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Summary. We study a finite-dimensional system of ordinary differential equations de-
rived from Smoluchowski’s coagulation equations and whose solutions mimic the be-
haviour of the nondensity-conserving (geling) solutions in those equations.

The analytic and numerical studies of the finite-dimensional system reveals an inter-
esting dynamic behaviour in several respects: Firstly, it suggests that some special geling
solutions to Smoluchowski’s equations discovered by Leyvraz can have an important dy-
namic role in gelation studies, and, secondly, the dynamics is interesting in its own right
with an attractor possessing an unexpected structure of equilibria and connecting orbits.

1. Introduction

The kinetics of cluster growth can be modelled by the following infinite system of ordi-
nary differential equations, first proposed by Smoluchowski in his study of coagulation
of colloid particles animated by Brownian motion [30],

ċj = 1

2

j−1∑
k=1

aj−k,kcj−kck − cj

∞∑
k=1

aj,kck, j = 1,2,3, . . . , (1)

wherecj = cj (t) ≥ 0 denotes the concentration of clusters made up ofj identical
particles (j -clusters, for short), the time-independent parametersaj,k = ak, j ≥ 0 are the
rate coefficients for the coagulation reactions

( j -cluster)+ (k-cluster)−→ (( j + k)-cluster) , (2)

and equations (1) are written assuming the validity of the mass action law of chemical
kinetics (the first sum in the right-hand side of (1) is defined to be zero ifj = 1).
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These equations, as well as generalizations allowing for the fragmentation of clusters,
and their continuous cluster-sizes analogues, have been used in a variety of applications,
including astrophysics [9], [26], aerosol and colloidal sciences [14], [15], and chemistry
and chemical engineering [1], [5], [29], [32]. It is believed that the relevant physical
details of the situation under study determine the form of the rate coefficientsaj,k.
In order to gain some understanding of why this is so, consider the following simple
argument. Let the mass of a single particle be equal to 1. Then, the mass of aj -cluster
is equal toj . Assuming the clusters are incompressible, the volume of aj -cluster will
be proportional toj ; if the clusters are spherical, the surface area will grow likej 2/3,
and its diameter likej 1/3. Thus, a coagulation mechanism dependent on the surface area
available for reaction will lead naturally to coefficientsaj,k containing the power 2/3 ofj
andk. If the mechanism is essentially dependent on the linear dimensions of the clusters,
the power 1/3 will show up. Likewise, the power 1 will be connected with mechanisms
essentially dependent on the total mass (or volume) of the clusters. Clearly, other powers
are possible if the coagulation mechanism is not dependent on a single factor, or if the
clusters are not approximately spherical, or if they have preferential “active” sites, etc.
The case of linear-chain polymerization is a good example: In this situation the active
sites for the reactions are the end-points of the linear polymeric molecules, and there
are only two of them, independent of the mass (=volume=length) of the chain. Hence,
one expects the coefficientsaj,k to be essentially independent ofj andk. The particulars
of the interaction mechanism are reflected in the specific form of the kernel (not only
on the powers involved), of which many different types have been proposed. In Table
1, adapted from [5], [12], [25], [29], we present some of the coagulation kernels most
common in the scientific literature.

Due to the complicated, and usually quite special, forms of most of the rate coeffi-
cients, the large majority of the rigorous mathematical results about solutions to these
equations have been obtained using some sort of idealized form for the coagulation ker-
nel, which is sufficiently simple to allow a rigorous analysis, but, nevertheless, is still
believed to capture some, although probably not much, of the real particularities of the
phenomenon being modelled. In this context, the simplest classes of rate coefficients are
the sum typeaj,k = r j + rk, and the product typeaj,k = r j rk, where in both cases

(
r j
)

is
a nonnegative sequence.

Among the various questions that have been asked about equations (1) and their
solutions, a particularly important one is related to the possibility of using them as
a model for thesol-gelphase transition. In order to describe the problem, remember
the assumption that aj -particle cluster has massj . Then, the quantityjcj (t) is the
concentration ofj -clusters at timet , and the total density of the system described by (1)
is given byρ(t) := ∑∞

j=1 jcj (t). Since each elementary reaction (2) conserves mass,
it is expected thatρ(t) is independent oft . This is indeed what happens at a formal
level: Assumingρ(t) to be differentiable and such thatρ̇(t) =∑∞j=1 j ċj (t), substituting
ċj (t) given by (1) in the series and computing formally, the result isρ̇(t) = 0, for all
t . However, it is known that the formal computation just suggested cannot be made
rigorous in all situations: For some rate coefficientsaj,k increasing sufficiently fast with
j andk, it has been proved rigorously thatρ(t) cannot be constant for allt , and that
there must exist a nonnegative timetg such thatρ(t) = ρ(0) for t ≤ tg butρ(t) < ρ(0)
for t > tg [6], [7], [18], [20], [24], [27], [28]. In the literature this phenomenon is called
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Table 1.Some commonly used coagulation kernelsaj,k.

aj,k Comment
1 Approximate Brownian coagulation,

Linear-chain polymerization.

j + k Branched-chain polymerization ofARBf−1 type (largef limit),
Limit case of gravitation coagulation.

j−2/3+ k−2/3 Diffusion-controlled growth of supported metal crystallites.

jk Branched-chain polymerization ofR Af type (largef limit).

( j 1/3+ k1/3)( j−1/3+ k−1/3) Brownian coagulation (continuum regime).

( j 1/3+ k1/3)2( j−1 + k−1)1/2 Brownian coagulation (free molecular regime).

( j 1/3+ k1/3)3 Shear (linear velocity profile).

( j 1/3+ k1/3)7 Shear (nonlinear velocity profile).

( j 1/3+ k1/3)2| j 1/3− k1/3| Gravitational settling (particles larger than∼ 50µm).

gelation,and it is interpreted physically as corresponding to the occurrence of a dynamic
phase transition in the system. Both equations (1) and densityρ(t) take into account only
“microscopic” clusters with a finite, although arbitrarily large, number of particles. If
the rate of production of clusters is very high, a portion of the total mass of the system
is rapidly transferred to larger and larger clusters, and can be carried to a “macroscopic”
cluster with an infinite number of particles (i.e.,j → ∞) in a finite timetg. This new
phase, called thegel, is not modelled by equations (1) and has a mass proportional to
ρ(0)− ρ(t) for t > tg.

This dynamic phase transition has attracted a good deal of interest in recent years,
and a large body of literature has been built in trying to characterize the rate coefficients
and initial conditions for which gelation occurs, as well as the properties of the geling
solutions (see, for instance, [5], [13], [16], [18], [20], [27], [29], [31], [33].) However,
surprisingly little is known on a mathematically rigorous basis, even for relatively simple
rate coefficients.

The possibility of occurrence of gelation for sum type coefficients has been settled
negatively; in particular, the following has been established rigorously:

(S1) If r j ≤ Aj , for some positive constantA, then all solutions conserve densityρ(t)
for all t [3].

(S2) If r j ≥ Ajα, whereA > 0 andα > 1 are constants, then system (1) has no nonzero
solutions, in any time interval [0, T ], for T > 0 [3], [7].

This means that no gelation can occur in these cases.
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For product-type kernels, the following has been proved:

(P1) If r j ≤ Ajα, with A ≥ 0 andα ≤ 1/2 constants, then all solutions conserve density
ρ(t) for all t [3].

(P2) If r j ≥ Ajα, with A ≥ 0 andα > 1 constants, then all solutions exhibit gelation
with tg = 0 [7].

(P3) If r j = Aj + B, where A and B are nonnegative constants, then all solutions
exhibit gelation at an instanttg ∈ [0,∞) and if the initial condition satisfies∑∞

j=1 j 2cj (0) <∞, thentg > 0 [27].
(P4) Whenr j = Aj , the following explicit solution was obtained by Leyvraz and

Tschudi in [20] (see also [2], [28]) for monodispersed monomeric initial data (i.e.,
c1(0) = 1, andcj (0) = 0, j ≥ 2, or, more conveniently,cj (0) = δj,1, whereδj,i is
the Kronecker symbol):

cj (t) =


j j−2

j !
(A2t) j−1e−A2 j t , t ≤ A−2,

j j−2e− j

j !

1

A2t
, t > A−2.

(3)

The densityρ(t) of this solution is

ρ(t) =
{

1, t ≤ A−2,
1

A2t
, t > A−2,

(4)

and so a precise gelation timetg = A−2 and post-gel asymptotic behaviour of the
solutions were obtained. We will refer to (3) as theLeyvraz-Tschudi solution.

(P5) Forr j ≥ Ajα, with A > 0 andα > 1/2 constants, andr j > r1 for all j ≥ 2, there
exists a positive sequence(αj ) such that

∑∞
j=1 jαj <∞ andcj (t) = αj (t +C)−1

is a solution to (1) for allt ≥ 0 and constantC > 0. This result was proved by
Leyvraz in [18] and will play an important role in the present paper. We will call
them theLeyvraz solutionsand the sequence(αj )will be referred to as theLeyvraz
sequence.

The results quoted above show that, for product-type coefficients, the behaviour of
solutions is known whenr j has asymptotic growth likej α, for bothα ≤ 1/2 andα > 1.
The intermediate case 1/2< α ≤ 1 is poorly understood, and the conjecture that also in
this case all nonzero solutions exhibit gelation [16], [21], [33] remains one of the main
open problems in this area.

