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Summary. We describe a method for finding the families of relative equilibria of
molecules that bifurcate from an equilibrium point as the angular momentum is in-
creased from 0. Relative equilibria are steady rotations about a stationary axis during
which the shape of the molecule remains constant. We show that the bifurcating families
correspond bijectively to the critical points of a functibron the two-sphere which is
invariant under an action of the symmetry group of the equilibrium point. From this it
follows that for each rotation axis of the equilibrium configuration there is a bifurcating
family of relative equilibria for which the molecule rotates about that axis. In addition,
for each reflection plane there is a family of relative equilibria for which the molecule
rotates about an axis perpendicular to the plane.

We also show that if the equilibrium is nondegenerate and stable, then the minima,
maxima, and saddle points bfcorrespond respectively to relative equilibria which are
(orbitally) Liapounov stable, linearly stable, and linearly unstable. The stabilities of the
bifurcating branches of relative equilibria are computed explicithydg, X3, andX Y,
molecules.

These existence and stability results are corollaries of more general theorems on
relative equilibria ofG-invariant Hamiltonian systems that bifurcate from equilibria with
finite isotropy subgroups as the momentum is varied. In the general case, the finction
is defined on the Lie algebra dugill and the bifurcating relative equilibria correspond
to critical points of the restrictions df to the coadjoint orbits ig*.
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Introduction

In the theory of molecular spectra, a molecule is treated as a system of point particles,
the atomic nuclei, and electrons, interacting through conservative forces. The result-
ing mechanical system is impossible to “solve,” even for very simple molecules. For
example, the water molecule 8 has 3 nuclei and 10 electrons, and hence a 39 di-
mensional configuration space. Considerable simplification is achieved by applying the
Born-Oppenheimer approximation in which the electron motion responds adiabatically
to that of the nuclei (see, e.g., [15]). The resultis a model for the nuclei alone, interacting
via a potential energy function that incorporates the effects of the electrons.

Although considerably simpler than the original modelO-how has three particles
and a nine-dimensional configuration space, understanding the dynamics of the resulting
system is still highly nontrivial. The classical approach to computing and interpreting
molecular spectra is based on a further approximation which effectively decouples the
vibrational motion of the molecule from the rotational motion. For the rotational motion,
the molecule is assumed to maintain a constant shape, namely that of a stable equilibrium
position, and to rotate as a rigid body. Both the classical and quantum mechanics of rigid
bodies are well understood and the latter gives reasonably accurate predictions of spectra
for many “rigid” molecules. The classical mechanics of a rigid body includes among
its features motions in which the body rotates about a stationary axis. Such motions are
examples ofelative equilibria Provided the three principal moments of inertia of the
body are all different, there are precisely six of these relative equilibria for each nonzero
value of the angular momentum, one rotating in each direction about each of the three
principal axes of the inertia tensor.

Foramolecule, arelative equilibrium is a motion during which it rotates steadily about
a fixed axis, which we call thdynamical axiswhile the shape remains constant. In this
paper we describe an approach to finding families of relative equilibria of molecules that
bifurcate from equilibrium configurations as the total angular momentum is increased
from zero. We do this for the full Born-Oppenheimer model for the motion of the
nuclei. For example, we show that if an equilibrium configuration has distinct principal
moments of inertia then, as one would expect, the six relative equilibria of the rigid body
approximation persist to this model, together with their stabilities, and these are the only
relative equilibria near the equilibrium configuration (Corollary 3.2).

More interesting is the case of molecules near equilibria with either two or all three
principal moments of inertia equal, which in the molecular spectroscopy literature are
calledsymmetric topand spherical topmolecules, respectively. In the rigid body ap-
proximation, symmetric top molecules have a whole circle of relative equilibria with
dynamical axes in the plane spanned by the two principal axes of the inertia tensor
with equal moments of inertia. They also have two isolated relative equilibria that are
rotations about the other principal axis. Similarly, the spherical top molecules have a
sphere of relative equilibria. Indeed, in this case every trajectory of the rigid body ap-
proximation is a relative equilibrium. We show that typically in each of these cases only
a finite number of these relative equilibria persist in the Born-Oppenheimer model, in-
cluding the two isolated relative equilibria of symmetric top molecules. In Section 3 of
this paper, we show how to calculate these for specific molecules, or rather for specific
equilibria of specific molecules: A molecule can have more than one equilibrium, some
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Fig. 1. The methane molecule and its symmetry axes.

stable and some unstable (as noted in Example 1.4), and our analysis applies to each one
separately.

For symmetric top and spherical top molecules, the degeneracy of the rigid body
approximation is caused by symmetries. The Born-Oppenheimer modelis invariant under
the action of two groups, the gro@3) of all orthogonal rotations and reflectionskt
and the groufx of all permutations of identical nuclei. We define #ygnmetry group’
of an equilibrium configuration to be the subgroupda) x X that fixes each nucleus.

Its elements are paif®\, o) for which the action of the orthogonal transformatiamn
the equilibrium configuration is the same as that of the permutation

Consider for example the methane moleculesGénsisting of four light hydrogen
atoms distributed around a central massive carbon atom; see Figure 1. In its equilibrium
state, the hydrogen nuclei are positioned at the vertices of a regular tetrahedron. The
symmetry grougd” is isomorphic to the subgroup &f(3), which consists of orthogonal
rotations and reflections that map the tetrahedron to itself. Chemists denote this group by
Tq. Each of these transformations gives a nontrivial permutation of the hydrogen nuclei,
and every such permutation is realised by an elemefityoThusT is also isomorphic
to the symmetric groufSy. Note that in generdr will be a finite group if and only if the
equilibrium configuration is not collinear.

The tetrahedral symmetry of the methane equilibrium configuration forces its inertia
tensor to be scalar and so methane is a spherical top molecule and has a whole two-
sphere of relative equilibria in the rigid body approximation. These correspond to the
tetrahedral configuration rotating about arbitrary axes through the centre of mass of
the equilibrium configuration, i.e., the carbon nucleus. In Section 2 we will show that
those relative equilibria with dynamical axes corresponding to symmetry axes of the
equilibrium configuration persist for the full Born-Oppenheimer Hamiltonian.

More precisely, consider the actionobn R® determined by its projection intd(3).

Let theaxes of rotatiorof I' be the one-dimensional fixed point sets of the rotations in
this projection and thaxes of reflectiotthe lines through the origin perpendicular to the
planes fixed by the reflections. The following result is a consequence of Theorem 2.7,
the main theorem of this paper (or of its subsidiary Theorem 2.1), as explained in
Example 2.4. The nondegeneracy condition on the equilibriumis described in Section 2.1.

Theorem 0.1. Consider a molecule with a nondegenerate equilibrium with symmetry
groupT” < O(3) x X. There existg,p > 0such that for allu € R3 with || < o there
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are at least six relative equilibria with angular momentumMoreover, for each axié
of rotation or reflection in", there are two relative equilibria with angular momentum
« and dynamical axig, one rotating in each direction.

The tetrahedral equilibrium of the methane molecule has 13 axes of symmetry, divided
into 3types, and representatives of each type are shown in Figure 1. There are four axes of
threefold rotational symmetry joining the carbon nucleus to each of the hydrogen nuclei
(denoted/; in the figure), three axes of twofold rotational symmetry joining mid-points
of opposite edges of the tetrahedrén ifi the figure), and six axes of reflection passing
through the carbon nucleus, parallel to an edge of the tetrahetiramtbe figure). By
the theorem, there are two families of relative equilibria bifurcating from the equilibrium
for each of these axes, a total of 26 families. Since this existence result depends only on
the tetrahedral symmetry grody of the equilibrium, precisely the same result is true
of any other molecule with an equilibrium with the same symmetry group suéh as
(white phosphorous). Moreover, it turns out that the same symmetry analysis holds for
molecules with the cubic or octahedral symmetry gr@yp such asS k. On the other
hand, the details regarding which of the relative equilibria are stable will depend on the
molecule in question.

Theorem 2.7 is a generalization of a result of Montaldi [12] on bifurcations of relative
equilibria of Hamiltonian systems given by Hamiltonigrghat are invariant under free
actions of a groufs. In this paper, we relax this by requiring only that the connected
component of the identity o6 acts freely, and so the isotropy subgroiip,of the
equilibrium point from which the relative equilibria are bifurcating is finite. By using a
combination of the Moncrief decomposition of the tangent space to a symplectic manifold
[11], [13] and the equivariant splitting lemma, we show th&-&variant Hamiltonian
H induces a -invariant functionh on g*, the dual of the Lie algebra @, such that
the bifurcating relative equilibria are given by the critical points of restrictions tof
the orbits of the coadjoint action & on g*. For a precise statement, see Theorems 2.1
and 2.7.

For molecular Hamiltonians, the symmetry grdajis the groupO(3) x X described
above. The spagg is the space of angular momentum values and is isomorplié,to
and the coadjoint action @ is generated by the standard actio$@i(3) onR® together
with trivial actions of—1 € O(3) and ofZ. The coadjoint orbits are just the two-spheres
centred at the origin ilR3. These are invariant under the actionlbbn R® obtained
by restricting the action o®(3) x X and the search for bifurcating relative equilibria
reduces to finding critical points @f-invariant functionsi on these spheres. The relative
equilibria described in Theorem 0.1 correspond to points on the spheres that are critical
points for alll"-invariant functionsh by virtue of being the fixed-point sets nfaximal
isotropy subgroupsf theI" action.

In this paper we also incorporate the effects of the time-reversal symmetry possessed
by any Hamiltonian that is the sum of a quadratic kinetic energy function and a potential
energy function. This leads to the functiblen g* being even (invariant under — —u)
in addition to beingl'-invariant. In some cases, the presence of this extra symmetry
enables us to deduce that there must be extra bifurcating relative equilibria in addition
to those predicted by Theorem 0.1. We show that this occurk ¥grmolecules such as
ammonia (NH) in Example 2.5.
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The results we have described so far give the existence of relative equilibria with
particular symmetries and are proved using symmetry considerations alone. To find out
whether there are any others, the Taylor seried aft 0 in g* has to be calculated
to a sufficiently high order. In Section 3 we describe how to do this for molecular
Hamiltonians using the reduced form of the Hamiltonian functibabtained by Eckart
in 1935 [4]. In the final subsections this is applied to molecules of ¥j¥g XY,, and
Xs. In particular we show that the 26 relative equilibria described above are generically
the only relative equilibria that bifurcate from a tetrahedral equilibrium configuration of
an XY, molecule.

