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Summary. We study a finite-dimensional system of ordinary differential equations de-
rived from Smoluchowski’s coagulation equations and whose solutions mimic the be-
haviour of the nondensity-conserving (geling) solutions in those equations.

The analytic and numerical studies of the finite-dimensional system reveals an inter-
esting dynamic behaviour in several respects: Firstly, it suggests that some special geling
solutions to Smoluchowski’s equations discovered by Leyvraz can have an important dy-
namic role in gelation studies, and, secondly, the dynamics is interesting in its own right
with an attractor possessing an unexpected structure of equilibria and connecting orbits.

1. Introduction
The kinetics of cluster growth can be modelled by the following infinite system of ordi-

nary differential equations, first proposed by Smoluchowski in his study of coagulation
of colloid particles animated by Brownian motion [30],
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wherec; = ¢j(t) > 0 denotes the concentration of clusters made up mfentical
particles (-clusters, for short), the time-independent parametgrs= a j > 0 are the
rate coefficients for the coagulation reactions

(j-cluster)+ (k-cluster)— ((j + k)-clusteyp , (2

and equations (1) are written assuming the validity of the mass action law of chemical
kinetics (the first sum in the right-hand side of (1) is defined to be zgre-ifl).
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These equations, as well as generalizations allowing for the fragmentation of clusters,
and their continuous cluster-sizes analogues, have been used in a variety of applications,
including astrophysics [9], [26], aerosol and colloidal sciences [14], [15], and chemistry
and chemical engineering [1], [5], [29], [32]. It is believed that the relevant physical
details of the situation under study determine the form of the rate coefficignts
In order to gain some understanding of why this is so, consider the following simple
argument. Let the mass of a single particle be equal to 1. Then, the magsotiister
is equal toj. Assuming the clusters are incompressible, the volumejoethster will
be proportional toj; if the clusters are spherical, the surface area will grow |ike,
and its diameter likg 1. Thus, a coagulation mechanism dependent on the surface area
available for reaction will lead naturally to coefficiemis containing the power 2/3 gf
andk. If the mechanism is essentially dependent on the linear dimensions of the clusters,
the power 1/3 will show up. Likewise, the power 1 will be connected with mechanisms
essentially dependent on the total mass (or volume) of the clusters. Clearly, other powers
are possible if the coagulation mechanism is not dependent on a single factor, or if the
clusters are not approximately spherical, or if they have preferential “active” sites, etc.
The case of linear-chain polymerization is a good example: In this situation the active
sites for the reactions are the end-points of the linear polymeric molecules, and there
are only two of them, independent of the mass (=volume=length) of the chain. Hence,
one expects the coefficierdsy to be essentially independent pandk. The particulars
of the interaction mechanism are reflected in the specific form of the kernel (not only
on the powers involved), of which many different types have been proposed. In Table
1, adapted from [5], [12], [25], [29], we present some of the coagulation kernels most
common in the scientific literature.

Due to the complicated, and usually quite special, forms of most of the rate coeffi-
cients, the large majority of the rigorous mathematical results about solutions to these
equations have been obtained using some sort of idealized form for the coagulation ker-
nel, which is sufficiently simple to allow a rigorous analysis, but, nevertheless, is still
believed to capture some, although probably not much, of the real particularities of the
phenomenon being modelled. In this context, the simplest classes of rate coefficients are
the sum typey « = rj + ry, and the product typa x = rjr, where in both case; ) is
a nonnegative sequence.

Among the various questions that have been asked about equations (1) and their
solutions, a particularly important one is related to the possibility of using them as
a model for thesol-gel phase transition. In order to describe the problem, remember
the assumption that @-particle cluster has mass Then, the quantityic;(t) is the
concentration of -clusters at timé, and the total density of the system described by (1)
is given byp(t) := ZTil jcj(t). Since each elementary reaction (2) conserves mass,
it is expected thap(t) is independent of. This is indeed what happens at a formal
level: Assumingo(t) to be differentiable and such thatt) = Zfil j ¢ (1), substituting
¢ (t) given by (1) in the series and computing formally, the resuli(§ = O, for all
t. However, it is known that the formal computation just suggested cannot be made
rigorous in all situations: For some rate coefficiestg increasing sufficiently fast with
j andk, it has been proved rigorously thatt) cannot be constant for al| and that
there must exist a nonnegative tigesuch thatp (t) = p(0) fort < ty but p(t) < p(0)
fort > tq [6], [7], [18], [20], [24], [27], [28]. In the literature this phenomenon is called
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Table 1. Some commonly used coagulation kerraglg.

aj Comment
1 Approximate Brownian coagulation,
Linear-chain polymerization.

j+k Branched-chain polymerization &R B _; type (largef limit),
Limit case of gravitation coagulation.

TR k2B Diffusion-controlled growth of supported metal crystallites.

jk Branched-chain polymerization & A¢ type (largef limit).

(j¥3 + kM3 (j~¥3 + k=¥  Brownian coagulation (continuum regime).

(Y3 + K¥32(j -1 + k12 Brownian coagulation (free molecular regime).

(j1B + kY33 Shear (linear velocity profile).
(jY3 + k)7 Shear (nonlinear velocity profile).
(Y3 4 k32| j 18 — K13 Gravitational settling (particles larger than50um).

gelation,and itis interpreted physically as corresponding to the occurrence of a dynamic
phase transition in the system. Both equations (1) and demgityake into account only
“microscopic” clusters with a finite, although arbitrarily large, number of particles. If
the rate of production of clusters is very high, a portion of the total mass of the system
is rapidly transferred to larger and larger clusters, and can be carried to a “macroscopic”
cluster with an infinite number of particles (i.¢.— oo) in a finite timety. This new
phase, called thgel, is not modelled by equations (1) and has a mass proportional to
p(0) — p(t) fort > tg.

This dynamic phase transition has attracted a good deal of interest in recent years,
and a large body of literature has been built in trying to characterize the rate coefficients
and initial conditions for which gelation occurs, as well as the properties of the geling
solutions (see, for instance, [5], [13], [16], [18], [20], [27], [29], [31], [33].) However,
surprisingly little is known on a mathematically rigorous basis, even for relatively simple
rate coefficients.

The possibility of occurrence of gelation for sum type coefficients has been settled
negatively; in particular, the following has been established rigorously:

(S1) Ifr; < Aj, for some positive constam, then all solutions conserve densiiyt)
for all t [3].

(S2) Ifr; = Aj*, whereA > 0 andx > 1 are constants, then system (1) has no nonzero
solutions, in any time interval [OT], for T > 0 [3], [7].

This means that no gelation can occur in these cases.
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For product-type kernels, the following has been proved:

(P1) Ifr; < Aj*, with A> O anda < 1/2 constants, then all solutions conserve density
p(t) for all t [3].

(P2) Ifr; > Aj*, with A > 0 ande > 1 constants, then all solutions exhibit gelation
with ty = 0 [7].

(P3) Ifrj = Aj + B, where A and B are nonnegative constants, then all solutions
exhibit gelation at an instarty € [0, co) and if the initial condition satisfies
3721 i%6(0) < oo, thenty > 0 [27].