In the present study we do not either prove the conjecture to hold or disprove it, but
instead we report on a finite-dimensional system obtained from a truncation of the infinite
system (1) whose solutions, in some sense, mimic the behaviour of the geling solutions
of (1) refered to in (P4) and (P5) above. The analysis of the finite-dimensional system
allows us to identify an infinite family of Leyvraz-type geling solutions to (1), of which
the Leyvraz solution in [18] is but one element. The analytical and numerical studies
of the finite-dimensional system show a dynamical behaviour that is very interesting in
its own right, even if this approach will turn out to be useless for the gelation problem.
More specifically, these studies seem to indicate that the attractor of the finite-dimensional
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system has an unexpected structure of equilibria and connecting orbits. The equilibria are
related closely to the Leyvraz-type geling solutions referred to above, and the numerics
seem to point to a possibly important dynamic role played by the Leyvraz-type solutions
in the infinite-dimensional case.

The paper is organized as follows: In Section 2 we derive the finite-dimensional
system and study its basic properties. In Section 3 we study the equilibria of the finite-
dimensional system and use the result to prove the existence of an infinite family of geling
solutions to the Smoluchowski equations (1). In Section 4 we study the dynamics of the
finite-dimensional system. Finally, in Section 5 we briefly discuss the possible relevance
of our study to the elucidation of the gelation behaviour in the original system (1).

2. Derivation of the Finite-Dimensional System and Basic Properties of Solutions

Most of the mathematical studies of Smoluchowski’s coagulation equations or of more
general analogues, such as the Becker-D¨oring and the Coagulation-Fragmentation equa-
tions, use at some point the technique of approximating the infinite system of equations
by a finiten-dimensional truncation and proving results for the infinite system by passing
to the limitn→∞ in the solutions to then-dimensional truncations (see, for example,
[3], [4], [8], [24]).

It is important for the present paper to state exactly what is meant by a finite-
dimensional truncation of the Smoluchowski equations (1), and this will be done next.

2.1. Finite-Dimensional Truncations

By a finiten-dimensional truncation of (1), we mean a system ofn ordinary differential
equations, in the phase variablescj for j = 1,2, . . . ,n, obtained from (1) by making
aj,k = 0 outside of a finite subset ofN×N. Since, for eachj , the first sum in the right-
hand side of (1) has only termsck with k < j , it is reasonable to consider truncations
that preserve this sum, so a finiten-dimensional truncation must satisfy the following

(i) c1, . . . , cn are the only phase variables (cn+1, cn+2, . . . ≡ 0).
(ii) The first sum in the right-hand side of (1) must remain unchanged, forj = 1, . . . ,n.

These two constraints, together with the basic symmetry conditionaj,k = ak, j , allow
us to classify the truncations using the sets of pairs of indices( j, k) for which the rate
coefficientsaj,k remain unchanged by the truncation. More precisely, eachn-dimensional
truncation of (1) corresponds to a subsetUn ofN×Nwhich is symmetric with respect to
reflection on the linek = j , contained in the square [1,n]2, and containing the triangle
{( j, k) ∈ N× N: j + k ≤ n}. TheUn-truncated system is obtained from (1) simply by
settingaj,k = 0 if ( j, k) 6∈ Un. Of all then-dimensional truncations, the two extremal
ones are particularly important:

(a) Themaximal n-truncation, corresponding to the set

Un
max= {( j, k) ∈ N× N: j + k ≤ n},
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which sets to zero the maximum possible number of rate coefficientsaj,k, is the
system

ċj = 1

2

j−1∑
k=1

aj−k,kcj−kck − cj

n− j∑
k=1

aj,kck, j = 1,2, . . . ,n.

(b) Theminimal n-truncation, corresponding to the set

Un
min = {( j, k) ∈ N× N: max{ j, k} ≤ n},

which sets to zero the smallest possible number of rate coefficients compatible with
the restrictions above, is the system

ċj = 1

2

j−1∑
k=1

aj−k,kcj−kck − cj

n∑
k=1

aj,kck, j = 1,2, . . . ,n. (5)

Clearly, any otherUn-truncation will satisfyUn
max⊂ Un ⊂ Un

min.

2.2. The Minimally Truncated Smoluchowski Equations

Most of the mathematical studies of (1) have made use of the maximal truncation and,
since solutions(cn) to the maximallyn-truncated system conserve the truncated density
ρn(t) :=∑n

j=1 jcn
j (t) [3], this truncation is well-suited for proving density conservation

of solutions to the full system (1). However, being interested in gelation, i.e., in the
breakdown of density conservation at a certaintg ≥ 0, we would like to have a finite
n-dimensional system for which solutions do not conserve densityρn(t). In this case the
minimal truncation is more adequate; just from an heuristic argument we see that the
truncated density is not expected to be conserved by the minimally truncated system:
Supposeaj,k > 0 if and only if ( j, k) ∈ Un

min. Take, for example,j = k = n. Then, as
(n,n) ∈ Un

min we havean,n > 0, which means that the reaction

(n-cluster)+ (n-cluster)−→ ((2n)-cluster)

occurs with a nonzero velocity, and so some clusters of sizes larger thann are formed.
As the truncated density is computed by summing up over all clusters with sizes not
larger thann, one expectsρn(t) to decrease witht because part of the mass of the
system is transferred to clusters of sizes fromn + 1 to 2n that are not accounted for
either in the truncated system or in the truncated density. If we remember the physical
interpretation of gelation discussed in the introduction, we can draw a parallel between
the formation of a gel phase in (1) and the formation of clusters of sizes larger thann in the
minimallyn-truncated system: Neither is modelled directly by the differential equations,
but their presence is felt by the decrease in density of the solutions. That the minimally
n-truncated system can, in this way, model gelation, or other precipitation phenomena,
has already been pointed out in [19], and for a slightly different concept of truncation,
in [2], [23]. These last papers (and also [17]) use a 2n-dimensional truncation obtained
by application of the minimaln-truncation described in 2.1(b) to system (1)without the
restriction of consideringc1, . . . , cn as the only phase variables of the truncated system,
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that is, dropping the requirement (i) in 2.1. This gives rise to a system of 2n ordinary
differential equations for the phase variablesc1, . . . , c2n, of which the equations for
c1, . . . , cn are exactly (5), and the equations forcn+1, . . . , c2n are

ċj = 1

2

n∑
k= j−n

aj−k,kcj−kck, j = n+ 1, . . . ,2n.

Thus, the minimally truncated system is equivalent to the firstn equations of the 2n-
truncation used in [2], [23].

We now start a mathematical study of the minimallyn-truncated system (5).
Local existence, uniqueness, regularity, and continuous dependence of solutions to

(5) are obtained by standard arguments in the theory of ordinary differential equations.
We next prove that the nonnegative cone ofRn is invariant for (5).

Proposition 1. Let c(t) = (cj (t)
)

1≤ j≤n
be the solution of (5) on[0, T), for some T> 0,

with initial data c(0) = c0 ∈ Rn+
0 . Then c(t) ∈ Rn+

0 , for all t ∈ [0, T).

Proof. For each 1≤ j ≤ n, define

Rj (t) := 1
2

j−1∑
k=1

aj−k,kcj−k(t)ck(t),

ϕj (t) :=
n∑

k=1

aj,kck(t),

Ej (t) := exp

(∫ t

0
ϕj (s)ds

)
.

We can write (5) in the following integral form:

cj (t)Ej (t) = c0 j +
∫ t

0
Ej (s)Rj (s)ds, 1≤ j ≤ n.

Clearly,Ej (t) > 0 for all t and j . Then, for j = 1 we haveR1(t) ≡ 0 by definition, and
c1(t)E1(t) = c0 1 ≥ 0. HenceR2(t) = 1

2a1,1 (c1(t))
2 ≥ 0 and so, forj = 2,

c2(t)E2(t) = c0 2+
∫ t

0
E2(s)R2(s)ds≥ c0 2 ≥ 0.

SinceRj (t) contains only componentsck(t) with k < j , we can proceed successively
until j = n, obtaining the result.

We can obtain a much better characterization of the positivity properties of the so-
lutions to (5) if we consideraj,k > 0 in (5). In this case we have the following result,
which was proved originally in [11, Theorem 2] for the maximally truncated system, but
whose proof can be easily modified for the present case:
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Proposition 2. Let c(t) = (cj (t)
)

1≤ j≤n be the solution of (5) on[0, T), for some T> 0,

with initial data c(0) = c0 ∈ Rn+
0 . LetJ (t) = {

j ∈ N : cj (t) > 0
}

and P = J (0).
Then, for all t> 0, J (t) ≡ J is independent of t and is given by

J = {1, . . . ,n} ∩ spanN0
(P),

wherespanN0
(P) :=

{
j =

∑
i

ni pi : pi ∈ P,ni ∈ N0,and max
i

ni > 0

}
.

We now prove that the densityρn(t) is a Lyapunov functional for (5), and that solutions
are defined for all positivet .

Proposition 3. Let c(t) = (cj (t)
)

1≤ j≤n
be any solution of (5) on[0, T), for some T> 0.

Then, there is a continuation̂c(t) of c(t) to [0,∞) and
∑n

j=1 j ĉj (t) is nonincreasing in
[0,∞).

