorous) to give anf
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such that these periodic orbits are hyperbolic. ThusBq+1 is dense inBq. Conversely, if
for some f0 all the periodic orbits of periodq are already hyperbolic, then they will be
hyperbolic for all sufficiently closef and henceBq+1 is open inBq. We have thus shown
thatBq+1 is open and dense inBq, and sinceBq is open and dense inDr (M), Bq+1 is
also open and dense inDr (M), thus completing the inductive step.

Proof of Proposition 4.1.Observe that we can trivially modify the last step in the proof
of Lemma 4.8 to require the eigenvalues of any periodic orbit of periodq to be distinct.
Taking the intersection of all such sets forq < 2d, we obtain preciselyDr , and since the
intersection of a finite number of open and dense sets is open and dense, this completes
the proof.

4.2.2. Injectivity on the Periodic Points.

Proof of Proposition 4.2.The setP f consists of a finite number of points; write these
asx0, . . . , xk−1. Letρ: Cr (M,R)→ Rk be given byρ(ϕ) = (ϕ(x0), . . . , ϕ(xk−1)). Let
1k be the open and dense subset ofRk given by1k = {(y0, . . . , yk−1) ∈ Rk: yi 6= yj if
i 6= j }. Thenρ−1(1k) is precisely the set ofϕ such thatϕ is 1-1 onP f . By Corollary
B.3 the mapρ is continuous and henceρ−1(1k) is open inCr (M,R). By Corollary C.13
ρ is a submersion, and by a version of the implicit function theorem (e.g., see Abraham
and Robbin [1967] or Lang [1972]) any submersion is a local fibration, i.e., there are
local coordinatesϕ = (ϕ1, ϕ2) onCr (M,R) such thatρ is locally a projection onto the
first factor. Thereforeρ−1(1k) is also dense, as required.

4.2.3. Immersing the Periodic Points.

Proof of Proposition 4.3.Let V∗i = L(Tx M, Tϕ(xi )R) and defineai ∈ V∗i by ai =
Txi ϕ ◦ Tx f i for any i . Then thei th component ofTx8 f,ϕ(v) is ai (v), and to show that
Tx8 f,ϕ has rankm it is sufficient to show thata0 ∧ · · · ∧ am−1 6= 0.

Suppose thatx has minimal periodq. Since x0, . . . , xq−1 are distinct, the maps
Tx0ϕ, . . . , Txq−1ϕ can be adjusted independently, or more precisely by Corollary C.18
the mapϕ 7→ (Tx0ϕ, . . . , Txq−1ϕ) is a submersion. ButTx f i is a linear isomorphism for
eachi , and therefore the mapρ: Cr (M,R) → V∗0 × · · · × V∗q−1 given byρ(ϕ) =
(Tx0ϕ, . . . , Txq−1ϕ ◦ Tx f q−1) = (a0, . . . ,aq−1) is also a submersion. The fact that
a0 ∧ · · · ∧ am−1 6= 0 for an open and dense set inCr (M,R) then follows immediately
from the following.

Lemma 4.9(Huke, [1993]). Let V be a vector space withdim V = m. Let A: V → V
be an invertible linear map with distinct eigenvalues. Let m= qr + s, with0< s ≤ q,
and let V0, . . . ,Vq−1 be any collection of one-dimensional linear spaces. Define V∗

i =
L(V,Vi ). For any a= (a0, . . . ,aq−1) ∈ V∗0 × · · · × V∗q−1 let ωa ∈ V∗0 ∧ · · · ∧ V∗m−1

be given byωa = a0 ∧ · · · ∧ aq−1 ∧ a0 ◦ A ∧ · · · ∧ aq−1 ◦ A ∧ · · · ∧ a0 ◦ Ar−1 ∧
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· · · ∧ aq−1 ◦ Ar−1 ∧ a0 ◦ Ar ∧ · · · ∧ as−1 ◦ Ar . Thenωa 6= 0 for an open dense set of
(a0, . . . ,aq−1) ∈ V∗0 × · · · × V∗q−1.

Proof. Let e0, . . . ,em−1 be a basis ofV . SinceV∗0 ∧ · · · ∧ V∗m−1 is one-dimensional,
ωa 6= 0 if an only if ωa(e0, . . . ,em−1) 6= 0. Now,ωa(e0, . . . ,em−1) = detB, whereB
is anm× m matrix such thatBi j = ak ◦ Ap(ej ) wherei = qp+ k, with 0 ≤ k < q.
ThusBi j is a linear combination ofBk,0, . . . , Bk,m−1, and hence detB is a polynomial
in theqm variablesB0,0, . . . , B0,m−1, . . . , Bq−1,0, . . . ,Bq−1,m−1. Since the mapak 7→
Bk,0, . . . , Bk,m−1 is an isomorphism ofV∗k andRm, we need to show that this polynomial
is nonzero for an open dense set of(B0,0, . . . , Bq−1,m−1) in Rqm.

Recall that the set of rootsβ−1(0) of any polynomialβ which does not vanish iden-
tically is a closed nowhere dense set. This is becauseβ−1(0) is trivially closed sinceα
is continuous and it must have empty interior: Ifβ were identically zero on some open
neighbourhood, then all its derivatives there would vanish; hence its Taylor expansion
would vanish identically. But this Taylor expansion is justβ itself, and henceβ would
vanish everywhere.

It thus remains to construct a single(a0, . . . ,aq−1) such thatωa(e0, . . . ,em−1) 6= 0.
This is done as follows: Choose anya0 such thata0(ej ) 6= 0 for all j = 0, . . . ,m− 1.
For i ≤ s let ai = a0◦ Ai (r+1) and fors< i ≤ q−1 letai = a0◦ As+ir . Theai for i ≥ q
are then of course given byai + kq = ai ◦ A for any i andk. Note that ifs < q then
aq−1◦ Ar−1 = a0◦ Am−1 and ifs= q thenas−1◦ Ar = a0◦ Am−1. Thusa0, . . . ,am−1 are
a permutation ofa0, . . . ,a0 ◦ Am−1 and henceωa = ±a0∧a0 ◦ A∧ · · ·∧a0 ◦ Am−1. But
by Lemma 4.10 below,a0,a0 ◦ A, . . . ,a0 ◦ Am−1 are linearly independent ifa0(ej ) 6= 0
for all j = 1, . . . ,m. Thusωa(e0, . . . ,em−1) 6= 0, as required.

Lemma 4.10. Let V be a vector space withdim V = m. Let A: V → V be an invertible
linear map with distinct eigenvalues, a: V → R be any linear map such that a(v) 6= 0
for all eigenvectorsv of A. Then the set a, a◦ A, . . . ,a◦ Am−1 are linearly independent.

Proof. Suppose not. Then there existsα0, . . . , αm−1 with at least oneαi 6= 0, such that

m−1∑
j=0

αj a ◦ Aj = 0.

Let λ1, . . . , λm be the eigenvalues ofA. Since theλi are distinct we can find a basis of
V consisting of eigenvectorsv1, . . . , vm of A (if some of theλi are complex, we simply
work with the complexification ofV). Then for alli = 1, . . . ,m we have

m−1∑
j=0

αj a ◦ Aj (vi ) = 0.

But Aj (vi ) = (λi )
j vi and so for anyi = 1, . . . ,m,

m−1∑
j=0

αj a ◦ Aj (vi ) = a(vi )

m−1∑
j=0

αj (λi )
j

= a(vi )p(λi ),
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wherep(λ) is the polynomialp(λ) = α0+α1λ+· · ·αm−1(λ)
m−1. Buta(vi ) 6= 0 sincevi

is an eigenvectorv of A and hencep(λi ) = 0 for all λ1, . . . , λm. Theλi are distinct and
thusp(λ) hasm distinct roots. This contradicts the fact that it is a nontrivial polynomial
of degree at mostm− 1, and hence can have at mostm− 1 roots.

4.2.4. Proof of Lemma 4.4.The density ofE r follows immediately from that ofDr

andA f . Thus given any( f0, ϕ0) ∈ Dr (M)× Cr (M,R), first perturbf0 by an arbitrarily
small amount to give anf ∈ Dr , and then make an equally small perturbation to give a
ϕ ∈ A f .

To show thatE r is also open, note that iff0 ∈ Dr then everyf in the neighbourhood
f0 has the same number of periodic orbits of period less thand as f0, and the positions
of the orbits depend continuously onf . Thus ifϕ0 is 1-1 onP f0; thenϕ will be 1-1 onP f

for all ( f, ϕ) sufficiently close to( f0, ϕ0). Furthermore,Tx8 f,ϕ depends continuously
on x, f , andϕ, and hence if8 f0,ϕ0 is immersive onP f0 then8 f,ϕ is immersive onP f

for all ( f, ϕ) in a sufficiently small neighbourhood of( f0, ϕ0).

4.3. Transversality of evρ

Proof of Proposition 4.5. If evρ( f, ϕ, v) ∈ L with ( f, ϕ) ∈ E r , v ∈ T̃x M , thenx cannot
lie on a periodic orbit of period< d. This is because if( f, ϕ) ∈ E r , then by definition
if x is a periodic orbit of period< d, thenTx8 f,ϕ has rankm and henceTx8 f,ϕ(v) 6= 0
for all v 6= 0. Thusevρ is trivially transversal toL at such periodicx.

By Corollary C.8,

Tf,ϕ,v(evρ)(0f , ξ,0v) =


ω(Txξ(v))

ω(Tx1ξ(v1))
...

ω(Txd−1ξ(vd−1))

,
where xi = f i (x) and vi = Tx f i (v). Denotev′ = Tx8 f,ϕv. If x is not a peri-
odic orbit of period< d, then the pointsxi , i = 0, . . . ,d − 1, are distinct. Also,
sincev 6= 0, and f is a diffeomorphism, we havevi 6= 0 for all i = 0, . . . ,d − 1.
Hence by Corollary C.16, given any(u1, . . . ,ud−1) = u ∈ Tv′(TRd) there exists
a ξ ∈ Tϕ(Cr (M,R)) such thatω(Txi ξ(vi )) = ui for i = 0, . . . ,d − 1, or in other
words such thatTf,ϕ,v(evρ)(0f , ξ,0v) = u. ThusTf,ϕ,v(evρ) is surjective, and hence it is
transversal to any submanifold ofTRd; in particular it is transversal toL as required.

4.4. Transversality of evσ

Proof of Proposition 4.6.Suppose thatevσ ( f, ϕ, x, x′) ∈ 1̂ with ( f, ϕ) ∈ E r . Then
8 f,ϕ(x) = 8 f,ϕ(x′), and henceϕ(x) = ϕ(x′), but x 6= x′. Thus, at least one ofx or
x′ is not a periodic point of period< 2d, since if ( f, ϕ) ∈ E r , ϕ is injective on the
set of such periodic points. Thus, without loss of generality, we may assume that the
pointsxi = f i (x), i = 0, . . . ,d − 1, are distinct. Letz = 8 f,ϕ(x) = 8 f,ϕ(x′), then
Tz,z1̂ = {(u,u): u ∈ TyRd}. We need to show that the image ofTf,ϕ,x,x′(evσ ) contains
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a complement to this space. Note thatξ(xi ), ξ(x′i ) ∈ TziR, which is a one-dimensional
space. Letei be a basis vector forTyiR, and lete(i ) be the vector(0, . . . ,ei , . . . ,0)† ∈
TyRd. Thene(0), . . . ,e(d−1) forms a basis forTzRd. For ease of notation write4 =
( f, ϕ, x, x′). Then by Corollary C.3,

T4(evσ )(0f , ξ,0x,0x′) =




ξ(x)
ξ(x1)
...

ξ(xd−1)

,

ξ(x′)
ξ(x′1)
...

ξ(x′d−1)


.

First suppose that{x, x1, . . . , xd−1} ∩ {x′, x′1, . . . , x′d−1} = ∅. Then using Corollary
C.12, for eachi = 0, . . . ,d − 1 we can find aξi ∈ Tϕ(Cr (M,R)) such thatξi (xi ) =
ei , ξi (xj ) = 0 for j 6= i , andξi (xi ) = 0 for all j = 0, . . . ,d − 1. For such aξi we have
T4(evσ )(0f , ξi ,0x,0x′) = (e(i ),0z), and hence the image ofT4(evσ ) contains the space
TzRd × {0y}, which is clearly a complement ofTz,z1̂, as required.

It remains to deal with the casex′ = f j (x) for some−(d− 1) ≤ j ≤ d− 1, j 6= 0.
Sincex′ cannot then be a periodic orbit of period< 2d we can assume without loss of
generality (interchangingx andx′ if necessary) thatx′ = f j (x) for some 0< j ≤ d−1.
Note that if f i (x′) = x for somei > 0, theni + j ≥ 2d, sincex is not periodic with
period less than 2d. Hence{x, x1, . . . , xj−1} ∪ {x′, x′1 . . . , x′d−1} are disjoint. Hence for
0≤ i < j we can find as above aξi ∈ Tϕ(Cr (M,R)) such thatT4(evσ )(0f , ξi ,0x,0x′) =
(e(i ),0z). Now proceed by induction. Our inductive hypothesis onk is that for all 0≤ i <
k there exists aξi ∈ Tϕ(Cr (M,R)) and aui ∈ TzRd such thatT ′4(evσ )(0f , ξi ,0x,0x′) =
(ei + ui ,ui ). By the above this holds fork = j − 1 (with all theui = 0z).

The inductive step then proceeds as follows: Sincef i− j (x′) = f i (x), the points
{x, x1, . . . , xd−1} ∪ {x′d− j , . . . , x′d−1} are disjoint, so we can find aζk ∈ Tϕ(Cr (M,R))
such thatζk(xk) = ek, ζk(xi ) = 0 for i 6= k, andζk(x′i ) = 0 for i = d − j, . . . ,d − 1.
The remaining valuesζk(x′i ) for i = 0, . . . ,d− j − 1 are determined byx′i = f i (x′) =
f i+J(x) = xi+ j , so thatζk(x′k− j ) = ζk(xk) = ek andζk(x′i ) = ζk(xi+ j ) = 0 for i 6= k− j .
Putting all this together we getT4(evσ )(0f , ζk,0x,0x′) = (ek,ek− j ). By the inductive
hypothesis there exists aξk− j such thatT4(evσ )(0f , ξk− j ,0x,0x′) = (ek− j+uk− j ,uk− j ).
ThusT4(evσ )(0f , (ζk+ξk− j ),0x,0x′) = (ek+ek− j+uk− j ,ek− j+uk− j ). This completes
the inductive step withuk = ek− j + uk− j .

We have thus shown that the image ofT4(evσ )contains a vector of the form(ei+ui ,ui )

for all i = 0, . . . ,d−1. But(ui ,ui ) ∈ Tz,z1̂, and hence(e(i ),0z) ∈ Im(T4(evσ ))+Tz,z1̂.
Thus Im(T4(evσ )) + Tz,z1̂ containsTzRd × {0y}, which is a complement ofTz,z1̂, as
required.

5. Proof of Takens Theorem for Skew Products

This follows very similar lines to the proof of the standard Takens Theorem given in the
previous section. First, observe that since the map( f, ϕ) 7→ 8 f,g,ϕ is continuous, the set
of ( f, ϕ) such that8 f,g,ϕ is an embedding is open. Secondly, sinceCr (M, N) is dense
in Cr ′(M, N) for all r > r ′ we only need to prove the theorem for all sufficiently large
r . It turns out we shall needr ≥ 2d.
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As in the standard Takens Theorem, the main problem is dealing with points such that
xi = xj with i 6= j . Of coursexi is now defined byxi = f (i )(x, y), and hence there are
far more such points than just the periodic points of( f, g), as was the case in Section 4.
This is the fundamental issue that makes the proof of the forced version of the theorem
so much more delicate than that of the standard version.

Our approach here is to ensure that these problem points occur on families of sub-
manifoldsWI of M × N and then to deal with each of these separately. EachWI is
characterized by the set of pairs(i, j ) for which xi = xj . The key point is that the more
such pairs(i, j ) there are, the smaller the dimension of the correspondingWI , and hence
the fewer independent components of8 f,g,ϕ are required to embed it. It thus turns out
that as long as dimM ≥ 1, the loss of independence due to each relationxi = xj is
compensated for by the drop in the dimension ofWI .

We shall construct theWI (and ensure that they are submanifolds) by using the Para-
metric Transversality Theorem to get a residual set off for which the mapτ( f ) =
( f (0), f (1), f (2), . . . , f (d−1)): M × N → Md is transversal to an appropriate subman-
ifold of Md. A straightforward argument (Lemma 5.12 below, which itself is a simple
consequence of Corollary C.5) shows thatevτ is submersive except at periodic points
of period less thand. It turns out thatWI need not be a manifold at such points. This
is to be expected, since at periodic points, the conditionxi = xj immediately implies
xi + k = xj + k for anyk, and hence relations of the formxi = xj are not independent.
We thus first have to exclude the periodic points of periodq < d from WI and deal with
them separately, just as in the standard Takens Theorem.

Finally, we remark that since theWI are constructed by a transversality argument, we
could avoid explicit construction of these manifolds by combining this argument with
the proof of the transversality of̃T8 f,g,ϕ and8 f,g,ϕ × 8 f,g,ϕ . Whilst this leads to a
slightly shorter proof, we prefer not to use this approach here since we believe that the
construction of theWI (and their generalizations) gives much more geometric insight
into the principles behind the proof. It turns out, however, that this unified approach is
necessary in the proof of Theorem 3.2 in the next section, and hence the interested reader
is referred to that section to see how such an integrated argument works.

5.1. Main Proof

5.1.1. Periodic Orbits. Our first task, as in Section 4, is to show that for a dense
open set off , the periodic orbits of any given period are isolated, and each one has
distinct eigenvalues. In proving injectivity at pairs of points(x, y), (x′, y′) such that
(x′, y′) = ( f, g)k(x, y), it will turn out to be necessary to require this for all periods less
than 2d. We thus define

Dr = { f ∈ Dr (M × N,M): all periodic points of( f, g) of periodq < 2d

are isolated and hyperbolic, have distinctx

coordinates and each has distinct eigenvalues}.
In Section 5.2 we prove the following:

Proposition 5.1. Dr is open and dense inDr (M × N,M) for r ≥ 2. Furthermore, for
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any f ∈ Dr there is an open neighbourhood inDr (and henceDr (M × N,M)) such
that all maps in this neighbourhood have the same number of periodic orbits of each
period less than2d.

For any f ∈ Dr letP (r ) f, g be the set of periodic points of( f, g) of period less than
r , for 1 ≤ r ≤ 2d, and for convenience denoteP f,g = P (d)f,g . We shall first show that

8 f,g,ϕ is 1-1 onP (2d)
f,g for an open dense set inDr × Cr (M,R).

Since all points inP (2d)
f,g have differentx coordinates, the projectionπ1: M×N → M

is 1-1 onP (2d)
f,g . By a similar argument to the proof of Proposition 4.2 (in Section 4.2.2),

the set ofϕ ∈ Cr (M,R) that take distinct values onπ1(P (2d)
f,g ) is open and dense in

Cr (M,R). Call this setA f,g. For anyϕ ∈ A f,g, the functionϕ ◦ π1 is 1-1 onP (2d)
f,g . But

ϕ ◦π1 is precisely the first component of8 f,g,ϕ , and hence8 f,g,ϕ is also 1-1 for all such
ϕ. Then, as in the proof of Lemma 4.4, it is easily seen that the set of( f, ϕ) such that
8 f,g,ϕ is also 1-1 onP (2d)

f,g is open and dense inDr (M × N,M)× Cr (M,R).
Now let us turn to the immersivity of8 f,g,ϕ on the periodic orbits. It turns out we

only need consider periods up tod in this case. Fix some( f0, ϕ0) ∈ Dr × Cr (M,R).
We will construct an( f, ϕ) arbitrarily close to( f0, ϕ0) for which8 f,g,ϕ is immersive on
P f,g. It will turn out to be convenient forf to have the same periodic orbits asf0; thus
define

Dr (P f0,g) = { f ∈ Dr : f (x, y) = f0(x, y) for all (x, y) ∈ P f0,g}.

By Corollary C.13 this is a submanifold ofDr . Similarly let

Cr (M,R;P f0,g) = {ϕ ∈ M,R: ϕ(x) = ϕ0(x) for all x ∈ π1(P f,g)}.

A rather long and technical argument in Section 5.2 below gives the following.

Proposition 5.2. Given ( f0, ϕ0) ∈ Dr × Cr (M,R) and any(x, y) ∈ P f0,g, there is
an open dense set inDr (P f0,g) × Cr (M,R;P f0,g) such that for all( f, ϕ) in this set
Tx,y8 f,g,ϕ is 1-1.

Observe that by Proposition 5.1, for anyf ∈ Dr (P f0,g) sufficiently close tof0 we
haveP f,g = P f0,g. Hence the set of( f, ϕ) such that8 f,g,ϕ is immersive onP f,g is dense.
This set is also open, by the same argument as in Section 4.2.4. Thus in a sufficiently
small neighbourhood off0 inDr , the positions of the points inP f,g depend continuously
on f . SinceTx,y8 f,g,ϕ depends continuously onx, y, f , andϕ, if 8 f0,g,ϕ0 is immersive on
P f0,g then8 f,g,ϕ is immersive onP f,g for all ( f, ϕ) in a sufficiently small neighbourhood
of ( f0, ϕ0). We thus have

Corollary 5.3. The set of( f, ϕ) ∈ Dr × Cr (M,R) such that8 f,g,ϕ is immersive for all
(x, y) ∈ P f,g is open and dense inDr × Cr (M,R).

5.1.2. The SetsW̃I . Having dealt with the periodic orbits, we next show how to construct
theWI . Let I = {I1, I2, . . . , Iα} be a partition of{0, . . . ,d−1}, and define the associated
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equivalence relation∼I on {0, . . . ,d − 1} by i ∼I i ′ if and only if i, i ′ are in the same
element of the partition. We then define the setWI by

WI = {(x, y) ∈ M × N: xi = xi ′ if and only if i ∼I i ′}.
Recall that for anyf ∈ Dr , the setP f,g of periodic points of period less thand is finite,
and hence(M × N)\P f,g is an open submanifold ofM × N. Define

W̃I = WI∩(M × N)\P f,g.

Then,

Proposition 5.4. For a residual set of f∈ Dr , if W̃I is nonempty then it is a codimension
(d − α)m submanifold of(M × N)\P f,g.

The proof is given in Section 5.3. Given any partitionI as above, letJI be a set
containing precisely one element from eachIk for k = 1, . . . , α. There will typically
be many ways to choose such aJI , but we arbitrarily select just one. ClearlyJI has
α elements. Write these asJI = { j1, j2, . . . , jα} with j1 < j2 < · · · < jα. Note
that if (x, y) ∈ W̃I , then the pointsxj1, xj2, . . . , xjα are distinct and any otherxj for
j = 0, . . . ,d−1 is equal to one of these. In other words, the set{x0, . . . , xd−1} contains
preciselyα distinct points. Now, 2 dimW̃I + 1 = 2(m+ n − (d − α)m) + 1 ≤ d −
2(d−α)m= (d−α)(1− 2m)+α ≤ α. Thus it seems plausible that generically8 f,g,ϕ

should embed each̃WI . It turns out however that thẽWI are not quite the right object to
consider, since to show immersivity of8 f,g,ϕ we need to work in the unit tangent bundle
T̃(M×N) of M×N, and to show injectivity we need to work with(M×N)×(M×N).
We thus need to define appropriate generalizations ofW̃I that give decompositions of
T̃(M × N) and(M × N)× (M × N), respectively.

5.1.3. Immersivity. We first consider̃T(M×N). Let I ′ = {i1, i2, . . . , iβ} be any subset
of JI (possibly empty). LetT̃W̃I

((M × N)\P f,g) be the restriction of the unit tangent

bundle of(M × N)\P f,g to W̃I . Define the set

T̃I ,I ′ = {v ∈ T̃W̃I
((M × N)\P f,g): if i ∈ JI , thenT̃ f (i )v = 0xi if and only if i ∈ I ′}.