In Section 2 we also give some general results on the stability of the relative equi-
libria bifurcating from an equilibrium. See Theorem 2.8. For molecular Hamiltonians,
these imply that if the equilibrium point is a nondegenerate minimum of the potential
energy function, then relative equilibria that correspond to minima afh the angular
momentum spheres are Liapounov stable; those corresponding to maxima are linearly
stable; but typically not Liapounov stable, while those corresponding to saddle points are
linearly unstable. Here stability is always to be interpreted in an orbital sense [16]. Thus,
the calculations of Section 3 also enable us to determine the stabilities of the bifurcating
relative equilibria.

The stabilities of the bifurcating relative equilibria are determined by the low-order
terms in thel-invariant even functior discussed above, and which terms one needs
depends upon the symmetry grolif the equilibrium. For nonsymmetric molecules
where the principal moments of inertia are distinct, the second-order terimsacef
sufficient to determine the stabilities. These second-order terms depend only on the
inertia tensor of the equilibrium configuration. It follows then that the stabilities are
precisely those found in the rigid body approximation discussed above.

In the case of spherical top molecules, for tetrahet@igabymmetry, or octahedral
Oy symmetry, the fourth-order terms are required, whereas for icosatigdsahmetry
(such as for buckminsterfullerene), the sixth-order terms are required as well. For the
symmetric top molecules with dihedral or cyclic symmetry, those with square symmetry
require fourth-order terms, while those with triangular or hexagonal symmetry require
sixth-order terms.

In terms of physical molecular parameters, the fourth-order terms depend on the so-
calledinertia derivatives(the derivatives of the inertia tensor as a function of shape
evaluated at the equilibrium configuration—dy(0), or thea{f’3 of [1]) together with
the harmonic force constants (the quadratic part of the potential energy function). The
sixth-order terms ofi require in addition knowledge of the Coriolis coupling constants
(our matrixC, denotedZ in [20], or the{ in [1]), the second inertia derivatives, and
certain anharmonic force constants (third derivatives of the potential energy function).
The quadratic and quartic parts lofire given in closed form in Proposition 3.1, while
the degree-six part is computed only 26§ molecules in Section 3.5.

Using data on molecular parameters taken from a standard textbook on molecular
spectroscopy [7], we show, for example, that for methane the six relative equilibria with
dynamical axes along the twofold rotation axes are Liapounov stable, the eight relative
equilibria with dynamical axes along the threefold rotation axes are linearly stable, and
the twelve relative equilibria with dynamical axes along the reflection axes are unstable.
This is in agreement with [3], where they also derive these results by considering a
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function h on two-spheres, although their functions derive from quantum-mechanical
considerations. Using more recent data [2], we show in Section 3.5 that fdithe
molecule the relative equilibria with dynamical axis along the twofold rotation @xis (

in Figure 3) are linearly unstable, while those with dynamical axis along the reflection
axis {3 in Figure 3) are linearly stable.

The restriction in Theorem 2.7 to equilibria with finite isotropy subgroups means
that our results only apply to bifurcations of relative equilibria from equilibrium con-
figurations that are not collinear. A bifurcation theorem for group actions with nonfinite
isotropy subgroups has been obtained by Roberts and Sousa Dias [18]. That paper also
contains a brief discussion of relative equilibria bifurcating from collinear equilibrium
configurations of molecules.

In this paper, we are concerned only with the classical dynamics of molecular Hamil-
tonians. If the methods and results are to be applied to molecular spectra, then they must
be related to the quantum mechanics, presumably by semiclassical techniques. This is
a project for the future. However, we note that some elements of the theory developed
here are reminiscent of the work of Harter and Patterson [6] on the spe@i&.odnd
of Pavlichenkov, Zhilinskii, and coworkers, see [17], [19], and the survey [22]. In partic-
ular, these methods also generBtévariant functions on angular momentum spheres
similar to the functionsh of this paper. These are obtained as the classical limits of
guantum Hamiltonians restricted to certain finite-dimensional spaces of quantum states,
rather than by a purely classical reduction procedure. Moreover, the methods are used to
explain observed patterns in high angular momenta spectra, rather than the low angular
momentum regime considered in this paper. Nevertheless, we believe that new insights
into the structure of ro-vibrational spectra may be obtained by exploring the relationship
between these two approaches.

1. Molecules

Consider a molecule consisting dF interacting atoms irR3. Regarding the atomic
nuclei as point masses, the configuration spa&hs which it is useful to view as

C=RVY®R3®~L(N,?3).

HereL(N, 3) is the space of real 2 N matrices. TheN columns of a configuration
matrix Q represent the positiorig of the N nuclei ( = 1,..., N). The total phase
space is thef® = T*C ~ R®N, which we can identify with the space of pai3, Q) of
3 x N matrices. The columns d? are the momentg; of the nuclei.

If the mass of thath nucleus ism;, the dynamics of the system is given by the
Hamiltonian

1
H(p, @) =) 5P+ V(@ o),
i |

whereV (qs, ..., gn) is the potential energy of the configurati@due to the electronic
bonding between the nuclei. In terms of matrices, we have

H(P, Q) = ;tr(PM*P") + V(Q), (1.1
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whereM is the diagonal mass matrix with entrieg, ..., my. For any motionQ(t),
the momentun® is related to the velocit®) by

P = QM.

The centre of mass of the molecule is given by the sum of the columns of the matrix
QM. If there are no external forces on the molecule, the centre of mass moves in an
inertial frame, which we can take to be fixed (corresponding to taking total momentum
equal to zero), and we can choose the origin to coincide with the centre of mass. Thus,
henceforth, we assume that the sum of the columr@Mfis zero. That is,

C:LO(N,3)={Q6L(N,3) D g;=0i=123¢
i

Consequently,
P =T*Lo(N, 3) = Lo(N, 3) x Lo(N, 3).

1.1. Symmetries of the Model

There are three types of symmetry of this model: Euclidean motions, internal particle
relabelling, and time-reversal. These are described below.

Of the Euclidean motions, we have already eliminated the translational component by
fixing the centre of mass. Rotation or reflection of the molecule (or change of b&sis in
by an orthogonal matriXA acts on configuration space= Lo(N, 3) by multiplication
by Aonthe left:A- Q = AQ. In the absence of external forces, this leaves the potential
energy invariant.

The relabelling symmetry group can be described as follows. If some of the nuclei are
identical, then a finite subgroup of the permutation groufsy acts by permuting thal
nuclei, in such a way that far € ¥ < Sy, the nuclei ando (i) are indistinguishable.
Thus,o € ¥ if and only if

V(qa(l)a~--aqU(N)):V(qlv"'qu)v m(r(i) = m;, (12)

forall (q1,...,qn) € C,and alli.

Foro € X, we also denote by the associatetl x N permutation matrix, which
acts onC by multiplication byo ™ on the right. Note that this matrix commutes with
by (1.2).

There is thus an action @(3) x ¥ on the configuration space= Ly(N, 3) leaving
the potential energy invariant,

(A,o)-Q=AQo". (1.3)

Itis simple to see that the induced actiorQif3) x ¥ onP = T*Ly(N, 3) isa symmetry
of the Hamiltonian system, fdP transforms in the same way &5 so that

H(A, o) (P,Q)) = 3tr (APe")M (0 PTAT)) + V(AQs ") = H(P, Q),

where we have used the fact titando commute.
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Note that the grouf® of relabelling symmetries is not in general the same as the
group that is often thought of as beitige symmetry group of a molecule, namely the
symmetry group of its equilibrium configuration. For example, buckminsterfullerene,
Cso, hasX equal toSso, but its equilibrium only has icosahedral symméigy For the
symmetry group of a given equilibrium configuration, which we will denotd’bgee
Section 1.2 below.

As with any classical Hamiltonian system of the form ‘kinetic + potential’, the
molecule model is time reversible. That i4,is invariant under the involution

We denote by} the group generated ky Note that the action af}; commutes with
the action of any grouf that is induced from an action @h In particular, it commutes
with the action ofO(3) x ¥ described above. Thus, when time reversal is included, the
symmetry group of the system becon@&) x = x Z3.

One of the important consequences of#@ 3)-symmetry is that angular momentum
is conserved. The usual expression for the angular momentum of a system of point masses,
J =30 A pi, here becomes

J(P,Q) = 3(PQ" — QP"), (1.4

where we consider angular momentum as a skew-symmetric matrix rather than a vector.
In fact, it is naturally an element of the dual spaocg3)*, but we identifyu € so(3)*

with a skew-symmetric matrix by the usual formuka, &) = tr(u'&). Note that
J(—P, Q) = —J(P, Q), so that the time-reversal operator reverses angular momen-
tum. For the orthogonal symmetriej, AP, AQ) = AJ(P, Q)AT. If we identify the
skew-symmetric matrices with vectorsR¥, then this transformation becomes

J > det(A)AJ. (1.5

The angular momentum is also invariant under the action of the relabelling symmetry
group X on the phase spacd(Po", QoT) = J(P, Q). ThusJ is equivariant with
respect to the action @(3) x X x Z} on phase space defined above and the action on
momentum spaceo(3)* = R2 given by

(A, 0).u = det(A)Awu, (1.6)
T = —/. a.7)

For A € SO(3), the action onu is justu +— Au, while for A € O(3)\SO(3) the action
is u — —Au, and— A is a rotation about the axis of reflection Af

1.2. Configuration Symmetries

The symmetry group of a particular configurati@y of a molecule is thasotropy
subgroupof Qg for the action 0fO(3) x X on configuration space. In other words, it is
the subgroupl” (Qo), of O(3) x X consisting of elements which mapy to itself:

I'(Qo) = {(A,0) € O3) x X | (A, 0) - Qo = Qo}.
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Note that if Q; is a configuration that can be obtained from a configurat@nby
applying an element dd(3) x X, i.e.,Q1 = (A, o) - Qo, then(A, o) conjugateghe
isotropy subgroup’(Qp) to I'(Q1):

T'(Q1) = (A, 0)T'(Qo)(A, o).