Proof. We start by observing that

ρ̇n(t) = 1

2

n∑
j=2

j−1∑
k=1

jaj−k,kcj−kck −
n∑

j=1

n∑
k=1

jaj,kcj ck

(changing the order of summation in the first double sum)

= 1

2

n−1∑
k=1

n∑
j=k+1

(( j − k)+ k)aj−k,kcj−kck −
n∑

j=1

n∑
k=1

jaj,kcj ck

(changing variablesj 7→ ` := j − k, and using the

symmetry of the summand in the first double sum)

=
n−1∑
k=1

n−k∑
`=1

kà ,kc`ck −
n∑

k=1

n∑
j=1

jaj,kcj ck

= −
n∑

j=1

n∑
k=n− j+1

jaj,kcj ck ≤ 0. (6)

Then, for all 1≤ j ≤ n andt ∈ [0, T),

0≤ cj (t) ≤ j−1
n∑

j=1

jcj (0),

and, since the right-hand side of (5) is a polynomial in thecj ’s, this implies thatcj (t)
has a continuation̂c(t) to [0,∞), and

∑n
j=1 j ˙̂cj (t) ≤ 0 for all t ≥ 0.

The inequality (6) can be improved using the positivity result of Proposition 2:

Proposition 4. Let aj,k > 0 for all ( j, k) ∈ Un
min. Assume c0 J 6= 0 for some J∈

{1, . . . ,n}, and let c(t) be the solution of (5) in[0,∞) with initial data c0. Thenρn(t)
is strictly decreasing for all t> 0.
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Proof. By Proposition 2, we havecj (t) > 0 for all positivet , and all j ∈ {1, . . . ,n} ∩
(J · N), whereJ · N := { j = Jn : n ∈ N}. Letµ = bn/Jc := max{m ∈ N : m ≤ n/J}.
Thus,(µ+ 1)J > n, which impliesn− µJ + 1 < J + 1, and sincen− µJ + 1 is an
integer, we must haven− µJ + 1≤ J. Hence,

n∑
j=1

n∑
k=n− j+1

jaj,kcj (t)ck(t) ≥ µJcµJ(t)
n∑

k=n−µJ+1

aµJ,kck(t)

≥ µJaµJ,JcµJ(t)cJ(t) > 0,

and so, using (6),̇ρn(t) < 0.

We can use this behaviour of the density to obtain the general asymptotic behaviour
of nonnegative solutions to (5).

Proposition 5. With the assumptions of Proposition 4, c(t) −→ 0 as t→∞.

Proof. Letc(t) be a nonnegative solution of (5). By Proposition 4, the densityρn(c(t)) is
a differentiable Lyapunov functional for (5), with minimum equal to 0, which is attained
atc = 0. AsRn+

0 is positively invariant for (5), the result follows by standard arguments.

We also can prove easily that all solutions to the infinite system (1) converge com-
ponentwise to zero ast → ∞, provided that at least the diagonal coefficientsaj, j are
positive for all j , [8, Theorem 4.3].

The fact that nonzero solutions to (5) converge to the zero solution ast → ∞, and
have a strictly decreasing density, is in agreement with what happens with the Leyvraz
solutions of (1) (see (P5) in the introduction), but this does not necessarily mean that they
are a good approximation of the Leyvraz geling solutions, and even less of the geling
solutions with positive geling timetg for which density is constant in [0, tg], such as in
the case of the Leyvraz-Tschudi solutions in (P4). An indication that solutions to (5) can,
in fact, be a good approximation to geling solutions of (1) is given by numerically solving
(5) with parameters and initial conditions for which there exists a known geling solution
of (1) and comparing the results. In Figure 1 we plot the densityρn(t) as a function of
t for numerical solutions to (5) withaj,k = jk and initial datacj (0) = δj,1, for several
values ofn; together with these plots, we show the density (4) of the Leyvraz-Tschudi
solution (3) for the same rate constants (i.e.,A = 1). The numerical evidence seems to
indicate that the density of solutions to (5) for largen approximate the density of the
corresponding exact solutions to (1) rather well.

Similar evidence can be obtained easily for each componentcj of the solution, and
in this case we can easily prove the following convergence result.

Proposition 6. Assume aj,k ≤ A( jk)α with A > 0 and α ≤ 1 constants. Let c0 =
(c0 j )j∈N be such that c0 j ≥ 0 and

∑∞
j=1 jc0 j <∞. Let cn = (cn

j )1≤ j≤n be the solution
to (5) with initial data cj (0) = c0 j for 1 ≤ j ≤ n. Then, there exists a solution
c = (cj )j∈N of (1) such that, for all t≥ 0 and all fixed j,

cn
j (t) −→ cj (t), as n→∞.
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Fig. 1. (a) Densities of numerical solutions to (5) forn = 10,20,30,40, and 100 with initial
datacj (0) = δj,1, and the density of the Leyvraz-Tschudi solution (4), identified by “∞”, for
aj,k = r j rk, with r i = i . (b) Enlargement of the top left region of (a).
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The proof of this proposition is a straightforward modification of parts (a) and (b) of
the proof of Theorem 5.1 of [10] whenα < 1, and of Theorem 2.2 of [17] whenα = 1,
and we will omit it.

It must be observed that Proposition 6 says nothing about the uniformity of the
convergence, i.e., wecannotinfer from it that the density of the approximating solutions
will converge to the density of the solution to (1). In fact, this is generally false: For
α ≤ 1/2, we know that solutions to (1) conserve densities (see (S1) in the introducion),
but the corresponding solutions to the minimally truncated systems (5) continue to show
the behaviour indicated in Propositions 4 and 5; i.e., their densities converge to zero
ast → ∞. Thus, Proposition 6 implies nothing about gelation and cannot explain the
behaviour of the density plots presented in Figure 1.

Remark 1. For the particular set of conditions used in the experiments of Figure 1,
namely,aj,k = jk andcj (0) = δj,1, one actually can state a much stronger result than
Proposition 6: The theorem in [2] guarantees thatcn

j (t) converges tocj (t) asn → ∞,
uniformly in j andt , for t ≥ 0. The proof, however, relies on the existence of explicit
expressions for the solutions, and hence does not seem to be applicable to more general
initial conditions and coagulation coefficients.

2.3. The Modified System

The results in Section 2.2, particularly the comparison between the behaviour of the
numerical densities to the truncated systems and the exact density (4) to the original
problem (1), shown in Figure 1, as well as the observation that in all known cases the
post-gel time behaviour of solutions is of the typeO(1/t) ast →∞, suggests that the 1/t
decay of geling solutions for larget is probably a significant feature to look at. We now
introduce a change of variables that “isolates” the possibleO(1/t) large time behaviour
of solutions to (5). The resulting equations shall be called theModified System.

Let t0 > 0 be an arbitrary constant, andc(t) = (cj (t)
)

1≤ j≤n be a solution to (5) in
[0,∞). For all 1≤ j ≤ n and allt ≥ 0, definexj (t) by

xj (t) :=
(

1+ t

t0

)
cj (t); (7)

thus, the equation forxj (t) is

(t + t0)ẋj = xj + 1

2
t0

j−1∑
k=1

aj−k,kxj−kxk − t0xj

n∑
k=1

aj,kxk, 1≤ j ≤ n.

To transform this nonautonomous system into an autonomous one, we introduce a new
(slower) time scale defined by

τ(t) := log

(
1+ t

t0

)
, (8)
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and defineyj (τ ) by

yj (τ ) := t0xj (t (τ )), (9)

wheret (τ ) is the inverse function ofτ(t), defined on [0,∞) by t (τ ) = t0(eτ − 1).
Hence, denoting by(·)′ the derivative with respect toτ , the initial value problem for

(5) becomes, for 1≤ j ≤ n, y′j = yj + 1
2

j−1∑
k=1

aj−k,kyj−kyk − yj

n∑
k=1

aj,kyk,

yj (0) = y0 j ,

(10)

wherey0 j := t0c0 j ≥ 0, andc0 = (c0 j ) is the initial data for (5).
Global existence and uniqueness of solutions to (10) is guaranteed by the above

construction and the results about solutions to (5), sincey(τ ) is a solution to (10) if
and only if c(t) is a solution to (5) and (7)–(9) hold. Likewise, the positivity result in
Proposition 2 remains valid for solutions of (10). On the general asymptotic behaviour
of solutions to (10) we can note the following:

(i) yj (τ )→ 0 asτ →∞ if and only if cj (t) ∼ o(1/t) ast →∞.
(ii) yj (τ ) is bounded asτ →∞ if and only if cj (t) ∼ O(1/t) ast →∞.

(iii) yj (τ ) is unbounded asτ → ∞ if and only if cj (t) decays to zero ast → ∞ at a
slower rate than 1/t .

The next proposition shows that only case (ii) occurs.

Proposition 7. Let y(τ ) = (yj (τ )
)

1≤ j≤n
be a nonzero and nonnegative solution of (10)

in [0,∞). Then y(τ ) is bounded and bounded away from zero.

Proof. It is sufficient to study what happens whenτ →∞. To show thaty(τ ) is bounded
away from zero, simply note that the linearization of (10) about the zero solution gives
y′ = Iny where In is then-dimensional identity matrix, and so the solutiony = 0 is
linearly unstable. To prove thaty(τ ) is bounded, consider first the casej = 1:

y′1 = y1− y1

n∑
k=1

a1,kyk ≤ y1− a1,1y2
1.