Thus I ′ specifies those points inxj1, xj2, . . . , xjα whereT̃ f (i ) vanishes. We do not care
whatT̃ f (i ) does fori /∈ JI , since we cannot perturbϕ independently at the corresponding
xi . The union of theT̃I ,I ′ over all I ′ givesT̃W̃I

((M × N)\P f,g) (recall that we include

the caseI ′ = ∅) and hence the union of thẽTI ,I ′ over all I andI ′ is T̃((M × N)\P f,g).
Let γ = α − β. In Section 5.4 below, we prove the following.

Proposition 5.5. For a residual set of f∈ Dr , if T̃I ,I ′ is nonempty then it is a codimen-
sion(d − γ )m submanifold of̃T((M × N)\P f,g).

By taking the intersection over allI and I ′ we get a residual set off for which T̃I ,I ′

is a submanifold for allI and I ′. Fix an f in this set. Note thatJI \I ′ hasγ elements.
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Write these asJI \I ′ = { j ′1, j ′2, . . . , j ′γ } with j ′1 < j ′2 < · · · < j ′γ . Define the map
8ϕ,I ,I ′ : M × N → Rγ by

8ϕ,I ,I ′(x, y) = (ϕ(xj ′1), ϕ(xj ′2), . . . , ϕ(xj ′γ ))
†.

Observe that if for somev ∈ T̃I ,I ′ we haveT(x,y)8ϕ,I ,I ′(v) 6= 0, thenT(x,y)8 f,g,ϕ(v) 6= 0.
Thus if T(x,y)8ϕ,I ,I ′(v) 6= 0 for all v ∈ T̃I ,I ′ and all I and I ′, then8 f,g,ϕ is immersive
at (x, y). Thus, to show the immersivity of8 f,g,ϕ on the whole of(M × N)\P f,g, it is
sufficient to show that the image of eachT̃I ,I ′ underT8ϕ,I ,I ′ does not intersect the zero
section inTRγ .

Define the mapρ: Cr (M,R)→ C1(T̃I ,I ′ , TRγ ) by

ρ(ϕ) = T̃8ϕ,I ,I ′ .

Let L I ,I ′ be the zero section inTRγ . In Section 5.5 below we prove

Proposition 5.6. The map evρ is transversal to LI ,I ′ for all I and I ′.

By Corollary C.5,evρ isC1 if r ≥ 3. The dimension of̃TI ,I ′ is 2m+2n−1−(d−γ )m
and the codimension ofL I ,I ′ is γ , and thus

dim T̃I ,I ′ − codimL I ,I ′ = 2m+ 2n− 1− (d − γ )m− γ
≤ d − 2− (d − γ )m− γ
≤ (d − γ )(1−m)− 2

< 0,

sinced ≥ γ andm ≥ 1. Hence by the Parametric Transversality Theorem, there is a
residual set ofϕ for which T̃8ϕ,I ,I ′ is transversal toL I ,I ′ . Now, just as in the proof of the
standard Takens Theorem, we count dimensions: Ifv ∈ T̃I ,I ′ then dimTv(T̃I ,I ′) = 2m+
2n−1−(d−γ )mand hence the dimension of its image is at most 2m+2n−1−(d−γ )m,
whilst the dimension ofTuL I ,I ′ is γ for anyu ∈ L I ,I ′ . Hence ifu = T̃8ϕ,I ,I ′(v) = 0,
thenTv(T̃8ϕ,I ,I ′)(Tv(T̃I ,I ′))+TuL I ,I ′ has dimension at most 2m+2n−1−(d−γ )m+γ .
But from the inequality above, we have 2m+ 2n− 1− (d− γ )m+ γ < 2γ , and hence
Tv(T̃8ϕ,I ,I ′)(Tv(T̃I ,I ′))+TuL I ,I ′ cannot spanTu(TRγ ). Thus ifT̃8ϕ,I ,I ′ is transversal to
L I ,I ′ , then its image cannot intersectL I ,I ′ . Hence for a residual set ofϕ, T̃8ϕ,I ,I ′(v) 6= 0
for all v ∈ T̃I ,I ′ . Taking the intersection over allI , I ′, we get a residual set ofϕ such that
T̃8 f,g,ϕ(v) 6= 0 for all v ∈ ((M × N)\P f,g), and hence8 f,g,ϕ is immersive as required.

5.1.4. Injectivity. To prove the injectivity of8 f,g,ϕ for a residual set, we want to con-
struct a set of manifolds̃WI ,R ⊂ W̃I × (M × N) that play an analogous role to theT̃I ,I ′

above. HereR is a subset ofJI × JI and we want points inW̃I ,R to satisfyxi = x′i ′
for all (i, i ′) ∈ R (where as usualxi = f (i )(x, y) andx′i = f (i )(x′, y′)). Unfortunately
when we attempt to construct̃WI ,R using a similar argument to that for̃TI ,I ′ , we run
into difficulties at pairs of points(x, y), (x′, y′) such that either(x′, y′) is periodic of
period less thand, or such that(x′, y′) = ( f, g)k(x, y) for somek with −d ≤ k ≤ d.
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In particular, the appropriate evaluation map can fail to be transversal at such points.
This lack of transversality is actually to be expected for essentially the same reasons as
discussed above in the context ofWI and the difficulties played by periodic orbits in its
construction. Thus, for instance, if(x′, y′) = ( f, g)k(x, y), thenxi + k = x′i for all i .
Hence if( j + k, j ) ∈ R for some j , then(i + k, i ) ∈ R for all i . The relations inR are
therefore not independent in this case, leading to a loss of transversality. We therefore
need to treat such points separately and will define two other families of submanifolds
W̃Ĩ ,(k) andW̃I ,R′,(q) in which they lie. The treatment of these is very similar to that of

W̃I ,R, but there appears to be no convenient way of unifying all three cases. Furthermore,
whilst in the case ofW̃I ,R andW̃I ,R′,(q) it is sufficient to exclude periodic orbits of period
less thand, in the case ofW̃Ĩ ,(k), we need to exclude all periods up tod + k. This was

the reason why we gave a separate proof of injectivity forP (2d)
f,g × P (2d)

f,g rather than just
for P f,g × P f,g.

First, we constructW̃I ,R. Let R = {(i1, i ′1), (i2, i ′2), . . . , (iβR, i
′
βR
)} be a subset of

JI × JI (possibly empty) and define

W̃I ,R = {((x, y), (x′, y′)) ∈ W̃I × (M × N)\P f,g,

(x′, y′) 6= ( f, g)k(x, y) for anyk such that−d ≤ k ≤ d and

if (i, i ′) ∈ JI × JI thenxi = x′i ′ if and only if (i, i ′) ∈ R}.

Note that this definition is independent of the choice ofJI . Also observe that for some
choices ofR, W̃I ,R must necessarily be empty. Thus, for instance, if(i, i ′) ∈ R and
( j, i ′) ∈ R for somei 6= j we must havexi = x′i ′ = xj , for all ((x, y), (x′, y′)) ∈ W̃I ,R.
On the other hand, by the definition ofJI , xi 6= xj for all i, j ∈ JI such thati 6= j , and
henceW̃I ,R = ∅. However, since we cannot guarantee for anyR thatW̃I ,R is nonempty
for a residual set off we do not bother to exclude thoseR for which W̃I ,R is always
empty. LetαR = α−βR. A similar proof to that of Proposition 5.5, given in Section 5.6
below, leads to

Proposition 5.7. For a residual set of f∈ Dr , if W̃I ,R is nonempty then it is a codi-
mension(d − αR)m submanifold of(M × N)\P f,g × (M × N)\P f,g.

Next, we turn to the case where one of(x, y) or (x′, y′) is periodic. By interchanging
(x, y) and(x′, y′) if necessary, it suffices to restrict attention to(M × N)\P f,g × P f,g.
Let R′ = {(i1, i ′1), (i2, i ′2), . . . , (iβR′ , i

′
βR′ )} be a subset ofJI × {0, . . . ,q − 1} (possibly

empty) and for 1≤ q < 2d define

W̃I ,R′,(q) = {((x, y), (x′, y′)) ∈ W̃I × (M × N),

(x′, y′) is periodic of minimal periodq and

if (i, i ′) ∈ JI × 0, . . . ,q − 1 thenxi = x′i ′ if and only if (i, i ′) ∈ R′},

As before, we do not bother to exclude the cases whereW̃I ,R′,(q) has to be empty. Let
αR′ = α−βR′ . A similar argument to the proof of Proposition 5.6 (found in Section 5.7)
gives the following.
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Proposition 5.8. For a residual set of f∈ Dr , if W̃I ,R′,(q) is nonempty, then it is a
codimension(d − αR′)m+m+ n submanifold of(M × N)\P f,g × (M × N).

The additionalm+ n in the codimension arises from the fact that periodic orbits of
periodq are isolated, and thus have codimensionm+ n in M × N.

Finally, we treat points such that(x′, y′) = ( f, g)k(x, y) for somek 6= 0 such that
−d ≤ k ≤ d. Without loss of generality (interchanging(x, y) and(x′, y′) if necessary),
we may assume thatk > 0. Let Ĩ = { Ĩ1, Ĩ2, . . . , Ĩ α̃} be a partition of{0, . . . ,d+ k−1}.
Observe that the only condition ond in Proposition 5.4 is thatW̃I does not contain
periodic orbits of period< d. Hence this proposition implies that

W̃Ĩ = {(x, y) ∈ (M × N)\P (d+k) f, g: xi = xi ′ if and only if

i, i ′ are in the same element ofĨ }
for a residual set off ∈ Dr is either empty, or a codimension(d+k− α̃)m submanifold
of (M × N)\P (d+k) f, g. We then define

W̃Ĩ ,(k) = {(x, y), ( f, g)k(x, y): (x, y) ∈ W̃Ĩ }.
Since( f, g) is a diffeomorphism, this is a submanifold of(M × N)\P (d+k) f, g× (M ×
N)\P (d+k) f, g wheneverW̃Ĩ is. Its dimension is then the same as that ofW̃Ĩ , and hence
its codimension is(d + k− α̃)m+m+ n.

Since the definitions of the various̃W are somewhat intricate, we give a detailed
argument to show that the union ofP (2d)

f,g ×P (2d)
f,g and the sets̃WI ,R, W̃I ,R′,(q), andW̃Ĩ (k)

over allI , R, R′, k, andq, includes the whole of((M×N)×(M×N))\1, up to an inter-
change of(x, y) and(x′, y′) if necessary. Thus consider an arbitrary((x, y), (x′, y′)) ∈
((M × N) × (M × N))\1. If both (x, y) and (x′, y′) are periodic of period< 2d,
then((x, y), (x′, y′)) ∈ P (2d)

f,g × P (2d)
f,g . If only one is periodic, say without loss of gen-

erality (x′, y′), then if the periodq < d, then ((x, y), (x′, y′)) ∈ W̃I ,R′,(q), with I
determined by the relations amongst{x0, . . . , xd−1} and R′ by the relations between
{x0, . . . , xd−1} and{x′0, . . . , x′q−1}. If the periodq of (x′, y′) is such thatd ≤ q < 2d,

then((x, y), (x′, y′)) ∈ W̃I ,R with I and R determined similarly. If neither(x, y) and
(x′, y′) are periodic of period< 2d, then if(x′, y′) = ( f, g)k(x, y) for somek 6= 0 such
that−d ≤ k ≤ d we have either((x, y), (x′, y′)) ∈ W̃Ĩ ,(k) or ((x′, y′), (x, y)) ∈ W̃Ĩ ,(−k)

for an appropriatẽI , and if(x′, y′) 6= ( f, g)k(x, y), then((x, y), (x′, y′)) ∈ W̃I ,R.
By taking a finite intersection we get a residual set off ∈ Dr such that all theW̃ are

submanifolds. Fix one suchf . For each of theW̃I ,R, W̃I ,R′,(q), andW̃Ĩ ,(k), we shall now
show that there is a residual set ofϕ ∈ A f,g such that their image under8 f,g,ϕ ×8 f,g,ϕ

does not intersect the diagonal inRd × Rd. As usual, we will do this by showing
transversality for an appropriate evaluation map, followed by counting dimensions.

First let us consider̃WI ,R. Fix a particularI andRand recall that we have chosen anf
such thatW̃I ,R is a codimension(d−αR)m submanifold, whereαR = α−βR. Note that
we only need consider the caseβR < α, for if βR ≥ α andW̃I ,R were nonempty, then its
dimension would be 2m+ 2n− (d − (α − βR))m≤ 2m+ 2n− dm≤ d − 1− dm≤
d(1−m)− 1< 0. Hence if we define

JI ,R = {i ∈ JI : (i, i
′) /∈ R for any i ′ ∈ JI },
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we see thatJI ,R is nonempty. Letγ ′ be the number of elements inJI ,R and note that
γ ′ ≥ α − βR. Write JI ,R = { j ′1, j ′2, . . . , j ′γ ′ }, with j ′1 < j ′2 < · · · < j ′γ ′ . Define the map

8ϕ,I ,R: M × N → Rγ ′ by

8ϕ,I ,R(x, y) = (ϕ(xj ′1), ϕ(xj ′2), . . . , ϕ(xj ′
γ ′
))†.

If 8ϕ,I ,R(x, y) 6= 8ϕ,I ,R(x′, y′), then8 f,g,ϕ(x, y) 6= 8 f,g,ϕ(x′, y′). Define the map
σ : Cr (M,R)→ C1(W̃I ,R,Rγ

′ × Rγ ′) by

σ(ϕ)(x, y, x′, y′) = (8ϕ,I ,R(x, y),8ϕ,I ,R(x
′, y′)).

Since for(x, y, x′, y′) ∈ W̃I ,R, the pointsxj ′1, xj ′2, . . . , xj ′
γ ′

are distinct and disjoint from

x′j ′1, x′j ′2, . . . , x′j ′
γ ′

, it is straightforward to show the following.

Proposition 5.9. The map evσ is transversal to the diagonal̂1γ ′ in Rγ
′ ×Rγ ′ for all I

and R.

The proof appears in Section 5.8 below. By Corollary C.3,evσ is C1 if r ≥ 2. The
dimension ofW̃I ,R is 2m+ 2n− (d − aR)m whereαR = α − βR and the codimension
of 1̂γ ′ is γ ′. Thus, sinceγ ′ ≥ αR,

dimW̃I ,R− codim1̂γ ′′ = 2m+ 2n− (d − αR)m− γ ′
≤ d − (d − αR)m− γ ′ − 1

≤ (d − αR)(1−m)− 1

< 0.

Hence, by the Parametric Transversality Theorem, there is a residual set ofϕ for which
σ(ϕ) is transversal tô1γ ′ . Now, once again, we just count dimensions: The dimension
of Tx,y,x′,y′(W̃I ,R) is 2m+ 2n − (d − αR)m and hence the dimension of its image is
less than or equal to 2m+ 2n − (d − αR)m. The dimension ofTz,z1̂γ ′ is γ ′ for any
(z, z) ∈ 1̂γ ′ . Thus if8ϕ,I ,R(x, y) = 8ϕ,I ,R(x′, y′) so thatσ(ϕ)(x, y, x′, y′) ∈ 1̂γ ′ ,
thenTx,y,x′,y′σ(ϕ)(Tx,y,x′,y′(W̃I ,R)) + Tz,z1̂γ ′ has dimension at most 2m+ 2n − (d −
αR)m+ γ ′. From the inequality above 2m+ 2n− (d − αR)m+ γ ′ < 2γ ′, and hence
Tx,y,x′,y′σ(ϕ)(Tx,y,x′,y′(W̃I ,R))+Tz,z1̂γ ′ cannot spanTz,zRγ

′
. Thus ifσ(ϕ) is transversal

to 1̂γ ′ , then it cannot intersect̂1γ ′ . Hence for a residual set ofϕ we have8ϕ,I ,R(x, y) 6=
8ϕ,I ,R(x′, y′) for all (x, y, x′, y′) ∈ W̃I ,R.

Next, we turn toW̃I ,R′,(q). The argument is very similar to that for̃WI ,R. Thus let

J ′I ,R = {i ∈ JI : (i, i
′) /∈ R′ for any i ′ ∈ JI }.

As before, without loss of generality we can restrict ourselves toβR′ < α, and so
assume thatJ ′I ,R is nonempty. Letγ ′ be the number of elements inJ ′I ,R and note that
γ ′ ≥ α − βR. Write J ′I ,R = { j ′1, j ′2, . . . , j ′γ ′ }, with j ′1 < j ′2 < · · · < j ′γ ′ , and define the

map8ϕ,I ,R′ : M × N → Rγ ′ by

8ϕ,I ,R′(x, y) = (ϕ(xj ′1), ϕ(xj ′2), . . . , ϕ(xj ′
γ ′
))†,
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andσ ′: Cr (M,R)→ Cr (W̃I ,R′ , (q),Rγ
′ × Rγ ′) by

σ ′(ϕ)(x, y, x′, y′) = (8ϕ,I ,R′(x, y),8ϕ,I ,R′(x
′, y′)).

If (x, y, x′, y′) ∈ W̃I ,R′,(q), then the pointsxj ′1, xj ′2, . . . , xj ′
γ ′

are distinct andxj ′i 6= x′j for

all j ′i ∈ J ′I ,R and j ∈ {0, . . . ,d − 1}. The latter follows from the fact thatxj ′i 6= x′j
for all j ∈ {0, . . . ,q − 1}, and since(x′, y′) has periodq, x′j = x′j modq for all
j ∈ {0, . . . ,d − 1}. Hence we proceed exactly as above, and in Section 5.9 below we
show the following.

Proposition 5.10. The map ev′σ is transversal to the diagonal̂1γ ′ in Rγ ′ ×Rγ ′ for all
I , R′, and q.

By Corollary C.3,evσ isC1 if r ≥ 2. The dimension of̃WI ,R′,(q) ism+n−(d−αR′)m.
Thus, sinceγ ′ ≥ αR′ ,

dimW̃I ,R− codim1̂γ ′′ = m+ n− (d − αR′)m− γ ′
< d − (d − αR′)m− γ ′ −m− n

≤ (d − αR′)(1−m)−m− n

< 0.

Hence, by the Parametric Transversality Theorem there is a residual set ofϕ for which
σ ′(ϕ) is transversal to 1̂γ ′. Counting dimensions, the dimension of
Tz,z1̂γ ′+Tx,y,x′,y′σ(ϕ)(Tx,y,x′,y′(W̃I ,R′,(q))) is at mostm+n−(d−αR′)m+γ ′which from
the inequality above is strictly less than 2γ ′. Hence ifσ(ϕ) is transversal tô1γ ′ , it cannot
intersect1̂γ ′ and so we conclude that for a residual set ofϕ we have8ϕ,I ,R′(x, y) 6=
8ϕ,I ,R′(x′, y′), and thus8 f,g,ϕ(x, y) 6= 8 f,g,ϕ(x′, y′) for all (x, y, x′, y′) ∈ W̃I ,R′,(q).

Finally,wedealwithW̃Ĩ ,(k).Recall that̃I = { Ĩ1, Ĩ2, . . . , Ĩ α̃} is apartitionof{0, . . . ,d+
k− 1}. Let Ĩ ′ be a subset of̃I defined by

Ĩ ′ = { Ĩ i ∈ Ĩ : Ĩ i ∩ {d, . . . ,d + k− 1} = ∅}.
Let JĨ be a set containing the largest elementj ′i from each Ĩ i ∈ Ĩ . Re-order Ĩ ′

so that j ′1 < j ′2 < · · · < jγ̃ , whereγ̃ is the number of elements iñI ′ . Note that
in forming Ĩ ′ we exclude at mostk elements ofĨ , and henceγ̃ ≥ α̃ − k. Hence if
Ĩ ′ = ∅, we must havẽα − k ≤ 0 and ifW̃Ĩ ,(k) were nonempty, its dimension would be
2m+ 2n− ((d+ k− α)m+m+ n) ≤ m+ n− dm< d(1−m)−m− n < 0. Hence
without loss of generality we can restrict ourselves to thoseĨ such thatγ̃ > 0. We then
define8ϕ, Ĩ ′ : M × N → Rγ̃ by

8ϕ, Ĩ ′(x, y) = (ϕ(xj ′1), ϕ(xj ′2), . . . , ϕ(xj ′
γ̃
))†,

andσ ′′: Cr (M,R)→ Cr (W̃Ĩ ,(k),Rγ̃ × Rγ̃ )
σ ′′(ϕ)(x, y, x′, y′) = (8ϕ, Ĩ ′(x, y),8ϕ, Ĩ ′(x

′, y′)).

A slightly more delicate argument than the previous two propositions then yields
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Proposition 5.11. The map evσ ′′ is transversal to the diagonal̂1γ̃ in Rγ̃ × Rγ̃ for all
Ĩ and k.

The proof is given in Section 5.10 below. By Corollary C.3,evσ ′ is C1 if r ≥ 2. The
dimensions ofW̃Ĩ ,(k) and1̂γ̃ are respectively 2m+ 2n− ((d+ k− α̃)m+m+ n) and
γ̃ , and sincẽα − k ≤ γ̃ ≤ d, the usual computation gives

dimW̃Ĩ ,(k) − codim1̂α = 2m+ 2n− ((d + k− α̃)m+m+ n)− γ̃
< d − dm+ (α̃ − k)m− γ̃ −m− n

≤ (d − γ̃ )(1−m)−m− n

< 0.

Hence, by the Parametric Transversality Theorem there is a residual set ofϕ for which
σ ′′(ϕ) is transversal tô1γ̃ . Then, as above, the dimension ofTx,y,x′,y′(W̃Ĩ ,(k)) is m+n−
((d+k−α̃)m) and the dimension ofTz,z1̂γ̃ is γ̃ . Sincem+n−((d+k−α̃)m)+γ̃ < 2γ̃ ,
the only way thatσ ′′(ϕ) can be transversal tô1γ̃ is by not intersectinĝ1γ̃ . Hence for a
residual set ofϕ, we have8ϕ, Ĩ (x, y) 6= 8ϕ, Ĩ ′(x

′, y′) for all (x, y, x′, y′) ∈ W̃Ĩ ,(k), and

thus8 f,g,ϕ(x, y) 6= 8 f,g,ϕ(x′, y′) for all (x, y, x′, y′) ∈ W̃Ĩ ,(k).
This concludes the proof of Theorem 3.1.

5.2. Embedding the Short Periodic Points

5.2.1. Isolating the Periodic Points.

Proof of Proposition 5.1.This follows very similar lines to the proof of Proposition 4.1,
though it is technically somewhat messier. Our first task, as before, is to show that for a
dense open set off , the periodic orbits of any given period are isolated and hyperbolic. If
(x, y) is periodic under( f, g), then obviouslyy is periodic underg. By hypothesis, such
y are isolated. Fix one suchy, and forq ≥ 1, letBy,q be the set off ∈ Dr (M × N,M)
for which for all k ≥ 1, k < q, the set ofx such that(x, y) is periodic of periodk is a
finite set of isolated points, and such that these points are hyperbolic.

Denote byT1,(x,y) f (k) andT2,(x,y) f (k) the “partial derivatives” off (k), i.e., by defini-
tion T1,(x,y) f (k)(v) = T(x,y) f (k)(v,0) andT2,(x,y) f (k)(u) = T(x,y) f (k)(0,u) for v ∈ Tx M
andu ∈ TyN. Then the eigenvalues ofT(x,y)( f, g)k are the union of the eigenvalues of
T1,(x,y) f (k) andTygk. Since by hypothesisy is a hyperbolic periodic orbit ofg, to show
that(x, y) is hyperbolic it is thus sufficient to show thatT1,(x,y) f (k) has no eigenvalues
that are a root of unity. By default we defineBy,1 = Dr (M × N,M).