(P4) Whenr; = Aj, the following explicit solution was obtained by Leyvraz and
Tschudi in [20] (see also [2], [28]) for monodispersed monomeric initial data (i.e.,
¢1(0) =1, andg;(0) = 0, j > 2, or, more conveniently; (0) = §; 1, wheres;; is
the Kronecker symbol):

i

T(Azt)j—le—Azjt, t < A2

G =1 12 €
el 1 5
o t> AT

The densityp (t) of this solution is

1, t< A2
o) = 1 _2
m, t> A s

4

and so a precise gelation timg= A2 and post-gel asymptotic behaviour of the
solutions were obtained. We will refer to (3) as theyvraz-Tschudi solution.

(P5) Forrj > Aj*, with A > 0 ande > 1/2 constants, and > ry for all j > 2, there
exists a positive sequente;) such thaf) 2 ja; < oo andg;(t) = «;(t +C)~*
is a solution to (1) for alt > 0 and constan€ > 0. This result was proved by
Leyvraz in [18] and will play an important role in the present paper. We will call
them thel_eyvraz solutionand the sequende;) will be referred to as theeyvraz
sequence.

The results quoted above show that, for product-type coefficients, the behaviour of
solutions is known wheny has asymptotic growth likg®, for botha < 1/2 ando > 1.

The intermediate case 12 « < 1 is poorly understood, and the conjecture that also in
this case all nonzero solutions exhibit gelation [16], [21], [33] remains one of the main
open problems in this area.

In the present study we do not either prove the conjecture to hold or disprove it, but
instead we report on a finite-dimensional system obtained from a truncation of the infinite
system (1) whose solutions, in some sense, mimic the behaviour of the geling solutions
of (1) refered to in (P4) and (P5) above. The analysis of the finite-dimensional system
allows us to identify an infinite family of Leyvraz-type geling solutions to (1), of which
the Leyvraz solution in [18] is but one element. The analytical and numerical studies
of the finite-dimensional system show a dynamical behaviour that is very interesting in
its own right, even if this approach will turn out to be useless for the gelation problem.
More specifically, these studies seemto indicate that the attractor of the finite-dimensional
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system has an unexpected structure of equilibria and connecting orbits. The equilibria are
related closely to the Leyvraz-type geling solutions referred to above, and the numerics
seem to point to a possibly important dynamic role played by the Leyvraz-type solutions
in the infinite-dimensional case.

The paper is organized as follows: In Section 2 we derive the finite-dimensional
system and study its basic properties. In Section 3 we study the equilibria of the finite-
dimensional system and use the resultto prove the existence of an infinite family of geling
solutions to the Smoluchowski equations (1). In Section 4 we study the dynamics of the
finite-dimensional system. Finally, in Section 5 we briefly discuss the possible relevance
of our study to the elucidation of the gelation behaviour in the original system (1).

2. Derivation of the Finite-Dimensional System and Basic Properties of Solutions

Most of the mathematical studies of Smoluchowski’'s coagulation equations or of more
general analogues, such as the Beckerifizj'and the Coagulation-Fragmentation equa-
tions, use at some point the technique of approximating the infinite system of equations
by a finiten-dimensional truncation and proving results for the infinite system by passing
to the limitn — oo in the solutions to the-dimensional truncations (see, for example,
[3], [4], [8], [24]).

It is important for the present paper to state exactly what is meant by a finite-
dimensional truncation of the Smoluchowski equations (1), and this will be done next.

2.1. Finite-Dimensional Truncations

By a finiten-dimensional truncation of (1), we mean a system ofdinary differential
equations, in the phase variablgsfor j = 1,2, ..., n, obtained from (1) by making
&k = O outside of a finite subset &f x N. Since, for eaclj, the first sum in the right-
hand side of (1) has only terneg with k < j, it is reasonable to consider truncations
that preserve this sum, so a finitedimensional truncation must satisfy the following

(i) c,...,c,arethe only phase variables, (1, Chi2, ... = 0).
(i) The firstsum in the right-hand side of (1) must remain unchanged, ferd, .. ., n.

These two constraints, together with the basic symmetry condifipn= & ;, allow

us to classify the truncations using the sets of pairs of indigge) for which the rate
coefficientsa;  remain unchanged by the truncation. More precisely, aagimensional
truncation of (1) corresponds to a subdétof N x N which is symmetric with respect to
reflection on the lind = j, contained in the square,[]?, and containing the triangle
{(j,k) e N x N: j +k < n}. TheU"-truncated system is obtained from (1) simply by
settingay x = 0 if (j, k) ¢ U". Of all then-dimensional truncations, the two extremal
ones are particularly important:

(&) Themaximal ntruncation, corresponding to the set

Ur?WaXZ{(Jvk)ENXN J—l—kin}’
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which sets to zero the maximum possible number of rate coefficgntsis the
system

-1 n—j

.1 :

G = E E Qj—k.kCj—kCk — Cj E Qj kCk, ] = 1,2,...,n.
k=1 k=1

(b) Theminimal ntruncation, corresponding to the set

Umin = {(J, k) € N x N: max(j, k} < n},
which sets to zero the smallest possible number of rate coefficients compatible with
the restrictions above, is the system
j—1 n
Cj = Z Qj—k.kCj—kCk — Cj Zaj,kck, j =12 ...,n (5
k=1 k=1

NI =

Clearly, any othet) "-truncation will satisfyuj,,, c U" C U7,

2.2. The Minimally Truncated Smoluchowski Equations

Most of the mathematical studies of (1) have made use of the maximal truncation and,
since solutiongc™) to the maximallyn-truncated system conserve the truncated density
on(t) = Z}‘zl jclf‘(t) [3], this truncation is well-suited for proving density conservation

of solutions to the full system (1). However, being interested in gelation, i.e., in the
breakdown of density conservation at a certgir= 0, we would like to have a finite
n-dimensional system for which solutions do not conserve depgity. In this case the
minimal truncation is more adequate; just from an heuristic argument we see that the
truncated density is not expected to be conserved by the minimally truncated system:
Supposey; i > 0 if and only if (j, k) € UJ;,. Take, for examplej = k = n. Then, as

(n,n) e U . we havea, , > 0, which means that the reaction

(n-cluster)+ (n-cluster)—> ((2n)-clustep

occurs with a nonzero velocity, and so some clusters of sizes largen thianformed.

As the truncated density is computed by summing up over all clusters with sizes not
larger thann, one expecten(t) to decrease withh because part of the mass of the
system is transferred to clusters of sizes from 1 to 2n that are not accounted for
either in the truncated system or in the truncated density. If we remember the physical
interpretation of gelation discussed in the introduction, we can draw a parallel between
the formation of a gel phase in (1) and the formation of clusters of sizes largerithtre
minimally n-truncated system: Neither is modelled directly by the differential equations,
but their presence is felt by the decrease in density of the solutions. That the minimally
n-truncated system can, in this way, model gelation, or other precipitation phenomena,
has already been pointed out in [19], and for a slightly different concept of truncation,
in [2], [23]. These last papers (and also [17]) usenadimensional truncation obtained

by application of the minimat-truncation described in 2.1(b) to system @ijhoutthe
restriction of considering;, .. ., ¢, as the only phase variables of the truncated system,
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that is, dropping the requirement (i) in 2.1. This gives rise to a systenm af@&nary
differential equations for the phase variabtgs. .., ¢, of which the equations for
i, ..., C, are exactly (5), and the equations &t 4, ..., con are

. 1 <& .
C]- — E Z ajfk!ij,ka, ] = n+1, ...,2n.
k=j—n

Thus, the minimally truncated system is equivalent to the firsfjuations of the 12
truncation used in [2], [23].