LetI’ = I'(Qg) be an isotropy subgroup. Away from collinear configurati@Q(3)
acts freely. This fact is essential in what follows, and so collinear configurations will
not be considered in this paper (see [18] for a brief discussion of them). Moreover, it is
clear that a configuration is fixed by an elemen®g8)\SO(3) if and only if it is planar,
and if the planar configuration is not collinear, then the eleme@(@ in question is
a reflection. Thus for nonplanar configurations the projectign,of ' < O(3) x ¥
into X is an isomorphism. For planar noncollinear configuratidhis,isomorphic to an
extension of", by the group of order two. In both cases, the gréuis finite.

Fixed points for the action of the pure relabelling gralipre not of interest, since they

correspond to points where two or more nuclei coincide. However, there are interesting
isotropy groups of mixed type, wheesee X acts in the same way as somes O(3).
For example, in the methane molecule at equilibrium (Figure 1), every permutation of
the four hydrogen nuclei can be realised by an orthogonal transformation. The same
is true of the water molecule. But, as has already been pointed out, it is not true of
buckminsterfullerene.

The fact thatz acts freely on configurations without coincident nuclei implies that
the isotropy subgroup of such a configuration is isomorphic to its projeciignto
O(3). Theaxes of rotation and reflectioof the configuration are, respectively, the axes
of rotation (one-dimensional fixed-point spaces) of elemén&s 'y N SO(3), and the
axes perpendicular to the reflection planesAor I'; N (O(3)\SO(3)). Note that in the
latter case the axis of reflection #&fis the axis of rotation of A.

1.3. Examples

We now describe the relative equilibria obtained by applying Theorem 0.1 to a number
of different types of small molecules. In the introduction there is a similar discussion of
the methane molecules. The stabilities of these relative equilibria will be calculated in
Section 3.

Example 1.XPlanar Molecules). Consider a planar equilibrium configuration of a
molecule, for example any equilibrium configuration of a molecule with three atoms.
Its symmetry group will contain the element®f3) corresponding to reflection in that
plane. If the atoms are all different and the configuration is not collinear, then this will
be the only symmetry. The groupsandTI’; are both isomorphic td, andT; is trivial.
The chemists’ notation for this symmetry grolips Cs. We denote the reflection itself
byrs. The configuration has one axis of reflection, perpendicular to the plane containing
the molecule.

Theorem 0.1 says that these molecules will have two families of bifurcating rela-
tive equilibria with dynamical axes equal to the reflection axis, together with at least
four more families. In Section 3 (see Corollary 3.2) we will show that generically these
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El 0l g3

Fig. 2. Axes for theXY, molecule.

molecules have precisely six families and that their dynamical axes are close to the prin-
cipal axes of inertia of the equilibrium configuration. One of these axes coincides with
the reflection axis, so in this case the dynamical axis remains equal to the inertia axis.

Example 1.ZNoncollinearXY, Molecules). In addition to the reflectia described

in the previous example, a configuration of a triatomic molecule with two identical
atoms can also be invariant under a reflectio®ii8) through a plane perpendicular to
that containing the molecule, combined with permutation of the two identical nuclei.
We denote this reflection hy and the permutation by. The composition of the two
reflections gives a rotation of order two about the axis defined by the intersection of the
two reflection planes. This we denote py |t follows that(p, 7) is also a symmetry

of the configuration. The symmetry groiipconsists of the identity together with the
elementsrs, 1), (r¢, 7), and(p, ), wherel is the identity inx. The nontrivial elements

of the projectionl’; arers, r, andp. BothT" andTI'; are isomorphic t&Z, x Z,. The
projectionI’; is isomorphic toZ, and is generated by. The chemists’ notation for this
symmetry group i€,,. There are many molecules with equilibria with this symmetry,
including water, HO.

This symmetry group has two axes of reflectidpn énd¢s in Figure 2) and one of
rotation ¢,), all mutually perpendicular. Each of these gives two families of relative
equilibria branching from the equilibrium point. Two of the families are similar to those
of the previous example: the dynamical axis is the axis of the reflection in the plane
containing the molecule.

We will see in Section 3.3 that, generically, these are the only families of relative
equilibria that branch from the equilibrium solution.

Example 1.3EquilateralXs Molecules). A configuration of amolecule with threeiden-
tical atoms in which the three nuclei lie at the corners of an equilateral triangle has the
reflectional symmetrys together with three further reflectional symmetries through
planes perpendicular to the reflection planesptach of which must be combined with

an appropriate permutation. Composing one of these three reflectionssvgives a
rotation of order two which is also a symmetry when combined with a permutation.
In addition, there is an order three rotation about an axis perpendicular to the reflec-
tion plane ofrs, again with corresponding permutation. Together these give a symmetry
groupI” which is isomorphic t&Z, x Dz (whereDs is the dihedral group of order six)

and is denoted by chemists Iys,. The projectionl’; is equal toX = S, which is
isomorphic toD3. An example of a molecule with an equilibrium with this symmetry is
the molecular ion Hi.
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This configuration has three reflectional axes (similé@gia Figure 2), three rotational
axes (similar tcf2), and an axis (similar té,) that is both rotational (for the rotation of
order three) and reflectional (fog) . By Theorem 0.1, for low angular momentum an
X3 molecule has 14 relative equilibria rotating about these axes. Again, we will see in
Section 3.5 that generically these are the only relative equilibria for sufficiently small
values of angular momentum. We will also discuss their stabilities.

Example 1.4Ammonia: NH;). The ammonia molecule consists of one nitrogen atom
and three hydrogen atoms and has an equilibrium configuration in which the three hy-
drogens lie at the corners of an equilateral triangle and the nitrogen lies on the axis of
threefold rotational symmetry of the triangle, but not in the same plane. This config-
uration is therefore nonplanar and its symmetry groyplenotedCs, by chemists, is
isomorphic to &3 subgroup of the previous example. The configuration has one axis of
(threefold) rotational symmetry and three axes of reflectional symmetry, and therefore
eight bifurcating relative equilibria rotating about these axes.

We will see in Example 2.5 that these are not the only relative equilibria of the
ammonia molecule near the equilibrium. There are at least a further six relative equilibria
that are not geometric, in the sense that their precise location depends on the form of the
interatomic bonding. In fact, their axes lie in the planes containing an N—H bond and
the centre of mass. There is thus a total of 14 relative equilibria near the equilibrium for
the ammonia molecule.

The ammonia molecule is also interesting because it has two symmetrically related
stable equilibria, one with the N atom above tHgplane, and one with it below. They
are separated by a potential barrier, and between the two stable equilibria there is a planar
equilibrium configuration witlZ, x D3 symmetry. This is the same symmetry group as
in Example 1.3, although here the equilibrium is unstable. Each of the stable equilibria
will have 14 relative equilibria nearby, as described above, and furthermore the unstable
equilibrium will also have 14 relative equilibria nearby, as described in the previous
example, since the existence arguments depend only on the symmetry and not on either
the number of atoms or the stability of the equilibrium. The potential barrier between the
stable equilibria is very low, accounting for the ‘inversion flip’ seen in ammonia. This
means that the local bifurcation analysis performed in this paper is truly local, and the
existence of the other equilibria will interfere with extending it to high energy or angular
momentum. A more global analysis of ammonia would therefore be useful.

There are other molecules with titis, symmetry, such as CHPwhere the potential
barrier is very high, and the relative equilibria found by our analysis can be expected to
persist to much higher values of the angular momentum.

2. Existence and Stability of Relative Equilibria

LetP be a symplectic manifold with a symplectic action of a compact Lie gfeand a
G-equivariant momentum malp; P — g*. LetH be aG-invariant smooth Hamiltonian
function defined orP. If G acts freely (i.e., the isotropy subgroups are all trivial), then
the reduced phase spad@s = J‘l(u)/GM are themselves symplectic manifolds and
the relative equilibria oH in P are given by the critical points of the induced functions
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H, on theP,. In [12] it was shown that, near a nondegenerate equilibrium poiit
H with J(p) = 0, the critical points oH,, correspond bijectively to those of a function
defined on the coadjoint orb@&. ...

Essentially the same technique will be used in this paper to find the relative equilibria
of molecules. Of course the action 6f = O(3) x ¥ on P described in Section 1.1 is
not free. However, away from collinear configurations of molecules, the acti®@()
is free and we can reduce by it as in [12]. The new ingredient in this paper is that we
then consider the action of the (finite) quotient grg@g3) x X)/SO3) = Z, x X on
the reduced spaces.

We also incorporate time-reversal symmetry, restricting for simplicity to the case when
P = T*C is a cotangent bundle. In this setting, the reduction procedure can be made
more explicit than in the general case. It is also global, as described in [11], although
the results in this paper are purely local. In this section, we will work in the general
setting of a cotangent action of a compact Lie gr&@pn P for which the connected
component containing the identity, denoted®y, acts freely. In the next subsection,
we state our main existence theorem for relative equilibria of Hamiltonians that are also
invariant under the time-reversal operat@p, q) = (—p, q). We will useG to denote
the produciG x Z3.

2.1. An Existence Theorem

Let g denote the Lie algebra @ andGg. The momentum map: P = T*C — g* is
given by

J:(p. @) = (J(p. @), &) = (P, Xe(@)), (2.1)

whereé e g and X; is the vector field corresponding to the actionobn C. The
angular momentum (1.4) is a special case. A straightforward calculation shows that this
commutes with the action @& on P and the coadjoint action ogf. It also commutes
with the action of the time-reversal operatoon P given byz.(p,q) = (—p,q) and
its action ong* by —1.

SinceGy is acting freely, the orbit space/Gy is a smooth manifold and the mo-
mentum map (2.1) is a submersiéh — g*. We denote thé&,-coadjoint orbits by
O,, = Go.u. The equivariance of the momentum map implies that there is a well-defined
orbit momentum map: P/Gy —> g*/Gg, making the following diagram commute:

AN g

vy

That is,j is defined orP/Gg by j(Go.X) = Go.J(X) = Oyx)- The components of the
mapj are Casimirs for the natural Poisson structure on the orbit space. The reduced
spacesP, are, by definition, the fibres ¢f

Up to now, we have understood a relative equilibrium to be a trajectory of the dynamics
that lies in a group orbit, and any such trajectory has a well-defined momemntum
Since we are now working in the orbit spaéG, it is more natural to take a relative
equilibrium to be a&p-orbit of such trajectories—or equivalently, an invari@torbit
(as in [12]). The momentum of such a relative equilibrium is now a group 6rpit

*
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As we have only reduced by tli&, action, and not by the fulb-action, there is still
an action of the finite groufﬁ/Go remaining orP/Gy. The quotien@/Go also acts on
g"/Go, and with respect to these actionss equivariant. Lefl denote the projection

IT: 6 —> G/Go,
and Ietl‘[(@)o denote the isotropy subgroup 6, € g*/Go. Thenn(é)o acts on
Py In the case of molecules, whe@ = SO(3), the orbit spacg*/Go is a half line,
and sol‘I(G) acts trivially ong*/Gy, so thatl‘[(G)o =T(G).