Our inductive hypothesis is thatBy,q is open and dense inDr (M × N,M). This
holds trivially for q = 1, so now suppose that it holds for someq > 1. We shall apply
the Parametric Transversality Theorem withρ: By,q → Cr (M × {y},M × M) given
by ρ( f ) = ( f (q), f (0)), so that the evaluation map isevρ( f, x, y) = ( f (q)(x, y), x).
Note thatρ is thus just two components of the mapτ in the previous section. Let
1 = {(x, x): x ∈ M} be the diagonal inM ×M ; we aim to show thatevρ is transversal
to it.
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Let Tf,x,y(evρ)(η,0) = (uq,0). Thus by Corollary C.5, we have

uq =
q∑

i=1

T(xi ,yi ) f (q−i )(η(xi−1, yi−1),0)

=
p∑

i=1

T (k)(T(xi ,yi ) f (p−i )(η(xi−1, yi−1),0),

wherep is the least period of(x, y), T(xj ,yj ) f (0)(u,0) = u and

T (k) =
k∑

j=1

(T1,(x,y) f (p)) j−1,

whereq = kp. If k = 1, T (k) = Id and hence is invertible, otherwise(x, y) is periodic
of period p < q, and hence by our inductive hypothesis none of the eigenvalues of
T1,(x,y) f (p) are roots of unity. The eigenvalues ofT (k) are of the forms(λ) = 1 +
λ + · · · + λk−1 for λ an eigenvalue ofT1,(x,y) f (p), ands(λ)(1− λ) = (1− λk). Thus
s(λ) 6= 0 for λ an eigenvalue ofT1,(x,y) f (p), and so the eigenvalues ofT (k) are nonzero.
HenceT (k) is invertible, and given anyv ∈ Tx M , we can chooseη ∈ TfBq such that
η(xp−1, yp−1) = (T (k))−1(v) andη(xi , yi ) = 0 for i = 0, . . . , p − 2. For such aη,
we haveTf,x,y(evρ)(η,0) = (v,0). Since(v, v) ∈ Tx,x1, we have(0, v) ∈ Tx,x1 +
ImageTf,x,y(evρ). Together the(v,0) and(0, v) generateTx M × Tx M and henceevρ is
transversal to1, as required.

Thus, by the Parametric Transversality Theorem, there is an open and dense subset of
By,q such that( f (q), f (0)) is transversal to1. For such maps the set( f (q), f (0))−1(1) is
a codimensionmsubmanifold ofM×{y}, and hence is a finite number of isolated points.
But ( f (q), f (0))−1(1) is precisely the set of periodic orbits of periodq in M × {y}. To
complete the inductive step we need to show that we can further restrict the set off to
ensure thatT1,(x,y) f (q) has no eigenvalues that are a root of unity; this is done in exactly
the same way as in Proposition 4.1.

We have thus shown thatBy,q+1 is open and dense inBy,q, and sinceBy,q is open
and dense inDr (M × N,M), By,q+1 is also open and dense inDr (M × N,M), thus
completing the inductive step. Now, by taking the intersection of theBy,q overy a periodic
orbit of g, andq < 2d, we obtain an open and dense subsetB2d ofDr (M×N,M)which
has only a finite number of periodic orbits of periodq < 2d, and such that these are
all hyperbolic. Again as in Proposition 4.1 we can easily restrict ourselves to an open
and dense subsetB′2d of B2d for which the eigenvalues of any such periodic orbit are all
distinct. Also, by the Transversal Isotopy Theorem, sufficiently small perturbations to
f ∈ B′2d do not change the number of periodic orbits of each period less than 2d.

Finally, to obtainDr it remains to restrictB′2d further to ensure thatx coordinates
of any two distinct periodic points of periods less than 2d are different. Observe that if
f ∈ B′2d andx is a periodic point of period less than 2d, then by the Implicit Function
Theorem,x depends smoothly onf . Since by the above small perturbations off do not
change the number of such periodic orbits, we see thatDr is open inB′2d. Conversely
if f ∈ B′2d, then using Corollary C.13 we can move thex coordinates of the periodic
points of f as follows: Suppose thatf (xi−1, yi−1) = xi and f (xi , yi ) = xi+1, with
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(xi−1, yi−1) 6= (xi , yi ). Then by Corollary C.13, ifx′i is sufficiently close toxi we can
find an f ′ such that f ′(xi−1, yi−1) = x′i , f ′(x′i , yi ) = xi+1 and f ′ = f at all other
periodic points of f . Thus f ′ has the same periodic orbits asf except that we have
shiftedxi to x′i . This argument fails if(xi , yi ) = (x, y) is a fixed point, but in that case
we can still choosef ′ close to f such thatf ′(x, y) 6= x, and hence(x, y) is no longer a
fixed point of f ′. Hence if f had two (or more) fixed points(x, y) and(x, y′) with the
same first coordinate, we can ensure that(x, y) is the only fixed point off ′ whose first
coordinate isx. Given any f ∈ B′2d we therefore can find an arbitrarily closef ′ all of
whose periodic points of period less than 2d have distinct first coordinates, and thus in
other wordsDr is dense inB′2d.

5.2.2. Embedding the Periodic Points.

Proof of Proposition 5.2.Recall that a sufficient condition forTx,y8 f,g,ϕ to be 1-1 is
for the firstm+ n components ofTx,y8 f,g,ϕ to be linearly independent. Thei th such
component is given byai = Txi ϕ ◦ T(x,y) f (i ) ∈ L(Tx M × TyN, Tϕ(xi )R). Note that
we may write this asai = Txi ϕ ◦ T(xi ,yi )π1 ◦ T(x,y)( f, g)i and thus in effect we are
restricted to observation functions9: M × N → R such thatT(xi ,yi )9 lies in the subset
ofL(Tx M×TyN,R) of the formTxi ϕ ◦T(xi ,yi )π1. The only way thatTxi ϕ can “observe”
TyN is thus viaT2,(x,y) f (i ), in particularTxi ϕ◦T(x,y) f (i )(v,u) = Txi ϕ(T1,(x,y) f (i )(v,0)+
T2,(x,y) f (i )(0,u)). In effect therefore, the proof below shows that we can makeTxi ϕ ◦
T2,(x,y) f (i ) be whatever we want by an appropriate choice ofT2,(xi ,yi ) f at each(xi , yi ).

Suppose(x, y) has minimal periodq. Since(x0, y0), . . . , (xq−1, yq−1) are distinct,
the mapsTx0ϕ, . . . , Txq−1ϕ can be adjusted independently, and similarly forT2,(x0,y0) f,
. . . , T2,(xq−1,yq−1) f . As in Section 4.2, to show that the firstm + n components of
Tx,y8 f,g,ϕ are linearly independent we need to show that ifωa = a0 ∧ · · · ∧ am+n−1

thenωa(e0, . . . ,em+n1) 6= 0 for some basis ofTx M×TyN. Letα(i ) ∈ Rm, A(i ) ∈ Rm×m,
and B(i ) ∈ Rm×n for i = 0, . . . ,q − 1, be the matrices representingTxi ϕ, T1,(xi ,yi ) f
andT2,(xi ,yi ) f with respect to the basesv(i )0 , . . . , v

(i )
m−1 andu(i )m , . . . ,u

(i )
m+n−1 of Txi M and

Tyi N, respectively, where(v(i )j ,u
(i )
j ) = T(x,y)( f, g)i (ej ). As we shall see for a partic-

ular choice of basis (and hence for any basis) and any givenA(i ), ωa(e0, . . . ,em+n−1)

is a polynomial in the coefficients ofα(i ) and B(i ) (it is of course also a polynomial
in the coefficients ofA(i ), but we do not need to vary these, and hence for simplicity
we shall keep them fixed). By Corollary C.18 the mapsϕ 7→ (α(0), . . . , α(q−1)) and
f 7→ (A(0), . . . , A(q−1), B(0), . . . , B(q−1)) are submersive. Thus to prove the lemma all
we need to do is to show that this polynomial is not identically zero, or in other words
that for some( f, ϕ), the correspondingωa 6= 0. As in the proof of Proposition 4.3, we
shall do this by constructing an( f, ϕ) for whichωa = ±a0 ∧ a0 ◦ A∧ · · · ∧ a0 ◦ Am−1.

SinceT1,(x,y) f (q)0 has distinct eigenvalues, we can choose a basis ofTx M consisting of
eigenvectorsv0, . . . , vm−1 of T1,(x,y) f (q)0 , with corresponding eigenvaluesλ0, . . . , λm−1.
Similarly choose a basis ofTyN consisting of eigenvectors ofum, . . . ,um+n−1 of Tygq,
with corresponding eigenvaluesλm, . . . , λm+n−1. Defineuj = 0 for j = 0, . . . ,m− 1;
then for any choice ofvj for j = m, . . . ,m+ n− 1 we get a basise0, . . . ,em+n−1 for
Tx M × TyN defined byej = (vj ,uj ). We shall constructvm, . . . , vm+n−1 below.
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Now definee(i )j for i = 0, . . . ,m+ n − 1, by e(i )j = T(x,y)( f, g)i (ej ). Then since

T(x,y)( f, g)i is an isomorphism,e(i )0 , . . . ,e
(i )
m+n−1 is a basis ofTxi M × Tyi N for eachi .

Denotee(i )j = (v(i )j ,u
(i )
j ), note thatv(i+q)

j = λj v
(i )
j for j = 0, . . . ,m− 1, andu(i+q)

j =
λj u

(i )
j for all j .

Step1. Let f beanymap inD(P f0,g)such thatT1,(xi ,yi ) f0 = T1,(xi ,yi ) f .Sincev(i )0 , . . . , v
(i )
m−1

is a basis forTxi M , we can expandT2,(xi ,yi ) f (u(i )j ) for any for j = m, . . . ,m+ n− 1 as

T2,(xi ,yi ) f (u(i )j ) = B(i+1)
j0

v
(i+1)
0 + · · · + B(i+1)

j,m−1v
(i+1)
m−1 .

This definesB(i )jk for j = m, . . . ,m+ n− 1 andk = 0, . . . ,m− 1, and for alli . Then
define

B̂(0)jk =
λk

λj − λk
(B(1)jk + · · · + B(q)jk ).

Note thatλ0, . . . , λm−1 are eigenvalues ofT1,(x,y) f (q)0 , andλm, . . . , λm+n−1 are eigen-
values ofTygq, and hence by our conditions onf0 andg, all theλi are distinct; thus
λj 6= λk if j 6= k. Next defineB̂(i )jk for all i by

B̂(i+1)
jk = B̂(i )jk + B(i+1)

jk .

Finally constructv(i )j for any i and anyj = m, . . . ,m+ n− 1 by

v
(i )
j = B̂(i )j0

v
(i )
0 + · · · + B̂(i )j,m−1v

(i )
m−1. (5.2.1)

Note that by definition

T2,(xi ,yi ) f (u(i+q)
j ) = B(i+q+1)

j0
v
(i+q+1)
0 + · · · + B(i+q+1)

j,m−1 v
(i+q+1)
m−1 ,

and sincev(i+q)k = λkv
(i )
k for k = 0, . . . ,m− 1 we have

λj T2,(xi ,yi ) f (u(i )j ) = B(i+q+1)
j0

λ0v
(i+1)
0 + · · · + B(i+q+1)

j,m−1 λm−1v
(i+1)
m−1 ,

and so comparing coefficients

λj B
(i+1)
jk = λk B(i+q+1)

jk .

Next we show by induction that

B̂(i )jk =
λk

λj − λk
(B(i+1)

jk + · · · + B(i+q)
jk ). (5.2.2)

This holds fori = 0, by definition, so suppose that it holds for somei > 0. Then

B̂(i+1)
jk = B̂(i )jk + B(i+1)

jk

= λk(λj − λk)
−1(B(i+1)

jk + · · · + B(i+q)
jk )+ B(i+1)

jk

= λk(λj − λk)
−1(Bi+2

jk + · · · + Bi+q
jk + (1− (λj − λk)λ

−1
k )B(i+1)

jk )

= λk(λj − λk)
−1(Bi+2

jk + · · · + Bi+q
jk + λjλ

−1
k B(i+1)

jk )

= λk(λj − λk)
−1(Bi+2

jk + · · · + Bi+q
jk + B(i+q+1)

jk ),
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where the last step follows fromλj B
(i+1)
jk = λk B(i+q+1)

jk . Thus (5.2.2) holds for alli ≥ 0.
But, by definition,

B̂(i+q)
jk = B̂(i )jk + B(i+1)

jk + · · · + B(i+q)
jk

= B̂(i )jk + (λj − λk)λ
−1
k B̂(i )jk

= λjλ
−1
k B̂(i )jk .

In other wordsB̂(i )jk satisfies the same periodicity condition thatB(i )jk does:

λk B̂(i+q)
jk = λj B̂

(i )
jk .

Recall that sinceT1,(xi ,yi ) f0 = T1,(xi ,yi ) f andv(i )0 , . . . , v
(i )
m−1 areeigenvectorsofT1,(xi ,yi ) f0,

we havev(i+q)
k = λkv

(i )
k for k = 0, . . . ,m− 1. Thus for j = m, . . . ,m+ n− 1,

v
(i+q)
j = B̂(i+q)

j0
v
(i+q)
0 + · · · + B̂(i+q)

j,m−1v
(i+q)
m−1

= λj (B̂
(i )
j0
v
(i )
0 + · · · + B̂(i )j,m−1v

(i )
m−1)

= λj v
(i )
j .

Hencev(i+q)
j = λj v

(i )
j for j = 0, . . . ,m+ n− 1, ande(i )j = (v(i )j ,u

(i )
j ) is an eigenvector

of T(xi ,yi )( f, g)q for all j = 0, . . . ,m+ n− 1.
Also sinceT1,(xi ,yi ) f is linear, andT1,(xi ,yi ) f (v(i )k ) = v(i+1)

k for k = 0, . . . ,m− 1, we
have for j = m, . . . ,m+ n− 1

T1,(xi ,yi ) f (v(i )j ) = T1,(xi ,yi ) f (B̂(i )j0
v
(i )
0 + · · · + B̂(i )j,m−1v

(i )
m−1)

= B̂(i )j0
T1,(xi ,yi ) f (v(i )0 )+ · · · + B̂(i )j,m−1T1,(xi ,yi ) f (v(i )m−1)

= B̂(i )j0
v
(i+1)
0 + · · · + B̂(i+1)

j,m−1v
(i )
m−1.

Then

v
(i+1)
j = B̂(i+1)

j0
v
(i+1)
0 + · · · + B̂(i+1)

j,m−1v
(i+1)
m−1

= (B̂(i )j0
+ B(i+1)

j0
)v
(i+1)
0 + · · · + (B̂(i )j,m−1+ B(i+1)

j,m−1)v
(i+1)
m−1

= T1,(xi ,yi ) f (v(i )j )+ T2,(xi ,yi ) f (u(i )j )

= T(xi ,yi )( f )(v(i )j ,u
(i )
j )

and hence

e(i+1)
j = (v

(i+1)
j ,u(i+1)

j )

= T(xi ,yi )( f, g)(v(i )j ,u
(i )
j )

= T(xi ,yi )( f, g)(e(i )j ),

for j = m, . . . ,m+ n− 1; we of course already had this relation forj = 0, . . . ,m− 1.
To conclude, we have shown that withv(i )j defined for j = m, . . . ,m+ n − 1 using
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(5.2.1), it obeys exactly the same relationships asv
(i )
j for j = 0, . . . ,m− 1. Note that

we could have definedv(i )j by v(i )j = (λj Id−T1,(xi ,yi ) f (q))−1T2,(xi ,yi ) f (q)(u(i )j ); however,
we shall need the coordinate-based expression derived above in what follows.

Step 2. Defineα(i )j = Txi ϕ(v
(i )
j ) for i = 0, . . . ,q − 1, j = 0, . . . ,m − 1. Then

we claim thatωa(e0, . . . ,em+n−1) is a polynomial in{α(i )j : i = 0, . . . ,q − 1, j =
0, . . . ,m − 1}. Recall thatωa = a0 ∧ · · · ∧ am+n−1 whereai = Txi ϕ ◦ T(x,y) f (i ).
Thusωa(e0, . . . ,em+n−1) = detα whereαi j = Txi ϕ ◦ T(xi ,yi )π1 ◦ T(x,y)( f, g)i (ej ). But
T(x,y)( f, g)i (ej ) = e(i )j = (v(i )j ,u

(i )
j ), and henceT(xi ,yi )π1 ◦ T(x,y)( f, g)i (ej ) = v(i )j . Thus

αi j = Txi ϕ(v
(i )
j ),

for i, j = 0, . . . ,m+ n− 1. Clearlyαi j = α(i )j for i = 0, . . . ,q− 1, j = 0, . . . ,m− 1,

and so it remains to show that for otheri and j , αi j is a linear combination of theα(i )j .
This follows immediately from the relations

v
(i )
j = B̂(i )j0

v
(i )
0 + · · · + B̂(i )j,m−1v

(i )
m−1,

and

v
(i+q)
j = λj v

(i )
j ,

and of course the linearity ofTxi ϕ.

Step 3. We construct a( f, ϕ) such that the corresponding detα 6= 0. By Corollary C.18,
the mapϕ 7→ (Txi ϕ(v

(i )
j ): i = 0, . . . ,q − 1, j = 0, . . . ,m− 1) is a submersion, and

hence a local surjection. Applying this in a neighbourhood of the mapϕ = 0, we see
that givenδ > 0 sufficiently small we can obtain aϕ such that fori = 0, . . . ,q − 1,
j = 0, . . . ,m− 1,

Txi ϕ(v
(i )
j ) = α(i )j ,

where we defineα(i )j for i = 0, . . . ,q − 1, j = 0, . . . ,m+ n− 1 by

α
(i )
j = δ

{
(λj )

i+ir , if i ≤ s,
(λj )

s+ir , if i > s,

wherem + n = qr + s with 0 < s ≤ q. We extend the definition ofα(i )j to i =
q, . . . ,m+ n− 1 by

α
(i+q)
j = λjα

(i )
j ,

for j = 0, . . . ,m + n − 1. Note that fori, j = 0, . . . ,m + n − 1, we can write
α
(i )
j = a(0)j λ

σ(i )
j whereσ is some permutation of{0, . . . ,m+ n− 1} independent ofj ,

such thatσ(0) = 0. Also observe that sincev(i+q)
j = λj v

(i )
j , we haveTxi ϕ(v

(i+q)
j ) =

λj Txi ϕ(v
(i )
j ) = λjα

(i )
j = α(i+q)

j , and hence by induction

Txi ϕ(v
(i )
j ) = α(i )j ,
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for all i = 0, . . . ,m+ n− 1, and j = 0, . . . ,m− 1. We shall show below that with a
particular choice ofB(i )jk we obtainTxi ϕ(v

(i )
j ) = εα(i )j for j = m, . . . ,m+ n − 1 and

someε > 0.
Next, we shall need to construct af1 ∈ D(P f0,g) such thatT2,(xi ,yi ) f1 = 0 for

i = 0, . . . ,q− 1. We do this as follows: Let(Ui , βi ) be a chart forN centred atyi , such
thatβi (Ui ) is the unit disc inRn. By shrinking theUi if necessary, we may assume that
they are disjoint, and that the only periodic orbit ofg of period less thand contained
in Ui is yi . Let 9i : N → [0,1] be aC∞ function such that9i is identically 1 in a
neighbourhood ofyi , and such that its support is contained inUi . Observe that ifz ∈ Ui

then(1−9i (z))βi (z) ∈ βi (Ui ). Thus we may defineζi : N → N by

ζ(z) =
{
β−1(1−9i (z)βi (z)); if z ∈ Ui ,

z, otherwise.

Note thatζ is Cr andζ = Id outside of the union of theUi . Furthermoreζ(z) = yi

in an open neighbourhood of eachyi . Thus definef1: M × N → M by f1(w, z) =
f0(w, ζ(z)). Then f1(•, z) = f0(•, ζ(z)), and hencef1(•, z) is a diffeomorphism ofM
for all z ∈ N, thus f1 ∈ Dr (M × N,M). Also sinceζ(y) = y for any periodic orbit of
g of period less thand, we havef1(w, z) = f0(w, z) for all (w, z) ∈ P f0,g, and hence
f1 ∈ D(P f0,g). Finally, f1(w, z) is independent ofz for z in the neighbourhood of each
yi and henceT2,(xi ,yi ) f1 = 0 as required.

By Corollary C.18, the mapf 7→ (B(0), . . . , B(q−1)) is submersive onD(P f0,g), and
hence surjective in a neighbourhood off1. Thus given any sufficiently smallε > 0, we
can find f such that fori = 0, . . . ,q − 2,

B(i+1)
j0
= ε

(
α
(i+1)
j

α
(i+1)
0

− α
(i )
j

α
(i )
0

)
,

with α(i )j as above, and

B(q)j0
= ε

(
λj

λ0
− α

(q−1)
j

α
(q−1)
0

)
,

with B(i+1)
jk = 0 for all i = 0, . . . ,q− 1, j = m, . . . ,m+ n− 1, andk = 1, . . . ,m− 1.

Then for all j = m, . . . ,m+ n− 1,

B(1)j0
+ · · · + B(q)j0

= ε

(
λj

λ0
− α

(q−1)
j

α
(q−1)
0

+ α
(q−1)
j

α
(q−1)
0

− α
(q−2)
j

α
(q−2)
0

· · · + α
(1)
j

α
(1)
0

− α
(0)
j

α
(0)
0

)

= ε

(
λj

λ0
− 1

)
,

sincea(0)j = δ for all j = 0, . . . ,m+ n− 1. Thus by (5.2.2),

B̂(0)j0
= λ0(λj − λ0)− 1(B(1)j0

+ · · · + B(q)j0
)

= ελ0(λj − λ0)
−1(λj − λ0)λ

−1
0

= ε,
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for all j = 0, . . . ,m+ n− 1. Next, we show by induction that

B̂(i )j0
= εα

(i )
j

α
(i )
0

.

This holds fori = 0 by the above. Suppose now that it holds for somei > 0. Then,

B̂(i+1)
j0

= B̂(i )j0
+ B(i+1)

j0

= ε
α
(i )
j

α
(i )
0

+ ε
(
α
(i+1)
j

α
(i+1)
0

− α
(i )
j

α
(i )
0

)

= ε
α
(i+1)
j

α
(i+1)
0

,

as required. Since by definitionB(i+1)
jk = · · · = B(i+q)

jk = 0 for k = 1, . . . ,m− 1 and

all i , (5.2.2) also giveŝB(i )jk = 0 for k = 1, . . . ,m− 1.

Finally, we can evaluateTxi ϕ(v
(i )
j ) for j = m, . . . ,m+n−1. Sincev(i )j = B̂(i )j0

v
(i )
0 +

· · · + B̂(i )j,m−1v
(i )
m−1, we have

v
(i )
j = ε

α
(i )
j

α
(i )
0

v
(i )
0

for all j = m, . . . ,m+ n− 1, and hence sinceTxi ϕ(v
(i )
0 ) = α(i )0 , we get

Txi ϕ(v
(i )
j ) = ε

α
(i )
j

α
(i )
0

Txi ϕ(v
(i )
0 ) = εα(i )j .

Thus, as promised, with our choice ofB(i )jk we get

Txi ϕ(v
(i )
j ) = εα(i )j ,

for all i = 0, . . . ,m + n − 1 and j = m, . . . ,m + n − 1. Recall that by definition
Txi ϕ(v

(i )
j ) = α(i )j for all i = 0, . . . ,m+n−1 andj = 0, . . . ,m−1 and thusTxi ϕ(v

(i )
j ) =

cjα
(i )
j for all i, j = 0, . . . ,m + n − 1, wherecj = 1 for j = 0, . . . ,m − 1 and

cj = ε for j = m, . . . ,m + n − 1. Also recall thatα(i )j = α
(0)
j λ

σ(i )
j whereσ is a

permutation of{0, . . . ,m+ n − 1}. Sinceai (ej ) = Txi ϕ(v
(i )
j ) andσ (0) = 0, we have

ai (ej ) = cjα
(0)
j λ

σ(i )
j = a0(ej )λ

σ(i )
j = a0(λ

σ(i )
j ej ). But ej is an eigenvector ofA =

T(x,y)( f, g)q with eigenvalueλj , and soa0(λ
σ(i )
j ej ) = a0(Aσ(i )ej ). Now,e0, . . . ,em+n−1

are a basis ofTx M × TyN, andσ is independent ofj , and henceai = a ◦ Aσ(i ) where
a = a0 = Txϕ ◦ T(x,y)π1. Thus for this choice of( f, ϕ) the firstm+ n components
a0, . . . ,am+n−1 of Tx8 f,ϕ are a permutation ofa0,a0 ◦ A, . . . ,a0 ◦ Am+n−1, and hence,
as claimed,ωa = ±a0 ∧ a0 ◦ A∧ · · · ∧ a0 ◦ Am−1. Sincea0(ej ) = cjα

(0)
j 6= 0 for all j ,

Lemma 4.10 implies thatωa 6= 0, as required.
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5.3. Construction ofW̃I

Define the mapτ : Dr (M × N,M)→ Cd(M × N,Md) by

τ ( f ) = ( f (0), f (1), f (2), . . . , f (d−1)).