We now start a mathematical study of the minimaliyruncated system (5).

Local existence, uniqueness, regularity, and continuous dependence of solutions to
(5) are obtained by standard arguments in the theory of ordinary differential equations.
We next prove that the nonnegative conéRbfis invariant for (5).

Proposition 1. Letc(t) = (¢ (t))l<j<n be the solution of (5) of®, T), for some T> 0,
with initial data ¢(0) = co € Ry*. Then ¢t) € Rg™, forall't € [0, T).

Proof. Foreach 1< j < n, define

j-1

Rit) = %Z &k kCj—k () Ck (L),
k=1
n

pj(t) = ay kCx(t),
k=1

t
E@®) = exp(/o @i (s)ds).

We can write (5) in the following integral form:
t
GOE® =c; + [ EOR©dS  1=j=n
0

Clearly,E;j(t) > Oforallt andj. Then, forj = 1 we haveRy(t) = 0 by definition, and
CL()Ex(t) = Co1 > 0. HenceRy(t) = 3ay 1 (c1(t))? > 0 and so, forj = 2,

t
Ca(V)Ealt) = coz + / Ex(9)Rx(S) dS = Coz = O.
0

SinceR; () contains only componenti(t) with k < j, we can proceed successively
until j = n, obtaining the result. O

We can obtain a much better characterization of the positivity properties of the so-
lutions to (5) if we consideg; x > 0 in (5). In this case we have the following result,
which was proved originally in [11, Theorem 2] for the maximally truncated system, but
whose proof can be easily modified for the present case:
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Proposition 2. Letat) = (c; (t))lﬁjSn be the solution of (5) ofd, T), for some T> 0,
with initial data o0) = ¢o € Rj". LetJ(t) = {j e N:¢(t) > 0} and P = J(0).
Then, forallt> 0, 7(t) = J is independent of t and is given by

={1,...,n}Nspan,(P),
wherespan, (P) := {j = E nipi: pi € P,ni € Ng,and maxn; > 0
n I
I

We now prove that the densipy (t) is a Lyapunov functional for (5), and that solutions
are defined for all positive

Proposition 3. Leta(t) = (¢ (t))1<j<n be any solution of (5) of®, T), forsome T> 0.
Then, there is a continuatiai(t) of c(t) to [0, o) and Z?:l j € (t) is nonincreasing in
[0, 00).

Proof. We start by observing that

() = 222131 k.kCj—kCk — szal kCj Ck

j=2 k= j=1 k=
(changmg the order of summation in the first double sum)

= —Z Z((J —K) + K)aj_i kCj—kCk — ZZJaJkCJCk

k=1 j=k+1 j=1 k=
(changing variable$ — ¢ := j — k, and using the
symmetry of the summand in the first double sum)

n—1 n—k

n n
= )Y KakCt — ) Y jajKCG
k=1 =1 k=1 =1
n n
= — Z Z jaj’ij c < 0. (6)

j=1k=n—j+1

Then, forall 1< j < nandt € [0, T),

n
O<g®=<jt) ic0),
j=1
and, since the right-hand side of (5) is a polynomial indfis, this implies that; (t)
has a continuatiof(t) to [0, c0), andzjf‘:1 j€(t) <Oforallt > 0. O

The inequality (6) can be improved using the positivity result of Proposition 2:
Proposition 4. Let g > O for all (j,k) € U;,. Assume & # O for some Je

{1, ..., n}, and let ct) be the solution of (5) ifi0, co) with initial data ¢. Thenp,(t)
is strictly decreasing for all t 0.
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Proof. By Proposition 2, we have (t) > 0 for all positivet, and allj € {1,...,n} N
(J-N),whereJ -N:={j=Jn:neN}.Letu = [n/J] :=max{m e N:m < n/J}.
Thus,(x + 1)J > n, which impliesn — uJ + 1 < J 4+ 1, and sincen — nJ + 1 is an
integer, we must have — uJ + 1 < J. Hence,

n n n

DY jaug ) = pdcn® Y auKt()
j=1 k=n—j+1 k=n—pJ+1
> MJaﬂ.J,JCpLJ(t)CJ(t) > 0,
and so, using (6)n(t) < 0. O

We can use this behaviour of the density to obtain the general asymptotic behaviour
of nonnegative solutions to (5).

Proposition 5. With the assumptions of Proposition 4t c— Oast— .

Proof. Letc(t) be anonnegative solution of (5). By Proposition 4, the dengitg(t)) is

a differentiable Lyapunov functional for (5), with minimum equal to 0, which is attained

atc = 0. AsRy* is positively invariant for (5), the result follows by standard arguments.
O

We also can prove easily that all solutions to the infinite system (1) converge com-
ponentwise to zero @s— oo, provided that at least the diagonal coefficieats are
positive for allj, [8, Theorem 4.3].

The fact that nonzero solutions to (5) converge to the zero solutibn-aso, and
have a strictly decreasing density, is in agreement with what happens with the Leyvraz
solutions of (1) (see (P5) in the introduction), but this does not necessarily mean that they
are a good approximation of the Leyvraz geling solutions, and even less of the geling
solutions with positive geling timg for which density is constant in [@y], such as in
the case of the Leyvraz-Tschudi solutions in (P4). An indication that solutions to (5) can,
in fact, be a good approximation to geling solutions of (1) is given by numerically solving
(5) with parameters and initial conditions for which there exists a known geling solution
of (1) and comparing the results. In Figure 1 we plot the density) as a function of
t for numerical solutions to (5) with; x = jk and initial datec; (0) = §; 1, for several
values ofn; together with these plots, we show the density (4) of the Leyvraz-Tschudi
solution (3) for the same rate constants (i~ 1). The numerical evidence seems to
indicate that the density of solutions to (5) for lang@pproximate the density of the
corresponding exact solutions to (1) rather well.

Similar evidence can be obtained easily for each compogenitthe solution, and
in this case we can easily prove the following convergence result.

Proposition 6. Assume g < A(jk)* with A > Oanda < 1 constants. Letg=
(Coj)jen be such thatg; > 0and Z;‘il jCoj < o0. Letc' = (c}’)lfjSn be the solution
to (5) with initial data g(0) = cp; for 1 < j < n. Then, there exists a solution
€ = (Cj)jen Of (1) such that, for all t= 0 and all fixed j,

gt — ¢ (), as n— oo.
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Fig. 1. (a) Densities of numerical solutions to (5) for= 10, 20, 30, 40, and 100 with initial
datacj(0) = §;1, and the density of the Leyvraz-Tschudi solution (4), identified &y, for
a i = riry, withr; =i. (b) Enlargement of the top left region of (a).
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The proof of this proposition is a straightforward modification of parts (a) and (b) of
the proof of Theorem 5.1 of [10] when < 1, and of Theorem 2.2 of [17] when= 1,
and we will omit it.