Let Fi (w) := w(1− ai,iw). Then, all positive solutions ofw′ = F1(w) are bounded
in [0,∞) becausew = a−1

1,1 is the global attractor for positive solutions. Letw1(·) be a
solution of this equation withw1(0) = y0 1 > 0. Then 0< y1(τ ) ≤ w1(τ ) for all τ ≥ 0,
and thusy1 is bounded. Consider now the casej = 2:

y′2 = y2+ 1

2
a1,1y2

1 − y2

n∑
k=1

a2,kyk ≤ 1

2
a1,1y2

1 + F2(y2).

Since we havey1 bounded, there existsκ1 dependent on the initial data, such thata1,1y2
1 ≤

2κ1, so that

y′2 ≤ κ1+ F2(y2).
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Sincew = 1+
√

1+4a2,2κ1

2a2,2
is the global attractor of positive solutions tow′ = κ1+ F2(w),

we conclude thaty2(τ ) is bounded in [0,∞). Suppose we have proved boundedness of
y1, . . . , yp−1. Then, there exists a constantκp−1, dependent of the initial data, such that∑p−1

k=1 ap−k,kyp−kyk ≤ 2κp−1, and so

y′p = yp + 1

2

p−1∑
k=1

ap−k,kyp−kyk − yp

n∑
k=1

ap,kyk ≤ κp−1+ Fp(yp).

Repeating the previous argument, we conclude thatyp(τ ) is bounded, and proceeding
up to j = n proves the result.

3. Equilibria of the Modified System and Geling Solutions

From this section onwards, we will consider the following hypothesis:

(H1) aj,k = r j rk for all j andk, where(r j ) is a strictly increasing positive sequence.

Remember also that, for anyα > 0, bαc denotes the integer part ofα, i.e., bαc =
max{p ∈ N: p ≤ α}.

In the next proposition we study the equilibria of (10).

Proposition 8. Assume (H1). For all n∈ N, the modified system (10) has n+ 1 non-
negative equilibria, denoted bȳy(L), or by ȳ(L,n) whenever we need to state explicitly the
value of n, with L= 0,1, . . . ,n, which are the following:
for L = 0 : ȳ(0) = (0,0, . . . ,0)︸ ︷︷ ︸

n components

;

for L ≥ 1 : ȳ(L) =
(

ȳ(L)j

)
1≤ j≤n

, where

ȳ(L)j = 0 if j 6∈ L · N; (11)

and

ȳ(L)j L
= Q(L)

j

(
ȳ(L)L

) j
for all j = 2, . . . , bn/Lc, (12)

with Q(L)
j = β(L)j r j

L r−1
j L

and
β
(L)
1 = 1,

β
(L)
j =

1

2
(
r−1

L − r−1
j L

) j−1∑
k=1

β
(L)
j−kβ

(L)
k , 2≤ j ≤ bn/Lc, (13)

and ȳ(L)L is the only positive zero of the polynomial defined by

PL,n(x) :=
bn/Lc∑
j=1

β
(L)
j (r L x) j − r−1

L . (14)
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Proof. The existence of̄y(0) is obvious. We start with the caseL = 1. From the con-
vention that the first sum in the right-hand side of (10) is zero forj = 1, we obtain

ȳ(1)1 − r1ȳ(1)1

n∑
k=1

rk ȳ(1)k = 0,

ȳ(1)j + 1
2

j−1∑
k=1

r j−krk ȳ(1)j−k ȳ(1)k − r j ȳ
(1)
j

n∑
k=1

rk ȳ(1)k = 0, 2≤ j ≤ n.

Since by hypothesis̄y(1)1 > 0, we must have

n∑
k=1

rk ȳ(1)k = r−1
1 .

For 2≤ j ≤ n, the components̄y(1)j must satisfy

ȳ(1)j =
r1

2
(
r j − r1

) j−1∑
k=1

r j−krk ȳ(1)j−k ȳ(1)k ,

and the conclusion readily follows.
Now assumeL ≥ 2, and letȳ(L) be the equilibria of (10) such thatȳ(L)j = 0 for all

j ≤ L−1 andȳ(L)L > 0. Then,
∑ j−1

k=1r j−krk ȳ(L)j−k ȳ(L)k = 0 for all 1≤ j ≤ 2L−1, because

min1≤k≤ j−1 { j − k, k} ≤ j /2≤ 1
2(2L − 1) < L, and so in each of the productsȳ(L)j−k ȳ(L)k

one of the terms is zero. This means that, forL ≤ j ≤ 2L − 1, the equations defining
the equilibria are

ȳ(L)j − r j ȳ
(L)
j

n∑
k=L

rk ȳ(L)k = 0. (15)

Using ȳ(L)L > 0 and j = L in (15), we obtain

n∑
j=L

r j ȳ
(L)
j = r−1

L . (16)

Substituting this result into (15), we can write

ȳ(L)j

(
1− r j r

−1
L

) = 0 for L + 1≤ j ≤ 2L − 1,

which impliesȳ(L)j = 0 for these values ofj . For 2L ≤ j ≤ n, we must have

ȳ(L)j +
1

2

j−L∑
k=L

r j−krk ȳ(L)j−k ȳ(L)k − r j ȳ
(L)
j

n∑
k=L

rk ȳ(L)k = 0.

Thus, using (16),

ȳ(L)j =
1

2
(
r j r
−1
L − 1

) j−L∑
k=L

r j−krk ȳ(L)j−k ȳ(L)k . (17)
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Now we prove that̄y(L)j given by (17) is nonzero if and only ifj ∈ L · N. Consider

j = pL for somep ≥ 2, and supposēy(L)kL
> 0 for all k ∈ {1, . . . , p− 1}, then

ȳ(L)pL =
1

2
(
r pLr

−1
L − 1

) (p−1)L∑
k=L

r pL−krk ȳ(L)pL−k ȳ(L)k

≥ 1

2
(
r pLr

−1
L − 1

)r(p−1)Lr L ȳ(L)(p−1)L ȳ(L)L

> 0.

Hence, by induction,̄y(L)j > 0 if j ∈ L · N. Suppose nowj is not a multiple ofL. For

1 ≤ j ≤ L − 1 andL + 1 ≤ j ≤ 2L − 1, we already know that̄y(L)j = 0. Define

Np := { j ≤ pL − 1: j 6∈ L · N}. To prove that ifȳ(L)j = 0 for j ∈ Np then the same
happens forj ∈ Np+1, it is only necessary to observe that, fork = L , . . . , j − L, either
k or j −k is not a multiple of L because if both were multiples ofL then j = ( j −k)+k
also would be. But then, using (17) and the fact thatj − L ∈ Np for all j ∈ Np+1, we
obtain the result.

Easy algebraic manipulations allow us to write the components of the equilibriaȳ(L)

in the form (11)–(14), concluding the proof.

Remark 2. It is interesting to observe the structure of the equilibria given in Proposi-
tion 8, namely, the fact that the only nonzero components ofȳ(L) are theȳ(L)j for which
j is a multiple ofL:

ȳ(1) : (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . , ∗, ∗),
ȳ(2) : (0, ∗,0, ∗,0, ∗,0, ∗,0, . . . . . . . ),
ȳ(3) : (0,0, ∗,0,0, ∗,0,0, ∗, . . . . . . . ),
ȳ(4) : (0,0,0, ∗,0,0,0, ∗,0, . . . . . . . ),
ȳ(5) : (0,0,0,0, ∗,0,0,0,0, . . . . . . . ),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ȳ(n−1) : (0,0,0,0,0,0,0,0,0, . . . , ∗,0),
ȳ(n) : (0,0,0,0,0,0,0,0,0, . . . ,0, ∗),

where the symbol∗ simply indicates that the component of the equilibria in that location
is different from zero (and given as stated in Proposition 8).

We now show that the equilibrium̄y(1) of (10) is related closely to the Leyvraz solution
[18], referred to in (P5). This is not surprising: Looking at the derivation of the Leyvraz
solution in [18], we notice that the Leyvraz sequence(αj ) is given by

αj = 1

2
(
r j r
−1
1 − 1

) j−1∑
k=1

r j−krkαj−kαk, j ≥ 2,

∞∑
k=1

rkαk − r−1
1 = 0.
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Thus, for all j ≥ 2, we haveαj = Q(1)
j α

j
1 with Q(1)

j defined as in Proposition 8, andα1

the only positive zero of

P1(x) :=
∞∑

j=1

r j Q
(1)
j x j − r−1

1 . (18)

Hence, it is natural to expect that, in some convenient sense, the equilibriumȳ(1,n) of the
n-dimensional modified system (10) converges to the Leyvraz solution of (1) asn→∞.

Proposition 9. Assume (H1). Let̄y(1,n) be the equilibrium of the n-dimensional modified
system (10) defined by (11)–(14) with L= 1. Let (αj ) be the Leyvraz sequence. Then,
for each fixed j ,̄y(1,n)j −→ αj and

n∑
j=1

r j ȳ
(1,n)
j −→

∞∑
j=1

r jαj as n→∞.

Proof. Consider the sequence
(
ȳ(1,n)

)
n≥1. By Proposition 8 we conclude that, for alln,

P1,n(ȳ(1,n)) = 0= P1(α1), and thus

lim
n→∞

n∑
j=1

r j ȳ
(1,n)
j = r−1

1 =
∞∑

j=1

r jαj .