We show thatevτ is Cd and compute its tangent map in Corollary C.5 in Appendix C. If
we denote thei th component ofτ by τi , then this gives

Tf,x,yevτi (η,0x,0y) =
i∑

j=1

T(xj ,yj ) f (i− j )(η(xj−1, yj−1),0).

As an immediate consequence, we obtain the following.

Lemma 5.12. Tf,x,y(evτ ) is surjective at all(x, y) /∈ P f,g.

Proof. If (x, y) is not periodic of periodq < d, the points{(xi , yi ): i = 0, . . . ,d− 1}
are distinct, and hence by Corollary C.12 we can find aη ∈ TfDr (M × N,M) such that
η takes on whatever values we want on the(xi , yi ). Thus, given anyvi ∈ Txi M with
1 ≤ i ≤ d − 1, chooseη such thatη(xi−1, yi−1) = vi , η(xi , yi ) = −T(xi ,yi ) f (vi ,0),
andη(xj , yj ) = 0 for j 6= i − 1, i . ThenTf,x,y(evτ )(η,0,0) = (0, . . . , vi , . . . ,0) ∈
Tx0 M × . . . × Txi M . . . × Txd−1 M . Similarly, given anyv0 ∈ Tx0 M , pick η such that
η(x0, y0) = −T(x0,y0) f (v0,0) andη(xj , yj ) = 0 for j 6= 0. Then by Corollary C.5,
Tf,x,y(evτ )(η, v0,0) = (v0,0, . . . ,0). Thus,Tf,x,y(evτ ) is surjective, as claimed.

This gives, as a straightforward corollary, the following.

Proof of Proposition 5.4.Defineν: Dr (M × N,M)→ Cd(M × N, (M × N)d) by

ν( f ) = (Id, ( f, g), ( f, g)2, . . . , ( f, g)d−1).

Let1I be the codimension(d − α)m submanifold ofMd defined by

1I = {(z0, z1, . . . , zd−1) ∈ Md: zi = zi ′ if and only if i ∼I i ′}
andO the codimension 0 (open) submanifold of(M × N)d

O = {(w0, . . . , wd−1) ∈ (M × N)d: wi 6= wi ′ for any i 6= i ′}.
ThenW̃I = (τ ( f ), ν( f ))−1(1I×O). By Corollary C.5,evτ isCd, and a similar argument
shows thatevν is alsoCd. Thus,ev(τ,ν) is Cd, and dim(M × N) − codim(1I × O) =
m+ n− (d − α)m ≤ m+ n < d. SinceO has codimension 0,ev(τ,ν) is transversal to
1I ×O if and only if evτ is transversal to1I for all (x, y) such thatevν( f, x, y) ∈ O; in
other words, all(x, y) such that(x, y) is not periodic under( f, g) with period less than
d. But by Lemma 5.12,Tf,x,y(evτ ) is surjective at all such points, and hence transversal
to any submanifold ofMd. Thusev(τ,ν) is transversal to1I × O, and hence by the
Parametric Transversality Theorem there is a residual set off ∈ D such that(τ ( f ), ν( f ))
is transversal to1I × O, and henceW̃I is a codimension(d − α)m submanifold of
(M × N)\P f,g.
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5.4. Construction ofT̃I ,I ′

Proof of Proposition 5.5.Define

1I ,I ′ = {(u0,u1, . . . ,ud−1) ∈ T1I Md: if i ∈ JI , thenui ∈ 0M if and only if i ∈ I ′},

where 0M is the zero section inT M. Then1I ,I ′ is a codimension(d−γ )m submanifold
of T Md. Define the mapτ ′: Dr (M × N,M)→ Cd−1(T̃(M × N), T Md) by

τ ′( f ) = (T̃ f (0), T̃ f (1), T̃ f (2), . . . , T̃ f (d−1)),

where as usual̃T f (i ) is the restriction ofT f (i ) to T̃ M. Let ν: Dr (M × N,M) →
Cd(M×N, (M×N)d) andO be as in Section 5.3 above. Defineν ′: Dr (M×N,M)→
Cd(T̃(M × N), (M × N)d) by ν ′( f ) = ν( f ) ◦ τM×N , whereτM×N is the tangent bundle
projection. Thus

ν ′( f )(v) = ((x, y), (x1, y1), . . . , (xd−1, yd−1)),

for all v ∈ Tx,y(M × N). Then T̃I ,I ′ = [τ ′( f ), ν ′( f )]−1(1I ,I ′ × O). Lemma C.9 in
Appendix C shows thatev′τ is Cd−1 and hence so isev(τ ′,ν ′). Also dimT̃(M × N) −
codim(1I ,I ′ ×O) = 2m+ 2n− 1− (d− γ )m< d− 1. Thus to prove the proposition
it is sufficient to show thatev(τ ′,ν ′) is transversal to1I ,I ′ ×O and then apply the Para-
metric Transversality Theorem. As in Section 5.3, sinceO has codimension 0,ev(τ ′,ν ′)
is transversal to1I ,I ′ ×O if and only if ev′τ is transversal to1I ,I ′ for all (x, y) such that
(x, y) is not periodic under( f, g) with period less thand. In fact, the next lemma shows
thatevτ ′ is submersive at all such points, and hence is transversal to any submanifold,
as required.

Lemma 5.13. The map Tf,v(evτ ′) is surjective at allv ∈ T̃x,y(M × N) with (x, y) /∈
P f,g.

Proof. If (x, y) is not periodic with period less thand, then the points{(xi , yi ): i =
0, . . . ,d − 1 are distinct. Since( f (i ), gi ) is a diffeomorphism andv 6= 0, we have
vi 6= 0 for all i . Thus by Corollary C.16 we can find aη such thatω(T(xi ,yi )η(vi )) for
i = 0, . . . ,d − 1 takes on whatever values we want. Hence given somewi ∈ Tvi (T M)
for 1≤ i ≤ d− 1, chooseη ∈ TfDr (M × N,M) such thatT(xi−1,yi−1)η(vi−1) = ω(wi ),
T(xi ,yi )η(vi ) = −T(ηi (x,y),0)(T f )(ω(wi ),0) andT(xj ,yj )η(vj ) = 0 for j 6= i − 1, i . Then
Tf,v(evτ ′)(η,0) = (0, . . . , wi , . . . ,0) ∈ Tv0(T M) × · · · × Tvi (T M) · · · × Tvd−1(T M).
Also, given any w0 ∈ Tv0(T M), take η such that T(x0,y0)η(v0) =
−Tη0(x,y),0)(T f )(ω(w0),0) andT(xj ,yj )η(vj ) = 0 for j 6= 0. ThenTf,v(evτ ′)(η,w0) =
(w0, . . . ,0). Thus,Tf,v(evτ ′) is surjective, as required.
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5.5. Transversality ofevρ

Proof of Proposition 5.6.Exactly as in Corollary C.8 we have by Lemma B.11

Tϕ,v(evρ)(ξ,0v) =


ω(Txj ′

1
ξ(vj ′1))

ω(Txj ′
2
ξ(vj ′2))

...

ω(Txj ′
γ ′
ξ(vj ′

γ ′
))

,

wherevj ′i = T(x,y) f ( j ′i )(v), andxj ′i = f ( j ′i )(x, y). By the definition ofTI ,I ′ , the points
xj ′1, xj ′2, . . . , xj ′

γ ′
are all distinct, andvj ′i 6= 0 for i = 1, . . . , γ ′. ThusTϕ,v(evρ) is surjective

by Corollary C.16, and hence in particular it is transversal toL I ,I ′ as required.

5.6. Construction ofW̃I ,R

Proof of Proposition 5.7.Let τ : Dr (M × N,M)→ Cd(M × N,Md) andν: Dr (M ×
N,M)→ Cd(M×N, (M×N)d) be as in Secton 5.3, and defineτ̃ : Dr (M×N,M)→
Cd((M × N)× (M × N),Md × Md) andν̃: Dr (M × N,M)→ Cd((M × N)× (M ×
N), (M × N)d × (M × N)d) by τ̃ ( f ) = τ( f ) × τ( f ) and ν̃( f ) = ν( f ) × ν( f ),
respectively. Thus

τ̃ ( f ) = ( f (0), f (1), f (2), . . . , f (d−1))× ( f (0), f (1), f (2), . . . , f (d−1)),

ν̃( f ) = (Id, ( f, g), ( f, g)2, . . . , ( f, g)d−1)× (Id, ( f, g), ( f, g)2, . . . , ( f, g)d−1),

so that

ν̃( f )(x,y,x′,y′)
= (((x,y), (x1,y1), . . . , (xd−1,yd−1)), ((x

′,y′), (x′1,y
′
1), . . . , (x

′
d−1,y

′
d−1))).

Let

1I ,R = {(z0, . . . , zd−1, z
′
0, . . . , z

′
d−1) ∈ Md × Md: (z0, . . . , zd−1) ∈ 1I , and if

(i, i ′) ∈ JI × JI thenzi = z′i ′ if and only if (i, i ′) ∈ R},
and

O′ = {(w0, . . . , wd−1, w
′
0, . . . , w

′
d−1) ∈ (M × N)d × (M × N)d:

wi 6= wi ′ , w
′
i 6= w′i ′ for any i 6= i ′ andwi 6= w′i ′ for any i, i ′}.

Thus1I ,R is a codimension(d−αR)msubmanifold ofMd×Md, andO′ is a codimension
0 (open) submanifold of(M × N)d × (M × N)d.

ThenW̃I ,R = [τ̃ ( f ), ν̃( f )]−1(1I ,R×O′). By Corollary C.5,evτ̃ is Cd, and a similar
argument shows thatevν̃ is alsoCd. Also dim(M×N)×(M×N)−codim(1I , R×O′) =
2m+2n−(d−αR)m≤ 2m+2n < d. Thus ifev(τ̃ ,ν̃) is transversal to1I ,R×O′, the propo-
sition will follow immediately by the Parametric Transversality Theorem. As in Sec-
tion 5.3, sinceO′ has codimension 0, the transversality ofevν̃ to1I ,R×O′ is equivalent to
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the transversality ofevν̃ to1I ,R at all4 = ( f, x, y, x′, y′) such that̃ν( f )(x, y, x′, y′) ∈
O′. This follows by a slight extension of Lemma 5.12. Thus,ν̃( f )(x, y, x′, y′) ∈ O′ im-
plies that the points{(xi , yi ): i = 0, . . . ,d−1}∪{(x′i , y′i ): i = 0, . . . ,d−1} are disjoint.
Hence as in Lemma 5.12, given anyvi ∈ Txi M , we can find aη ∈ T fDr (M × N,M)
such thatT4(evτ̃ )(η,0,0,0,0) = ((0x0, . . . , vi , . . . ,0xd−1), (0x′0, . . . ,0x′d−1

)) if i > 0 and
T4(evτ̃ )(η, v0,0,0,0) = ((v0,0x1, . . . ,0xd−1), (0x′0, . . . ,0x′d−1

)) if i = 0. Similarly, given
anyv′i ∈ Tx′i M , we can findη′ ∈ TfDr (M × N,M) such thatT4(evτ̃ )(η′,0,0,0,0) =
((0x0, . . . ,0xd−1), (0x′0, . . . , v

′
i , . . . ,0x′d−1

)), if i > 0 and T4(evτ̃ )(η′,0,0, v′0,0) =
((0x1, . . . ,0xd−1), (v

′
0,0x′0, . . . ,0x′d−1

)) if i = 0. The set of all such vectors spansT Md ×
T Md, and henceT4(evτ̃ ) is surjective, as required.

5.7. Construction ofW̃I ,R′,(q)

Proof of Proposition 5.8.This is a simple modification of Proposition 5.7, using also a
part of the proof of Proposition 5.1. First, as in Proposition 5.1, if(x′, y′) has periodq
under( f, g) theny′ must have periodq underg (though not necessarily minimal period
q). By our hypothesis ong, such periodic orbits are isolated, so fix one suchy′.

Instead of̃τ andν̃, we shall usẽτ ′: Dr (M×N,M)→ Cd((M×N)×(M×{y′}),Md×
Mq) andν̃ ′: Dr (M×N,M)→ Cd((M×N)×(M×{y′}), (M×N)d×(M×N)q×M)
given by

τ̃ ′( f ) = ( f (0), f (1), f (2), . . . , f (d−1))× ( f (0), f (1), f (2), . . . , f (q−1)),

ν̃ ′( f ) = (Id, ( f, g), ( f, g)2, . . . , ( f, g)d−1)

× (Id, ( f, g), ( f, g)2, . . . , ( f, g)q−1)× f (q).

The additional termf (q) in ν̃ ′ will be used to ensure the periodicity of(x′, y′). Let

1I ,R′ = {(z0, . . . , zd−1, z
′
0, . . . , z

′
q−1) ∈ Md × Mq: (z0, . . . , zd−1) ∈ 1I , and

if (i, i ′) ∈ JI × {0, . . . ,q − 1} thenzi = z′i ′ if and only if (i, i ′) ∈ R′},
and

Oq = {(w0, . . . , wd−1, w
′
0, . . . , w

′
q−1, z

′
q) ∈ (M × N)d × (M × N)q × M :

wi 6= wi ′ for any i 6= i ′, wi 6= w′i ′ for any i, i ′,
w′i 6= w′i ′ for any i 6= i ′ such that 0≤ i, i ′ < q, and

π1(w
′
0) = z′q},

whereπ1: M × N → M is projection onto the first factor. Thus1I ,R′ is submanifold of
Md × Mq of dimension(α + q − βR′)m, and hence of codimension(d + q)m− (α +
q − βR′)m = (d − αR′)m, whilstOq is a codimensionm submanifold of(M × N)d ×
(M × N)q × M . Hence1I ,R′ ×Oq has codimension(d + 1− αR′)m.

Note that ifevν̃ ′( f, x, y, x′, y′) ∈ Oq, then( f, g)q(x′, y′) = ( f (q)(x′, y′), gq(y′)) =
(x′, y′), but ( f, g)i (x′, y′) 6= (x′, y′) for all i = 1, . . . ,q − 1, and hence(x′, y′) is
periodic of minimal periodq. ThusW̃I ,R′,(q) = [τ̃ ′( f ), ν̃ ′( f )]−1(1I ,R′ × Oq). Hence
if (τ̃ ′( f ), ν̃ ′( f )) is transversal to1I ,R′ × Oq, then W̃I ,R′,(q) will be a codimension
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(d + 1 − αR′)m submanifold of(M × N) × (M × {y′}), and hence a codimension
(d − αR′)m+m+ n submanifold of(M × N)× (M × N).

As in Section 5.6,evτ̃ ′ andevν̃ ′ areCd. Also dim(M×N)×(M×N)−codim(1I ,R′ ×
Oq) = 2m + 2n − (d − αR′)m ≤ 2m + 2n < d. Thus if ev(τ̃ ′,ν̃ ′) is transversal to
1I ,R′ × Oq, the proposition will follow immediately by the Parametric Transversality
Theorem. Unfortunately, sinceevν̃ ′ is not automatically transversal toOq, it is no longer
sufficient to concentrate just onevτ̃ ′ , as it was in Section 5.6. We thus proceed as follows.

First, observe that ifevν̃ ′( f, x, y, x′, y′) ∈ Oq, then thepoints{(xi , yi ): i = 0, . . . ,d−
1} ∪ {(x′i , y′i ): i = 0, . . . ,q − 1} are all disjoint. Thus, as in the proof of Proposi-
tion 5.7, given anyvi ∈ Txi M , i > 0, we can find aη ∈ TfDr (M × N,M) such
that η(xi−1, yi−1) = vi , η(xi , yi ) = −T(xi ,yi ) f (vi ,0), η(xj , yj ) = 0 for j 6= i − 1, i
and η(x′j , y′j ) = 0 for j = 0, . . . ,q − 1. Then if we denote4 = ( f, x, y, x′, y′),
we haveT4(evτ̃ ′)(η,0,0,0,0) = ((0x0, . . . , vi , . . . ,0xd−1),0z′) where 0z′ = (0x′0, . . . ,

0x′q−1
). Furthermore, since( f, g)i = ( f (i ), gq), we haveT4(evν̃ ′)(η,0,0,0,0) =

((0x0,0y0), . . . , (vi ,0yi ), . . . , (0xd−1,0yd−1), (0w′ ,0x′q)) where 0w′ = ((0x′0,0y′0),

. . . , (0x′q−1
,0y′q−1

)). Similarly, given anyv0 ∈ Tx0 M , pick η such thatη(x0, y0) =
−T(x0,y0) f (v0,0), η(xj , yj ) = 0 for j 6= 0 andη(x′j , y′j ) = 0 for j = 0, . . . ,q −
1. ThenT4(evτ̃ ′)(η, v0,0,0,0) = ((v0, . . . ,0xd−1),0z′) and T4(evν̃ ′)(η, v0,0,0,0) =
((v0,0y0), . . . , (0xd−1,0yd−1), (0w′ ,0x′q)). Now,((u0, . . . ,ud−1),0w′ ,0x′q) ∈ TOq for any
(u0, . . . ,ud−1) with ui ∈ Twi (M × N) and hence we see that Image(T4(evτ̃ ′,ν̃ ′)) +
T(1I ,R′ ×Oq) containsT Md × {0z′ } × T(M × N)d × {0w′ } × {0x′q}.

Similarly, given v′i ∈ Tx′i M , we can find aη ∈ TfDr (M × N,M) such that
T4(evτ̃ ′)(η,0,0,0,0) = (0z, (0x′0, . . . , v

′
i , . . . ,0x′q−1

)) if i > 0, andT4(evτ̃ ′)(η,0,0, v′0,
0) = (0z, (v

′
0,0x′0, . . . ,0x′q−1

)) if i = 0, where 0z = (0x0, . . . ,0xd−1). As before we have
T4(evν̃ ′)(η,0,0,0,0) = (0w, ((0x′0,0y′0), . . . , (v

′
i ,0yi ), . . . , (0x′q−1

,0y′q−1
)),0x′q) if i > 0,

and T4(evν̃ ′)(η,0,0, v′0,0) = (0w, ((v′0,0y′0), . . . , (0x′q−1
,0y′q−1

)),0x′q) if i = 0, where
0w = ((0x0,0y0), . . . , (0xd−1,0yd−1)).

However, at this stage we cannot proceed as above, since it is not true that
(0w, (u′0, . . . ,u

′
q−1),0x′0) ∈ TOq for any(u′0, . . . ,u

′
q−1)with u′i ∈ Tw′i (M×N). Instead

we have(0w, (u′0, . . . ,u
′
q−1), π1(u′0)) ∈ TOq. Fortunately, by the proof of Proposition

5.1, if f ∈ Dr and (x′, y′) is periodic of periodq, then given anyv′q ∈ Tx′q M , we
can findη ∈ TfDr (M × N,M) such thatTf,x′,y′(evρ)(η,0) = (v′q,0) whereρ( f ) =
( f (q), f (0)). Furthermore, since the set{(xi , yi ): i = 0, . . . ,d − 1} is disjoint from
{(x′i , y′i ): i = 0, . . . ,q}, we can chooseη(xi , yi ) = 0 for all i . For such aη, we then have
T4(evν̃ ′)(η,0,0,0,0) = (0w, ((0x′0,0y′0), ũ1, . . . , ũq−1), v

′
q) for some{ũ′1, . . . , ũ′q−1}

(depending onv′q). So now, given any((u′0, . . . ,u
′
q−1), v

′
q), chooseη ∈ TfDr (M×N,M)

such thatT4(evν̃ ′)(η,0,0,0,0) = (0w, ((0x′0,0y′0), ũ
′
1, . . . , ũ

′
q−1), v

′
q−π1(u′0)) for some

{ũ′1, . . . , ũ′q−1}. Since we have(0w, (u′0,u
′
1 − ũ′1, . . . ,u

′
q−1 − ũ′q−1), π1(u′0)) ∈ TOq.

Adding these together, we conclude that(0w, ((u′0, . . . ,u
′
q−1), v

′
q)) ∈

Image(T4(evν̃ ′))+ TOq as required.
We thus conclude that Image(T4(ev(τ̃ ′,ν̃ ′))+ T(1I ,R′ ×Oq) contains{0z} × T Md ×

{0w}×T(M×N)d×T M. Since we have already shown that it containsT Md×{0z′ }×
T(M × N)d × {0w′ } × {0x′q}, we conclude thatev(τ̃ ,ṽ′) is transversal to1I ,R′ × Oq, as
required.
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5.8. Transversality ofevσ

Proof of Proposition 5.9.As in Corollary C.3, we have

T4(evσ )(x,0,0,0,0) =



ξ(xj ′1)

ξ(xj ′2)

...

ξ(xj ′
γ ′
)

,

ξ(x′j ′1)
ξ(x′j ′2)
...

ξ(x′j ′
γ ′
)


.

By the definition ofW̃I ,R the pointsxj ′1, xj ′2, . . . , xj ′γ are distinct and{xj ′1, xj ′2, . . . , xj ′
γ ′
} ∩

{x′j ′1, x′j ′2, . . . , x′j ′
γ ′
} = ∅. Thus, using Corollary C.12, given anyi ∈ JI ,R, we can find a

ξi ∈ Tϕ(Cr (M,R)) such thatT4(evσ )(ξ,0,0,0,0) = (ei ,0), whereei is the i th unit
vector inTRγ ′′ . Also (ei ,ei ) ∈ T1̂γ ′′ for any i , and hence Image(T4(evσ ))+ T1̂γ ′′ =
TRγ ′′ × TRγ ′′ , as required.

5.9. Transversality ofevσ ′

Proof of Proposition 5.10.As in Section 5.8,

T4(evσ ′)(ξ,0,0,0,0) =



ξ(xj ′1)

ξ(xj ′2)

...

ξ(xj ′
γ ′
)

,

ξ(x′j ′1)
ξ(x′j ′2)
...

ξ(x′j ′
γ ′
)


.

If (x, y, x′, y′) ∈ W̃I ,R′,(q) are distinct and{xj ′1, xj ′2, . . . , xj ′
γ ′
} ∩ {x′0, x′1, . . . , x′q−1} =

∅. But (x′, y′) is periodic with periodq, and hencex′j ∈ {x′0, x′1, . . . , x′q−1} for any
j ∈ { j ′1, j ′2, . . . , j ′γ ′ }. Hence{xj ′1, xj ′2, . . . , xj ′

γ ′
} ∩ {x′j ′1, x′j ′2, . . . , x′j ′

γ ′
} = ∅. Thus, as

in Section 5.8, given anyi ∈ JI ,R′ , we can find aξi ∈ Tϕ(Cr (M,R)) such that
T4(evσ ′)(ξ,0,0,0,0) = (ei ,0), and thus Image(T4(evσ ′)) + T1̂γ ′′ = TRγ ′′ × TRγ ′′

as required.

5.10. Transversality ofevσ ′′

Proof of Proposition 5.11.As usual, we have

T4(evσ ′′)(ξ,0,0,0,0) =



ξ(xj ′1)

ξ(xj ′2)

...

ξ(xj ′
γ ′
)

,

ξ(x′j ′1)
ξ(x′j ′2)
...

ξ(x′j ′
γ ′
)


,

with x′j = xj+k. If (x, y, x′, y′) ∈ W̃Ĩ ,(k), then the points{xj ′1, xj ′2, . . . , xj ′
γ̃
} are distinct.

By Corollary C.12, given anyj ′i ∈ JĨ , we can find aξj ∈ Tϕ(Cr (M,R)) such that
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ξj ′i (xj ′i ) = 1 andξj ′i (xj ) = 0 for all j ∈ {0, . . . ,d + k − 1} such thatxj ′i 6= xj , in other

words, such thatj /∈ Ĩ i . In particularxj ′i 6= xj ′
i ′

for all j ′i ′ ∈ JĨ such thati 6= i ′. Thus

T4(evσ ′′)(ξj ′i ,0,0,0,0) = (ei ,u(i )), whereei is thei th unit vector inTRγ̃ and the(i ′)th
component ofu(i ) is 1 if and only if xj ′i = x′j ′

i ′
= x j ′i ′+k. But xj ′i = xj ′

i ′+k
if and only if

j ′i
′ + k ∈ Ĩ i , and thus

u(i ) =
∑

j ′
i ′ : j ′

i ′+k∈ Ĩ i

ei ′ .