It must be observed that Proposition 6 says nothing about the uniformity of the
convergence, i.e., weannotinfer from it that the density of the approximating solutions
will converge to the density of the solution to (1). In fact, this is generally false: For
o < 1/2, we know that solutions to (1) conserve densities (see (S1) in the introducion),
but the corresponding solutions to the minimally truncated systems (5) continue to show
the behaviour indicated in Propositions 4 and 5; i.e., their densities converge to zero
ast — oo. Thus, Proposition 6 implies nothing about gelation and cannot explain the
behaviour of the density plots presented in Figure 1.

Remark 1. For the particular set of conditions used in the experiments of Figure 1,
namely,a; k = jk andc;(0) = §j 1, one actually can state a much stronger result than
Proposition 6: The theorem in [2] guarantees ttfzﬁt) converges t@; (t) asn — oo,
uniformly in j andt, fort > 0. The proof, however, relies on the existence of explicit
expressions for the solutions, and hence does not seem to be applicable to more general
initial conditions and coagulation coefficients.

2.3. The Modified System

The results in Section 2.2, particularly the comparison between the behaviour of the
numerical densities to the truncated systems and the exact density (4) to the original
problem (1), shown in Figure 1, as well as the observation that in all known cases the
post-gel time behaviour of solutions is of the tyfd€l/t) ast — oo, suggests that thetl/
decay of geling solutions for larges probably a significant feature to look at. We now
introduce a change of variables that “isolates” the posgililbt) large time behaviour
of solutions to (5). The resulting equations shall be calledMbdified System.

Letty > O be an arbitrary constant, asd) = (cj(t)) be a solution to (5) in
[0,00). Forall 1< j < nandallt > 0, definex; (t) by

1<j=n
t
Xj (1) := <1+ t_> Gj (1); (7)
0
thus, the equation fox; (t) is

. 1 &3 " .
t+t)X =X + Etozaj_k_ka_ka — toX; Zaj,kxk, 1<j<n
k=1 k=1

To transform this nonautonomous system into an autonomous one, we introduce a new
(slower) time scale defined by

T(t) := log <1+ i) 8
to
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and definey; (7) by
Yi (1) == toXj (t(1)), 9

wheret (7) is the inverse function of (t), defined on [0c0) by t(t) = to(e" — 1).
Hence, denoting by-)’ the derivative with respect tp, the initial value problem for
(5) becomes, for k¥ j <n,

Y=Y+ Za, kkYi—kYk =Y Zaj k Yk (10)
yj(o) - yoj,

whereyp; = toCoj > 0, andcy = (Coj) is the initial data for (5).

Global existence and uniqueness of solutions to (10) is guaranteed by the above
construction and the results about solutions to (5), sine®d is a solution to (10) if
and only ifc(t) is a solution to (5) and (7)—(9) hold. Likewise, the positivity result in
Proposition 2 remains valid for solutions of (10). On the general asymptotic behaviour
of solutions to (10) we can note the following:

(i) yj(r) - O0ast — oo if and only if ¢; (t) ~ o(1/t) ast — oo.
(i) y;(z) is bounded as — oo if and only if ¢; (t) ~ O(1k) ast — oco.
(iii) y;(z) is unbounded as — oo if and only if ¢; (t) decays to zero as— oo at a
slower rate than 1/

The next proposition shows that only case (ii) occurs.

Proposition 7. Let y(r) = (y; (r))l<j<n be a nonzero and nonnegative solution of (10)
in [0, 00). Then ¥t) is bounded and bounded away from zero.

Proof. Itissufficientto study what happens wher> oo. To showthay(z) is bounded
away from zero, simply note that the linearization of (10) about the zero solution gives
y' = I,y wherel, is then-dimensional identity matrix, and so the solutign= 0 is
linearly unstable. To prove thg(t) is bounded, consider first the caje- 1:

Yi=Y1i— ylzal KYk < Y1 —a11ys.
k=1

Let F(w) := w(1l — & w). Then, all positive solutions ai’ = F;(w) are bounded
in [0, co) becausey = al‘j is the global attractor for positive solutions. Lei(-) be a
solution of this equation withy1(0) = yp1 > 0. Then O< y; (1) < w1(z) forall > 0,
and thusy; is bounded. Consider now the case- 2:

1 5 n 1 5
Yo=Yo+ §a1,1y1 - yzgaz,kyk < 531,1)/1 + Fa(y2).

Since we have, bounded, there exists dependent on the initial data, such thaty? <
2x1, SO that

Yo < k1+ Fa(y2).
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Sincew = Ty ez Vzl;az‘m is the global attractor of positive solutionsuto = «; + Fa(w),
we conclude thay,(r) is bounded in [0oo). Suppose we have proved boundedness of

Y1, ..., Yp-1. Then, there exists a constant 1, dependent of the initial data, such that
Y R1 @ kkYpkYk < 2cp_1, and SO

1 - n
+35 Z 3p kkYp-kYk — Yo O @pk¥k < kp-1 + Fp(Yp)-
k=1 k=1

Repeating the previous argument, we conclude yhét) is bounded, and proceeding
up toj = n proves the result. O

3. Equilibria of the Modified System and Geling Solutions

From this section onwards, we will consider the following hypothesis:
(H1) &« = rjri for all j andk, where(rj) is a strictly increasing positive sequence.

Remember also that, for any > 0, |«| denotes the integer part of, i.e., |«] =
max{p € N: p < «a}.
In the next proposition we study the equilibria of (10).

Proposition 8. Assume (H1). For all re N, the modified system (10) hastHl non-
negative equilibria, denoted ), or by y&™ whenever we need to state explicitly the

value of n, with L= 0, 1, ..., n, which are the following:
forL=0:y? =(0,0,...,0);
_‘/_J

n components

forL>1:yV = (yJ(L)>1<j<n, where

yv=0 if j¢L-N; (12)
and
yo = QW (y)  forall j=2... |nLJ, (12)

with Q) = ,B(L)r’r‘l and

L jL
L _
1 =1

B = Zﬂ(” BY.  2<j<IniL], 9
2(“ —ri)

(L)

andy, "’ is the only positive zero of the polynomial defined by

Ln/L ]

PLa) =Y B (roo)l —r 7t (14)
j=1
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Proof. The existence of© is obvious. We start with the case= 1. From the con-
vention that the first sum in the right-hand side of (10) is zerg fer 1, we obtain

(1) (1) 1 _
— iy Zrky =0,

—(1) 1 =(1) () o@D _ .
er I DI =139, Zr 0, 2<j=<n

g@

Since by hypothesig,~ > 0, we must have

Zrk =t
For 2< j <n, the componentg ¥ must satisfy

oD _ oD
Yi = (t —r1) ZH krkyJ D
(rj —

and the conclusion readily follows.
Now assume. > 2, and lety™™ be the equilibria of (10) such th&f” = 0 for all

j <L—1andy" > 0.ThenY )} irj iy Ji~ = Oforall 1< j < 2L —1, because
()

min<k<j-1{j — k. K} < jl2 < %(ZL —1) < L, and soin each of the produo}‘% W Vi
one of the terms is zero. This means that,lfox j < 2L — 1, the equations defining
the equilibria are

y” ,y,)Zry‘”— : (15)

Usingy" > 0 andj = L in (15), we obtain

n
Syt =t (16)
=L

Substituting this result into (15), we can write
yU(1-rrrh) =0 for L+1l<j<2L-1,

o(L)

which impliesy;~ = 0 for these values of. For 2. < j < n, we must have

—(L)_I_ er krky,“’kyﬁ” JyJL)Zr VA

Thus, using (16),

yJ(L) — Z - krky] (L). 17

I'I’,_
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Now we prove thaly(L) given by (17) is nonzero if and only if € L - N. Consider
j = pL for somep > 2, and supposg.’ > Oforallk € {1,..., p— 1}, then

1 (p—Dr

L _ —(L) =)
y = 7 Moe—klk Yo i Vi
2(rprt - 1) ; P
1
(L)
Z ————Tp-uf y
2(rerE1_1) (p—Dric (p DL
> 0.