For the pointwise convergence of(ȳ(1,n))n≥1, we need to remember that for eachn
the only positive solution ofP1,n(x) = 0 is ȳ(1,n)1 . Sincerk Q(1)

k > 0 for all k ≥ 1,
the sequence(ȳ(1,n)1 )n≥1 is strictly decreasing and bounded below by zero, and thus it
converges to somēy∗1 ≥ 0. It is not difficult to prove that we must havēy∗1 = α1, and
the result for the other components follows easily from the relations of thej th and the
1st components of bothα and ȳ(L,n). We will omit further details.

This result suggests that, for eachL ≥ 1, there should exist a Leyvraz-type sequence
(α
(L)
j ) such thatcj (t) = α(L)j (t + t0)−1 is a solution of (1) and that, asn→∞, and for all

j andL, ȳ(L,n)j −→ α
(L)
j , whereȳ(L,n)j is the j th component of the equilibrium solution

of (10) given by (11)–(14). In fact, the following holds true:

Proposition 10. Assume (H1), and rj ≥ Ajα with A> 0 andα > 1/2constants. Then,
for each L∈ N, there exists a nonnegative sequence(α

(L)
j )j∈N satisfyingα(L)j = 0 if j 6∈

L ·N and
∑∞

j=1 jα(L)j <∞, and such that c= (c(L)j )j∈N defined by c(L)j := (t + t0)−1α
(L)
j

is a solution of (1) in[0,∞) with initial data c0 j = α(L)j t−1
0 with t0 > 0 an arbitrary

constant. Furthermore, for all1 ≤ L ≤ n, the equilibriaȳ(L,n) of the n-dimensional
modified system, defined by (11)–(14), satisfyȳ(L,n)j −→ α

(L)
j and

∑n
j=1r j ȳ

(L,n)
j −→∑∞

j=1r jα
(L)
j as n→∞.

The proof of this result will be omitted since it is essentially just a change of notation
in the proof given, for the caseL = 1, by Leyvraz in [18] and, for the last part, of the
proof of Proposition 9 above.
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4. Dynamics of the Modified System

We now turn to the study of the dynamic behaviour of nonnegative solutions to the
modified system (10), both analytically and numerically.

The positivity properties of solutions stated in Proposition 2 imply, in particular, that
the setsSM defined by

S1 := {y ∈ Rn : y1 > 0, yj ≥ 0 for 2≤ j ≤ n
}
,

Sn := {y ∈ Rn : yn > 0, yj = 0 for all 1≤ j ≤ n− 1
}
,

and, for 1< M < n,

SM := {y ∈ Rn : y1 = · · · = yM−1 = 0, yM > 0, yj ≥ 0 for M + 1≤ j ≤ n
}
,

are positively invariant for the flow defined by (10), and its closureSM is also positively
invariant. The usefulness of these sets is due to this invariance property, to the fact that
SM+1 ⊂ ∂SM ⊂ SM for all M ≥ 1, and what is rather important for our purposes, to the
fact thatSM is the “natural” set associated with the equilibriumȳ(M), in the sense that, for
eachM , ȳ(M) is the only equilibrium point of (10) lying inSM . Furthermore, it is clear
that ȳ(L) ∈ SM for all L ≥ M ≥ 1.

These properties of the setsSM , and their relations with the equilibria, mean that it
is possible to restrict the modified system (10) to any of the setsSM and to study the
stability properties, relative to this restriction, of the equilibriaȳ(L) for L ≥ M .

We start by investigating the linear stability properties of the equilibria.

4.1. General Linear Stability Properties of Equilibria

Let 1≤ M ≤ L ≤ n andµ = bn/Lc. LetK(L,n) be the(µ× µ) matrix defined by

K(L,n) :=


α
(n)
L,L α

(n)
L,2L

· · · α
(n)
L,µL

α
(n)
2L,L α

(n)
2L,2L

· · · α
(n)
2L,µL

...
...

...

α
(n)
µL,L α

(n)
µL,2L

· · · α
(n)
µL,µL,

, (19)

where

α
(n)
j L,i L

:=


−ri Lr j L ȳ(L,n)j L

, if i > j,

1− r j Lr−1
L − r 2

j L
ȳ(L,n)j L

, if i = j,

−ri Lr j L ȳ(L,n)j L
+ ri Lr( j−i )L ȳ(L,n)( j−i )L, if i < j .

(20)

Finally, we denote byσK the spectrum of the matrixK(L,n), and define the follow-
ing sets:σ+ := {

1− r j r−1
L : M ≤ j ≤ L − 1

}
(with σ+ = ∅ if L = 1) andσ− :={

1− r j r−1
L : L + 1≤ j ≤ n, j 6∈ L · N} (with σ− = ∅ if L = n).

With this notation, we have the following.

Proposition 11. Assume (H1). Let1 ≤ M ≤ L ≤ n. LetA(L,M) be the matrix of the
linearization aboutȳ(L) of the restriction of the modified system (10) toSM, and denote
byσA the spectrum ofA(L,M). Then,σA = σ+ ∪ σ− ∪ σK.
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Proof. For each 1≤ j ≤ n, let

f j (y) := yj + 1

2

j−1∑
k=1

r j−krkyj−kyk − r j yj

n∑
k=1

rkyk,

and let f̃ j := f j |̀ SM denote the restriction off j toSM . Then, for ally = (0,0, . . . ,0, yM,

yM+1, . . . , yn) ∈ SM , we can write

f̃ j (y) =



0, if 1 ≤ j ≤ M − 1,

yj − r j yj

n∑
k=M

rkyk, if M ≤ j ≤ 2M − 1,

yj + 1
2

j−M∑
k=M

r j−krkyj−kyk − r j yj

n∑
k=M

rkyk, if 2M ≤ j ≤ n.

We shall consider̃f = ( f̃ j ) as a function defined inR(n−M+1)+
0 with values inR(n−M+1)+

0

by identifying the points(0,0, . . . ,0, yM, yM+1, . . . , yn) ∈ SM and(yM, yM+1, . . . , yn) ∈
R(n−M+1)+

0 and disregarding the identically zero components off̃ with 1≤ j ≤ M − 1.
With this identification, letξ = (ξM, . . . , ξn) and consider the linearization of̃f about
ξ . For M ≤ j ≤ 2M − 1, we have

∂ f̃ j

∂yi
(ξ) =

 1− r j

n∑
k=M

rkξk − r 2
j ξj , if i = j,

−ri r j ξj , if i 6= j,

(21)

and for 2M ≤ j ≤ n,

∂ f̃ j

∂yi
(ξ) =


1− r j

n∑
k=M

rkξk − r 2
j ξj , if i = j,

−ri r j ξ, if j − M < i < j or i > j,
−ri r j ξj + r j−i r i ξj−i , if i ≤ j − M.

(22)

Take nowξ = ȳ(L,n) with L ≥ M . From (11),ȳ(L,n)j = 0 if j is not a multiple ofL,

and by (16) we have
∑n

k=M rk ȳ(L,n)k =∑µ

k=1 rkL ȳ(L,n)kL
= r−1

L . This allows us to simplify
considerably the Jacobian matrix off̃ . To be able to compare easily the results of the
linearizations off |̀ SM aboutȳ(L,n) for different values ofL andM , it is convenient to
consider the subscripts of the elements of the(n−M+1)×(n−M+1) Jacobian matrices
as running fromM to n, instead of from 1 ton− M + 1, as is the convention. With this
consideration, the Jacobian matrixA(L,M) has the structure exemplified in Figure 2.

The spectrum ofA(L,M) is now obtained easily by the Laplace expansion by minors
of the determinant ofA(L,M) − λIn−M+1 along the rows withj 6∈ L · N:

det
(
A(L,M) − λIn−M+1

) = det
(
K(L,n) − λIµ

) ∏
M≤ j≤n
j 6∈L·N

(
1− r j

r L

− λ
)
. (23)
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Fig. 2. Structure of the Jacobian matrixA(L,M). (Example for the caseM = 5, L = 7, n = 26,
in which caseµ = b26/7c = 3.) The matrix elements whose positions are not explicitly marked
are zero. For the nonzero elements of the matrix, the following notation is used:⊕ are elements
belonging toσ+, ª are elements belonging toσ−,• are elements ofK(L,n), and¯ are other
nonzero elements. The values of all these nonzero elements are obtained from expressions (21)
and (22) computed atξ = ȳ(L ,n).

Observing that the terms of the product withM ≤ j ≤ L − 1 are precisely the elements
of σ+ (signalled by⊕ in Figure 2) and the terms withj ≥ L +1, but not multiples ofL,
are the elements ofσ− (ª in Figure 2), expression (23) says thatσA = σ+ ∪ σ− ∪ σK,
as we wanted to prove.

The study of the local linear stability of̄y(L,n) in SM is now reduced to the study of
σK, the spectrum ofK(L,n).