Now, recall thatj ′i is the maximal element of̃Ii andk > 0. Thus if j ′i ′ + k ∈ Ĩ i , then
j ′i ′ < j ′i and hencei ′ < i . In particularu(1) = 0, and henceT4(evσ ′′)(ξ1,0,0,0,0) =
(e1,0). Now proceed by induction. Our inductive hypothesis is that for a giveni with
1 < i < γ̃ , we have(ei ′ ,0) ∈ T1̂γ̃ + Image(T4(evσ ′′)) for all i ′ such thati ′ < i .
Then by the above,(ei ,u(i )) ∈ Image(T4(evσ ′′)). Since j ′i ′ + k ∈ Ĩ implies i ′ < i ,
we see thatu(i ) is the sum of a set ofei ′ over some set ofi ′ < i . Hence the inductive
hypothesis implies that(u(i ),0) ∈ T1̂γ̃ + Image(T4(evσ ′′)). But (u(i ),u(i )) ∈ T1̂γ̃ .
Hence(ei ,0) = (ei ,u(i ))+(u(i ),0)−(u(i ),u(i )) ∈ T1̂γ̃+Image(T4(evσ ′′)), as required.

Thus by induction,(ei ,0) ∈ T1̂γ̃ + Image(T4(evσ ′′)) for all i , and since(ei ,ei ) ∈
T1̂γ̃ , we conclude thatT1̂γ̃ + Image(T4(evσ ′′)) = TRγ̃ × Rγ̃ , and henceevσ ′′ is
transversal toT1̂γ̃ , as required.

5.11. Periodically Forced Differential Equations

The proof of Theorem 3.3 has exactly the same structure as the proof of Theorem 3.1, re-
placing the mapsf (i ) by f τ i . Essentially the only modification required is that instead of
showing thatevτ ,evτ ′ are surjective on appropriate domains (as in Sections 5.3 and 5.4),
we need to demonstrate the surjectivity of the maps(9, x, θ) 7→
(x, f τ (x, θ), . . . , f τ(d−1)(x, θ)) and(9, v) 7→ (x, T f τ (v), . . . , T f τ(d−1)(v)). This fol-
lows by straightforward extensions of Lemmas 31.7 and 31.11 of Abraham and Robbin
[1967]. Similar modifications are also required to Sections 5.6 and 5.7.

6. Proof of the Bundle Embedding Theorem

The proof of Theorem 3.2 is closely related to the proof of the Forced Takens Theorem
(Theorem 3.1) given in Section 5. Thus, the first part of the argument is to show that
for a residual set off andϕ, T̃8 f,g,ϕ is transversal to the zero section inTRd and
8 f,g,ϕ ×8 f,g,ϕ is transversal to the diagonal inRd × Rd. The basic idea behind this is
the same as that in Section 5; though there are a number of useful simplifications: (a) we
can completely ignore periodic orbits; (b) when analysing8 f,g,ϕ×8 f,g,ϕ we can restrict
to pairs of points(x, y) and(x′, y′) such thaty = y′; (c) we do not need to treat pairs
such that(x′, y′) = ( f, g)k(x, y); and (d) when proving immersivity we can restrict to
vectors of the form(v,0y) and, sinceT f (i )(v,0y) 6= 0 if v 6= 0, we need not bother with
the construction of thẽTI ,I ′ .

Once we have shown the transversality ofT̃8 f,g,ϕ and8 f,g,ϕ×8 f,g,ϕ , we complete the
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proof by treatingy as a parameter and applying the Parametric Transversality Theorem
to the mapsy 7→ T̃8 f,g,ϕ,y andy 7→ 8 f,g,ϕ,y ×8 f,g,ϕ,y. This shows that̃T8 f,g,ϕ,y and
8 f,g,ϕ,y×8 f,g,ϕ,y are transversal to the zero section inTRd and the diagonal inRd×Rd,
respectively, for a residual set ofy. By counting dimensions, this immediately implies
the immersivity and injectivity of8 f,g,ϕ,y, as required.

Exactly as in Section 5, the main obstacle is generated by points such thatxi = xj

with i 6= j . Unfortunately, we cannot use exactly the same approach as we did there to
deal with these points. To explain this, consider just the case of immersivity. Suppose
we try and proceed as before, so that we define submanifoldsW̃I each characterized
by the set of pairs(i, j ) for which xi = xj . We can certainly then show thatT8ϕ,I is
transversal to the zero section inTRα and thatW̃I ,y = W̃I ∩ (M×{y}) is a codimension
(d − α)m submanifold for a residual set ofy. Thus it seems plausible that generically
8ϕ,I should be immersive oñWI ,y if α ≥ 2(m− (d− α)m), which is always satisfied if
d ≥ 2m+ 1. The problem arises in the definition of the mapy 7→ T̃8ϕ,I ,y. The domain
of T̃8ϕ,I ,y is TW̃I ,y = TW̃I ∩ (T M × {y}) and hence depends ony. This makes it
impossible to apply the Parametric Transversality Theorem directly. A similar problem
arises withy 7→ 8ϕ,I ,R × 8ϕ,I ,R. One way around this difficulty would be to extend
the Parametric Transversality Theorem to cover this case. We shall use a more direct
approach that avoids this issue by combining the construction of theW̃I with the proof
of transversality. As we have already remarked in the introduction to Section 5, the same
method can be used there.

6.1. Preliminaries

As in the previous section, we only need prove the theorem for sufficiently larger ; in
this caser ≥ 2n. However, the passage to lower degrees of smoothness is not quite so
trivial in this case, and hence is given in a separate section (Section 6.4).

Recall that8 f,g,ϕ,y(x) = 8 f,g,ϕ(x, y); sinceg is assumed fixed, we shall drop it from
the notation and write8 f,ϕ,y(x) and8 f,ϕ , respectively. Since we only need to prove the
theorem for a set ofy of full Lebesgue measure, we can completely ignore the closure
P̄g of the set of periodic orbits ofg of period less thand. Thus instead of working with
(M × N)\P f,g, we considerM × (N\P̄g). For notational convenience, we shall define
Ñ = N\P̄g. By our hypothesis this is an open dense submanifold ofN, of Lebesgue
measure 1.

Note that since8 f,g,ϕ,y depends continuously ony and embeddings are open in
Cr (M,Rd), the set ofy such that8 f,g,ϕ,y is an embedding is open in both̃N and N.
Furthermore a set of Lebesgue measure is necessarily dense (as otherwise its complement
would contain an open set and thus have strictly positive measure). Thus it suffices to
prove that the set ofy such that8 f,g,ϕ,y is an embedding has full Lebesgue measure in
Ñ (and hence inN) for a residual set off andϕ.

As in Section 5, letI = {I1, I2, . . . , Ia} be a partition of{0, . . . ,d − 1}, and∼I be
the equivalence relation defined byi ∼I i ′ if and only if i, i ′ are in the same element of
the partition. Recall thatJI is a set containing precisely one element from eachIk for
k = 1, . . . , α. As usual, write these asJI = { j1, j2, . . . , jα} with j1 < j2 < · · · < jα.
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6.2. Immersivity of8

As in Section 5, the basic idea is to makeT̃8 f,ϕ transversal to the zero section inTRd

and then count dimensions. For a giveny ∈ Ñ, define the maps8 f,ϕ,I : M × N → Rα
and8 f,ϕ,I ,y: M × {y} → Rα by

8 f,ϕ,I (x, y) = (ϕ(xj1), ϕ(xj2), . . . , ϕ(xjα ))
†,

8 f,ϕ,I ,y(x) = 8 f,ϕ,I (x, y),

wherexi = f (i )(x, y). Observe that if for somev ∈ T̃x M we have8 f,ϕ,I ,y(v) 6= 0, then
Tx8 f,ϕ,y(v) 6= 0. Hence if for allv ∈ T̃x M , we haveTx8 f,ϕ,I ,y(v) 6= 0 for someI , then
8 f,ϕ,y is immersive atx.

Define the mapρ: Dr (M × N,M)× Cr (M,R)→ Cn−1(T̃ M × Ñ, TRα) by

ρ( f, ϕ)(v, y) = Tx8 f,ϕ,I ,(v,0y)

= Tx8 f,ϕ,I ,y(v),

and as usual letL I be the zero section inTRα. Sincer ≥ 2n, evρ is Cn−1 by Lemma
C.9. As in Section 5.3, defineτ : Dr (M × N,M) → Cn(M × N,Md) by τ( f ) =
( f (0), f (1), f (2), . . . , f (d−1)). Let1I be the codimension(d− α)m submanifold ofMd

defined as before by

1I = {(z1, z2, . . . , zd) ∈ Md: zi = zi ′ if and only if i ∼I i ′}.

Note that since we replace(M×N)\P f,g by M×Ñ = M×(N\P̄g), which is independent
of f , we can dispense withν andO. Then Corollary C.5 implies thatevτ is Cn. Define
τ ′: Dr (M × N,M)→ Cn(T̃ M× Ñ,Md) by τ ′( f ) = τ( f )◦ τM whereτM : T̃ M 7→ M
is the tangent bundle projection. Thenevτ ′ is alsoCn. Finally defineρ ′: Dr (M×N,M)×
Cr (M,R)→ Cn(T̃ M × Ñ, TRα × Md) by

ρ ′( f, ϕ)(v, y) = (ρ( f, ϕ)(v, y), τ ′( f )(v, y))

= (Tx8 f,ϕ,I ,y(v), τ ( f )(x, y)),

wherex = τM(v), i.e.,v ∈ Tx M .

Proposition 6.1. The map evρ ′ is transversal to LI ×1I for all I .

Proof. Suppose thatevρ ′( f, ϕ, v, y) ∈ L I × 1I . Then ρ( f, ϕ)(v, y) ∈ L I , so
ρ( f, ϕ)(v, y) = 0, and we may writeevρ ′( f, ϕ, v, y) = (0, z) for somez ∈ 1I .
SinceP f,g ⊂ M × Pg, if (x, y) ∈ M × Ñ then(x, y) /∈ P f,g. Lemma 5.12 thus im-
plies thatTf,v,y(evτ ′) is surjective and hence givenu′ ∈ Tz1I , there exists a(η,w) ∈
TfDr (M×N,M)×T(T̃ M) such thatTf,v,y(evτ ′)(η,w,0y) = u′. Let4 = ( f, ϕ, v, y).
Then for anyξ ∈ TϕCr (M,R), we have by linearity

T4(evρ)(η, x, w,0y) = T4(evρ)(η,0ϕ, w,0y)+ T4(evρ)(0f , ξ,0v,0y)

= u0+ T4(evρ)(0f , ξ,0v,0y),
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for someu0 ∈ T(TRα), and just as in Section 5.5,

T4(evρ)(0f , ξ,0v,0y) =


ω(Txj1

ξ(vj1))

ω(Txj2
ξ(vj2))
...

ω(Txjα
ξ(vjα ))

,
wherexj = f ( j )(x, y) as usual but nowvj = T(x,y) f ( j )(v,0y). Sinceτ( f )(x, y) ∈ 1I ,
the pointsxj1, xj2, . . . , xjγ are all distinct. For a fixedy, f ( ji ) is a diffeomorphism and
‖v‖ = 1 and hencevji 6= 0 for i = 1, . . . , γ . Thus, by Corollary C.16, given any
u ∈ T0L I , there exists aξ ∈ TϕCr (M,R) such thatT4(evρ)(0f , ξ,0v,0y) = u − u0.
HenceT4(evρ)(η, ξ, w,0y) = u and soT4(evρ ′)(η, ξ, w,0y) = (u,u′). ThusT4(evρ ′)
is surjective, and in particular transversal toL I ×1I , as required.

Observe that dim̃T M × Ñ − codimL I ×1I = 2m− 1+ n− (d − α)m− a, and

2m− 1+ n− (d − α)m− a ≤ d − 2− (d − α)m− a+ n

≤ (d − α)(1−m)− 2+ n

< n− 1, (6.2.1)

andevρ ′ is Cn−1. Thus by the Parametric Transversality Theorem there is a residual set
of ( f, ϕ) ∈ Dr (M × N,M) × Cr (M,R) for whichρ ′( f, ϕ) is transversal toL I ×1I .
Fix any such( f, ϕ), and defineρ ′′: Ñ → Cn−1(T̃ M, TRα × Md) by

ρ ′′(y)(v) = ρ ′( f, ϕ)(v, y)

= (Tx8 f,ϕ,I ,y(v), τ ( f )(x, y)).

Thenevρ ′′(y, v) = ρ ′( f, ϕ)(v, y) and henceevρ ′′ is transversal toL I ×1I . Alsoevρ ′′ is
Cn, and using (6.2.1), we have dim̃T M−codimL I×1I = 2m−1−(d−α)m−α < 0<
n. Therefore, by the Measure Theoretic Finite-Dimensional Parametric Transversality
Theorem (Appendix A),ρ ′′(y) is transversal toL I × 1I for a set of full Lebesgue
measure ofy in Ñ.

The dimension of̃T M is 2m−1 and that ofL I ×1I isα+dm−(d−α)m= (m+1)α.
By (6.2.1), 2m− 1 < (d − α)m+ α and hence dim̃T M + dim L I ×1I = 2m− 1+
(m+ 1)α < (d − α)m+ α + (m+ 1)α = 2α + dm = dimTRγ × Md. Hence, as
usual, if the image of̃T M intersectedL I ×1I , the intersection could not be transversal.
Thus for a residual set ofy, the image ofT̃ M does not intersectL I × 1I . Hence,
eitherT8 f,ϕ,I ,y(v) /∈ L I or τ( f )(x, y) /∈ 1I . But for every(x, y) ∈ M × Ñ, we have
τ( f )(x, y) ∈ 1I for someI , and henceT8 f,ϕ,I ,y(v) /∈ L I for a residual set ofy, for
all v ∈ Tx M , for all x ∈ M for someI . But if Tx8 f,ϕ,I ,y(v) /∈ L I , thenTx8 f,ϕ,y(v) 6= 0
and hence8 f,ϕ,y is immersive, as required.

6.3. Injectivity of8

As in Section 5, we aim to make8 f,ϕ ×8 f,ϕ transversal to the diagonal1̂ in Rd ×Rd.
Let R= {(i1, i ′1), (i2, i ′2), . . . , (iβR, i

′
βR
)} be a subset ofJI × JI (possibly empty) and as
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before define

JI ,R = {i ∈ JI : (i, i
′) /∈ R for any i ′ ∈ JI }.

Note that, unlike in Section 5, for the moment we cannot exclude the caseJI ,R = ∅.
Let γ ′ be the number of elements inJI ,R and note thatγ ′ ≥ αR = α − βR. If γ ′ > 0,
write JI ,R = { j ′1, j ′2, . . . , j ′γ ′ }, with j ′1 < j ′2 < · · · < j ′γ , and as in Section 5.1, define

the maps8 f,ϕ,I ,R: M × N → Rγ ′ and8ϕ,y,I ,R: M × {y} → Rγ ′ by

8 f,ϕ,I ,R(x, y) = (ϕ(xj ′1), ϕ(xj ′2), . . . , ϕ(xj ′
γ ′
))†,

8 f,ϕ,I ,R,y(x) = 8 f,ϕ,I ,R,y(x, y).

If γ ′ = 0 define8ϕ,y,I ,R: M × {y} → R0 = {0} by 8 f,ϕ,I ,R(x, y) = 0 for all x, y.
Observe that if8 f,ϕ,I ,R(x, y) 6= 8 f,ϕ,I ,R(x′, y) then8 f,g,ϕ(x, y) 6= 8 f,g,ϕ(x′, y). Thus
if for all (x, x′) ∈ (M × M)\1, we have8 f,ϕ,I ,R,y(x) 6= 8 f,ϕ,I ,R,y(x′) for someI , R,
then8 f,ϕ,y is injective onM .

Defineσ : Dr (M × N,M) × Cr (M,R) → Cn((M × M)\1 × Ñ,Rγ ′ × Rγ ′) and
τ : Dr (M × N,M)→ Cn((M × M)\1× Ñ,Md × Md) by

σ( f, ϕ)(x, x′, y) = (8ϕ,I ,R(x, y),8ϕ,I ,R(x
′, y)),

τ ( f )(x, x′, y) = ((x, f (1)(x, y) . . . , f (d−1)(x, y)), (x′, f (1)(x′, y) . . . , f (d−1)(x′, y))),

andσ ′: Dr (M × N,M)× Cr (M,R)→ Cn((M ×M)\1× Ñ,Rγ ′ ×Rγ ′ ×Md ×Md)

by

σ ′( f, ϕ) = (σ ( f, ϕ), τ ( f )).

By Corollaries C.5 and C.6,evτ andevσ areCn (sincer ≥ 2n). From Section 5.6, recall
that1I ,R is a codimension(d − αR)m submanifold ofMd × Md defined by

1I ,R = {(z0, . . . , zd−1, z
′
0, . . . , z

′
d−1) ∈ Md × Md: (z0, . . . , zd−1) ∈ 1I , and

if (i, i ′) ∈ JI × JI thenzi = z′i ′ if and only if (i, i ′) ∈ R},
and let1̂γ ′ be the diagonal inRγ ′′ × Rγ ′′ .

Proposition 6.2. The map evσ ′ is transversal to1̂γ ′ ×1I ,R for all I , R.

Proof. Suppose thatevσ ′(4) ∈ 1̂γ ′′ × 1I ,R for some4 = ( f, ϕ, x, x′, y), with
(x, x′, y) ∈ (M×M\1)× Ñ. First we show that ifτ( f )(x, x′, y) ∈ 1I ,R, then given any
(ū, ū′) = ((u0,u1, . . . ,ud−1), (u′0,u

′
1, . . . ,u

′
d−1)) ∈ ((Tx0 M×· · ·×Txd−1 M)×(Tx′0 M×

· · ·×Tx′d−1
M))we can find aη0 ∈ TfDr (M×N,M) such thatTf,x,x′,y(evτ )(η0,u0,u′0,0)

= (ū, ū′). By Corollary C.5 we have

Tf,x,x′,y(evτ ) = ((η0(x, y), . . . , ηd−1(x, y)), (η′0(x
′, y), . . . , η′d−1(x

′, y))),

whereηi andη′i satisfy

ηi+1(x, y) = η(xi , yi )+ T(xi ,yi ) f (ηi (x, y),0),

η′i+1(x
′, y) = η(x′i , yi )+ T(x′i ,yi ) f (η′i (x

′, y),0),
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with of courseη0 = η′0 = 0. For y ∈ Ñ the points{yi : i = 0, . . . ,d − 1} are disjoint,
and hence(xi , yi ) 6= (xi ′ , yi ′), (x′i , yi ) 6= (x′i ′ , yi ′) and(xi , yi ) 6= (x′i ′ , yi ′) for all i 6= i ′.
Furthermore sincex 6= x′ (recall we only consider(x, x′) ∈ (M × M\1)) and( f, g) is
a diffeomorphism, we have(xi , yi ) 6= (x′i , yi ) for all i . Hence the points{(xi , yi ): i =
0, . . . ,d− 1} ∪ {(x′i , yi ): i = 0, . . . ,d− 1} are all disjoint. Thus, using Corollary C.12
as usual, we can find aη ∈ TfDr (M × N,M) such thatη(xi , yi ) for i = 0, . . . ,d − 1
take on whatever values we want, and such thatη(x′i , yi ) = 0 for i = 0, . . . ,d − 1.
Then, as in Lemma 5.12, given anyū ∈ (Tx0 M×· · ·×Txd−1 M)we can find aη such that
Tf,x,x′,y(evτ )(η,u0,0x′ ,0y) = (ū,0x̄′) where 0̄x′ = (0x′0, . . . ,0x′d−1

). Similarly, given
ū′ ∈ (Tx′0 M × · · · × Tx′d−1

M) we can find aη′ such thatTf,x,x′,y(evτ )(η′,0x,u′0,0y) =
(0x̄, ū′), where 0= (0x0, . . . ,0xd−1). HenceTf,x,x′,y(evτ )(η + η′,u0,u′0,0y) = (ū, ū′),
as required.

Now let us turn to the other component ofσ ′. If γ ′ = 0, this is trivial, and hence the
surjectivity of Tf,x,x′,y(evτ ) is sufficient to ensure the transversality ofevσ ′ . If γ ′ > 0,
denoteevσ ′(4) = (z, z, x̄, x̄′) ∈ 1̂γ ′ × 1I ,R, wherex̄ = (x0, x1, . . . , xd−1) and x̄′ =
(x′0, x′1, . . . , x′d−1). By linearity we have

T4(ev
′
σ )(η, ξ,u0,u

′
0,0y) = T4(evσ ′)(η,0ϕ,u0,u

′
0,0y)+ T4(evσ ′)(0f , ξ,0x,0x′ ,0y)

= (w̄0, w̄
′
0, ū, ū

′)+ T4(evσ ′)(0f , ξ,0x,0x′ ,0y),

for some(w̄0, w̄
′
0) ∈ T(z,z)(Rγ

′ × Rγ ′). By definition

T4(evσ ′)(0f , ξ,0x,0x′ ,0y) = (T4(evσ )(0f , ξ,0x,0x′ ,0y), Tf,x,x′,y(evτ )(0f ,0x,0x′ ,0y))

= (T4(evσ )(0f , ξ,0x,0x′ ,0y), (0x̄,0x̄)).

Finally, as in Section 5.8, we have

T4(evσ )(0f , ξ,0x,0x′ ,0y) =



ξ(xj ′1)

ξ(xj ′2)

...

ξ(xj ′
γ ′′
)

,

ξ(x′j ′1)
ξ(x′j ′2)
...

ξ(x′j ′
γ ′′
)


.

Sinceτ( f )(x, x′, y) ∈ 1I ,R thepointsxj ′1, xj ′2, . . . , xj ′
γ ′

aredistinct and{xj ′1, xj ′2, . . . , xj ′
γ ′
}∩

{x′j ′1, x′j ′2, . . . , x′j ′
γ ′
} = ∅. Thus, using Corollary C.12, given any(w̄, w̄′) ∈ TzRγ

′ ×TzRγ
′

we can find aξ ∈ Tϕ(Cr (M,R)) such thatT4(evσ )(0f , ξ,0x,0x′ ,0y) = ((w̄ − w̄0 −
(w̄′ − w̄′0)),0z). Thus

T4(evσ ′)(η, ξ,u0,u0′ ,0y) = (w̄0, w̄
′
0, ū, ū

′)+ ((w̄ − w̄0− (w̄′ − w̄′0)),0z, (0x̄,0x̄′))

= ((w̄ − w̄′ + w̄′0), w̄′0, ū, ū′).

But (w̄′ − w̄′0, w̄′ − w̄′0) ∈ T(z,z)1̂γ ′′ , and hence(w̄, w̄′, ū, ū′) ∈ Image(T4(evσ ′)) +
T(z,z)1̂γ ′ , as required.
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We have dim(M × M)\1× Ñ − codim1̂γ ′ ×1I ,R = 2m+ n− γ ′ − (d− αR)m.
Sinceγ ′ ≥ αR, we get

2m+ n− γ ′ − (d − αR)m ≤ d − 1− (d − αR)m− γ ′ + n

≤ (d − αR)(1−m)− 1+ n

< n. (6.3.1)

Sinceevσ ′ isCn, the Parametric Transversality Theorem implies that there is a residual set
of ( f, ϕ) ∈ Dr (M×N,M)×Cr (M,R) for whichσ ′( f, ϕ) is transversal tô1γ ′ ×1I ,R.
Fix any such( f, ϕ), and defineσ ′′: Ñ → Cn((M × M)\1,Rγ ′ ×Rγ ′ × Md × Md) by

σ ′′(y)(x, x′) = σ ′( f, ϕ)(x, x′, y)

= (8 f,ϕ,I ,R,y(x),8 f,ϕ,I ,R,y(x
′), τ ( f )(x, x′, y)).