Hence, by inductiony;"”’ > 0if j € L - N. Suppose now is not a multiple ofL. For

l<j<L-1landL+1<j <?2L -1, we already know thay(” = 0. Define

Np:=1{j < pL—1:j ¢ LN} To prove that ify’*’ = 0 for j € A/, then the same
happens fof € N,y1, itis only necessary to observe that, ke L, ..., j — L, either
k or j —kis not a multiple of L because if both were multipled.othenj = (j —k) +k
also would be. But then, using (17) and the fact that L € N, forall j € Npy1, we
obtain the result.

Easy algebraic manipulations allow us to write the components of the equijibria
in the form (11)—(14), concluding the proof. O

Remark 2. It is interesting to observe the structure of the equilibria given in Proposi-
tion 8, namely, the fact that the only nonzero componentg‘ofare they(” for which
j is a multiple ofL:

yo Gk, %, %, %, %, %, %, %, %, ..., %, %),
y@ (0, %,0,%,0,%0,%0,....... ),
vy (0,0,%,0,0,%,0,0,%,....... ),
gy (0,0,0,%,0,0,0,%,0,....... ),
yo (0,0,0,0,%0,0,0,0,....... ),

y"-: (0,0,0,0,0,0,0,0,0,..., % 0),
y™:  (0,0,0,0,0,0,0,0,0,...,0, %),

where the symbot simply indicates that the component of the equilibria in that location
is different from zero (and given as stated in Proposition 8).

We now show that the equilibriugt? of (10) is related closely to the Leyvraz solution
[18], referred to in (P5). This is not surprising: Looking at the derivation of the Leyvraz
solution in [18], we notice that the Leyvraz sequelgg is given by

j—1

er kKO —k Ok, =2,
rr1 -1)i3

00
Zrkak — rl‘l =0.
k=1

oj =
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Thus, for allj > 2, we havey; = Q{”e with Q" defined as in Proposition 8, and
the only positive zero of

Pi(x) = Z QPxl —rt. (19

Hence, it is natural to expect that, in some convenient sense, the equilifillhof the
n-dimensional modified system (10) converges to the Leyvraz solution of {il}ago.

Proposition 9. Assume (H1). Let>" be the equilibrium of the n-dimensional modified

system (10) defined by (11)—(14) with=L 1. Let («;) be the Leyvraz sequence. Then,

(L.

for each fixed jy;~" — «; and

o0
(ln) .
E I’J — E Ijoj as n— oo.
i=1

Proof. Consider the sequen¢g") _.. By Proposition 8 we conclude that, for all
Pl,n(y(l'n)) = 0 = Py(a1), and thus

o0
@an _ -1 _ .
nIl_)mooX:rJyJ =r; _jZl:rJaJ.

For the pointwise convergence ¢§*"),-1, we need to remember that for eagch
the only positive solution oP; ,(x) = 0 is y\"". Sincer,Q" > 0 for all k > 1,

the sequenceyil'”))nzl is strictly decreasing and bounded below by zero, and thus it
converges to somg > 0. It is not difficult to prove that we must hayg = o1, and

the result for the other components follows easily from the relations oj”f'rmd the

15 components of botlr and ™. We will omit further details. O

This result suggests that, for each> 1, there should exist a Leyvraz-type sequence
(")) such thatj (t) = o/*(t +to) 1 is a solution of (1) and that, as— oo, and for all

jandL, y"" — o), wherey(L ‘M is the j " component of the equilibrium solution
of (10) g|ven by (11)—(14). In fact, the following holds true:

Proposition 10. Assume (H1), andr> Aj* with A > Oand«a > 1/2constants. Then,
for each Le N, there exists a nonnegative sequenge’); oy satisfyinge;” = 0if j ¢
L-Nandy i, je/* < oo, and such that e= (¢”);cy defined by & == (t +to) "*e/”
is a solution of (1) inf0, co) with initial data ¢; = a( )t 1 with ty > 0 an arbitrary
constant. Furthermore, for all < L < n, the eqU|I|br|ay<L ‘M of the n- dimensional
modified system, defined by (11)—(14), saty;fy‘) — oY and Y7 r "

Y2 arie” asn— oo.

The proof of this result will be omitted since it is essentially just a change of notation
in the proof given, for the case = 1, by Leyvraz in [18] and, for the last part, of the
proof of Proposition 9 above.
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4. Dynamics of the Modified System

We now turn to the study of the dynamic behaviour of nonnegative solutions to the
modified system (10), both analytically and numerically.

The positivity properties of solutions stated in Proposition 2 imply, in particular, that
the setsS,, defined by

S;={yeR":y1>0, yj>0for 2<j <n},
Spi={yeR":y;>0, yj=0forall 1<j=<n-1},
and, for1< M < n,
Sui={yeR":y1=--=y,.1=0,y,>0,y>0for M+1<j=<n},

are positively invariant for the flow defined by (10), and its clos$ifés also positively
invariant. The usefulness of these sets is due to this invariance property, to the fact that
Swi1 C S, C Sy, forall M > 1, and what is rather important for our purposes, to the
fact thatS,, is the “natural” set associated with the equilibrigifti’, in the sense that, for
eachM, y™ is the only equilibrium point of (10) lying iS,,. Furthermore, it is clear
thaty® € S, forallL > M > 1.

These properties of the sefs, and their relations with the equilibria, mean that it
is possible to restrict the modified system (10) to any of the Sgtand to study the
stability properties, relative to this restriction, of the equilibyia for L > M.

We start by investigating the linear stability properties of the equilibria.

4.1. General Linear Stability Properties of Equilibria

Letl<M <L <nandu = [n/L]. LetK®&™ be the(u x ) matrix defined by
Ol(n) (n) (n)

L,L L2 O uL
(n) (n) (n)
e R (19
n n n
a/(,LL),L aLL),ZL e al(iL)-Mb
where
=(L,Nn . . .
_riLeryj(:: ), if i>],
n . Z —(L,n e .
of =1 -t -2y, ifi=j, (20)
g(Ln =(L,n P .
—riJijj(t )+riLr(j_i)Ly((;-'_i))L, if i <j.