Remark 3. From assumption (H1), we can conclude immediately that

(i) all the L − M elements ofσ+ are positive.
(ii) all the n− L − µ+ 1 elements ofσ− are negative.
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Using (H1), (19), (20), and Proposition 8, we conclude that

tr K(L,n) =
µ∑

j=1

(
1− r j Lr

−1
L − r 2

j L ȳ(L,n)j L

)
= µ− r−1

L

µ∑
j=1

r j L −
µ∑

j=1

r 2
j L ȳ(L,n)j L

< µ− r−1
L

µ∑
j=1

r L −
µ∑

j=1

r 2
j L ȳ(L,n)j L

= −
µ∑

j=1

r 2
j L ȳ(L,n)j L

< −r L

µ∑
j=1

r j L ȳ(L,n)j L
= −1,

and thus

(iii) at least one of the eigenvalues ofσK has a negative real part.

Despite numerous attempts, it has not been possible to fully describeσK in the general
case. For general strictly increasing positive sequences(r j ), the best result we could prove
is the following.

Proposition 12. With the assumptions of Proposition 11, we haveRe(σK) < 0 for
µ = 1 andµ = 2.

Proof. Both cases are trivial: Ifµ = 1, thenK(L,n) has only one element, which is
− r 2

L ȳ(L,n)L < 0. Forµ = 2, the matrixK(L,n) is a 2× 2 matrix with negative trace (by
Remark 3) and

detK(L,n) = (r2L − r L)r L ȳ(L,n)L + r2Lr
3
L

(
ȳ(L,n)L

)2
> 0,

from which the result follows.

Thus we have the following local stability result.

Proposition 13. With the assumptions of Proposition 11, denote by W(L,M)
s and W(L,M)

u
the stable and unstable manifolds ofȳ(L,n) in SM, respectively. Letµ = 1orµ = 2. Then,

dimW(L,M)
u = L − M,

dimW(L,M)
s = n− L + 1.

In particular, ȳ(L,n) is locally exponentially asymptotically stable inSL .

Forµ ≥ 3 we were unable, so far, to prove that all elements ofσK have negative real
parts for a general sequence(r j ), although all available numerical evidence suggests this
is indeed true. The only case for which we could complete the analysis ofσK is when
r j = j , and this will be presented in Section 4.2. We next present some of the numerical
evidence that supports the following conjecture.

Conjecture 1. Proposition 12 holds true for all values ofµ.
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Table 2.Spectra ofK(L ,n) for r j = 1+ j 3/5, L = 1,2,5, andµ = 3, 5, 6, 10.

L µ = 3 µ = 5 µ = 6 µ = 10
1 −1 −1 −1 −1.491

−0.481+ 0.087i −0.813 −0.965 −1.369
−0.481− 0.087i −0.652 −0.814 −1.241

−0.555+ 0.156i −0.654 −1.107
−0.555− 0.156i −0.584+ 0.180i −1

−0.584− 0.180i −0.966
−0.818
−0.660
−0.675+ 0.249i
−0.675− 0.249i

2 −1 −1 −1.163 −1.796
−0.573+ 0.102i −0.980 −1 −1.649
−0.573− 0.102i −0.787 −0.981 −1.496

−0.657+ 0.187i −0.791 −1.334
−0.657− 0.187i −0.689+ 0.216i −1.164

−0.689− 0.216i −1
−0.987
−0.803
−0.788+ 0.298i
−0.788+ 0.298i

5 −1 −1.178 −1.398 −2.159
−0.681+ 0.120i −1 −1.179 −1.982
−0.681− 0.120i −0.947 −1 −1.798

−0.775+ 0.222i −0.954 −1.604
−0.775− 0.222i −0.811+ 0.257i −1.399

−0.811− 0.257i −1.187
−1
−0.975
−0.919+ 0.355i
−0.919+ 0.355i

In Table 2 we present the numerically computed spectra ofK(L,n) for a nonhomoge-
neous sequence(r j ) and several values ofL andn. In Table 3 we present the numerically
computed spectra ofK(1,µ) for several values ofµ and for two different homogeneous
sequences(r j ).

The distinction, made explicit in Tables 2 and 3, between homogeneous and non-
homogeneous sequences(r j ) is due to the fact that, as the next proposition shows, for
homogeneous sequences the linearizations aboutȳ(L,n) and ȳ(1,µ), with µ = bn/Lc, are
the same, and so we need only to study the spectra ofK(1,µ).

Proposition 14. Let 1 ≤ L ≤ n,µ = bn/Lc, and suppose that(r j ) is a homogeneous
sequence, i.e., rj = Ajα for some positive constants A andα. Then,K(L,n) = K(1,µ).

Proof. In order to relateK(L,n) andK(1,µ), we need to relate the equilibriāy(L,n) and
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Table 3.Spectra ofK(1,µ) for r j = j andr j = 1.414j 3/4, with µ = 3,5,6,10.

r j µ = 3 µ = 5 µ = 6 µ = 10
j −1 −1 −1 −1

−1.691 −2 −2 −2
−2 −2.199 −2.419 −3

−3 −3 −3.167
−4 −4 −4

−5 −5
−6
−7
−8
−9

1.414j 3/4 −1 −1 −1 −1
−1.230+ 0.153i −1.813 −1.796 −1.696
−1.230− 0.153i −2.343 −2.342 −2.329

−1.403+ 0.230i −2.834 −2.832
−1.403− 0.230i −1.480+ 0.338i −3.303

−1.480− 0.338i −3.756
−4.196
−4.623
−1.753+ 0.456i
−1.753− 0.456i

ȳ(1,µ). From (13), we have

β
(L)
j = Lα

Ajα

2( j α − 1)

j−1∑
k=1

β
(L)
j−kβ

(L)
k ,

and

β
(1)
j =

Ajα

2( j α − 1)

j−1∑
k=1

β
(1)
j−kβ

(1)
k ,

and sinceβ(L)1 = β
(1)
1 = 1, we immediately conclude thatβ(L)j = L( j−1)αβ

(1)
j . From

(14), we have thatx = r L ȳ(L,n)L is the only positive solution of
∑µ

k=1 β
(L)
k xk = r−1

L and
so, using the relation between theβ(L)k and theβ(1)k just obtained and the form ofr j , it
is also the only positive solution of

∑µ

k=1 β
(1)
k (Lαx)k = A−1. But sincer1 = A, the

last equation hasLαx = r1ȳ(1,µ)1 as its only positive solution, and thus we must have
Lαr L ȳ(L,n)L = r1ȳ(1,µ)1 . The relation between the other components now follow easily
from (12) and the relations above:

r j L ȳ(L,n)j L
= β(L)j

(
r Lβ

(L,n)
L

) j = L−αβ(1)j

(
r1ȳ(1,µ)1

) j
.

Finally, using the above relations and observing thatr j L = Lαr j , we conclude that

(i) for i > j : α(n)j L,i L
= − ri L(r j L ȳ(L,n)j L

) = − ri LαL−αβ(1)j (r1ȳ(1,µ)1 ) j = − ri r j ȳ
(1,µ)
j =

α
(µ)

j,i .
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(ii) for i = j : α(n)j L, j L
= 1 − r j Lr−1

L − r 2
j L

ȳ(L,n)j L
= 1 − r j r

−1
1 − r jβ

(1)
j (r1ȳ(1,µ)1 ) j =

1− r j r
−1
1 − r 2

j ȳ(1,µ)j = α(µ)j, j .

(iii) for i < j , using the computations done in case (i) we haveα
(n)
j L,i L
= −ri Lr j L ȳ(L,n)j L

+
ri Lr( j−i )L ȳ(L,n)( j−i )L = −ri r j ȳ

(1,µ)
j + r j−i ȳ

(1,µ)
j−i = α(µ)j,i .

Hence,K(L,n) = K(1,µ), as we wanted to prove.

Remark 4. If Conjecture 1 is true, then Proposition 13 holds without the restriction onµ

and this, together with the invariance properties of the setsSM , implies that the unstable
directions ofȳ(L,n) in SM have a nonzero component inSM − SL . This observation will
be important for the analysis of the numerical results in Section 4.3.

4.2. Linear Stability Results in the Caser j = j

In this section we prove Conjecture 1 whenr j = j . The proof is particular for this case
and is not likely to be applicable to more general sequences. Nevertheless, we include
it here for three reasons: because it is the only case for which Conjecture 1 has been
proved so far; because these coefficients are actually important in gelation studies (cf.
(P4) in the introduction); and finally, because it proves that the surprising behaviour of
the spectra ofK(1,µ) shown in Table 3 is indeed true. The main result is the following.

Proposition 15. Let rj = j , and letK(1,µ) be the matrix defined by (19) withµ ≥ 2.
Then,

σK =
{
λ = −3 : 3 = 1, . . . , µ− 1

}⋃{
−

µ∑
j=1

j j

j !
ȳ j

}
,

whereȳ := ȳ(1,µ)1 .

Proof. We start by noting thatr j = j impliesβ(1)j = j j−1

j ! . Thus, the elementsαj,i := α(µ)j,i

of K(1,µ) can be written as

αj,i =



− i
j j−1

j !
ȳ j , if i > j,

1− j − j j

j !
ȳ j , if i = j,

− i
j j−1

j !
ȳ j + i

( j − i ) j−i−1

( j − i )!
ȳ j−i , if i < j .

Since the trace ofK(1,µ) is easily computed, the eigenvalue ofK(1,µ) different from−3
is easily obtained: Assuming that− 1, . . . , − (µ − 1) are eigenvalues ofK(1,µ), then
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the remaining eigenvalue is

λ = tr K(1,µ) −
µ−1∑
j=1

(− j )

=
µ∑

j=1

(
1− j − j j

j !
ȳ j

)
+

µ−1∑
j=1

j

= µ−
µ∑

j=1

j −
µ∑

j=1

j j

j !
ȳ j +

µ−1∑
j=1

j

= −
µ∑

j=1

j j

j !
ȳ j .