Thenevσ ′′(y, x, x′) = σ ′( f, ϕ)(x, x′, y), and henceevσ ′′ is transversal tô1γ ′ × 1I ,R.
Also evσ ′′ is Cn, and using (6.3.1), we have dim(M × M)\1− codim1̂γ ′ ×1I ,R < 0.
Thus by the Measure Theoretic Finite-Dimensional Parametric Transversality Theorem,
there is a set ofy of full Lebesgue measure iñN such thatσ ′′(y) is transversal tô1γ ′ ×
1I ,R. The dimension of(M×M)\1 is 2mand that of1̂γ ′×1I ,R isγ ′+2dm−(d−αR)m.
By (6.3.1) we have 2m−(d−αR)m< γ ′ and hence dim(M×M)\1+dim1̂γ ′ ×1I ,R =
2m+γ ′+2dm−(d−αR)m< 2γ ′+2dm= dimRγ ′ ×Rγ ′ ×Md×Md. Thus, as usual, if
the image of(M×M)\1 intersected̂1γ ′×1I ,R, the intersection could not be transversal.
Thus for a residual set ofy, the image of(M×M)\1does not intersect̂1γ ′×1I ,R. Hence,
either(8 f,ϕ,I ,R,y(x),8 f,ϕ,I ,R,y(x′)) /∈ 1̂γ ′ or τ( f )(x, x′, y) /∈ 1I ,R. Note, incidentally,
that ifγ ′ = 0 then by definition(8 f,ϕ,I ,R,y(x),8 f,ϕ,I ,R,y(x′)) = (0,0) ∈ 1̂γ ′ , and hence
for our choice off we haveτ( f )(x, x′, y) /∈ 1I ,R for all I , R such thatγ ′ = 0. Hence
although we could not a priori exclude this case, it does not in fact arise.

To conclude the proof, we note that for every(x, x′, y) ∈ ((M×M)\1)× Ñ we have
τ( f )(x, x′, y) ∈ 1I ,R for someI andR, and hence(8 f,ϕ,I ,R,y(x),8 f,ϕ,I ,R,y(x′)) /∈ 1̂γ ′

for someI andR. Thus for a residual set ofy,8 f,g,ϕ,y(x) 6= 8 f,g,ϕ,y(x′) for all (x, x′) ∈
(M × M)\1, as required.

6.4. Lower Degrees of Smoothness

Finally, we show how to deduce Theorem 3.2 for 1≤ r < 2n, from the above proof for
r ≥ 2n. Fix r such that 1≤ r < 2n and denoteBr = Dr (M × N,M) × Cr (M,R).
For ( f, ϕ) ∈ Br let Ñ( f, ϕ) ⊂ N be the set ofy such that8 f,g,ϕ,y is an embedding,
and letB( f, ϕ) = N\Ñ( f, ϕ). Note that since8 f,g,ϕ,y depends continuously ony and
embeddings are open inCr (M,Rd), the setÑ( f, ϕ) is necessarily open. Given anε > 0,
define theε-neighbourhood ofB( f, ϕ) by B( f, ϕ, ε) = {y ∈ N: d(y, B( f, ϕ)) < ε}.

Let E r be the set of( f, ϕ) in Br for whichµ(Ñ( f, ϕ)) = 1, whereµ is Lebesgue
measure. By the aboveE2n is dense inB2n. Since the latter is dense inBr we see that
E2n is dense inBr . But E2n ⊂ E r , and henceE r is dense inBr . This space is separable
and hence we may choose a countable set{( fi , ϕi ) ∈ E r : i ∈ N} that is dense inBr . For
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any i , we have

B( fi , ϕi ) =
⋂
ε>0

B( fi , ϕi , ε),

and sinceµ(B( fi , ϕi )) = 0, we haveµ(B( fi , ϕi , ε)) → 0 asε → 0. Hence, given
δ > 0, we may choose anε(i, δ) > 0 such thatµ(N\B( fi , ϕi , ε(i, δ))) > 1 − δ.
Now, N\B( fi , ϕi , ε) is closed and hence compact. Using the continuity of8 f,g,ϕ,y with
respect tof, ϕ, andy and the density of embeddings inCr (M,Rd), we can find an open
neighbourhoodN ( fi , ϕi , δ) of ( fi , ϕi ) in Br such that8 f,g,ϕ,y is an embedding for all
( f, ϕ) ∈ N ( fi , ϕi , δ) andy ∈ N\B( fi , ϕi , ε(i, δ)). Since{( fi , ϕi ): i ∈ N} is dense in
Br , the union ofN ( fi , ϕi , δ) is open and dense inBr . Thus if we letδn be a sequence
such thatδn→ 0 and define

N =
⋂
n∈N

⋃
i∈N
N ( fi , ϕi , δn),

we see thatN is residual. Now if( f, ϕ) ∈ N , then there exists a sequencei n such
that ( f, ϕ) ∈ N ( fin, ϕin, δn) for eachn. Hence8 f,g,ϕ,y is an embedding for ally ∈
N\B( fin, ϕin, ε(i, δn)) for eachn. Hence if we define

Ñ ′( f, ϕ) =
⋃
n∈N

N\B( fin, ϕin, ε(i, δn)),

then Ñ ′( f, ϕ) ⊂ Ñ( f, ϕ). Sinceµ(N\B( fin, ϕin, ε(i, δn))) → 1 asn → ∞, we have
µ(Ñ ′( f, ϕ)) = 1 and henceµ(Ñ( f, ϕ)) = 1. Thus( f, ϕ) ∈ E r , and soN ⊂ E r .
ThereforeE r contains a residual set, as required.

Appendix A. Transversality

If M andN are finite-dimensional manifolds,L ⊂ N a submanifold andg: M → N a
smooth map, we say thatg is transversalto L (written asgtL) if for all x ∈ g−1(L) the
tangent spaceTg(x)N at g(x) is spanned by the imageTxg(Tx M) of the tangent space at
x under the derivative ofg and the tangent spaceTg(x)L to L, i.e.,

Tg(x)N = Tg(x)L + Txg(Tx M). (A1)

This sum need not be direct and no condition is imposed onTxg(Tx M) if g(x) /∈ L.
If (A1) holds only for all x ∈ g−1(L)∩K for some subsetK ⊂ M we say thatg is
transversal toL on, or along,K (written asgtK L).

One important consequence of transversality is that ifgtL, theng−1(L) is a subman-
ifold of M ([Thom, 1954 and 1956]). This is a generalization of the well-known fact that
if Txg is surjective (so thatg(x) is a regular value ofg), theng−1(g(x)) is a submanifold
of M .

The notion of transversality gives a formal meaning to the notion of “typical inter-
section,” as in statements such as “a line and a surface inR3 typically meet in isolated
points.” The theorem that lies behind such intuition is Thom’s Transversality Theorem.
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Transversality Theorem. [Thom, 1954 and 1956]The set of g which are transversal
to L ⊂ N is residual inCr (M, N), r ≥ 1.

This is a straightforward consequence of the Morse-Sard Theorem, which says that
for anyg ∈ Cr (M, N), with r ≥ max{0,dim M − dim N}, the set of regular values ofg
(pointsg(x) for x such thatTxg is surjective) is residual inN.

The notion of transversality can be extended to infinite-dimensional manifolds (mod-
elled on Banach spaces). If eitherM or N is finite-dimensional, then we can use condition
(A1) unchanged, but if both are infinite-dimensional then we also require “splitting’ con-
ditions on the kernel and image ofTxg. More precisely, we say thatg is transversal to
L ⊂ N if for all x ∈ g−1(L) we have

(Txg)−1(Tg(x)L) has a closed complement inTx M, (A2a)

Txg(Tx M) has a closed subspaceV such thatTg(x)N = Tg(x)L + V. (A2b)

The reason that these additional conditions are not required when at least one ofM or
N is finite-dimensional is that finite dimensional subspaces are always closed and have
closed complements, and(Txg)−1 of a closed subspace is closed. This will always be the
setting in which we employ transversality in this paper, and hence conditions A2 never
need to be verified explicitly.

One of the most useful applications of the notion of transversality in infinite dimen-
sions is Abraham’s Parametric Transversality Theorem (Abraham [1963], Abraham and
Robbin [1967], Quinn [1970]; also see Hirsch [1976] and Palis and de Melo [1982] for
the case where A is finite-dimensional). We make extensive use of this theorem in this
paper, in the form given in Abraham and Robbin [1967]:

Parametric Transversality Theorem. LetA,M, and N beCr manifolds andρ: A→
Cr (M, N)be a map such that the evaluation map evρ : A×M → N given by evρ(a, x) =
ρ(a)(x) is Cr . Let L⊂ N be a submanifold of finite codimension p in N. Suppose that
A and M are second countable (i.e., their topology has a countable base), that M has
finite dimension m with r> max{0,m− p}, and that evρ is transversal to L. Then the
set of a such thatρ(a) is transversal to L is residual inA. Furthermore if L is closed
and M is compact, then the set of such a is open.

The significance of this may perhaps best be illustrated if we letL = {y ∈ N}
be a single point. The theorem then says that if perturbations in botha andx (where
y = ρ(a)(x)) are able to generate the whole ofTyN, then for a generica perturbations in
x alone giveTyN, i.e.,Txρ(a) is surjective. For a more general submanifoldL, we have
the statement that if perturbations in botha andx are able to generate a complement to
TyL in TyN, then for a generica it is sufficient to consider perturbations inx alone to
obtain this complement.

The proof of the Parametric Transversality Theorem is based upon Smale’s Density
Theorem (Smale [1965]), which is an infinite-dimensional generalization of the Morse-
Sard Theorem. The underlying idea is very simple: Sinceevρ is transversal toL, the set
(evρ)−1(L) is a submanifold ofA × M . Let π : A × M → A be the projection onto
the first factor. A simple unravelling of the definitions shows thatρ(a) is transversal
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to L if and only if a is a regular value ofπ restricted to(evρ)−1(L). But by Smale’s
Density Theorem the set of such regular values is residual inA. Note that ifA is in fact
finite-dimensional we can instead apply the standard Morse-Sard Theorem to obtain the
following:

Measure Theoretic Finite-Dimensional Parametric Transversality Theorem. Let
A, M, and N beCr manifolds andρ: A → Cr (M, N) be a map such that evρ is Cr .
Let L ⊂ N be a submanifold of finite codimension p in N. Suppose thatA and M are
finite-dimensional, that r> max{0,m− p} where m is the dimension of M and that
evρ is transversal to L. Then the set of a such thatρ(a) is not transversal to L has zero
Lebesgue measure inA. Furthermore if L is closed and M is compact, then the set of
such a is open.

As far as we are aware, there is no published statement of this version.
Recall (e.g., Abraham [1963], Eells [1966], Eliasson [1967], Foster [1975], Franks

[1979], and see Appendix C below) that ifM is compact andN is finite-dimensional,
thenCr (M, N) for any 0≤ r <∞ has the structure of aC∞ Banach manifold. Taking
A = Cr (M, N), withρ the identity (giving the trivial evaluation mapevρ( f, x) = f (x)),
we see that the Parametric Transversality Theorem immediately implies Thom’s original
Transversality Theorem.

A further important property of transversal intersection is that in some sense it is
structurally stable. This is best expressed by the following.

Transversal Isotopy Theorem. (Abraham and Robbin, [1967])LetA,M, N, L, and
ρ be as in the Parametric Transversality Theorem. Suppose that L is closed and M is
Cr+2 and compact. Suppose that for some a0 ∈ A,ρ(a0) is transversal to L. Then there is
an open neighbourhood U of a0 inA such that for all a∈ U,ρ(a) is transversal to L and
ρ(a)−1(L) is Cr−1 isotopic toρ(a0)

−1(L). This means that there is aCr−1 map h: M ×
[0,1]→ M such that h(•, t) is a diffeomorphism of M for all t∈ [0,1], h(•,0) = Id,
and h(•,1)mapsρ(a)−1(L) ontoρ(a0)

−1(L). In particularρ(a)−1(L) andρ(a0)
−1(L)

are diffeomorphic.

Appendix B. Geometry of Function Spaces

In applying the Parametric Transversality Theorem, the first step is always to show that
an appropriate function space is in fact a smooth manifold, and that the appropriate
evaluation function is sufficiently smooth. In this appendix we collect together a number
of the underlying results that permit us to do this.

Much of this material requires familiarity with more advanced concepts of differential
geometry, such as connections and exponential maps, than the remainder of the paper. It
is rather unfortunate that these are used extensively in the construction of the manifold
structure on function spaces and in the analysis of the composition and tangent operators,
even though the subsequent results can be stated without reference to such terms. Thus
for instance whilst a Riemannian structure appears necessary to construct a manifold



314 J. Stark

structure onCr (M, N), once constructed this is independent of the choice of original
Riemannian structure. Once we have proved the results in this appendix therefore, we
need not make use of such differential geometric tools elsewhere in the paper, and a
reader unfamiliar with such concepts can safely skip most of this appendix.

B.1. Function Spaces as Manifolds

It has long been known that ifM is compact, then subject to some mild conditions on
N, the spaceCr (M, N) for any 0≤ r < ∞ has the structure of a Banach manifold.
The earliest such results are due to Eells [1958] and Palais [1968]. Since then, many
extensions and generalizations have appeared (e.g., see Eells [1966], Eliasson [1967],
Foster [1975], Franks [1979]). For the purposes of this paper, the version due to Eliasson
is the most useful.

Theorem B.1. (Eliasson [1967])Suppose that M is a compactC∞ Riemannian mani-
fold and N is a paracompactC∞ Banach manifold, without boundary, admitting aC∞
connection and a Finsler structure. ThenCr (M, N) for any0≤ r <∞ is a paracompact
C∞ Banach manifold that admits aC∞ connection and a Finsler structure. The manifold
structure onCr (M, N) is independent of the choice of Riemannian structure on M and N.

In order to describe this structure onCr (M, N), recall (e.g., [Hirsch, 1976]) that
given a map f ∈ Cr (M, N), the pull-back bundlef ∗τN

: f ∗T N → M is the vector
bundle given byf ∗T N = {(x, v) ∈ M × T M: f (x) = τN(v)} and f ∗τN

(x, v) = x,
whereτN : T N→ N is the tangent bundle ofN. Informally, f ∗T N is the bundle over
M whose fibre( f ∗T N)x over x ∈ M is Tf (x)N. The space ofCr sections of f ∗T N,
endowed with theCr norm, is a Banach space which we denoteCr ( f ∗T N). This turns
out to be the tangent spaceTf Cr (M, N) of Cr (M, N) at f . The union over allf of the
Tf Cr (M, N) is thusCr (M, T N). This is given the structure of the tangent bundle of
Cr (M, N) by τC : Cr (M, T N)→ Cr (M, N) defined byτC(η) = τN◦η.

To describe howCr (M, N) is a manifold modelled onCr ( f ∗T N), first note that
if η ∈ Cr ( f ∗T N), then η(x) = (x, η̃(x)) for some mapη̃: M → T N such that
η̃(x) ∈ Tf (x)N for all x ∈ M . It shall be convenient to identifyη andη̃ and hence think
of the space of sections off ∗T N asCr ( f ∗T N) = {η ∈ Cr (M, T N): τN ◦ η = f }.
This allows us to define a charthf : U f → V f for Cr (M, N) centred atf , whereV f

is a sufficiently small neighbourhood of the zero section inCr ( f ∗T N), U f = h−1
f (V f ),

andhf is defined byh−1
f (η) = expN ◦η, with expN : T N → N the exponential map

obtained from the connection onN (e.g., [Lang, 1972] or [Irwin, 1980]). Recall that
if we denote the restriction of expN to the fibre overf (x) by expf (x): Tf (x)N → N,
then expf (x) maps a sufficiently small neighbourhood of 0f (x) diffeomorphically onto its
image. This ensures thath−1

f is a homeomorphism, withhf itself given byhf (g)(x) =
(expf (x))

−1(g(x)) for g ∈ U f . Observe that, as required, expN ◦η is indeed aCr map
from M to N. Furthermore, if 0f is the zero section inCr ( f ∗T N), so that 0f (x) = 0f (x),
thenh−1

f (0f )(x) = expN(0f (x)) = expN(0f (x)) = f (x). Thushf ( f ) = 0f .
To confirm that this indeed confers a manifold structure onCr (M, N), it is necessary to

verify that if f, f ′ ∈ Cr (M, N)withU f ∩U ′f 6= ∅, then the transition maphf ′ ◦h−1
f isC∞
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onhf (U f ∩U f ′). This follows (e.g., see [Foster, 1975]) from the smoothness of expN since
hf ′ ◦ h−1

f (η) = (expf ′)
−1 ◦ (Id,expN ◦η), where(expf ′)

−1(x, y) = (expf ′(x))
−1(y).

Note that anyCk finite-dimensional manifold for 1≤ k <∞ can be given a compat-
ible C∞ Riemannian structure (e.g., Hirsch [1976]) and hence admits aC∞ connection
and a Finsler structure. Any Hausdorff separable manifold is paracompact, and hence in
particular if N is compact, orN = Rn for somen, thenN is paracompact.

An immediate consequence of the above theorem is that ifM is a smooth compact
manifold, thenCr (M,M) andCr (M,R) are Banach manifolds, for any 0≤ r < ∞.
Also, it is well known (e.g., Eells [1966]) that as topological spaces they are separable.
Since the set of diffeomorphismsDr (M) is open inCr (M,M), this itself is a separable
manifold.

Finally, note that in the statement of the Parametric Transversality Theorem, it is
not necessary forCr (M, N) to be a manifold, and hence in particular,M need not
be compact. In such a case,ρ: A → Cr (M, N) may simply be defined as a map,
not even necessarily continuous. In particular, the theorem places no regularity condi-
tions onρ, but merely onevρ . Thus, for instance, the theorem can be used in situa-
tions whereM is an open submanifold of a compact manifoldM ′, A = Cr (M ′, N)
andρ: Cr (M ′, N) → Cr (M, N) involves the restriction off ∈ Cr (M ′, N) to f |M ∈
Cr (M, N). The simplest example is whereρ does nothing else, so that it is simply the
natural inclusionCr (M ′, N) ⊂ Cr (M, N). The mapevρ : Cr (M ′, N)× M → N is then
just evρ( f, x) = f (x). A more complex example, especially relevant to this paper, is
for instance given byevρ( f, x) = ϕ( f i (x)) for someϕ ∈ Cr (N,R).

B.2. Smoothness of the Composition Operator

The other essential component of our proofs of various versions of Takens Theorem
will be the smoothness of the mapping( f, ϕ) 7→ 8 f,ϕ . Observe that each component
of this just consists of the composition ofϕ with some power off . Its smoothness thus
follows from the following well-known result, due in various forms to Eells [1966],
Foster [1975], and Franks [1979].

Theorem B.2. Suppose that M and N are compactC∞ manifolds and L is aC∞
manifold, modelled on a Hilbert space. Then the composition mapσ : Cr (M, N) ×
Cr+k(N, L)→ Cr (M, L) given byσ( f, g) = g ◦ f is Ck, and

Tf,gσ(η, ζ ) = ζ ◦ f + T g◦ η.

It is important to note the loss of smoothness here; this is due to the termT g. Thus in the
casek = 1, if σ( f, g) is to be inCr (M, L), we must haveTf,gσ(η, ζ ) ∈ Cr ((g◦ f )∗T L)
and hence in particularT g◦h must beCr , and henceg must beCr+1. Similarly fork > 1,
thekth derivative ofσ will require thekth derivative ofg.

Taking M = {x} to be a single point, and using the natural identificationN =
C0({x}, N) we get the obvious corollary:
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Corollary B.3. If N is compact then the evaluation map ev: N×Ck(N, L)→ L given
by ev(x, g) = g(x) is Ck, and

Tx,gev(v, ζ ) = ζ(x)+ Txg(v).

B.3. The Tangent Map

To prove the immersivity of8 f,ϕ in various situations, we shall need to consider the
map( f, ϕ) 7→ T8 f,ϕ , and in particular we shall need to compute the tangent map to the
corresponding evaluation map. A crucial element in this calculation is the tangent map
Tf σ

′ to the mapσ ′( f ) = T f . To obtain this we are in effect differentiating the derivative
operator. Note that this is very different from the second derivative off , i.e.,Tf σ

′ and
T(T f ) are very different objects.

B.3.1. The Range of the Tangent Operator.Before we can begin to computeTf σ
′,

we need to determine an appropriate domain and range for the operatorσ ′. Whilst
the choice ofCr (M, N) as the domain ofσ ′ is obvious, the selection of its range is
more problematical. Thus, sinceσ ′( f ) is aCr−1 map betweenT M andT N, we might
be tempted to simply takeCr−1(T M, T N). Unfortunately, sinceT M is not compact,
this space has no natural manifold structure and we have no way of discussing the
differentiability ofσ ′.

SinceT f is linear on fibres, it is determined by its action on the unit tangent bundle
T̃ M = {v ∈ T M: ‖v‖ = 1}. One possible solution is therefore to useCr−1(T̃ M, T N)
as the range ofσ ′. SinceT̃ M is compact, this has a natural manifold structure. This
is consistent with our use ofσ ′ throughout the remainder of the paper, since in deter-
mining the immersivity of8 f,ϕ we only applyT8 f,ϕ to unit tangent vectors and hence
regard the domain ofevσ ′ as T̃ M × Cr (M, N). This approach, however, has a serious
drawback, namely the difficulty of composing maps inCr−1(T̃ M, T N) with those in
Cr−1(T̃ N, T L). In particular, if F(v) = 0 for anyv ∈ T̃ M, then there is no way of
forming G ◦ F .

A more natural and elegant approach is to make full use of the linearity ofT f and let the
range ofσ ′ be the space of vector bundle maps betweenT M andT N, that is, the space of
mapsF : M → N such thatF is fibre preserving (i.e.,F(Tx M) ⊂ Tf (x)N for some f ∈
Cr (M, N)) and linear on each fibreTx M . For a fixedf we can think of the space of such
maps as the Banach space of sections of the linear map bundleL(T M, f ∗T N). Recall
that this is defined as follows: IfE andE′ are vector bundles overM , thenL(E, E′) is the
vector bundle whose fibreL(E, E′)x overx ∈ M is just the spaceL(Ex, E′x) of linear
mappings fromEx to E′x. A sectionF̃ ∈ Cr−1(L(T M, f ∗T N)) throughL(T M, f ∗T N)
can be written as̃F(x)(v) = (x, Fx(v)) for some linear mapFx: Tx M → Tf (x)N. Then
F : T M→ T N defined byF(v) = FτM (v)(v) is a vector bundle map overf . Conversely
such anF gives rise to a sectioñF ∈ Cr−1(L(T M, f ∗T N)) by F̃(x)(v) = (x, F(v)).
We shall henceforth identifyF and F̃ . Note that we take the smoothness of the section
F to be different from the smoothness of the underlying mapf , which is precisely the
case withT f . Such “mixed smoothness” bundle maps are studied in Foster [1975] and
Irwin [1980].
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Following Eliasson [1967], we shall denote the union of theCr−1(L(T M, f ∗T N))
over all f ∈ Cr (M, N) by Cr−1(L(T M, Cr (M, N) ∗ T N)) and use this as the range of
σ ′. For convenience, we shall denote this space asVBr−1(T M, T N) and also use the
notationVBr−1

f (T M, T N) for Cr−1(L(T M, f ∗T N)). SinceVBr−1(T M, T N) consists
of sections of bundles overM , i.e., of maps whose domain isM , it is reasonable to
expect that it can be given a manifold structure. In fact, Eliasson [1967] shows that
VBr−1(T M, T N) is naturally a vector bundle overCr (M, N), where the fibre over
f ∈ Cr (M, N) is justVBr−1

f (T M, T N). Furthermore, he shows thatσ ′ is aC∞ section of
this bundle. Our principal aim in the remainder of this section is to derive an expression for
Tσ ′. To do this it is more convenient to use the manifold structure onVBr−1(T M, T N)
induced by its vector bundle structure, rather than the vector bundle structure itself. It
also turns out to be preferable to use charts centred onT f , rather than 0f as is done by
Eliasson.

Since, as discussed above, an element ofVBr−1(T M, T N) may be regarded as a
map fromT M to T N, we expect by analogy with Section B1 that the manifold structure
VBr−1(T M, T N)will be modelled on a suitable space of maps fromT M into the tangent
bundleT(T N) of T N. To proceed further, we therefore have to describe the structure of
T(T N) in more detail. The reader may find it helpful to consult, for instance, Abraham
and Robbin [1967] or Irwin [1980] for particularly clear accounts of this material.