If H is aG-invariant Hamiltonian orP, there is an mduceG/Go-invariant function
on the quotient spacB/Gy that we still denote byd. We denote the restriction of this
function toPM C PIGp by H,,. This restriction isl‘[(’G\)oM—invariant.

Letx = (0,9) € P be an equilibrium point oH with isotropy subgroud™ for
the G action andl’ = T x Z; for the G action. ThenGg.X is at critical pomt ofHg
in Py C P/Go The groupF acts onP/Go via its prOJectlonH(F) SinceT N Go |s
trivial, l‘I(F) is isomorphic td. The groupF also acts org* by the restriction of th&
action and org*/Gq by the restriction of thd1(G) action. Letl“oM denote the isotropy
subgroup o0, € g*/G for this latter action.

The following theorem is part of the main result of this paper (Theorem 2.7), but it
is stated here as it is less technical and already has several useful consequences. Recall
that a critical poini of a functionf is said to be nondegenerate if the second derivative
d?f (x) is nondegenerate as a quadratic form.

Theorem 2.1. Suppose that fhas a nondegenerate critical point ab& € Po. Then
there exists a smoofh-invariant function h: g* — R, such that for eaclx the critical
points of h, = h’O are in 1-1 correspondence with the relative equilibria of H with

momentun®,,. Moreover, this correspondence is equivarianty lis a critical point of
h with isotropy K < T, then the corresponding relative equilibrium also has isotropy
group K.

We will see in Theorem 2.7 that the 1-1 correspondence is in fact given by a smooth
embedding : g* — P/Gy satisfyingj (§(n)) = O,, andh = H oé. It seems likely that
the T-invariance ofh can be used to give lower bounds for the number of bifurcating
relative equilibria on each nearby momentum level set, generalising the Lusternick-
Schnirelman category bound given in [12].

Example 2.ZMolecules). For the application to molecules described in Section 1, we
takeG = O(3) x =. ThenGy = SO(3) andg* = s0(3)* = R3. The coadjoint orbit®,,

are the two-spheres centred at the origiiRi The quotient spacg’/Go is just a half-

line and the action of1(G) on it is trivial. Hence[1(G)o, = I1(G) andTp, = ().

In particular, the function&,, must be invariant under the action ofby —1 on the
two-spheres and so are given by functionsnzZ} = RP?, the two-dimensional real
projective space. The Lusternick-Schnirelman categoRR¥fis equal to 3, and so the
quotient functions must have at least three critical points ank, tilneust have at least six
critical points. By Theorem 2.1, these give the six families of relative equilibria claimed
in Theorem 0.1. If one assumes that the equilibridnpfare nondegenerate, then the
Morse inequalities give the same result.
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2.2. Symmetric Relative Equilibria

If Gy is the isotropy subgroup for th@ action onP at Y, thenn(éy) is the isotropy
subgroup for thel‘[(@) action onP/Gy at Gg.y. SinceGy acts freely orfP, H(éy) is
isomorphic toG,. If y, = g.y; for someg € G, thenG,, = gG,,g~* andT1(G,,) =
T1(9)I1(Gy,)T1(g) L. So, ify; andy, belong to the sam@ orbit, the isotropy subgroups
of Go.y1 andGg.y- in P/Gq are conjugate il (G). R
InTheorem 2.1,ib € O, is acritical point oh,, with isotropy subgroufk C I'p, C
1‘[(@), then the corresponding relative equilibriumiG, also has isotropy subgroup
K and soIl projects the isotropy subgroups of points in the corresponding Giit
isomorphically toK . The following corollary of Theorem 2.1 predicts the existence of
families of relative equilibria with particular isotropy subgroups. We say that an isotropy
subgroupK is maximalif it is not contained in any other isotropy subgroup.

Corollary 2.3. With the same hypotheses as in Theorem 2.1, if K is an isotropy sub-
group of the action olA“@“ on O, then there must be at least one family of relative
equilibria bifurcating from x with isotropy subgroups that project to a subgrou’]ﬁ@gc
containing K. If K is a maximal isotropy subgroup, then the isotropy subgroups project
isomorphically to K.

Proof. The fixed-point set of the action #f onO,,, denoted FixK, O,,), is a compact
smooth manifold and so the restriction lof to it must have a critical point. By the
principle of symmetric criticality14], this will also be a critical point ofi,, itself, and
will have isotropy subgroup containing. If K is a maximal isotropy subgroup, then
the isotropy subgroup, of the critical point is precis&ly The result now follows from
Theorem 2.1 and the remarks above. O

Example 2.4Rotation and Reflection Axes of Molecules). By Example 2.2 for mole-
cules, we have

F@u EFEFXZE C O x X xZ3.

The coadjoint orbit®),, can be identified with the two-spheres centred at the origin in
s0(3)* = RS. The groupﬁ acts on these by the restriction Toof the projection of
O®3) x £ x Z;t0 SO(3) x Z3.

Each rotation and reflection axi®f the equilibrium configuration defines a subgroup
K, of T which fixes the corresponding axisdn(3)*. For a rotation axis, the groug,
contains the rotations abodtthat map the equilibrium configuration to itself, up to
permutations of identical nuclei. For a reflection a¥fs, contains the corresponding
reflection. Note that an axis can be both a reflection axis and a rotation axis, in which
caseK, contains both types of elements. A rotation or reflection &xian also be fixed
by a reflection in a plane that contaifsin this caseK, also contains the composition
of this reflection withr.

These subgroupK, are precisely the maximal isotropy subgroups for the actions
of T on theO,. Each of them has a fixed point set consisting of two points and so
h,, must have two critical points with that isotropy subgroup. These two critical points
are equivalent under thg&;-action. The corresponding relative equilibria have isotropy
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subgroups that are conjugateie by rotations inSO(3). Those with isotropy subgroup
equal toK, correspond to the molecule rotating about the @&xithe conjugate groups
are the isotropy subgroups of spatial rotations of these motions.

These remarks complete the proof of Theorem 0.1.

Example 2.§Ammonia). As a particular example, we consider the case of ammonia,
N Hs. By Example 1.4, the grouB is isomorphic tds. Its projection taO(3) contains

the rotations by 2/3 about one axis and three reflections with axes perpendicular to the
rotation axis. The action df onO,, = S? is by rotations, the ‘reflections’ iD3 acting

by rotation byr about the corresponding reflection axis. In additioagcts by—1 .

The combined action db; x Z* has four maximal isotropy subgroups, falling into
two conjugacy classes. The three corresponding to the reflection axes are isomorphic to
Z, and are generated by the appropriate reflection.The isotropy subgroup corresponding
to the rotation axis contains the rotations hy/2 and also the reflections composed with
7. Itis therefore isomorphic tB3. These four maximal isotropy subgroups lead to eight
families of relative equilibria, as described above.

In addition to the maximal isotropy subgroups, this action also has three further
nontrivial submaximaisotropy subgroups. Each of these is isomorphi@$oand is
generated by a reflection composed withTheir fixed point sets iso(3)* are planes
perpendicular to the corresponding reflection axes. The three planes intersect along
the threefold rotation axis. 19, = & these fixed point sets become circles, each
containing the two points fixed by the threefold rotations. The opetatoaps each of
these circles to itself and so the restrictions to them of the functignsiust have at
least four critical points. Thus there must be at least two critical points with each of these
submaximal isotropy subgroups. These give at least another three pairs of families of
relative equilibria.

2.3. The Moncrief Decomposition

To prove Theorems 2.1 and 2.7, we first describe the local geometry of the reduction
process by using a well-known splitting of the tangent spBge (sometimes called

the Moncrief decomposition [11]; see also [13] for the more general setting away from
J=0).Forx =(0,q) € P, let

Wy :=9.9C TqC C kP
be the tangent space to the group orbit througbet
Sa‘ = annWy) C Tq*C C TP,

where aniW) is the annihilator ofV in the dual space. Using the kinetic energy metric
(or any otheiG-invariant Riemannian metric ary, we put

Sq = (Wp' € TeC C TP,

Zg =ann§) C TyC C TkP.
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We have explicitly identified;'C with a subset offy P, which is allowed sincdC ~
TX(Tq*C) C TxP. The spaces, is a slice to theG-action onC.

Note that the pairing of;C with ToC identifiesS; with the dual ofSy (hence the
notation), andZq with the dual of. Finally, define

The spaceYy C TyP is called thesymplectic slicfor the G-action atx (denoted

S by Marsden [11]). Note also that since the Riemannian metric was assumed to be
G-invariant, the space®l, Sy, Sq. Zq are Gg-invariant. We have an isomorphism of
Gq-representations:

TP=W, @Yy ® Zg. (2.3)

The time-reversal operatarfixesx = (0, g) and so also acts of,P. With respect
to the decomposition given by (2.2) and (2.3), the action is

t(w,S, 0,2 = (w,S, —0o, —2).
The symplectic form on this decomposition is given by
o((w1, S1, 01, Z1), (W2, S, 02, Z2)) = (Zz, w1) — (Z1, w2) + (02, S1) — (01, ).

Consequently (or by differentiating (2.1)), the linear part of the momentum map at
x = (0, g) is given by

([dIog(w, s, 0,2),&) = w(X:(0,q), (w, S, 0,2) =z, Xe(@)). (2.4)

The main properties of this decompositionT@f are given in the following propo-
sition.

Proposition 2.6. Forafree action of @, we have the following isomorphisms of &Z5
representations

Wy >~ g,
Zq >~ g7,
Yq = TqQlg @ (TqQlg)*.

Here G, acts ong by the adjoint representation and ghby the coadjoint representation.
The groupZ} acts on both spaces byl. The linear part dly of the momentum map at

x = (0, q) provides the isomorphismig : Z, — g*.

Proof. The isomorphisms are immediate consequences of the definitions. For example,
the first one is provided by — Wy, £ = X:(q); thatitis aGq x Z5 isomorphism s just

the fact that th&s x Z3-action is indeed an action. The second part follows immediately
from (2.4). O
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We can use the Moncrief decomposition to give a local description of the reduced
spaceSP,L in a neighbourhood ok = (0, q). The isotropy subgroup of at x s
' = T x Z5. SinceTy(Go.x) = Wy, the orbit mapr : P — P/Gy defines ar-
equivariant |somorph|sm

drrx : Yq ® Zg —> Treo (PIGo).