We are now left to prove that−3with3 = 1, . . . , µ−1 are eigenvalues ofK(1,µ). This
will be done by showing that, for each of these values, the matricesK(1,µ) + 3Iµ are
singular; more specifically, it will be shown that the(3+ 1)th line of these matrices can
be written as a linear combination of the previous3 lines. In order not to overload the
notation, let [j th] denote thej th line ofK(1,µ) + 3Iµ, let [new 1st] be the line obtained

by multiplication of the first line ofK(1,µ) +3Iµ by (3+1)3

(3+1)! ȳ3, that is,

[new 1st] = (3+ 1)3

(3+ 1)!
ȳ3[1st], (24)

and, for j ≥ 2, let

[new j th] = ȳ3− j+1[ j th] − j j−1

j !
ȳ3[1st]. (25)

We shall prove that

[(3+ 1)th] = [new 1st] +
3∑

j=2

(−1)3− j j3− j+1

(3− j + 1)!
[new j th], (26)

where the sum is defined to be zero if3 = 1.
Let us start by the case3 = 1. We are going to prove that [2nd] = [new 1st].

Considering first what happens with componentsi > 3 = 1, we have that thei th

component of [new 1st] is

[(new 1st
)i ] = 21

2!
ȳα1,i = − 21

2!
ȳi

10

1!
ȳ = − i ȳ2,

and, on the other hand, [(2nd
)i ] is given by

α2,i + δ2,i =
{− 1− 2ȳ2+ 1 if i = 2
− i 21

2! ȳ2 if i > 2
=
{− 2ȳ2 if i = 2
− i ȳ2 if i > 2

= − i ȳ2,
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and so both are equal. For the first component,i = 1, we have

[(new 1st
)1 ] = 21

2!
ȳ(α1,1+ δ1,1) = ȳ− ȳ2 = α2,1 = [(2nd

)1 ].

This concludes the proof that−1 is an eigenvalue ofK(1,µ).
We now consider a general integer3 satisfying 2≤ 3 ≤ µ − 1 and will show that

(26) holds. We start with componentsi > 3. The sum in the right-hand side of (26) is
equal to

3∑
j=2

(−1)3− j j3− j+1

(3− j + 1)!

(
ȳ3− j+1(αj,i +3δj,i )− j j−1

j !
ȳ3(α1,i +3δ1,i )

)

=
3∑

j=2

(−1)3− j j3− j+1

(3− j + 1)!

(
ȳ3− j+1(− i )

j j−1

j !
ȳ j − j j−1

j !
ȳ3(− i )1ȳ

)
= 0,

and [(new 1st
)i ] = − i (3+1)3

(3+1)! ȳ3+1. For the left-hand side of (26), we have

[((3+ 1)th)i ] =


1− (3+ 1)− (3+ 1)3+1

(3+ 1)!
ȳ3+1+3 if i = 3+ 1

− i
(3+ 1)3

(3+ 1)!
ȳ3+1 if i > 3+ 1

=


− (3+ 1)3+1

(3+ 1)!
ȳ3+1 if i = 3+ 1

− i
(3+ 1)3

(3+ 1)!
ȳ3+1 if i > 3+ 1

= − i
(3+ 1)3

(3+ 1)!
ȳ3+1,

and so (26) holds for componentsi > 3.
If i = 3, we have, for the sum in the right-hand side of (26),

3∑
j=2

(−1)3− j j3− j+1

(3− j + 1)!

(
ȳ3− j+1(αj,3 +3δj,3)− j j−1

j !
ȳ3(α1,3 +3δ1,3)

)

=
3−1∑
j=2

(−1)3− j j3− j+1

(3− j + 1)!

(
ȳ3− j+1(−3) j j−1

j !
ȳ j − j j−1

j !
ȳ3(−3)1ȳ

)

+ (−1)3−3
33−3+1

(3−3+ 1)!

(
ȳ3−3+1(1−3− 3

3

3!
ȳ3 +3)+ 3

3

3!
ȳ3+1

)
= 0+3ȳ

= 3ȳ,
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and [
((3+ 1)th)

3

]
− [(new 1st

)
3

]
=
(
−3(3+ 1)3

(3+ 1)!
ȳ3+1+3ȳ

)
−
(
− (3+ 1)3

(3+ 1)!
ȳ3(−3)ȳ

)
= 3ȳ,

and thus (26) holds for componenti = 3.
Consider now 1< i < 3. The sum in the right-hand side of (26) becomes

3∑
j=2

(−1)3− j j3− j+1

(3− j + 1)!

(
ȳ3− j+1(αj,i +3δj,i )− j j−1

j !
ȳ3(α1,i +3δ1,i )

)

=
i−1∑
j=2

(−1)3− j j3− j+1

(3− j + 1)!

(
ȳ3+1(− i )

j j−1

j !
− j j−1

j !
ȳ3(− i )1ȳ

)

+ (−1)3−i i3−i+1

(3− i + 1)!

(
ȳ3−i+1(1− i − i i

i !
ȳi +3)+ i i

i !
ȳ3+1

)
+

3∑
j=i+1

(−1)3− j j3− j+1

(3− j + 1)!

(
ȳ3− j+1

(
− i

j j−1

j !
ȳ j + i

( j − i ) j−i+1

( j − i )!
ȳ j−i

)

− j j−1

j !
ȳ3(− i )1ȳ

)
= 0+ (−1)3−i i3−i+1

(3− i + 1)!
ȳ3−i+1(3− i + 1)

+ i ȳ3−i+1
3∑

j=i+1

(−1)3− j j3− j+1

(3− j + 1)!

( j − i ) j−i+1

( j − i )!
.

And, as we have[
((3+ 1)th)i

]
− [(new 1st

)i

]
=
(
− i

(3+ 1)3

(3+ 1)!
ȳ3+1+ i

(3− i + 1)3−i

(3− i + 1)!
ȳ3−i+1

)
−
(
(3+ 1)3

(3+ 1)!
ȳ3(− i )1ȳ

)
= i

(3− i + 1)3−i

(3− i + 1)!
ȳ3−i+1,

we conclude that (26) becomes

3∑
j=i+1

(−1)3− j j3− j+1

(3− j + 1)!

( j − i ) j−i+1

( j − i )!
= (3− i + 1)3−i

(3− i + 1)!
− (−1)3−i i3−i

(3− i )!
.

Observing that(3−i+1)3−i

(3−i+1)! is the termj = 3+ 1 in the sum of the left-hand side, we can
write the expression above as

3+1∑
j=i+1

(−1)3− j+1 j3− j+1

(3− j + 1)!

( j − i ) j−i+1

( j − i )!
= (−1)3−i i3−i

(3− i )!
.
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Now change the summation variable fromj to j − i . Still denoting the new variable by
j and defining3̃ := 3− i + 1, the last expression becomes

1

3̃!

3̃∑
j=1

(−1)3̃− j

(
3̃

j

)
( j + i )3̃− j j j−1 = (−1)3̃−1 i 3̃−1

(3̃− 1)!
. (27)

To prove (27) we will basically expand( j + i )3̃− j , rearrange the terms, and change the
order of summation:

1

3̃!

3̃∑
j=1

(−1)3̃− j

(
3̃
j

)
( j + i )3̃− j j j−1

= 1

3̃!

3̃∑
j=1

(−1)3̃− j

(
3̃
j

) 3̃− j∑
p=0

(
3̃− j

p

)
j 3̃− j−pi p j j−1

= 1

3̃!

3̃∑
j=1

3̃− j∑
p=0

(−1)3̃− j

(
3̃
j

)(
3̃− j

p

)
j 3̃−p−1i p

= 1

3̃!

3̃∑
j=1

3̃− j∑
p=0

(−1)3̃− j

(
3̃
p

)(
3̃− p

j

)
j 3̃−p−1i p

= 1

3̃!

3̃−1∑
p=0

(−1)p

(
3̃
p

)
i p

3̃−p∑
j=1

(−1)(3̃−p)− j

(
3̃− p

j

)
j 3̃−p−1

= 1

3̃!

3̃−2∑
p=0

(−1)p

(
3̃
p

)
i pS(3̃− p− 1, 3̃− p)(3̃− p)!

+ 1

3̃!
(−1)3̃−1

(
3̃

3̃− 1

)
i 3̃−1

= (−1)3̃−1 i 3̃−1

(3̃− 1)!
,

whereS(n, k) is the Stirling partition number, or Stirling number of the second kind
[22], which is

S(n, k) = 1

k!

k∑
j=0

(−1)k− j
(

k
j

)
j n,

and the last equality in the deduction above is due to the fact thatS(n, k) = 0 if n < k
[22, p. 163]. This concludes the proof for the lines 1< i < 3.

The final casei = 1 is similar to the previous one, and we shall skip most of the
details: The sum in the right-hand side of (26) can be written in the form

3∑
j=2

(−1)3− j j3− j+1

(3− j + 1)!

(
( j − 1) j−2

( j − 1)!
−3 j j−1

j !