B.3.2. Properties ofT(T N). We shall denote the standard vector bundle structure of
T(T N)overT N byτT N: T(T N)→ T N. Suppose that(TU N, α) is a local trivialization
for T N, whereU is an open neighbourhood inN, TU N = (τN)

−1(U ) = TU is the
restriction ofT N to U andα: TU N → U × V is a local vector bundle isomorphism
onto U × V , whereV is the Banach space on whichN is modelled. ThenTα is an
isomorphismTα: T(TU N) → T(U × V). Identifying T(U × V) with TU × T V,
usingα to identify TU with U × V , and then using the natural identification ofT V
with V × V , we see that locallyT(T N) has the formU × V × V × V , so that we may
take as local coordinates(y, v1, v2, v3) with y ∈ N, v1, v2, v3 ∈ V . Note that contrary
to appearances, this does not giveT(T N) the structure of a vector bundle overN; in
particular, coordinate changes contain a bilinear term in the last (i.e.,v3) coordinate (e.g.,
see Abraham and Robbin, [1967]).

Observe thatτN is asmoothmapandhencewecan take its tangentmapTτN : T(T N)→
T N. It turns out that this also givesT(T N) a vector bundle structure overT N, which
is not the same structure asτT N: T(T N) → T N. Thus in local coordinates we have
τT N(y, v1, v2, v3) = (y, v1) and TτN(y, v1, v2, v3) = (y, v2). Note thatτN ◦ τT N =
τN ◦ TτN . When we need to distinguish between the two structures, we shall write
(T(T N), τT N) and (T(T N), TτN), or simply justτT N and TτN . Fibres in the two
respective structures can be denoted as(τT N)

−1(u) and (TτN)
−1(u). When we write

T(T N) on its own, we always imply the standard structureτT N, and in particular we
shall usually denote(τT N)

−1(u) by Tu(T N).
It turns out that the two structures are isomorphic, with a natural vector bundle isomor-

phism given by the so-calledcanonical involutionω: T(T N)→ T(T N). This satisfies
τT N = TτN ◦ ω andω ◦ ω = Id, and hence alsoτT N ◦ ω = TτN . In local coordinates
it is given byω(y, v1, v2, v3) = (y, v2, v1, v3). We shall make considerable use ofω
throughout the paper.
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Next, given au ∈ TyN, we wish to define thevertical subspacein Tu(T N) as
the space ofw ∈ Tu(T N) satisfying TτN(w) = 0y. In local coordinates we have
{w ∈ Tu(T N): TτN(w) = 0y} = {(y, ũ,0, v3) ∈ U × V × V × V}, whereu = (y, ũ).
This suggests the following alternative characterization, which we shall make use of
later:

Lemma B.4. {w ∈ Tu(T N): TτN(w) = 0y} = Tu(TyN).

Proof. SinceτN(u) = y for all u ∈ TyN, we haveTτN(w) = 0y for all w ∈ T(TyN),
and in particularTτN(Tu(TyN)) = {0y}. HenceTu(TyN) ⊂ {w ∈ Tu(T N): TτN(w) =
0y}. Conversely, ifw ∈ Ty(T N) butw is not tangent toTyN, i.e.,w /∈ Tu(TyN), choose
a smooth pathγ : [0,1] → T N such thatγ (0) = y andT0γ = w. Then this path is
not tangent toTyN, and hence projecting down toN, we see thatτN ◦ γ is a smooth
path in the neighbourhood of 0 which is not constant there, i.e.T0(τN ◦ γ ) 6= 0y. Thus
TτN(w) = TτN(T0γ ) = T0(τN ◦ γ ) 6= 0y. Hence{w ∈ Tu(T N): TτN(w) = 0y} ⊂
Tu(TyN), as required.

Although Tu(TyN) is all that we require to describe the vector bundle structure on
VBr−1(T M, T N), in order to compute an expression forTσ ′ it will also be necessary
to define the spaces

Wu,u′ = {w ∈ Tu(T N): TτN(w) = u′}.
ThusTu(TyN) = Wu,0, andω(Wu,u′) = Wu′,u. Note that sinceτN ◦ TτN = τN ◦ τT N,
we must haveτN(u) = τN(u′) for this definition to make sense. In local coordinates
Wu,u′ = {(y, ũ, ũ′, v3) ∈ U × V × V × V}, whereu = (y, ũ) andu′ = (y, ũ′). We thus
see thatWu,u′ is nonempty for anyu,u′ ∈ T N satisfyingτN(u) = τN(u′). Also observe
that whereasTu(TyN) is a vector subspace ofTu(T N), the spaceWu,u′ for u′ 6= 0 is not,
since

Lemma B.5. If w1 ∈ Wu,u1, w2 ∈ Wu,u2, and λ1, λ2 ∈ R, thenλ1w1 + λ2w2 ∈
Wu,(λ1u1+λ2u2).

Proof. By definition,TτN is linear on fibres ofτT N. Hence ifw1, w2 ∈ Tu(T N), we
haveTτN(λ1w1+ λ2w2) = λ1TτN(w1)+ λ2TτN(w2) = λ1u1+ λ2u2, as required.

Finally, we turn to the exponential map onT(T N). Recall that expN is a smooth
map expN : T N→ N, and henceT expN mapsT(T N) to T N. Note that by definition
T expN is linear on fibres ofτT N, i.e., onTu(T N) for any u ∈ T N. Since expy is a
diffeomorphism on a neighbourhood of 0y in TyN, we immediately have

Lemma B.6. For u ∈ TyN sufficiently small, the map TexpN is a linear isomorphism
between Tu(TyN) and Texp(u)N.

Corollary B.7. For u ∈ TyN sufficiently small, and any u′ ∈ TyN, given anyv ∈
Texp(u)N, there exists a uniquew ∈ Wu,u′ such that TexpN(ω) = v.
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Proof. To show existence pick an arbitraryw′ ∈ Wu,u′ (recall that this set is non-
empty). Using Lemma B.6, choosew0 ∈ Tu(TyN) = Wu,0 such thatT expN(w0) =
v − T expN(w

′). Then, if we setw = w0 + w′, we havew ∈ Wu,u′ by Lemma B.5.
Furthermore, sinceT expN is linear onTu(T N), we haveT expN(w) = T expN(w0)+
T expN(w

′) = v − T expN(w
′) + T expN(w

′) = v, as required. Uniqueness follows
similarly, for suppose thatw,w′ ∈ Wu,u′ with T expN(w) = T expN(w

′) = v. Then by
Lemma B.5,w−w′ ∈ Wu,0 and by the linearity ofT expN , we haveT expN(w−w′) =
T expN(w) − T expN(w

′) = v − v = 0exp(u). Hence by Lemma B.6,w − w′ = 0, as
required.

Denote the map fromv tow by9u,u′ : Texp(u)N → Wu,u′ . We haveT expN ◦9u,u′ = Id,
and sinceT expN is linear this gives the following “linearity” property:

Lemma B.8. If v1, v2 ∈ Texp(u)N andλ1, λ2 ∈ R, then9u,(λ1u1+λ2u2)(λ1v1 + λ2v2) =
λ19u,u1(v1)+ λ29u,u2(v2).

Proof. Let w = λ19u,u1(v1) + λ29u,u2(v2). Then by Lemma B.5,w ∈ Wu,(λ1u1+λ2u2).
On the other hand, by the linearity ofT expN we have T expN(w) =
λ1T expN(9u,u1(v1)) + λ2T expN(9u,u2(v2)) = λ1v1 + λ2v2. But, by definition,
9u,(λ1u1+λ2u2)(λ1v1 + λ2v2) is the unique point inWu,(λ1u1+λ2u2) whose image under
T expN is λ1v1+ λ2v2, and therefore we must havew = 9u,(λ1u1+λ2u2)(λ1v1+ λ2v2), as
required.

Finally, Eliasson [1967] shows that the connection onT N giving rise to expN in-
duces a connection onT(T N), whose corresponding exponential map we denote expT N:
T(T N)→ T N. By comparing local expressions, Eliasson [1967] then proves the fol-
lowing crucial lemma:

Lemma B.9. LetexpT N, T expN, andω be defined as above. ThenexpT N = T expN ◦ω.

Corollary B.10. For u ∈ TyN sufficiently small,expT N is a linear isomorphism be-
tween W0,u and Texp(u)N.

B.3.3. The Structure of the Space of Vector Bundle Maps.We are now in a position
to describe the structure onVBr−1(T M, T N) due to Eliasson [1967]. To do this, letU f

be a chart forCr (M, N) centred atf , as in Section B.1 and denote the bundle aboveU f

(i.e., the union of theVBr−1
g (T M, T N) over g ∈ U f ) by VBr−1

U f
(T M, T N). We begin

by describing a chart forVBr−1
U f
(T M, T N) centred on 0f . By analogy to Section B.1 we

want this to take the formH0f : VBr−1
U f
(T M, T N)→ V0f , whereH0f−1(ζ ) = expT N ◦ζ

andV0f is an open neighbourhood of the origin in an appropriate Banach space of maps
fromT M toT(T N) satisfyingτT N◦ζ = 0f . However, we also need to impose additional
conditions in order to ensure that expT N ◦ζ ∈ VBr−1(T M, T N), i.e., that it maps fibres
into fibres and is linear on each fibre.

Thus suppose thatG ∈ VBr−1
g (T M, T N) with g ∈ U f given byg = expN ◦η, where

η ∈ Cr ( f ∗T N) and that we have aζ such that expT N ◦ζ = G andτT N ◦ ζ = 0f . Then
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by Lemma B.9,T expN(ω(ζ(v))) = G(v) ∈ Tg(x)N. By definitionT expN(Tu(T N)) ⊂
Texp(u)N for any u ∈ T N, and hence expN(τT N(ω(ζ(v)))) = g(x) for all v ∈ Tx M .
ThusτT N(ω(ζ(v))) = η(x) for all v ∈ Tx M , and sinceτT N ◦ ω = TτN , we see that
ζ(Tx M) ⊂ (TτN)

−1(η(x)), or in other words,ζ maps fibres ofT M into fibres ofTτN .
SinceτT N ◦ ζ = 0f , we therefore haveζ(v) ∈ W0,η(x), and by Corollary B.9,ζ is given
by ζ(v) = ω(9η(x),0(G(v))). This immediately implies thatζ is linear as a function of
v. Conversely we see that if we have aζ : T M→ T(T N) satisfyingτT N ◦ ζ = 0f and
mapping fibres ofT M linearly into fibres ofTτN then expT N ◦ζ ∈ VBr−1(T M, T N).

We next need to develop a notation forζ satisfying such conditions. For later use, it
will be convenient to do this in the general caseτT N◦ζ = F , rather than justτT N◦ζ = 0f .
With the usual identifications on pull-back bundles, we can denote the space ofζ which
mapTx M linearly into(TτN)

−1(η(x)) for a givenη by Cr−1(L(T M, η∗(TτN))), where
η∗(TτN) is the pull-back ofTτN : T(T N) → T N. We shall denote the union of the
Cr−1(L(T M, η∗(TτN))) over allη ∈ Cr ( f ∗T N) by Cr−1(L(T M, Cr ( f ∗T N)∗(TτN))).
Note that this is not a Banach space since we have no way of adding two functions over
differentη. However, if we fix someF ∈ VBr−1

f (T M, T N) and restrict to thoseζ which
lie over F (i.e., satisfyτT N ◦ ζ = F), then we do get a linear structure as we shall see
below. We shall denote the space of such maps byCr−1

F (L(T M, Cr ( f ∗T N)∗(TτN))) =
{ζ ∈ Cr−1(L(T M, Cr ( f ∗T N)∗(TτN))): τT N ◦ ζ = F}. If we take local coordinates in
T(T N), then maps in this space have the formζ(v) = ( f (x), Fx(v), η̃(x), ζx(v))where
v ∈ Tx M , andFx, ζx are linear maps fromTx M to V such thatF(v) = ( f (x), Fx(v))

andη(x) = ( f (x), η̃(x)). Observe thatζ(v) ∈ WF(v),η(x).
The vector space structure onCr−1

F (L(T M, Cr ( f ∗T N)∗(TτN))) is that induced from

fibres ofτT N. Thus if ζ ∈ Cr−1
F (L(T M, η∗(TτN))), ζ

′ ∈ Cr−1
F (L(T M, (η′)∗(TτN))),

andλ, λ′ ∈ R, thenζ(v) ∈ WF(v),η(x) andζ ′(v) ∈ WF(v),η′(x). We can therefore define
λζ +λ′ζ ′ using Lemma B.5 by(λζ +λ′ζ ′)(v) = λζ(v)+λ′ζ ′(v) ∈ WF(v),(λη(x)+λ′η′(x)).
We thus see that the definition ofCr−1

F (L(T M, Cr ( f ∗T N)∗(TτN))) involves the interplay
of two separate linear structures: Whereas the addition ofζ andζ ′ uses the structure in
TF(v)(T N), the linearity of eachζ is defined in terms of the structure in(TτN)

−1(η(x)).
In particular, ifv, v′ ∈ Tx M , thenζ(v), ζ(v′) ∈ (TτN)

−1(η(x)), and hence we form
λζ(v)+ λ′ζ(v′) using the addition and scalar multiplication in(TτN)

−1(η(x)).
If we denote the union ofCr−1

F (L(T M, η∗(TτN))) over η ∈ V f by
Cr−1

F (L(T M,V∗f (TτN))), we see that the chart forVBr−1(T M, T N) described above

hasV0f = Cr−1
0f
(L(T M,V∗f (TτN))). Observe that this is a vector bundle overV f , with

the fibre overη being simplyCr−1
0f
(L(T M, η∗(TτN))). Furthermore, we have already

shown above that ifζ ∈ Cr−1
0f
(L(T M, η∗(TτN))) andζ ′ ∈ Cr−1

0f
(L(T M, (η′)∗(TτN))),

then (λζ + λ′ζ ′) ∈ Cr−1
0f
(L(T M, (λη + λ′η′)∗(TτN))). Thus this bundle structure is

consistent with the linear structure onV0f , and can be used to give a trivialization of
V0f . To do this, all that we need is a linear isomorphism between an arbitrary fibre
Cr−1

0f
(L(T M, η∗(TτN))) and the fibreCr−1

0f
(L(T M,0∗f (TτN))) over 0f ∈ Cr ( f ∗T N)

(note that we use the symbol 0f for both maps inVBr−1
f (T M, T N)and inCr ( f ∗T N); this

slight abuse of notation should cause no difficulties). Such an isomorphism is obtained
from the natural isomorphism betweenTu(TyN) andT0(TyN) which we shall denote
by 4u. In local coordinates we have4u(y, ũ,0, v3) = (y,0,0, v3). A coordinate-free
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expression for4u is thus given by4u(ω) = w − 0u, where 0u is the origin inTu(TyN)
and the subtraction is carried out using the linear structure in(TτN)

−1(0y) (note that
both Tu(TyN) andT0(TyN) lie in (TτN)

−1(0y)). This formula is however potentially
misleading, since it hides the linearity of4u with respect to the standard structures in
Tu(TyN) andT0(TyN).

An isomorphism betweenCr−1
0f
(L(T M, η∗(TτN))) andCr−1

0f
(L(T M,0∗f (TτN))) is

then given by4(ζ) = ω ◦ 4η ◦ ω ◦ ζ , where4η is given by4η(x) on each fibre
Tη(x)(Tf (x)N). This gives the trivialization4̃: V0f → V f × Cr−1

0f
(L(T M,0∗f (TτN)))

defined by4̃(ζ ) = (η,4(ζ )). SinceH0f is fibre preserving and is linear on each
fibre ofVBr−1

U f
(T M, T N), we obtain the required trivializatioñ4 of VBr−1

U f
(T M, T N)

by conjugating4̃ with (hf ,H0f ). An explicit expression for̃4 is given by4̃(G) =
(expN,expT N) ◦ ω ◦4η ◦9η,0 ◦ G. It is straightforward, but tedious, to verify that this
satisfies the necessary conditions to makeVBr−1(T M, T N) a vector bundle (Eliasson
[1967]).

Next, we want to derive an expression forσ ′ with respect to the above local co-
ordinates. If, as above,g = expN ◦η, thenσ ′(g) = T expN ◦Tη = expT N ◦ω ◦ Tη.
UnfortunatelyτT N ◦ ω ◦ Tη = TτN ◦ Tη = T(τN ◦ η) = T f , and henceω ◦ Tη /∈
V0f = Cr−1

0f
(L(T M, η∗(TτN))) (recall that this is characterized byτT N ◦ ζ = 0f ). In

fact,ω ◦ Tη ∈ Cr−1
T f (L(T M, η∗(TτN))). We thus need to construct an appropriate iden-

tification between these two spaces. To do this, define2T f,η ∈ Cr−1
T f (L(T M, η∗(TτN)))

by 2T f,η(v) = ω(9η(x),T f (v)(0g(x))), so that expT N(2T f,η(v)) = 0g(x). Note that2
is not quite the same as Eliasson’s intertwining operatorθ ; in fact θ(η(x))T f (v) =
ϑT f,η(v) − 2T f,η(v), whereϑT f,η(v) is the unique point inWT f (v),η(x) ∩ kerK where
K : T(T N) → T N is the connection onT N giving rise to expN . By Lemma B.9,
(ω ◦ Tη − 2T f,η)(v) ∈ Cr−1

0f
(L(T M, η∗(TτN))), and by Lemma B.9 and the linearity

of T expN on fibres ofτT N we have expT N(ω ◦ Tη−2T f,η)(v) = expT N ◦ω ◦ Tη(v)−
expT N(2T f,η(v)) = σ ′(g) − 0g = σ ′(g). Hence the local expression forσ ′ with re-
spect to the chart given byH0f is simplyσ ′(η) = ω ◦ Tη−2T f,η. If we wish to use the
coordinates given by the trivialization ofVBr−1

U f
(T M, T N), we simply compose with

expT N ◦4, givingσ ′(η) = expT N ◦4η ◦(ω◦Tη−2T f,η). This is essentially the formula
given by Eliasson who writesπ0(ω ◦ Tη)+ θ(η(x))T f (v) instead ofω ◦ Tη −2T f,η,
whereπ0(ω ◦ Tη) = ω ◦ Tη − ϑT f,η(v) is the projection ofω ◦ Tη onto the vertical
subspaceTη(x)(Tg(x)N) obtained from the splittingTη(x)(T N) = Tη(x)(Tg(x)N)⊕ kerK .
Also Eliasson usesT expN rather than expT N, thereby eliminating the need forω (see
below).

Unfortunately, this expression is not particularly convenient if we wish to compute
Tσ ′, since this requires us to calculate the derivativeDη(ω◦Tη−2T f,η). Whilst the first
term is linear inη, there appears to be no way of computingDη2T f,η. Fundamentally, this
problem arises becauseH0f , being centred at 0f , rather thanT f does not lead to a good
model for the tangent space atT f , i.e.,Cr−1

0f
(L(T M, Cr ( f ∗T N)∗(TτN))) does not give a

good representation ofTT fVBr−1(T M, T N). It is thus preferable to seek a chart centred
atT f . We have in fact already carried out all the necessary work to construct such a chart,
particularly in Lemma B.7. This implies that givenG ∈ VBr−1

g (T M, T N) with g ∈ U f

there exists a uniqueζ ∈ Cr−1
T f (L(T M, Cr ( f ∗T N)∗(TτN))) such thatG = expT N ◦ζ ,
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and conversely the same argument as forCr−1
0f
(L(T M, Cr ( f ∗T N)∗(TτN))) shows that

if ζ ∈ Cr−1
T f (L(T M, Cr ( f ∗T N)∗(TτN))), then expT N ◦ζ ∈ VBr−1(T M, T N). Hence

we have the chartHT f : UT f → VT f , whereH−1
T f (ζ ) = expT N ◦ζ andUT f = U0f =

VBr−1
U f
(T M, T N) are as before, but nowVT f = Cr−1

T f (L(T M,V∗f (TτN))).

As already observed above,ω ◦ Tη ∈ Cr−1
T f (L(T M,V∗f (TτN))), and hence in the

coordinates provided by this chart we simply haveσ ′(η) = ω ◦ Tη. Sinceω ◦ Tη is
linear inη, we haveD0σ

′(η) = ω ◦ Tη, giving the following lemma:

Lemma B.11. Let σ ′: Cr+1(M, N) → Cr (L(T M, Cr (M, N)∗T N)) be the map
σ ′( f ) = T f . Thenσ ′ is C∞ and if we identify TT fVBr−1(T M, T N) with Cr−1

T f (L(T M,
Cr ( f ∗T N)∗(TτN))) we have

Tf σ
′(η) = ω ◦ Tη.

By combining this with Corollary B.3, we also immediately get the following

Corollary B.12. Tf,vevσ ′(ξ,u) = ω(Txη(v))+ Tv(T f )(u).

Example B.1. It may help to clarify these expressions if we consider the caseN = V , a
Banach space. Then we have natural identifications ofT V with V×V , andT(T V)with
V × V × V × V . The canonical convolution is justω(u0,u1,u2,u3) = (u0,u2,u1,u3).

The spaceCr (M,V) is itself a Banach space, so thatTCr (M,V) = Cr (M,V) ×
Cr (M,V). The tangent spaceTf Cr (M,V) is given byTf Cr (M,V) = {( f, η̃): η̃ ∈
Cr (M,V)}. A vector bundle mapF ∈ VBr−1(T M, T V) can be written asF(v) =
( f (x), Fx(v)), where f ∈ Cr (M,V) and Fx is a linear map fromTx M to V for each
x ∈ M . In particular, we haveσ ′( f ) = ( f, Tx f ). This is linear in f , and hence if we
takeη = ( f, η̃) ∈ Tf Cr (M,V) we getTf σ

′(η) = ( f, Tx f, η̃, Txη̃). On the other hand,
Tη = ( f, η̃, Tx f, Txη̃), and henceTf σ

′(η) = ω ◦ Tη, as required.
In comparing this calculation to the general case above, the reader may find it help-

ful to take the standard Riemann structure onV which gives expV (u0,u1) = u0 + u1,
T expV (u0,u1,u2,u3) = (u0 + u1,u2 + u3) and hence expT V(u0,u1,u2,u3) = (u0 +
u2,u1 + u3). Note that expV is a global isomorphism betweenTu0V andV . Also ob-
serve that the tangent spaceTFVBr−1(T M, T V) takes the formTFVBr−1(T M, T V) =
{( f, Fx, η̃, ζx)}, whereζx is linear inv.

This particular example could be used as the basis of a proof of Lemma B.11 for
a much wider class ofN, in particular for anyN that is an embedded submanifold of
a Banach space and has a tubular neighbourhood. This includes all finite-dimensional
manifolds, since by the Whitney Embedding Theorem (Hirsch [1976]) any such manifold
can be embedded in some Euclidean space. Franks [1979] in turn shows that whenN is
an embedded submanifold ofV and has a tubular neighbourhood, thenCr (M, N) is an
embedded submanifold ofCr (M,V) (he states the result for finite dimensionalN, but
his proof merely requires the existence of a tubular neighbourhood). This in fact is how
he proves thatCr (M, N) is a manifold. It seems reasonable to expect that under these
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conditionsVBr−1(T M, T N) should be an embedded submanifold ofVBr−1(T M, T V).
If this is the case, then Example B.1 gives a direct proof of Lemma B.12.

Finally, we point out that in constructing the manifold structure onVBr−1(T M, T N),
we could useT expN to construct the charts, instead of expT N. This gives an isomorphic
structure to that presented here, with the roles ofTτN andτT N interchanged. In particular,
the spaceCr−1

F (L(T M, Cr ( f ∗T N)∗(TτN))) giving the local chart atF is replaced by
{ζ ∈ Cr−1(L(T M, Cr ( f ∗T N)∗(T(T N)))): TτN ◦ζ = F}. It is straightforward to verify
that this leads to the formulaTf σ

′(η) = Tη in Lemma B.12. In the context of Example
B.1 this amounts to identifyingTFVBr−1(T M, T V)with the space{( f, η̃, Fx, ζx)} rather
than{( f, Fx, η̃, ζx)} as above. Clearly, the choice of one or the other of these is a matter
of arbitrary convention and has no significant consequences as long as we are consistent
in our usage.