Moreover, the momentum map (2.1) is a submergior> g*, so we can use the-
invariant Riemannian metric to identify, C ker(dJy) with aT-invariant submanifold

of 371(0) transverse to th&,-orbit, which we also denoté,. We can similarly identify

Zy with a submanifold ofP transverse taJ~*(0), which is also denoted@,. Then

7w Yqx Zg— PlGois aT- -equivariant isomorphism onto its image, a neighbourhood
of x. Moreover, the restriction afto Z is also an isomorphism onto its image, and we
have

j:Yqgxg" — g*/Go,
y,v) = O,

where we have usedl to identify Z, with g*. Thus, in a neighbourhood of the point
x=(0,q),

Puo=1"0) ={(y.v) eYgx gt lveO,}=Yyx O, (2.5)

This isomorphism is equivariant with respect to the natural actlo@ofhe isotropy
subgroup a: for the action of’ ong*. The symplectic slic¥, has a natural symplectlc
structure induced from that oRi P, and the isomorphism betwe@Go and Yy x g*
identifies the natural Poisson structure®fG, with the product Poisson structure on
Yy x g*. For more details see [12], [18].

TheG-equivariant, time-reversible flow generated l@-&nvarlantHamlltonlan func-
tion H on P induces a flow on each of the reduced spaBgsthat commutes with
the action ofl1(G,) and is time-reversible with respect to the action of elements of
H(GM)\H(GM) This flow is generated by the restriction?) of the function orP/Gg
induced byH. We will denote thiseduced Hamiltoniay H,,. In the neighbourhood
of a pointx = (0, q), identifying P/Go with Yy x g* enables us to identify the induced
function onP/Go with aT invariant function orYy x g* and the reduced Hamiltonians
H,. with the restrictions of this function to the symplectic manifoidsx O,,. Explicit
forms for the reduced Hamiltoniar, for molecular Hamiltonians are obtained in Sec-
tion 3. The method used there extends in a straightforward way to any Hamiltonian that
is the sum of a nondegenerate quadratic kinetic energy function and a potential energy
function.

2.4. Main Theorem

letH : P > RbeaG = G x ZZ-invariant function, wheres is a compact Lie
group acting orC and by the lift of this action orP = T*C, andZ} acts as above.
Suppose thaG, the connected component of the identity®f acts freely orP in a
neighbourhood of an orbiGy.x wherex = (0, q). From Section 2.3, nedBy.x we
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have al"-equivariant isomorphisn?/Go ~ Y & Z whereY is a symplectic slice at
andZ >~ g*. This isomorphism restricts to symplectic isomorphisms of reduced phase
spacesP, ~Y x O,. R

The dynamics onP/Gg are determined by th&l(G)-invariant quotient function
H : P/IGy — R. The relative equilibria with momentum are given by the critical
points of the restrictiord,, = H B’ Using the identifications described in Section 2.3,

we can regardig, as al -invariant function oY @ g* and H, as a’ﬁﬂ-invariant function
onY @ O,.

Remark. Although for simplicity we have restricted attention to the cotangent bundle
setting, the theorem below holds under the more general setting of an arbitrary symplectic
manifold with a locally free ‘pseudo-symplectic’ action of a compact Lie grGufthat

is,g*w = +w foreachg € G). This is because the Moncrief decomposition is still valid,
although it is not defined in the same manner; see, for example, [12], [13], or [18].

Theorem 2.7. Suppose that flhas a nondegenerate critical point atoG € Po.
Identifying PIGo with Y x g*, there is a smooth map : g* — P/Gq of the form
8(n) = (81(w), ) such that the condition

dyH(y. u) =0 (2.6)

is satisfied if and only if y= 8;(n). Leth=H 0§ : g* — R. Then,

1. v € O, is a critical point of h, = h‘o if and only if§(v) € PIGy is a relative
equilibrium for H, and moreover every relative equilibrium is of this form. (This

implies Theorem 2.1.)
2. There exists &'- equivariant diffeomorphisn® of P/Gq of the form

Dy, w) = (oY, w), ),
satisfying
Ho ®(y, u) = Q(y) + h(w),

where Qy) = %dzHo(O) is a nondegenerate quadratic form.

3. If the identification ofP/Go with Y x g* is such that dH (0, 0) splits (that is, all the
mixed partial derivatives vanisg%(o, 0) = 0), thensy is of order Q(u?) and the
linear approximation tod at (0, 0) can be chosen to be the identity.

Here and elsewhere we wri@(x*) to meanO (|| ||¥) for the vector variablex.

Note that althougld decouples the reduced Hamiltonian into a sum of independent
functions onY andQ,,, it does not preserve the natural product symplectic structure on
Y x Oy, so the corresponding vector field is not decoupled.

Proof. For the purposes of this proof, we Writé’ﬂ for H’YX w This is not to be

confused withH,, = H‘Y O
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First note that sincd Hy(0) = 0 andQ := %dzHo(O) is nondegenerate, it follows
from the implicit function theorem that for each sufficiently smalthere is a unique
pointé§,(w) neary = 0 such thatd H|M(31(M)) =0.We puts () = (81(w), w).

The theorem follows essentially from the equivariant splitting lemma, or equivariant
parametrized Morse lemma. Femear 0, we have a functidﬂ|ﬂ with a nondegenerate

critical point aty = §;(u), so by the equivariant Morse lemma, there is an equivariant
diffeomorphismy +— ¢, (y) such tha1H’M o ¢, = Q4 const whereconstis a constant
depending om, and is just the value dﬂ,ﬂ até(un) = ¢,(0). The point of the equivariant
splitting lemma is that this procedure can be carried out smoothly and equivariantly in
. The constant depending gnis also smooth and is equaltigw). Writing ®(y, 1) =
(¢.(y), w), we have part (2) of the theorem.

For part (3), ifd’H splits, thenH is already in the desired form up to order two,
and so the linear part @f, vanishes and the linear part ®fcan be chosen equal to the
identity.

For part (1), letv € O,. The functionH,, = H‘Y L0, has a critical point aty, v)
if and only if the derivatives oH,, with respect to the-variables and th®,,-variables
vanish. The first condition is by definition equivalentyto= §;(v), and the second is
then equivalent te being a critical point oh,,, as required. Indeed,

dh,(v) =d(Hy 08)(v) = dyH,(6(v)).ds1(v) +d, H (8 (V)),

and by definitiord, H,, vanishes a&(v). Since critical points oH,, are relative equilibria
for H with momenturmu (or ©,,), the result is proved. O

2.5. Stability of Relative Equilibria

In this subsection we relate the stability of a relative equilibrium near the Gghi0, q)
with momentumu to the Morse type of the corresponding critical point of the function
h,, on the coadjoint orbi©,,.

Recall that a relative equilibrium with = p is an equilibrium point of the flow on
Y x O, generated by,,. A critical pointvg of h,, corresponds to a relative equilibrium
3(vo) = (81(vo), vo)-

In practice, the critical points of the functiohg occur in smooth families bifurcating
from O as||u|| increases. We therefore assume that= vp(s) andu = u(s) are
continuous curves ig* such that|u(s)|| = s andwvy(s) € O, is a critical point of
UER

Recall thatQ = %dz Ho(0) (asin Theorem 2.7). The linearization near the equilbrium
is thus given byLg = 2Jy(0)Q. The following theorem relates the stability of nearby
relative equilibria to the stability of o and the type of critical point dfi, atvy. Recall
also that an infinitesimally symplectic matiixis said to be

e spectrally stablef all its eigenvalues are purely imaginary,

o linearly stableif it is spectrally stable and semisimple, and

e strongly stableif it lies in the interior of the set of linearly stable, infinitesimally
symplectic matrices.

In particular,Ly = 2Jy(0)Q is strongly stable iQ is definite. If the Hamiltonian func-
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tion H is of the “kinetic energy + potential energy” type, then this is equivalent to the
orbit Go.x of equilibrium points being a nondegenerate critical orbit of local minima of
the potential energy function. If the orbit is a nondegenerate saddle or maximum, then
Lo is unstable.

Theorem 2.8. The following statements hold fos = vo(s) andu = u(s) when s is
sufficiently small.

1. If Q is positive-definite and is a strict local minimum of fp, thens (vp) is Liapounov
stable.
2. If Lo is unstable, theid(vp) is linearly and nonlinearly unstable.
3. If Lpis strongly stable and the coadjoint orbitsghare two-dimensional, thet(vp) is
(a) strongly stable (elliptic) ibp is a nondegenerate local extremum @f h
(b) linearly and nonlinearly unstable (hyperbolic)i§ is a nondegenerate saddle
point of h,.

Proof. Recall that there exists a change of coordindtem Y x g* such that

Hu(@(y, v)) = Q(Y) + h.(v).

If Q is positive-definite andy is a strict local minimum of,,, then(0, vp) is a strict
local minimum ofQ(u) + h,(v). This property is preserved by the diffeomorphigm
and sa’ (vp) is a strict local minimum of,,. It must therefore be Liapounov stable. This
proves part (1).

For the remaining statements, we need to estimate the eigenvalues of the linearization
of the vector field aé(vp) generated byd,,. This satisfies

L(8(v0)) = J(8(v0))d?H,, (8(vo)), 2.7)

whereJ(8(vp)) is the Poisson structure ofix O, at(§(vg)). From Section 2.3, this is
the product structure

Jy (8 0
n

where Jy is the Poisson structure on given by its symplectic form and, is the
restriction toO,, of the natural Poisson structure gt

J,.(vo)§ = adfvo. (2.8)
Ass — 0, we have
Iy (81(vo(s))) = v (0); Ju(vo(s)) — 0,
and
L((wa(9)) — L(O) =Lo® 0.

The nondegeneracy @ implies that the eigenvalues b are nonzero. The eigenval-
ues ofL (8(vo(s))) therefore form two distinct groups, those that are perturbations of
eigenvalues of o and those that are perturbations of 0.
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If Lo is unstable, then it has eigenvalues with nonzero real part, and hence so must
L (8(vp(s))) for sufficiently smalls. This proves part (2).