Finally, we denote by the spectrum of the matrilC*“™, and define the follow-
ing setsio,. == {1—-rrrt:M<j<L-1} Witho, = ¢if L = 1)ando_ =
{1-rrr:L+1<j<n jgL-N}(witho_ =¢if L =n).

With this notation, we have the following.

Proposition 11. Assume (H1). Let < M < L < n. Let. A" be the matrix of the
linearization abouty™ of the restriction of the modified system (10)%p and denote
by o 4 the spectrum afA“"). Theno 4 =0, Uo_ Uox.
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Proof. Foreach 1< j <n,let
1 j-1 n
iy =y+3 D Tk kYk = T Yi Y TkYko
k=1 k=1

and letf; := f;[ S, denote the restriction of, to S,,. Then, forally = (0,0, ..., 0, y,
Yutls - - -5 Yn) € Su, We can write

0, ifl<j<M-—1,
n

~ Yj—ijj'zrkyk, if M<j<2M-1,
fi(y) = =

— n
+ %Zri—krkyj—k)/k =y Z Ik Yk if 2M <j <n.
k=M K=M

We shall considef = ( f;) as a function defined iRJ' ™" with values inR§" "+
by identlfylng the pointg0, 0, ..., 0, Yy, Yutts ---» Yn) € Su and(yM, Yuil, -5 Yn) €
Rg"““ and disregarding the |dent|cally zero component§ @fith 1 < j < M — 1.

With this identification, let = (&, ..., &) and consider the linearization df about
&.ForM < | <2M -1, we have

n
af; 1—r1 ) reg —rig, if i=j,
Dy 1on 2 TS : 2
—rirj§j, if i#j,
andforaM < j <n,
n

8f~ 1—r,-2rkf;‘k—r1-2§j, if =],
8—(5) k=M o S L (22
Vi —rirjé, if —M<i<jorix>]j,

—rirj& +rjiri& i, ifi<j—M

Take nowé = y©& with L > M. From (11),y,"" = 0/if j is not a multiple ofL,

and by (16) we havd_p_,, reyi™ = Sk, rkLyét "™ = -1, This allows us to simplify
considerably the Jacobian matrix 6f To be able to compare easily the results of the
linearizations off | S,, abouty™" for different values ol. andM, it is convenient to
consider the subscripts of the elements ofithe M + 1) x (n— M +1) Jacobian matrices
as running fromM to n, instead of from 1 tm — M + 1, as is the convention. With this
consideration, the Jacobian matt-* has the structure exemplified in Figure 2.

The spectrum ofA-™ is now obtained easily by the Laplace expansion by minors

of the determinant ofA*“") — A1,_,,41 along the rows withj ¢ L - N:

det(A" — Al yi1) = det(K-Y —21,) T (1 - :—’ - x). (23)
L

M=<j=n
jgL-N
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column 1 =M column i =n

line j=M [ @& ]
D
line j=1L [ORNOIN ENORNONNONNCENOCENOCNN JNCENONNONNORNONNONN JNONNONNONNORNO]
[S]
S
S}
S
® S
o} o
linej=2L | ® © @ © © © © © © @ © © © 66 6 60 @O OO OO
© S}
o} o
© o
©} o
(O] ® [S]
(O] © o
linej=3L [ © © @ © © O ©®© © 0O @ © © O 0 66 @O0 O O O 06
© © [S]
© © S}
(O] © S]
©} ] S]
line j=n | © © O} © |
diagonal j =1+ 3L diagonal j =i+ 2L diagonal j =i+ L diagonal j =1

Fig. 2. Structure of the Jacobian matri4". (Example for the cashl = 5,L = 7,n = 26,

in which caseu = |26/7] = 3.) The matrix elements whose positions are not explicitly marked

are zero. For the nonzero elements of the matrix, the following notation is @sark elements
belonging too,, © are elements belonging to , @ are elements oK™, and® are other
nonzero elements. The values of all these nonzero elements are obtained from expressions (21)
and (22) computed gt= y-m,

Observing that the terms of the product with< j < L — 1 are precisely the elements
of o, (signalled by® in Figure 2) and the terms with> L + 1, but not multiples ot.,
are the elements of_ (& in Figure 2), expression (23) says tlwat = o, Uo_ U oy,
as we wanted to prove. O

The study of the local linear stability gf~™ in S,, is now reduced to the study of
ok, the spectrum ok™".,
Remark 3. From assumption (H1), we can conclude immediately that

(i) alltheL — M elements ob,. are positive.
(i) allthen — L — u + 1 elements o&_ are negative.
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Using (H1), (19), (20), and Proposition 8, we conclude that
"

"
wLn _ . -(L,n) -1 ) o(L.n)
e = 3 (1=t =) =w Zm—Zr,Lyﬂ

—1 S _(L,n)
< ZrL ZrJLyIL ZrJLyIL
—(L,n
< _rLZr]LyJ(:: )_ 9

and thus

(i) at least one of the eigenvalues @ has a negative real part.

Despite numerous attempts, it has not been possible to fully desgrilme¢he general
case. For general strictly increasing positive sequefmggshe best result we could prove
is the following.

Proposition 12. With the assumptions of Proposition 11, we h&e&ox) < O for
uw=1landu = 2.

Proof. Both cases are trivial: Ift = 1, thenK®" has only one element, which is
—r2y"" < 0. Foru = 2, the matrixC“" is a 2x 2 matrix with negative trace (by
Remark 3)and

detC™" = (rp —ror g™ +rard (y*- ”)) > 0,

from which the result follows. O

Thus we have the following local stability result.

Proposition 13. With the assumptions of Proposition 11, denote Ky 'Wand W
the stable and unstable manifoldsydf™ in S,,, respectively. Let = 1or u = 2. Then,
dmwWi-" = L — M,
dimWH-" =n—L + 1.

In particular, y&" is locally exponentially asymptotically stablesy.

Foru > 3 we were unable, so far, to prove that all elementgohave negative real
parts for a general sequenge), although all available numerical evidence suggests this
is indeed true. The only case for which we could complete the analysig & when
ri = j, and this will be presented in Section 4.2. We next present some of the numerical
evidence that supports the following conjecture.

Conjecture 1. Proposition 12 holds true for all values of.
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Table 2. Spectra ofC™™ forr; = 1+ j¥5, L = 1,2,5, andu = 3, 5, 6, 10.

L un=3 u=>5 u=6 n=10
1 -1 -1 -1 —1491
—0.481+ 0.087 —0.813 —0.965 —1.369
—0.481— 0.087 —0.652 —-0.814 —1.241
—0.555+ 0.156 —0.654 —-1107
—0.555— 0.156 —0.584+0.180 -1
—0.584—0.180 —0.966
—-0.818
—0.660
—0.675+ 0.249
—0.675— 0.249
2 -1 -1 —1.163 —1.796
—0.573+ 0.102 —0.980 -1 —1.649
—0.573—0.102 —0.787 —0.981 —1.496
—0.657+ 0.187 —-0.791 —1.334
—0.657— 0.187 —0.689+ 0.216 —-1.164
—0.689—0.216 -1
—0.987
—0.803
—0.788+ 0.298
—0.788+ 0.298
5 -1 —-1.178 —1.398 —2.159
—0.681+ 0.12G -1 —-1.179 —1.982
—0.681— 0.12G —-0.947 -1 —-1.798
—0.775+ 0.222 —0.954 —1.604
—0.775—0.222 —0.811+ 0.257% —1.399
—0.811— 0.257 —-1.187
-1
—0.975
—0.919+ 0.355
—0.919+ 0.355

In Table 2 we present the numerically computed spectid‘of for a nonhomoge-
neous sequende;) and several values afandn. In Table 3 we present the numerically
computed spectra ¢€# for several values of and for two different homogeneous
sequences’;).