Appendix C: Technical Calculations

In this appendix we prove a variety of technical results concerning properties of the map-
pingρ( f, ϕ) = 8 f,ϕ which are used throughout Sections 4–6. Some are simple corollar-
ies of the general results presented in Appendix B, and the remainder use straightforward
arguments from elementary differential topology. We make the standing assumption that
M is compact.

C.1. Smoothness ofevρ

Recall that by Theorem B.2 composition is a smooth mapping. As a simple consequence
we get

Lemma C.1. The mapρi : C2r (M,M)→ Cr (M,M) given byρi ( f ) = f i is Cr . If we
denote xi = f i (x) andηi = Tf ρi (η), thenη0 = 0 and

ηi (x) = η(xi−1+ Tx1 f (ηi−1(x)). (C.1.1)

Proof. By induction oni . Sinceρ0( f ) = Id for all f ,ρ0 isCr , andη0 = 0. Now suppose
thatρi−1 for somei > 1 is Cr . Since f i = f ◦ f i−1 we haveρi ( f ) = σ(ρi−1( f ), f )
whereσ : Cr (M,M) × C2r (M,M) → Cr (M,M) is composition. By Theorem B.2,
σ is Cr and hence by the chain ruleρi is Cr . Thenηi is given byηi = Tf ρi (η) =
Tρi−1( f ), f σ(ηi−1, η) = T f ◦ ηi−1 + η ◦ f i−1. Evaluating this atx gives the required
formula.

Corollary C.2. If ρi is as above, then evρi is Cr and

Tf,xevρi (η,0x) =
i∑

j=1

Txj f i− j (η(xj−1)) (C.1.2)

Proof. Observe thatevρi ( f, x) = ρi ( f )(x) = ev(x, ρi ( f )) whereev: M × Cr (M,M)
→ M is the evaluation function given byev(x, f ) = f (x). Thus by Corollary B.3 and the
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chain ruleevρi isCr andTf,xevρi (η, v) = ηi (x)+Tx f i (v). ThusTf,xevρi (η,0x) = ηi (x),
and (C.1.2) follows by induction.

In practice (C.1.2) will turn out to be less useful than (C.1.1). We shall never need
to evaluateTf,xevρi (η, v) for v 6= 0, i > 1. Either of the above formulae can be used to
computeTf,ϕ,xevρ whereρ( f, ϕ) = 8 f,ϕ . We shall in fact only need to evaluateTf,ϕ,xevρ
on vectors of the form(0f , ξ,0x), for ξ ∈ TϕC2r (M,R). This is given by a particularly
simple expression:

Corollary C.3. Letρ: C2r (M,M)× C2r (M,R)→ Cr (M,Rd) be given byρ( f, ϕ) =
8 f,ϕ . Then evρ is Cr and

Tf,ϕ,xevr (0f , x,0x) = (ξ(x), ξ(x1), . . . , ξ(xd−1))
†.

Proof. We haveρ( f, ϕ) = (ϕ ◦ ρ0( f ), . . . , ϕ ◦ ρd−1( f )) and henceρ is Cr by Theo-
rem B.2, withTf,ϕρ(0f , ξ) = (ξ ◦ ρ0( f ), . . . , ξ ◦ ρd−1( f ))† + (Tϕ ◦ η0(0f ), . . . , Tϕ ◦
ηd−1(0f )) = (ξ ◦ ρ0( f ), . . . , ξ ◦ ρd−1( f ))†. Since evρ( f, ϕ, x) = 8 f,ϕ(x) =
ev(x, ρ( f, ϕ)), Corollary B.3 implies thatevρ is Cr and Tf,ϕ,xevρ(0f , ξ,0x) =
Tx,ρ( f,ϕ)ev(0x, Tf,ϕρ(0f , ξ)) = Tf,ϕρ(0f , ξ)(x) = (ξ(x), ξ(x1), . . . , ξ(xd−1))

† as re-
quired.

We next need the analogues of these expressions for skew product systems. Thus
defineτ : C2r (M × N,M)→ Cr (M × N,Md) by

τ( f ) = ( f (0), f (1), f (2), . . . , f (d−1)),

where we recall thatf (i+1) = f ◦ ( f (i ), gi ) and f (0)(x, y) = x. Lemma C.1 then gives

Corollary C.4. Let τi : C2r (M × N,M)→ Cr (M × N,M) be the ith component of t,
so thatτi ( f ) = f (i ). Thenτi is Cr , and ifηi = Tf τi (η), then

ηi+1 = η ◦ ( f (i ), gi )+ T f ◦ (ηi ,0),

with η0 = 0, and henceη1 = η.

Proof. Observe that( f (i ), gi ) = ( f, g)i . Applying Lemma C.1 to( f, g)we immediately
see thatτi isCr and (ηi+1,0) = (η,0)◦ ( f, g)i + (T f, T g)◦ (ηi ,0). The first component
of this is the required formula.

Corollary C.5. The map evτi is Cr and Tf,x,yevτi (η,0x,0y) is given by

Tf,x,yevτi (η,0x,0y) =
i∑

j=1

T(xj ,yj ) f (i− j )(η(xj−1, yj−1),0).

Proof. This follows by applying Corollary C.2 to( f, g).
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Finally, we get the analogue of Corollary C.3:

Corollary C.6. Letρ: C2r (M×N,M)×C2r (N)×C2r (M,R)→ Cr (M,Rd) be given
byρ( f, g, ϕ) = 8 f,g,ϕ . Then evρ is Cr and

Tf,g,ϕ,x,yevρ(0f ,0g, ξ,0x,0y) = (ξ(x), ξ(x1), . . . , ξ(xd−1))
†.

C.2. The Tangent Map to the Tangent Operator

Next, we require the analogues of the above formulae forρ ′( f, ϕ) = T8 f,ϕ . These follow
from Lemma B.11. Recall thatVBr (T M, T M) = Cr (L(T M, Cr + 1(M,M)∗T M)) is
the space of vector bundle maps betweenT M and T M, so that if f ∈ Cr+1(M,M)
thenT f ∈ VBr (T M, T M), and thatσ ′: Cr+1(M,M) → VBr (T M, T M) is the map
σ ′( f ) = T f .

Lemma C.7. Letρ ′i : C2r+1(M,M)→ VBr (T M, T M) be given byρ ′i ( f ) = T f i . Then
ρ ′i is Cr . If we denoteη′i = Tf ρ

′
i (η) thenη′1 = ω ◦ Tη and

η′i = ω ◦ Tη ◦ T( f i−1)+ ω ◦ T(T f ) ◦ ω ◦ η′i−1.

Proof. We haveρ ′i = σ ′ ◦ ρi with ρi as above. By Lemma B.11,σ ′ is C∞, whilst by
Lemma C.1,ρi isCr and hence so isρ ′i . Thenη′i = Tf ρ

′
i (η) = Tσ ′ ◦Tf ρi (η) = ω ◦Tηi .

Sinceη1 = η by Lemma C.1, this immediately givesη′1 = ω ◦ Tη, as required. Also by
Lemma C.1 we haveω ◦ Tηi = ω ◦ T(η ◦ f i−1+ T f ◦ ηi−1) = ω ◦ Tη ◦ T( f i−1)+ω ◦
T(T f ) ◦ ω ◦ ω ◦ Tηi−1 = ω ◦ Tη ◦ T( f i−1)+ ω ◦ T(T f ) ◦ ω ◦ η′i−1, as required.

Corollary C.8. Let ρ ′: D2r+1(M,M) × C2r+1(M,R) → Cr (T̃ M, TRd) be given by
ρ ′( f, ϕ) = T8 f,ϕ . Then evρ ′ is Cr and

Tf,ϕ,vevρ ′(0f , ξ,0v) = (ω(Txξ(v)), ω(Tx1ξ(v1)), . . . , ω(Txi−1ξ(vi−1)))
†,

where xi = f i (x) andvi = Tx f i (v).

Proof. We haveρ ′( f, ϕ) = (σ ′(ϕ) ◦ ρ ′0( f ), . . . , σ ′(ϕ) ◦ ρ ′d−1( f )). By Lemma B.11,
σ ′ is C∞, and hence by Theorem B.2 and Lemma C.7,ρ ′ is Cr , with Tf,ϕρ

′(0f , ξ) =
(ω◦Tξ ◦ρ ′0( f ), . . . , ω◦Tξ ◦ρ ′d−1( f ))†+(T(Tϕ)◦η′0(0f ), . . . , T(Tϕ)◦η′d−1(0f )) = (ω◦
Tξ ◦ρ ′0( f ), . . . , ω◦Tξ ◦ρ ′d−1( f ))†. Sinceevρ ′( f, ϕ, v) = T8 f,ϕ(v) = ev(v, ρ ′( f, ϕ)),
and T̃ M is compact, Corollary B.3 implies thatevρ ′ is Cr andTf,ϕ,vevρ ′(0f , ξ,0v) =
Tv,ρ ′( f,ϕ)ev(0v, Tf,ϕρ

′(0f , ξ)) = Tf,ϕρ
′(0f , ξ)(v) = ((ω ◦ Tξ ◦ ρ ′0( f ), . . . , ω ◦ Tξ ◦

ρ ′d−1( f ))(v))† = (ω(Txξ(v)), ω(Tx1ξ(v1)), . . . , ω(Txi−1ξ(vi−1)))
†, as required.

Finally, as in Section C.1, we derive the skew product analogue of Lemma C.7. Define
the mapτ ′: C2r+1(M × N,M)→ VBr (T(M × N), T Md) by

τ ′( f ) = (T f (0), T f (1), T f (2), . . . , T f (d−1)),

and denote itsi th component byτ ′i . Then
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Lemma C.9. The mapτ ′ is Cr . Letη′i = Tf τ
′
i (η), thenη′0 = 0 and

η′i+1 = ω ◦ Tη ◦ T( f (i ), gi )+ ω ◦ T(T f ) ◦ (ω ◦ η′i ,0),

where as in Corollary C.4,ηi = Tf τi (η) with τi ( f ) = f (i ). Furthermore, evτ ′i is Cr and
Tf,v(evτ ′i )(η,0v) = η′i (v).

Proof. Applying Lemma C.7 to( f (i ), gi ) = ( f, g)i we get(η′i ,0) = ω ◦ T(η,0) ◦
T( f (i ), gi )+ ω ◦ T(T( f, g)) ◦ ω ◦ (η′i−1,0). Taking the first component (and using the
same symbol for the canonical convolution onT(T(M × N)) andT(T M), gives the
required expression. Then, by definitionevτ ′i ( f, v) = ev(v, τ ′i ( f )) whereev: T̃(M ×
N)×Cr (T̃(M×N), T M)→ T M is the evaluation function given byev(v, F) = F(v).
Thus by Corollary B.3 and the chain rule,evτ ′i is Ck andTf,v(evτ ′i )(η,0v) = η′i (v) as
required.

C.3. Submersivity

In order to prove the transversality of various evaluation maps we shall often need to
show the existence of suitable functions inTfDr (M) and TϕCr (M,R). In particular,
we shall require the submersivity of the mapsf 7→ ( f (x0), . . . , f (xj−1)) and f 7→
(Tx0 f, . . . , Txj−1 f ) when x0, . . . , xj−1 are disjoint points. These are all based on the
following simple lemma.

Lemma C.10. Let U0 and U1 be open neighbourhoods of some x∈ M, with Ū1 ⊂ U0,
whereŪ1 denotes the closure of U1. Then there exists aC∞ functionψ : M → [0,1]
such thatψ ≡ 1 on U1 and the support ofψ is contained in U0.

For a proof see for instance Hirsch [1976]. Straightforward applications of this gives

Lemma C.11. Let f ∈ Cr (M, N). Given any x∈ M, v ∈ Tf (x)N, and U⊂ M an open
neighbourhood of x, there exists aCr functionη ∈ Cr ( f ∗T N) = Tf Cr (M, N) such that
η(x) = v and the support ofη is contained in U.

Proof. Let (τ−1
N (V), α) be a local trivialization ofT N for someV ⊂ N with f (x) ∈ V .

Suppose thatα(v) = ( f (x),b) for someb ∈ Rn. Defineη0: M → T N by

η0(y) =
{
α−1( f (y),b), y ∈ f −1(V),
0f (y), otherwise.

Using the lemma, chooseψ : M → [0,1] such thatψ(x) = 1 and the support ofψ is
contained inf −1(V)∩U . Letη: M → T N be given byη(y) = ψ(y)η0(y). Sinceψ is
identically zero in an open neighbourhood of any point in the boundary off −1(V),η isCr .
Furthermore the support ofη is contained inU , andη(x) = ψ(x)η0(x) = α−1(x,b) = v,
as required.



Embedding Forced Systems 327

Corollary C.12. Given any finite set of distinct points{x0, . . . , xj−1} ⊂ M and any set
of vi ∈ Tf (xi )N, i = 0, . . . , j − 1, we can find aη ∈ Cr ( f ∗T N) such thatη(xi ) = vi

for all i = 0, . . . , j − 1.

Proof. For eachi = 0, . . . , j −1, choose a neighbourhoodUi of xi such thatxj /∈ Ui if
i 6= j . Constructηi ∈ Cr ( f ∗T N) such thatηi (xi ) = vi and the support ofηi is contained
in Ui . Thenη = η0+ · · · + ηj−1 has the required properties.

Corollary C.13. If x0, . . . , xj−1 are distinct, then the mapρ: Cr (M, N)→ N j given
byρ( f ) = ( f (x0), . . . , f (xj−1)) is a submersion.

Proof. SinceTf ρ(η) = (η(x0), . . . , η(xj−1)), this is just a restatement of the Corollary
C.12.

The above two corollaries show that we can chooseη independently onx0, . . . , xj−1.
We shall need essentially the same result forTη. It shall be useful to give two forms of
this result, both based on Lemma C.14 below. First, some notation.

Given anyx ∈ M , y ∈ N, let (U, β) be a chart centred atx and ((τN)
−1(V), α)

a local trivialization forT N, with y ∈ V . Thusβ: U → Rn with β(x) = 0, and
α: (τN)

−1(V) → V × Rn such thatπ1 ◦ α = τN , andα is a linear isomorphism on
each fibre, whereπ1 : V × Rn → V is the projection onto the first factor. Denote the
restriction ofα to TyN byαy; note that this gives an isomorphism betweenTyN andRn.
Finally letα′: TRn→ Rn × Rn be a (global) trivialization forTRn.

Let L(Tx M, TyN) be the space linear mapsTx M → TyN. Note thatTx M consists
of equivalence classes [U, β, v′] with v′ ∈ Rm. This allows us to identifyTx M andRm,
via β ′(v′) = [U, β, v′]. Hence given anyB ∈ L(Tx M, TyN) and anyb ∈ Rn, we get a
mapζb,B = b+ αy ◦ B ◦ β ′ ◦ β: U → Rn. Sinceβ(x) = 0, we haveζb,B(x) = b.

If f ∈ Cr (M, N) such thatf (x) = y, defineηb,B ∈ Tf Cr (M, N) by

ηb,B(z) =
{
ψ(z)α−1( f (z), ζb,B(z)), z ∈ U ∩ f −1(V),
ψ(z)α−1( f (z),0), otherwise,

(C.3.1)

whereψ is identically 1 in a neighbourhood ofx and has support contained inf −1(V)∩U .
Thenηb,B has support contained inU andηb,B(x) = α−1(x,b).

Lemma C.14. Withηb,B defined as above, we have for anyv ∈ Tx M

Txηb,B(v) = Tα−1(Tx f (v), (α′)−1(b, αy ◦ B(v))).

Proof. By definition if g: U → Rn, then Txg(v) = (α′)−1(g(x), Dx(g ◦ β−1).v′),
wherev = [U, β, v′] ∈ Tx M . Thusα′ ◦Tx(ζb,B)(v) = (ζb,B(x), Dx(b+αy ◦ B◦b′).v′).
Sinceαy ◦ B ◦ b′ is linear, we haveDx(αy ◦ B ◦ β ′).v′ = αy ◦ B ◦ β ′(v′) = αy ◦ B(v).
Thusα′(Tx(ζb,B)(v)) = (b, αy ◦ B(v)), as required.

Corollary C.15. Given anyv ∈ Tx M with v 6= 0 and anyw ∈ Tu(T N) where u=
Tx f (v), and an open neighbourhood and U⊂ M of x, there existsη ∈ Tf Cr (M, N)
such thatω(Txη(v)) = w, and the support ofη is contained in U.
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Proof. Recall that ifω is the canonical involution onT(T N), thenTτN ◦ ω = τT N

andω ◦ ω = Id. Thus, sinceπ1 ◦ α = τN , we haveTπ1 ◦ Tα = TτN and hence
Tπ1◦Tα◦ω = τT N. By definitionτT N(w) = u and soTα(ω(w)) = (u, (α′)−1(w2, w3))

for somew2, w3 ∈ Rn. Thusw = ω(Tα−1(u, (α′)−1(w2, w3))). Chooseb = w2 andB
to be any map inL(Tx M, TyN) such thatαy(B(v)) = w3; this is possible sincev 6= 0
andαy is an isomorphism. If necessary, shrinkU so that(U, β) is a chart for some
β: U → Rm. Then if we setη = ηb,B we have as required,

ω(Txη(v)) = ω(Tα−1(Tx f (v), (α′)−1(b, αy ◦ B(v))))

= ω(Tα−1(u, (α′)−1(w2, w3)))

= w.

Corollary C.16. Given any finite set of distinct points{x0, . . . , xj−1} ⊂ M, any set of
vi ∈ Txi M, vi 6= 0, and any collection ofwi ∈ Tui (T N) where ui = Txi f (vi ), we can
find anη ∈ Cr ( f ∗T N) such thatω(Txi η(ui )) = wi for all i = 0, . . . , j − 1.

Proof. Exactly analogous to the proof of Corollary C.12: For eachi = 0, . . . , j − 1
constructηi such thatω(Txi ηi (ui )) = wi andxj is not in the support ofηi if i 6= j , then
η = η0+ · · · + ηj−1 has the required properties.

The above corollary is all we shall need in proving the immersivity of8 f,ϕ at gen-
eral points ofM . However, at periodic points, it will be more convenient to restrict to
perturbations that preserve the position of the periodic point. So, given anyx ∈ M ,
y ∈ N, defineCr (M, N; x; y) = { f ∈ Cr (M, N): f (x) = y}. If ρ: Cr (M, N) → N
is given byρ( f ) = f (x), thenCr (M, N; x; y) = ρ−1({y}) and since by Corollary
C.13,ρ is a submersion,Cr (M, N; x; y) is a submanifold ofCr (M, N). Furthermore,
Tf Cr (M, N; x; y) = Tρ−1(0) = {η ∈ Tf Cr (M, N): η(x) = 0}.

For any A ∈ L(Tx M, TyN) we may identifyTAL(Tx M, TyN) with those mapsÃ
in L(Tx M, T(TyN)) such thatτT N ◦ Ã = A. This givesTAL(Tx M, TyN) a structure
compatible with that defined onCr (L(T M, Cr (M, N)∗T N)) in Appendix B.3.

Furthermore, ifη ∈ Tf Cr (M, N), we automatically haveτT N(ω ◦ Txη) = Tx f since
τN ◦ η = f and τT N ◦ ω = TτN . Also if η(x) = 0y then τT N(Txη(v)) = 0y for
all v ∈ Tx M , and henceTτN(ω(Txη(v))) = 0y. But TyN = (τN)

−1(y), and hence
T(TyN) = (TτN)

−1(0y). Thusω(Txη(v)) ∈ T(TyN) for all v ∈ Tx M . We have thus
shown that ifη ∈ Tf Cr (M, N; x; y) thenω ◦ Txη ∈ TTx fL(Tx M, TyN).

Recall thatαy is an isomorphism betweenTyN andRn, andα′: TRn→ Rn × Rn is
a trivialization forTRn. Then(α−1

y × α−1
y ) ◦ α′ ◦ Tαy: T(TyN)→ TyN × TyN gives

an induced trivialization forT(TyN). DefineTiα = α−1
y ◦ πi ◦ α′ ◦ Tαy for i = 1,2,

whereπ1, π2: Rn × Rn → Rn are the two projections. Note thatT1α is just the bundle
projectionτT N : T(TyN)→ TyN. Thus if Ã ∈ TAL(Tx M, TyN), thenT1α ◦ Ã = A and
Ã 7→ T2α ◦ Ã is a (linear) isomorphism betweenTAL(Tx M, TyN) andL(Tx M, TyN).
We then get a further corollary to Lemma C.14:
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Corollary C.17. Given any x∈ M, y ∈ N, let ρ: f ∈ Cr (M, N; x; y) → L(Tx M,
TyN) be defined byρ( f ) = Tx f . Then given anỹA ∈ TTx fL(Tx M, TyN) and an open
neighbourhood U of x, there exists aη ∈ Tf Cr (M, N; x; y) such that Tf ρ(η) = Ã and
the support ofη is contained in U.

Proof. By the discussion above, ifη ∈ Tf Cr (M, N) andη(x) = 0y, then automatically
ω ◦ Txη ∈ TTx fL(Tx M, TyN). SinceÃ 7→ T2α ◦ Ã is an isomorphism it thus suffices to
show that we can construct such aη so thatT2α◦Tf ρ(η) = T2α◦ Ã (and whose support is
contained inU ). As in Corollary C.15, if necessary shrinkU so that (U, β) is a chart for
someβ: U → Rm and defineη = ηb,B with b = 0 andB = T2α ◦ Ã ∈ L(Tx M, TyN).

By Lemma B.11, and Lemma C.14 we haveTf ρ(η)(v) = ω(Txη(v)) = ω(Tα−1

(Tx f (v), (α′)−1(b, αy ◦ B(v)))) for any v ∈ Tx M . Sinceα is a trivialization in the
neighbourhood ofy, we haveTx f (v) = α−1(y,u1) for someu1 ∈ Rn, and 0y =
α−1(y,0). Direct calculation shows that for anyu1,u2,u3 ∈ Rn we haveTα ◦ ω ◦
Tα−1(α−1(y,u1), (α

′)−1(u2,u3)) = (α−1(y,u2), ((α
′)−1(u1,u3))) and Tαy ◦ Tα−1

(0y, (α
′)−1(u1,u3)) = (α′)−1(u1,u3). Thus,

T2α ◦ Tf ρ(η)(v) = α−1
y ◦ π2 ◦ α′ ◦ Tαy ◦ ω ◦ Txη(v)

= α−1
y ◦ π2 ◦ α′ ◦ Tαy ◦ ω(Tα−1(Tx f (v), (α′)−1(0, αy ◦ B(v))))

= α−1
y ◦ π2 ◦ α′ ◦ Tαy ◦ Tα−1(α−1(y,0), (α′)−1(u1, αy ◦ B(v)))

= α−1
y ◦ π2 ◦ α′ ◦ (α′)−1(u1, αy ◦ B(v))

= α−1
y ◦ π2(u1, αy ◦ B(v))

= B(v)

= T2α ◦ Ã(v),

and henceTf ρ(η) = Ã, as required.

Finally, we get the usual extension of this result to any finite set of distinct points.
Thus given{x0, . . . , xj−1} ⊂ M as above, and any set of points{y0, . . . , yj−1} ⊂ N, we
generalizeCr (M, N; x; y) to

Cr (M, N; x0, . . . , xj−1; y0, . . . , yj−1) = { f ∈ Cr (M, N): f (xi ) = yi

for all i = 0, . . . , j − 1}.

Then, as before,Cr (M, N; x0, . . . , xj−1; y0, . . . , yj−1) is a submanifold ofCr (M, N)
and its tangent space atf is given by thoseη ∈ Tf Cr (M, N) such thatη(xi ) = 0 for
all i = 0, . . . , j − 1. An analogous argument to Corollaries C.8 and C.12 gives the
following.

Corollary C.18. Suppose that{x0, . . . , xj−1} ⊂ M are distinct. Then the mapρj : Cr

(M, N; x0, . . . , xj−1; y0, . . . , yj−1)→ L(Tx0 M, Ty0 N)×· · ·×L(Txj−1 M, Tyj−1 N) given
byρj ( f ) = (Tx0 f, . . . , Txj−1 f ) is a submersion.
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