If Lo is strongly stable, then its eigenvalues all lie on the imaginary axis, as do the
eigenvalues of any small perturbation lo§. It follows that the corresponding eigen-
values ofL (8 (vp(s))) will remain on the imaginary axis for all sufficiently small To
complete the proof of the theorem we need to determine what happens to the eigenvalues
that perturb from zero.

The change of coordinatds transformsd?H,, (8 (vo(S))) to 2Q @ d?h,,s) (vo(S)). If
vo(S) is a nondegenerate critical pointigf s), then 2 & d2h s (vo(S)) will be nonde-
generate and hence so wdf H,.s) (8 (10(8))). It follows that fors # O there will be no
eigenvalues ok (8 (vg(s))) at zero. If the coadjoint orbits are two-dimensional, there are
only two possibilities, either the two eigenvalueslaf) at zero perturb to a real pair
or to an imaginary pair. The first will happen if and onlyddH,, (§(vo(s))) has a single
negative eigenvalue while the second possibility occurs if it has either zero or two neg-
ative eigenvalues. The number of negative eigenvaluegidf,(5(vo(s))) is preserved
by the coordinate change and so is equal to the number of negative eigenvalues of
2Q @ d%h s (vo(s)). This is one ifug(s) is a nondegenerate saddle point and two if it is
a nondegenerate maximum and zero if it is a nondegenerate minimum. This completes
the proof of part (3). O

For the proof of part (3) of the Theorem, it was necessary to restrict to cases (such as
g* = s0(3)*) for which the coadjoint orbits are two-dimensional. For higher dimensional
cases the number of negative eigenvalued?sf, (§(vo)) is not sufficient to determine
whether the eigenvalues bf(§ (vo(s))) that perturb from zero remain on the imaginary
axis or not.

3. Calculating Relative Equilibria

To calculate exactly how many families of relative equilibria bifurcate from an equilib-
rium, and to determine their stabilities, we need to go beyond symmetry considerations
and use an explicit form for the Hamiltonian. The standard reduced Hamiltonian for
molecules near noncollinear equilibria was established by C. Eckart in 1935 [4]. We
describe this in the next subsection, following very closely the exposition of Sutcliffe
[20] (though changing the notation somewhat). See also [1], [10]. Then we show how
the splitting lemma can be applied to compute the Taylor series of the furtictiomo-
mentum spaceo(3)*. In the final subsections, we apply this to a number of examples.

3.1. Reduction to the Eckart Hamiltonian

Consider a molecular equilibrium configurati@a € C = Lo(N, 3). The kinetic energy
is given by

T =1tr(QMQ").
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This defines ai©®(3) x X-invariant Riemannian metric af, which atQ € C is given
by

(Q1, Qz) = tr(Q:MQ), 3.1

for (31, 62 € ToC. The subscripQ on the metric is redundant, but is kept to distinguish
the metric from other pairings. Using this metric, we choose the dlice C to the
SO(3) orbit throughQy to be the affine linear subspace®throughQg orthogonal to
50(3).Qq. That is,

S:={SeC|{2Qo (S— Qu)q, =0, Y2 € s0(3)}.

Choosing the slice to be orthogonal to the group orbit ensures that the Coriolis inter-
action matrixC below vanishes at the equilibrium; this is called thekart condition

in the molecular spectroscopy literature. Note that since the met86§8)-invariant,

it follows that (2Qo, Qo)g, = 0, whence Oc S and S is a linear subspace af.
Consequently, the definition &f can be replaced by the simpler expression,

S ={SeC|(QQo, S, =0, V2 € s50(3)}. (3.2)
By the slice theorem, any point fhcan be decomposed as a product of matrices,
Q=AS A e SO(3), Ses.
Any motion Q(t) has a corresponding decomposition, which differentiates to give
Q= AS+ AS=AQS+Y9),
where2 = A~1A. The kinetic energy is then given by
T =2t(QEQT) + Ftr(SMST) +tr(AQ),

where

E = SMST,

A = F(SMST —SmST).

Note that theénertia dyadic€ is symmetric, whileA is skew-symmetric. Note also that,
with the choice of slices we have made, i5 = Qo € S thenA = 0 (for all S) by (3.2).

We now introduce coordinates @by fixing a basis of matricegS,, ..., §} and
puttingS = > ;s S. Let&; = SM%T, and definen? symmetric matricesg;;, n?
skew-symmetric matriced;j, and am x n matrixN = (N;j) by

Ej = 3&i + &),
Zij = 3(&j — &),
Nij = trEij.
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These are all constant matrices, depending only on the choice of basis in th& slia
&= 2351' Eij,
ij
A = Z S § Zij.
ij

We will also find it more convenient to identify skew-symmetric matrices with vectors
in R? in the usual way. 12 is identified withw, then we define matricdsandC by
identifying %(EQ + Q&) with lw and t(ALQ) with ' C$. Thenl is a symmetric 3< 3
matrix, theinertia tensor andC is a 3x n matrix that gives theCoriolis interaction
between the vibrational and rotational dynamics. Note lthigpends quadratically on

s, while C is linear and vanishes at the equilibrium configuration. In terms of these
coordinates, the kinetic energy becomes

T=30wlo+38"Ns+0'Cs. (33

To put this into Hamiltonian form, we introduce the momentum variablasdo con-
jugate taw ands, respectively. These can be expressed interms of the other coordinates by
oT

— = Cs,
ow @+

T

as

Eliminatings$ from these equations gives

u

w=Klo4m,
where
K = (1 -CNichH™,
7 = CN7lo.

Substituting forw ands in equation (3.3) gives the Hamiltonian form for the kinetic
energy
T=3u—m)"Ku—m)+30 N0 (3.4)

The full SO(3) reduced Hamiltonian is obtained from this by simply adding the potential
energy functiorV (s), restricted to the slicé§,

H(u,s,0) = 2(u — 1)K — ) + 26 "N"o + V(s). (3.5

ThiAs is a function ofx, s, ando, defined orso(3)* x T*S, and invariant under the action
of ' =T x Z3. Itis known as the Eckart Hamiltonian [4].
It follows from (1.5) that the angular momentuhtan be expressed as

J=Au

(since detA) = 1). Hence,u can be interpreted as the angular momentum of the
molecule in a coordinate system that rotates with the molecule.
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3.2. Applying the Main Theorem

Next we must apply Theorem 2.7 to reduce the Hamiltonian (3.5) to a funbtimm
50(3)* only. For simplicity we will assume throughout the rest of this section that the
equilibrium configurationQg is a nondegenerate local minimum of the restriction of
the potential energy functiow to the sliceS. This implies that the nondegeneracy hy-
pothesis of Theorem 2.7 is satisfied and also that the unperturbed linearikation
Theorem 2.8 is strongly stable. In fact, the bifurcation results remain unchan@gd if
is a nondegenerate saddle poinfafbut sincel g is then unstable, all the bifurcating
relative equilibria will also be unstable.

We will be interested in the critical points bfwhen restricted to small two-spheres
around the origin, so we only need to compute its Taylor series to sufficiently high order.
Sinceh is always invariant under the time-reversal operatacting by—I| onso(3)*,
all terms of odd degree must vanish. The following result gives general formulae for
the first two nonzero terms, the quadrdticand the quartidy,. These turn out to be
sufficient for some, although not all, of the examples considered below.

Proposition 3.1.

L h() = 31" 1(0) i
2. hy(u) = — 35V (15O, 1151 O) ),

wherel (0) is the inertia tensor of the equilibrium configuration of the moleclgé[0)

is the derivative with respect to s of the inverse inertia tehésr * (regarded as a func-
tion onS), evaluated at the equilibrium configuration; W %dZV(Qo) is the quadratic
approximation to the potential energy function at the equilibrium configuration; and
V, tis the inverse matrix to )/

To interpret the formula foing, regardvz‘l as a quadratic form ofi*, the dual to the
slice, and ;1(0) as a quadratic form osp(3)* that takes values i§*. Note that ;(0)
satisfies

1510 = 1050101,

wherels(0) is the derivative ofl (s) with respect tos at the equilibrium configura-
tion; the entries ol5(0) are calledinertia derivativesin the molecular spectroscopy
literature. If we choose a basfs,, ..., S} for S, and writeV{l as a matrixu;j, and
a(171/3s = Kjap, then

1
ha(ua, pa, a) = == Y Uij KiavKjcattattvitcita,
16i,j,a,b.c,d

wherei, j run from 1 ton anda, b, ¢, d from 1 to 3.

It follows from the propositions thét, depends only on the inertia tendoat the
equilibrium, whileh, depends in addition on the harmonic force constants and the inertia
derivatives.
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Proof. Recall from Theorem 2.7 that the functibrand the reduced Hamiltonidt are
related by

h(n) = H@G1(w), 1), (3.6

whereé; satisfiesdyH (61(n), n) = 0. It will be convenient to writey = (s, o) and
81(n) = (s(w), o(w)). For the Eckart Hamiltonian, it is clear thdiMH(O, 0,00=0
anddgﬂH (0,0,0) = 0, so thai;(u) = O(u?), ands; is equivariant. In particular, the
Z} symmetry implies thas(uw) is even andr (w) is odd, s (u) = O(u®).
To obtain the second- and fourth-order parth gfve use (3.6) and the explicit form
of the Eckart Hamiltonian (3.5). We use subscripts to denote Taylor series coefficients;
i.e., fx is the ordek part in the Taylor series of at the origin, where the order is defined
in terms of its arguments. Then, to order foupdn

h(w) = 3T (Ko + Ku(S2(m))i + S2(10) TVasa (1) + O(1®), (3.7

where we have used the facts thaj) = O(u®) ands(u) = O(u?), which imply that
all the terms involvings are O(u®), and we have represents@) as a vector and,
as a symmetric matrix. Note thKt; (s) is the linear part oK (s), which is precisely the
|51 of the proposition.

From this Taylor series, we see immediately thaiuw) = %MT Kou, as required in
part (1).

For the fourth-order part df, we need to find, (), which can be found from the
leading order part of (2.6),

oH
0=~ (S, 0 (), ) = 31" Kupt + Vo8 () + O,
Consequently,
1
(i) = =7V5 (1 Kap), (3.8

whereVz‘l is considered as a linear m&y — S. Substituting for this in (3.7) gives

1. .
ha(n) = SH (Ki(s2())) 1 + S2(w) " VaSa (i)
1 1
= —é(MT Ky TV5 M Kap) + 1—6(11T K1) " V5 M Ky
1
= —E(MT Ku) " V5 H (" Kaw),
as required. O

The following results can be deduced from the fornhaf

Corollary 3.2.