The distinction, made explicit in Tables 2 and 3, between homogeneous and non-
homogeneous sequendey) is due to the fact that, as the next proposition shows, for
homogeneous sequences the linearizations apbltandy®*, with 4 = |n/L |, are
the same, and so we need only to study the spectki’af .

Proposition 14. Letl < L <n,u = |n/L], and suppose thdt;) is a homogeneous
sequence, i.e.j = Aj® for some positive constants A aadThenCt" = &0,

Proof. In order to relateC~" and -, we need to relate the equilibrig-™ and
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Table 3.Spectra ofc™# forr; = j andr; = 1.414j%* with 1 = 3, 5, 6, 10.

I n=3 n=5 n=6 n=10

i 1 1 -1 1

~1.601 2 -2 —2

—2 ~2.199 —2.419 -3
-3 -3 -3.167

—4 —4 -4

-5 -5

-6

-7

-8

-9

1.414j% -1 -1 -1 -1
—1.230+0.153 -1.813 —1.796 —1.696
—1.230—0.153 —2.343 —2.342 —2.329
—1.403+0.230 -—-2.834 —2.832

—1.403-0.23G —-1.480+0.338 —3.303
—1.480-0.338 —3.756

—4.196
—4.623
—1.753+ 0.456
—1.753— 0.456
y&m | From (13), we have
L _ (L) (L)
A= a5 2 Zﬂ
and
@ _ @ g,
W= e P Zﬁ
and sinceg)” = p{” = 1, we immediately conclude thag"' = L0-2«g® From

(14), we have thax = r_y~" is the only positive solution 0§ j-_, 8" x* = r T and
so, using the relation between tH§’ and theg” just obtained and the form of, it
is also the only positive solution oFf_, A" (L*x)* = AL, But sincer; = A, the
last equation hak*x = rlyi " as its only positive solution, and thus we must have

Ler, g™ = 9. The relation between the other components now follow easily
from (12) and the relations above:

i —a oL caw)!
15 = B ) = L (rag)
Finally, using the above relations and observing tha& L*r;, we conclude that

(I) fori > j aJ(rL])IL _ m(l'JLyJL n)) = —T LaL—aﬂj(l)(rlyilyll-))j = —rir; y](lll-)
(W)

O{j,i .
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. . . n _ n 1 1
(ii) for i = j aJ(L)]L =1-—rrt- r]LyJ(II: ' =1- rjrl - rjﬂ( (rg y( i =
) 251w (W)
1—rjrt—ri Y =
(iii) for i < j, using the computations done in case () we hg{&, = —ri.rj ;" +

o(L.n) (L) (L) (1)
riLr(jfi)Ly(j,i)L =_rirjyj' . +rj |yJ |M ]lf-

Hence XM = KL as we wanted to prove. O

Remark 4. If Conjecture 1istrue, then Proposition 13 holds without the restrictign on
and this, together with the invariance properties of theSgtémplies that the unstable
directions ofy~™ in S,, have a nonzero componentdly — S.. This observation will
be important for the analysis of the numerical results in Section 4.3.

4.2. Linear Stability Results in the Cagg = |

In this section we prove Conjecture 1 whgn= j. The proof is particular for this case

and is not likely to be applicable to more general sequences. Nevertheless, we include
it here for three reasons: because it is the only case for which Conjecture 1 has been
proved so far; because these coefficients are actually important in gelation studies (cf.
(P4) in the introduction); and finally, because it proves that the surprising behaviour of
the spectra ok>* shown in Table 3 is indeed true. The main result is the following.

Proposition 15. Letr; = j, and letX®# be the matrix defined by (19) with > 2.
Then,

a,cz{xz —A:A:l,...,u—l}U{ ij— }

j=1

[e—

wherey := g,
Proof. Westartbynotingthay = j impliesg” = L2 Thus, the elements,; := ot

of K&» can be written as

it .
_|Tyl, if i > ],
' jj )
aji = 1—j—F37‘, ifi=j,
-1 P qyi-i-1
_iJTyn +-(J(7j '_)i)l gy i<

Since the trace o€ ** is easily computed, the eigenvalue/gf-* different from—A
is easily obtained: Assuming that 1, ..., — (u — 1) are eigenvalues d€**), then
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the remaining eigenvalue is

n—1
ro=tw KO0 =3 (=)
=

We are now left to prove that A with A = 1, ..., u — 1 are eigenvalues &t**. This
will be done by showing that, for each of these values, the matti¢e® + Al, are
singular; more specifically, it will be shown that the + 1)™ line of these matrices can
be written as a linear combination of the previQudines. In order not to overload the
notation, let [ denote thej™ line of X% + Al,,, let [new £ be the line obtained

by multiplication of the first line ofC:# + A1, by ((’[‘\fl)), yA, that is,

(A +D* A%,

[new 1] = A+ (24)
and, forj > 2, let
[mew ] = yA~1 ") — ]_ 7M1 (25)
We shall prove that
A P A—j+1
[(A + D = [new £ + ;(—1)“1 (AJ_J.—+1)![newjth], (26)

where the sum is defined to be zera\if= 1

Let us start by the casa = 1. We are going to prove that'} = [new 1.
Considering first what happens with componeints A = 1, we have that the"
component of [new %] is

2 ol 10 »
[(new £, ] = SYoni = = 5 yigny = —iy?

and, on the other hanc(,zf‘d)i ] is given by

—1-2%4+1  ifi=2 _{—2y2 if i =2 -

“2"“2‘2{—@—1;72 if i >2 —iy2 ifi=2 — Y
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and so both are equal. For the first componist,1, we have

2t~ o
[(new £, ] = §y(0l1,1 +8)=y-V=ap1= [(2nd)1]-

This concludes the proof thatl is an eigenvalue o *».

We now consider a general integgrsatisfying 2< A < 1 — 1 and will show that
(26) holds. We start with componerits- A. The sum in the right-hand side of (26) is
equal to

- A—j J-Afj7L1 1 J 1

E ) E—— —i+ AS ) — As

j=2( ) A—-j+D! ( (i + Adji) j! y (a1i + ll))
A P A—j+1 = o1
) S o it it

= -1 A J4< A—j+1 —i)— i : A

j:2( ) (A—j+1D! y (=1 il y i y

=0,

(- i)1)7>

and [new £, ] = —i ((’[‘\111)), yA+1 For the left-hand side of (26), we have

A+1
. —4A+D—%%%%TWH+A ifi=A+1
[((A+D7)] = :
—i (A+D" 1y

if i>A+1
A1) mi1>A+

CA+DM

_ (A +1)!