)
ȳ3,
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and [
((3+ 1)th)i

]
− [(new 1st

)i

] = (
33−1

3!
−3(3+ 1)3

(3+ 1)!

)
ȳ3,

which is equal to the symmetric of the term of the sum corresponding toj = 3 + 1.
This means that, after some minor rearrangements, we can write (26) in the form

1

3!

3∑
j=1

(−1)3− j
(
3
j

)
( j + 1)3− j

(
3( j + 1) j−1− j j−1

) = 0. (28)

We start by looking at

3

3!

3∑
j=1

(−1)3− j
(
3
j

)
( j + 1)3−1,

which is evaluated in exactly the same manner as for the left-hand side of (27) to give

3

3!

3−1∑
p=1

(
3− 1

p

)
S(p,3)3! + 3

3!
(−1)3

3∑
j=1

(−1) j
(
3
j

)
= 0+ 3

3!
(−1)3

(
3∑

j=0

(−1) j
(
3
j

)
− (1)0

(
3
0

))

= − (−1)3

(3− 1)!
.

The other term in (28), namely,

1

3!

3∑
j=1

(−1)3− j
(
3
j

)
j j−1( j + 1)3− j ,

is equal to the left-hand side of (27) withi = 1 and hence it is also equal to− (−1)3

(3−1)! .
This proves (26) for the componenti = 1 and concludes the proof of the proposition.

The results of Propositions 14 and 15 imply that Proposition 13 holds true without
restrictions onµ.

4.3. Global Behaviour of Nonnegative Solutions

A problem that naturally arises after the study of the dynamics near the equilibria, done
in Sections 4.1 and 4.2, is the elucidation of the global behaviour.

Based on a large body of numerical evidence, a small part of which will be presented
below, we state the following conjecture.

Conjecture 2. Assume (H1). For all L∈ {1,2, . . . ,n}, the equilibriaȳ(L,n) are globally
asymptotically stable inSL .
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We could only prove global stability for the casesL = n− 1 andL = n, and this is
made using methods not applicable to other values ofL.

Proposition 16. The equilibriaȳ(L,n) are globally asymptotically stable inSL for L =
n− 1 and L= n.

Proof. Both cases are extremely simple. ForL = n, the setSL can be identified with
R(n−L+1)+

0 = R+0 and so the restriction of (10) toSn is one-dimensional, namely,y′n =
Fn(yn) with Fn as given in the proof of Proposition 7, and this equation hasyn = r−2

n as
the global attractor for positive solutions. Consequently,ȳ(L,n) = (0, . . . ,0, r−2

n

)
is the

global attractor of (10) restricted toSn. For L = n− 1, the setSL can be identified with
R2+

0 , and the restriction of (10) to this set is, forn > 2,{
y′n−1 = yn−1− rn−1yn−1(rn−1yn−1+ rnyn),

y′n = yn − rnyn(rn−1yn−1+ rnyn).
(29)

Since, by Proposition 7, nonnegative solutions of (10) are bounded, we conclude that
nonnegative solutions to (29) are also bounded. Since the only equilibria of (29) are
(0,0), ȳ(n−1,n) = (r−2

n−1,0), and ȳ(n,n) = (0, r−2
n ), the local stability results of Section

4.1 and the Poincar´e-Bendixon theorem allow us to conclude thatȳ(n−1,n) is the global
attractor of (10) restricted toSn−1.

It is clear that the proof above is not applicable to higher-dimensional systems, i.e.,
to smaller values ofL.

We next present some of the numerical evidence for Conjecture 2. The overall quali-
tative picture that one obtains is independent of the coefficients(r j ) provided they satisfy
(H1). Hence, we will present results only for the rate coefficientsr j = j since for this
case the local behaviour near equilibria was already established in Propositions 11, 14,
and 15. For other cases, the interpretation of the observed behaviour near equilibria must
rest on the assumption of the validity of Conjecture 1.

In interpreting the numerical results, a few facts should be remembered:

(i) The nonzero componentsyj (τ )of the solutiony(τ )are those given by Proposition 2.
(ii) The only nonnegative equilibria of (10) are those given by Proposition 8, and, in

particular, the nonzero components of any equilibriumȳ(L,n) are those for which
the subscriptsj are multiples ofL, as was already pointed out in Remark 2.

(iii) The behaviour of solutions near equilibria is governed by the results in Proposi-
tions 11, 14, and 15, which imply that Proposition 13 holds without restrictions
uponµ, and so also does Remark 4 about the unstable directions of the equilibria.

The graphics presented are those of numerically computedyj (τ ) as a function ofτ for
the several values ofj ∈ {1, . . . ,n} under different types of initial data and truncation
size n. In each graphic, the componentj is indicated by the corresponding number.
Before proceeding to the numerical results, just a brief note about notation: The initial
data for (10) is a vectory0 ∈ Rn+

0 . In presenting the initial data used in each experiment,
we shall give the list of the components ofy0 in the following way: Instead of writing
y0 = (α1, α2, . . . , αn), we shall writey0 j =

∑n
i=1 αi δj,i .
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We start, in Figure 3, with some simple cases illustrating that solutions with initial
data inSL converge tōy(L) asτ →+∞.

In the cases (a) and (b) of Figure 3, the initial data is monodispersed (i.e., only one
component ofy0 is nonzero), and in both cases numerical solutions converge to the
expected̄y(L). Case (c) is a typical result with “small” arbitrary initial data.

In the next set of experiments, shown in Figure 4, we present situations where the
initial datay0 is very close to an equilibrium: Namely, we usen = 21 and initial data
very close toȳ(21).

We again observe thaty0 ∈ SL implies thaty(τ ) −→ ȳ(L) asτ → +∞. In all three
cases (a), (b), and (c) we take initial data that is a perturbation of the equilibriumȳ(21) by
the addition of 10−7 to the componentL = 6,5, and 3, respectively. We clearly observe
that the solutions follow heteroclinic orbits connectingȳ(21) to ȳ(L).

The last set of experiments is intended to pursue this type of observation a step further:
In Figure 5 we show that by carefully choosing the initial data inSL near an equilibrium
in ∂SL , we can obtain a solution cascading down a number of equilibria before getting
close to the limit equilibrium̄y(L).

In both cases of Figure 5, the initial data is a small perturbation of the equilibrium
ȳ(21) and lies inS2. Hence, according to Conjecture 2, it is expected that in both cases
the solutions converge tōy(2), as is in fact the case (at least numerically). By carefully
choosing the way we perturb̄y(21), we can force the solution to follow a given network
of heteroclinic orbits. In case (a), the initial data is a small perturbation ofȳ(21) with a
dominant fourth component, since 1À y0 4 À y0 2. Thus, the system behaves in the
short time as ify0 ∈ S4, and the solution follows a heteroclinic orbit from̄y(21) to ȳ(4).
After some time near̄y(4), the solution finally converges to the limit equilibrium̄y(2).
In case (b), the transient behaviour is modified by now choosing an initial data that is a
small perturbation of̄y(21) with 1À y0 9À y0 5À y0 3À y0 2. If this is done carefully,
we can capture numerically a solution that follows the network of heteroclinic orbits
connectingȳ(21) to ȳ(9) to ȳ(5) to ȳ(3) and, finally, toȳ(2), as shown in (b).

These results and the robustness of the numerical behaviour seem to indicate not only
that Conjecture 2 is true, but also that (10) is in fact a Morse-Smale system.

5. Final Remarks

Of the two conjectures made in this paper, Conjecture 2 on the global dynamics of (10), is
clearly the most important. Its proof will, likely, entail the discovery of appropriate Lya-
punov functionalsVn for then-dimensional system (10), for alln ∈ N. If the Lyapunov
functionals are constructed in a convenient manner, it should be possible to prove that, as
n→∞, the functionalsVn would converge, in an appropriate sense, to some functional
V , at least for some types of rate coefficientsaj,k. By showing the limit functionalV to
be a Lyapunov functional for the limit system obtained from (10) by lettingn → ∞,
one would probably be able to prove rigorously the occurrence of gelation for extended
families of rate coefficients and initial data.

This program obviously is also connected to the one of relating the attractors of each
of the finiten-dimensional systems (10) with the attractor of the infinite-dimensional
limit system, which has an infinite number of equilibria,α(L), componentwise convergent
to zero asL →∞.

We hope to return to these problems in the future.
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Fig. 3. Numerical solutions to (10) foraj,k = jk with (a) n = 6,
y0 j = 0.25δj,1; (b) n = 30, y0 j = 10−3δj,5; (c) n = 10, y0 j =
2·10−8δj,2+4·10−7δj,3+2·10−6δj,4+5·10−5δj,5+7·10−5δj,6+
8 · 10−9δj,7 + 7 · 10−4δj,9 + 2 · 10−7δj,10.
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Fig. 4. Numerical solutions to (10) foraj,k = jk with n = 21
and (a)y0 j = 10−7δj,6+ 0.00226757δj,21; (b) y0 j = 10−7δj,5+
0.00226757δj,21; (c) y0 j = 10−7δj,3 + 0.00226757δj,21.
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Fig. 5. Numerical solutions to (10) foraj,k = jk with n = 21 and (a)y0 j = 10−12δj,2+10−5δj,4+
0.00226757δj,21; (b) y0 j = 10−28δj,2 + 10−18δj,3 + 10−9δj,5 + 10−5δj,9 + 0.00226757δj,21.
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