1. If the equilibrium configuration @has three distinct principal moments of inertia,
then there are precisely six families of relative equilibria bifurcating from it. The
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relative equilibria have dynamical axes that are aligned, at least approximately, with
the principal axes of the equilibrium configuration. Those corresponding to the prin-
cipal axis with largest (resp., smallest) moment of inertia are Liapounov stable (resp.,
linearly stable), while those corresponding to the intermediate moment of inertia are
linearly unstable.
2. If the equilibrium configuration Qis planar, the nearby relative equilibria with dy-

namical axes perpendicular to the plane containing the equilibrium are Liapounov
stable.

Proof. If 1(0)~! has three distinct eigenvaluds, has precisely six nondegenerate crit-
ical points on each sphere around zero. These are at the points corresponding to the
eigenvectors of(0)~1. The maxima, saddle points, and minima are given by the eigen-
vectors with the smallest, middle, and largest eigenvalues, respectively. On sufficiently
small spheres, the functidnis a small perturbation df, and so will have nearby critical
points. Part (1) now follows from Theorem 2.1 and Theorem 2.8.

For part (2) we use the fact that the principle moment of inertia of a planar body
perpendicular to the plane is the sum of the other two principal moments of inertia and
so must be the largest. O

Part (1) of this corollary states that if the molecule has little or no symmetry, and
the three moments of inertia are distinct, then for small values of angular momentum
the molecule behaves like a rigid body, and the relative equilibria and their stabilities
depend only on the equilibrium shape. On the other hand, this is not true for symmetric
molecules, as the examples below show.

3.3. NoncollinearXY, Molecules

In Example 1.2 we noted that a noncollinear equilibrium configuration oXah
molecule has three mutually perpendicular symmetry axes, one of rotation and two of
reflection. By Theorem 0.1 for each of these, there are two families of relative equilibria
bifurcating from the equilibrium with dynamical axes equal to the symmetry axis. These
three axes are also the three principal axes of the inertia tensor of the equilibrium. So
by Corollary 3.2 these will be the only bifurcating relative equilibria, provided the three
moments of inertia are different. Note that the symmetry means that the dynamical axes
of the relative equilibria arpreciselythe principal axes of the inertia tensor in this case.
The stability properties of the relative equilibria are also determined by the moments
ofinertia. In particular, by the second part of Corollary 3.2, the relative equilibria rotating
about the reflection axis perpendicular to the plane containing the equilibrium will be sta-
ble. For the other two families, we need to compute the corresponding moments of inertia.
Let the distance between thenucleus and one of thé nuclei at equilibrium be
and the angle between the—Ybonds be 2. Let the masses of thé andY nuclei bemy
andmy, respectively. PuM = my + 2my andp = my/M. Let I; denote the moment
of inertia about the reflection axis lying in the plane containing the equilibriggin(
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Figure 2) and ; the moment of inertia about the rotation axis i Figure 2). Then,

I, = Mp(1— p)t?coso,
M (1 — p)e?sir?e.

I

Thus,l; < lyifandonlyiftarf @ > p. In this case the relative equilibrium rotating about
the reflection axis is linearly (although not Liapounov) stable, and that rotating about the
rotation axis is linearly unstable. If tA < p, these stability properties are reversed.

The bond angles for over 26Y, molecules are listed in [8] and [9]. In all these cases,
the bond angle is greater thar*@hd so we can conclude that it is the relative equilibria
with dynamical axes along the reflection axis that are linearly stable, and that those with
dynamical axes along the rotation axis are linearly unstable. However, there are also
molecules withl; > 1, such asH,D™*, wherep = 1/2 and 2 = 60° (D is deuterium,
with mp = 2my), and for these the stabilities are reversed.

3.4. TetrahedralXY, Molecules

In the introduction we saw that (at least) three different types of relative equilibria bifur-
cate from a tetrahedral equilibrium configuration of)M; molecule such as methane
(CH,4). Their dynamical axes are, respectively, the threefold rotation axes, the twofold
rotation axes, and the reflection axes. In this subsection we will compute the quadratic
and quartic terms of the functidnon so(3)* and show that generically these determine
the stabilities of the bifurcating relative equilibria and that no other relative equilibria
bifurcate.

The functionh onso(3)* is invariant under the induced action of bdth=Ty = S
and the time-reversing}. Together these give an action of the group of symmetries
of the cube, denote@,, which is isomorphic to the standard action Rh The three
types of bifurcating relative equilibria correspond to the three conjugacy classes of max-
imal isotropy subgroups for this action, namely, the isotropy subgroups conjudase to
(threefold rotation axis denotdg in Figure 1),D4 (twofold rotation axis¢, in Figure 1),
andD,, (reflection axis{, in Figure 1). The restriction of an@-invariant function to
spheres centred on @ so(3)* must have the points with these isotropy subgroups as
critical points. The following proposition says that generically there won't be any others
near zero, and determines the generic possibilities for their stabilities.

Proposition 3.3.

1. The quadratic and quartic terms of the Taylor series at zero of a gefigratvariant
function h onso(3)* have the form

hy = o (12 + us+ 13,

2
ha = B (uf + 15+ 13)" + v (ins + udus + n3us) .

2. Ifa, y # 0, then the restriction of h to a small sphere centre@ at so(3)* has only
critical points with isotropy subgroups conjugatel@a, D3, andD..
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3. Suppose > 0. If y < 0, the critical points with isotropy subgroups conjugate to
D3, Do, andD, are, respectively, minima, saddle points, and maxima. # 0O, the
maxima and minima are interchanged.

Proof. Part (1) follows from the fact that every smooth functionRhwhich is invari-
ant under the standard action@f, is a smooth function of the polynomiadé + M% +
12, w2us + pdul + pZu?, anduuul (see for example [5, p. 48, Ex. 4.7)). Parts (2)
and (3) are straightforward calculations. O

It follows from this proposition and Theorem 2.8 that we should expect the relative
equilibria with dynamical axes equal to the reflection axis to be linearly unstable when
they bifurcate from the equilibrium. To determine the stabilities of the other two types,
we need to calculatg in terms of the physical parameters of the molecule.

Let the masses of th®¥ nucleus andr nuclei bemy andmy, respectively. Lefp
denote the mass ratiny/my. Let £ denote the distance between tRenucleus and &
nucleus at equilibrium. The inertia tensor of the equilibrium configuration is then

8 1 00
|(0)=§mYz2 01 0] (3.9
0 0 1
We take the following symmetry-adapted basis for the sfice
01 1 -1 -1
AJlO0O 1 -1 1 -1},

01 -1 -1 1

0O 0 0 o o 2 2 -2 -2
El0 -1 1 -1 1 %0—11—1 1],
0O 1 -1 -1 1 0 -1 1 1 -1
00 0 O 01 -1 -1 1 01 -1 1 -1
F|{0O 1 -1 -1 1 00 O 0 O 01 1 -1 -1},
01 -1 1 -1 0 1 1 -1 -1 00 0 0 0
—4p 1 1 1 1 0 00O 0 00O
F, 0 00O0O —4p 1 1 1 1 0 00O0O
0 00 0O 0 0 00O —4p 1 1 1 1
We denote these matrices 9y, ..., & in the order they appear above. The columns

of each matrix give the coordinates of the five nuclei, witlin the first column. Note

that the position oK is determined by the positions of tiYés and the requirement that

the centre of mass of the system is always at the origin. Each row of matrices defines a
subspace of on whichI acts irreducibly. All the matrices are orthogonal to each other
and to the tangent space to t86(3) orbit through the equilibrium configuration with
respect to the inner product (3.1). The lab&|<E, F;, andF; are those commonly used

in the molecular spectroscopy literature. The representatiofisaf the twoF; sub-
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spaces are isomorphic. The subspatesd E are uniquely defined, but tHg are not.

We have choseft; to be the subspace consisting of configurations in whiakemains

stationary. The subspace is then determined by the orthogonality requirement.
The tetrahedral equilibrium configuration is given by

12
QO = ﬁSl

A general configuration of the moleculedhis defined by
9
Q=0Q® =Qo+) sS.
i=1

To computeh, (and hencer) we need to finds(0) and hence
1510 = 10 (010

To do this, we compute the inertiaderivative®) (i = 1, ..., 9) of I (s) inthe directions
given by each of the matrices listed above in the basis f@xplicitly, these are given by

i (0) =tr(&)l =&,

whereé&, is the derivative o€ = SM ST in the direction given by théth basis element
of S,

& =SMQ) +QMS'.

With these formulae it is an easy computation (using MAPLE, for example) to obtain
the derivatives

1710 = —1(0 71,010

These are the components of the linear rmalk0) from the tangent space #® at the
equilibrium point, which we identify witlS itself, to the space of quadratic forms (or
symmetric matrices) ono(3)* = R3. Using the coordinateg:, o, s onso(3)*, the
calculations give

w7t Op = —Cul + us + uj),

_ C
O = —(ué—;@,
13 0n = —=(@ 5— 1),
I 2«/_ Ml M2 — H3
T(-1 _
w7 (Op = Cuous,
w5 0 = Cuap,
w1t On = Cuipo,
w7t Op =0, fori =789,
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whereC = 3v/3/(4my£%). Note in particular that the subspaEgof S lies in the kernel
of 151(0).

By Schur’s lemma, the (symmetric) matrix o§* = (%dZV(QO))_l, with respect
to the basis of given above, will have the form

Uiy
1 Uz2lo
Vv,

’

Ussls  Usslz
Usals  Ugglz

wherely is thek x k identity matrix and the missing entries are all zero. It follows from
Proposition 3.1 that

16 1
—Gh = SV WO, 1T 0w

= Upi(u + p + pd)?
Uoo 1
+ ((ué — 1)+ F@ui -y - u§)2>
FUsa(udps + paud + piud)
Uz2
= (Ull + ?) (13 + 15+ 13)® + (Usz — Upp) (uaps + il + piud).

Hence, = (U2 — U33)C?/16 and the sign of this determines the stability of the relative
equilibria that bifurcate from the equilibrium.

To obtain the values of the nonzero entrigsin V{l for specific molecules is not
straightforward. The methods of molecular spectroscopy determine the vibrational fre-
quencies corresponding to the four distinct eigenvalue‘s’z‘d‘f. However, this is not
enough information to determine the five nonzeyo This problem can be side-stepped
by assuming a specific form for the quadratic part of the potential energy function that
depends on four parameters or less, and then using the experimentally determined vi-
brational frequencies to estimate these. See for example the account given in [7]. As an
example, we use thealence force potentiaiven by

K~ , ks
vzzéi;ri +EZ(S”, (3.10)

i<j

wherer; is the change in the distance between ¥w@ucleus and théth Y-nucleus,

andé;j is the change in the angle betweXiy; and XY; (see [7] page 181). A routine,
although tedious, calculation shows that in the basis given abow§ the quadratic
form corresponding t&; is

V11
vool
Vp = 2212

vazls  vasls
vasls  vasls



Relative Equilibria of Molecules 83

where:
vi1 = 12,
Ks
V22 = 24@,

16 ks
V33 = 3 <k+ 6_2>’

8 Ks
V34 = :—,)(1+4p) (k—2ﬁ>,

4 2 ks
V44 = §(1+4p) <k+4£—2>

Inverting this gives

€2
Up = —,
22 24k,
U3z = e + L
BT 4 | 1X’

and hence

_C* /e 4
¥ =768\, k)

The values ok andks/¢? obtained by fitting the valence force potential (3.10) to spectro-
scopic data from a number Y, molecules (including methane) are listed in Table 46 of
[7]. Inall casey is positive, and so we can predict that the bifurcating relative equilibria
with dynamical axes along the twofold rotation axes ¢gée Figure 1) will be Liapounov
stable; those with dynamical axes along the threefold rotation @x&s Eigure 1) will

be linearly stable, but typically Liapounov unstable; while those with dynamical axes
along the reflection axeg4in Figure 1) will be linearly unstable (hyperbolic).

3.5. EquilateralX3 Molecules

Consider a molecule made up of three identical nuclei and with an equilibrium configu-
ration with the nuclei at the vertices of an equilateral triangle. Examples include ozone,
03, and the ionized moleculeH which plays an important role in the chemistry of the
interstellar medium and the atmospheres of the giant planets [21]. For ozone, the equi-
lateral triangle equilibrium is unstable and the stable equilibria are isosceles. However,
for HJ it is stable.

The symmetry group of the equilateral triangle configuratioRgsx Z,, whereZ,
acts by reflecting in the plane of the molecule. By Theorem 0.1 relative equilibria of
three types bifurcate from the equilibrium: rotations about the axis perpendicular to the
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Fig. 3. Representative axes for th& molecule. Note that; is unique,
while there are three of typ& and three of typés.

plane of the molecule, rotations about axes passing through one of the three nuclei, and
rotations about axes in the plane of the molecule that are perpendicular to these. This
third set of axes are axes of reflection, where the reflection is in a plane perpendicular
to that of the molecule and passing through a vertex of the equilateral triangle.

If the equilibrium point is unstable, then all the bifurcating relative equilibria will
be unstable. If it is stable, then by Corollary 3.2(2) the relative equilibria with axes
perpendicular to the plane of the molecule will be Liapounov stable. Generically, one
of the two remaining types will be linearly stable and the other linearly unstable. In
this section we show how to distinguish between the two possibilities. We also show
that generically these are the only relative equilibria that bifurcate. These calculations
turn out to involve computing a sixth-order coefficient in the Taylor serids ahd this
depends on a third-order coefficient in the Taylor series of the potential energy function,
i.e., an anharmonic force constant.

In this case the functiononso(3)* will be invariant under the action @z x Z, x Z5
given by equations (1.6, 1.7). For this actiem(3)* splits into the direct sum of two
invariant subspaces, the two-dimensional space consisting of momentum values thatlie in
the plane of the molecule, and the one-dimensional space perpendicular to this. The group
D3 x Z; is isomorphic tdDg and acts on the two-dimensional subspace by the standard
action ofDg on the plane. The action on the one-dimensional space is determined by the
fact that the subgroup that acts triviallydg C Ds. As usual Z acts onso(3)* by —I .

Every maximal isotropy subgroup of this action on the spheres centred at zero is
conjugate to one of the three groups, Z5* x Z3°7, orZ3*” x Z3°*, defined as fol-
lows. The subgrou;ﬁ)G consists of the grouﬁs together Wlth each of the remaining
elements oDg composed withr. This fixes the momentum values perpendicular to the
plane of the molecule. There are no other subgroups conjugate to this one. The subgroup
zg‘m is generated by rotating the molecule dyabout one of its twofold rotation axes
(labelled?; in Figure 3). The subgrouZ)(zref) is generated by a reflection of the molecule
in one of the reflection planes perpendicular to the plane containing the molecule, with
axis{1. The groupZZ°® is generated by rotating the molecule dyabout its threefold
rotation axis and then applying These three order-two subgroupsiaf x Z5 are not
conjugate to each other. Each of the grof&® x zz°* andz{® x Zz°" has two other
subgroups conjugate to it. The fixed point sets for each of these subgroups is a line in
the plane of the molecule. Thus, there are seven maximal isotropy subgroups altogether,
each of which will have two fixed points on the spheresd(B)*.
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Proposition 3.4.

1. The quadratic, quartic, and sextic terms in the Taylor serie® af a general
D3 x Z» x Zj-invariant function h orso(3)* have the form

hy = a1(u? + pn3) + aaus,
hy = Bi(ud + 13)% + Ba(u2 + udus + Paus,

3
he = v — 3und)> + Y viuf + 1y 1y
i=0

2. Ifay # apandy # 0, then the restriction of h to a small sphere centre@ atso(3)*
has precisely 14 critical points; they have isotropy subgroups conjugal @),
Z5% % z3°7 (6), andZy®” x ZZ°7 (6).

3. If h is the split Hamiltonian of an xmolecule, thenx, = %al > 0, and the
critical points © = (0, 0, 1) with isotropy subgroups conjugate s are min-
ima. Moreover, ify > 0, the critical points in the orbit of1, 0, 0) (with isotropy
subgroups conjugate @y%" x Z3°7) are maxima while those in the orbit &, 1, 0)
(with isotropy subgroups conjugate Z§® x Z2°7) are saddle points; if < 0, the
maxima and saddles are interchanged.

Proof. The first partis a straightforward invariant theory calculation (see, e.g., [5]). Part
(2) follows from the discussion before the statement of the proposition together with a
computation to verify that there are no other critical points, and part (3) is a compu-
tation. O

Part (3) of this proposition is used in conjunction with Theorem 2.8 to determine the
stabilities of the relative equilibria. We now consider tig molecule in general, and
perform the computations needed to determine the sign of

Letm be the mass of th¥ nuclei, and’ the equilibrium bond length. The equilibrium
configuration is

o g‘|H NI
oul- ©

1
2
Qo=¢ —z—jé -
0
The equilibrium inertia tensor is then
1 00
me?
I(O):7<O 1 0),
0 0 2

and it follows from Proposition 3.1(1) that

1
ho(1) = m—zz(Zuf + 2u5 + 1)
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We take the following symmetry-adapted orthonormal basis for the Sli¢eith
respect to the inner product (3.1), which in this case is equivalgi® ) = tr(S"T)):

1 1
3 —2 O
N N U
A S = T 23 /3 V3
0 0 0
1.1 g _1 1 a2
2 2 2V3 2/3 V3
N U T I A |
E 2=l 25 B[ 27| : 2 0
0O 0 0 0 0 0

The symmetry group = D3 xZ; actstrivially onAand by the standard two-dimensional
representation dDz and the trivial representation d@f, on E.
A general configuration is given by

3
Q=Q(® =Qo+ ) sS.
i=1

The inertia tensol(s) can be computed easily, and its derivatives at 0 give rise to
the three quadratic formsl(O) = (Kpi = 0K/3s (0):

_ 2
PO = =5 @ui+ 25 + 1),
pH Op = —5 (i — 1),
8

T-1
I3 O0Op = — .
wlzmOn = —mpane

We wish to find an expression for in terms of the physical characteristics of the
molecule, and in particular of its potential energy function. Sicis I'-invariant, its
third-order Taylor series can be written

V(s1, S, S) = A+ B(S5+55) +C s+ Dsy (55 +55) + E(S; — 35,55) + O(sh). (3.11)
HereA, B are harmonic force constants, while D, E are anharmonic force constants.
Recall from (3.8) that the quadratic partstf.) satisfies
1
S(u) = —sz—l(;ﬁ K1p)

(there should be no confusion arising from ussatpoth as a coordinate in (3.11) and as
the quadratic part of a function). Combining this with the expressionsfoy = Ii‘l(O)
above gives

1
Sp2(u) = m(ﬂ% + ,u,g + %M%),
1 2 2
S2(u) = —W(Ml — 13),
2

$2(n) = _B—m€3'ul“2’
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wheres ; is the quadratic part of . Substituting for this in (2.6) gives; () andos(w).
The expressions fak, S4, andos are then substituted in the expressiontioFinally,
comparing with Proposition 3.4 shows thats given by

1 (a6h 9h )
Y=o \ous  aus)
All these computations are quite lengthy, and can most easily be performed with the aid
of a computer package (again, we use MAPLE). The final result is

197E

Y= 3m3¢°B3’

whereB, E are the force constants defined in (3.11). For a stable equilibium, 0
and so the sign of coincides with that oE.

As an example, consider a system of three identical point masses coupled by three
identical linear springs with spring constat > 0, and equilibrium lengtif. Then
expressing the extensions of the three springs in terms of the slice coordinatess,
gives

Vz—ﬂ-

It follows from Proposition 3.4 and Theorem 2.8 that the rotation about an axis passing
through one of the point masses is linearly unstable (&xis Figure 3), while rotation
about the orthogonal one (axs) is linearly stable, and indeed strongly stable.

To apply these calculations to th” molecule, we need to know the potential energy
function. The Taylor series to order seven of this function at the equilibrium has been
estimated from spectroscopic data in [2]. The coordinates they use are not the same as
ours, and in our coordinates, their coefficients become (cf. (3.11))

A= 225291 B = 146892

C = —234030 D = —389483 E = -104648

In particular,E < 0 and consequently sojs It follows that of the two horizontal axes,
the one through a nucleus (axisin Figure 3) is linearly unstable (hyperbolic) while
the other is strongly stable (elliptic), precisely as for the linear spring model.

The world of molecules is very rich, and one would expect that thereXgamolecule
where the stabilities differ from those of the linear spring model, but we do not know of
such an example.
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