—j (A + DA gA+1
(A + 1)

@ADL

(A + D! ’

if i=A+1

ifi>A+1

and so (26) holds for componerits- A.
If i = A, we have, for the sum in the right-hand side of (26),

1A ] JA j+1 A i1 J -1
E (=1 7(1\ Y (OlJA+A5JA)——J ¥ (o, + AS12)
i=

_ Aej ja-ivt A—j+1 -1 jit oA -

Z( i) TS y (— A) Ty (- M1y

= !
A-A+1

4 (_1)A7A7 yA7A+1(1— A — AA + A) 4+ AA yAJrl
(A—-A+D! Al

= 0+ Ay
= A)_/,
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and

[« +2", | - [new £, ]
_ A+DY = (A+1)A g
_( Maxy) MY Ay (7MY
= AY,
and thus (26) holds for componant A.
Consider now 1< i < A. The sum in the right-hand side of (26) becomes

A jA—j+l

_1)A-i A—j+1 —
Z( 1 (A—j+1)!< (aJ|+A31|)

=2

'j—l
y (o +A51|)>

-1 A-j+1 ji-t it
Z ~)h" 'ﬂ(y“% )——J—y( |>1>7>
j=2
Ly T g g Uy i
+ (=D B 1D y A-—i i!y +A)+i!y
jA- j+1 ij-1 RN s §
A— J gA—j+1 _-J =i (J 1) oj—i
+JZ+:1( iy TS <y < [ i ¥yl +i a—n y )
jit
——y (—l)l)/)
— _1\A-i iA7i+l —A—i41 o
=0+ (-1 7(1\ i+1)'y (A—=i+1
—j+1 ( _i)j—i+1
A i+1 1A J
]IZJrl( : —i+D G -=D!

And, as we have
[((A + 1M, ] — [(new &, ]
_ (_ (AN A+ A |+1> <(A Do ,)1y>

(A + 1)! (A —i+ 1! (A +1)!
—i (A — i + 1)A_i SA—i+1
(A —i+ D! ’
we conclude that (26) becomes
A j+1 ( _i)i*i“rl _ (A —i +1)A7i 1 Al iAfi
Z( —j+D (- T (A—i+D! -1 (A=)

j=i+1

Observing tha% is the termj = A + 1 in the sum of the left-hand side, we can

write the expression above as

A+1 A=iHL (il ja-i

1+1 A
DV e e TR T v )

j=i+1
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Now change the summation variable frgnto j —i. Still denoting the new variable by
j and definingA := A —i + 1, the last expression becomes

L& AL (AN L g M1

— ) (A" + A = A 2

> D (J)u T = D @7

To prove (27) we will basically expand + i)i‘*j, rearrange the terms, and change the
order of summation:

1 & (A A
< 2D <,— ) (j+iA T

1A Ao
-nne ()5 ()i

where S(n, k) is the Stirling partition number, or Stirling number of the second kind
[22], which is

1 ik
sk =2 > =D () i,
2

and the last equality in the deduction above is due to the facSimak) = 0if n < k

[22, p. 163]. This concludes the proof for the lines1 < A.
The final case = 1 is similar to the previous one, and we shall skip most of the

details: The sum in the right-hand side of (26) can be written in the form

A iA-i+1 iz i
i) G- ] )_A
2D (A—j+1>!<<j—1>! ATy

=2
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and

ISP

th St _
[((A+1) )i]_[(”e"vl)i] = < Al (A + 1)1

which is equal to the symmetric of the term of the sum correspondirjgtoA + 1.
This means that, after some minor rearrangements, we can write (26) in the form

1 & . ) _ ] : .
=2 ED () A+ (AG+DT - =0 28)
H
We start by looking at

A& Ami (A
- 2 : _DA-i (L A-1
Al j—l( b (J)(]+1) ’
which is evaluated in exactly the same manner as for the left-hand side of (27) to give

A A—l(
Al =t

or ot (e () (3)

(DA
T

The other term in (28), namely,

1 & i AN i1 i
PGS H) G+,

A
A5 1) Sp AL+ (1) v (})

is equal to the left-hand side of (27) with= 1 and hence it is also equal te%
This proves (26) for the componeint= 1 and concludes the proof of the proposition.

|

The results of Propositions 14 and 15 imply that Proposition 13 holds true without
restrictions onu.

4.3. Global Behaviour of Nonnegative Solutions

A problem that naturally arises after the study of the dynamics near the equilibria, done
in Sections 4.1 and 4.2, is the elucidation of the global behaviour.

Based on a large body of numerical evidence, a small part of which will be presented
below, we state the following conjecture.

Conjecture 2. Assume (H1). Forall Le {1, 2, ..., n}, the equilibriay™"™ are globally
asymptotically stable i, .
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We could only prove global stability for the cases= n — 1 andL = n, and this is
made using methods not applicable to other valuds. of

Proposition 16. The equilibriay™™ are globally asymptotically stable i§_ for L =
n—2landL=n.

Proof. Both cases are extremely simple. Hor= n, the setS, can be identified with
RY™P = RY and so the restriction of (10) , is one-dimensional, namely, =
Fn(yn) with F, as given in the proof of Proposition 7, and this equationyas r;? as
the global attractor for positive solutions. Consequergtly” = (0, ..., 0,r?) is the
global attractor of (10) restricted t8,. ForL = n — 1, the setS, can be identified with
RS*, and the restriction of (10) to this set is, for> 2,

Yno1=Yn-1—Tn-1¥n-1("rn-1Yn-1 + nYn),
’ (29
Yn = Yn — n¥n(Mm-1¥n—1 +rn¥n).

Since, by Proposition 7, nonnegative solutions of (10) are bounded, we conclude that
nonnegative solutions to (29) are also bounded. Since the only equilibria of (29) are
(0,0), Y1 = (r 2, 0), andy™™ = (0, r;?), the local stability results of Section

4.1 and the PoincarBendixon theorem allow us to conclude ti&1" is the global
attractor of (10) restricted t8,_1. O

It is clear that the proof above is not applicable to higher-dimensional systems, i.e.,
to smaller values of.

We next present some of the numerical evidence for Conjecture 2. The overall quali-
tative picture that one obtains is independent of the coefficieptprovided they satisfy
(H1). Hence, we will present results only for the rate coefficients: j since for this
case the local behaviour near equilibria was already established in Propositions 11, 14,
and 15. For other cases, the interpretation of the observed behaviour near equilibria must
rest on the assumption of the validity of Conjecture 1.

In interpreting the numerical results, a few facts should be remembered:

(i) The nonzerocomponenys(r) of the solutiony(r) are those given by Proposition 2.
(i) The only nonnegative equilibria of (10) are those given by Proposition 8, and, in
particular, the nonzero components of any equilibriztn™ are those for which
the subscriptg are multiples olL, as was already pointed out in Remark 2.
(iii) The behaviour of solutions near equilibria is governed by the results in Proposi-
tions 11, 14, and 15, which imply that Proposition 13 holds without restrictions
upongu, and so also does Remark 4 about the unstable directions of the equilibria.

The graphics presented are those of numerically computedas a function ot for
the several values df € {1, ..., n} under different types of initial data and truncation
sizen. In each graphic, the componetis indicated by the corresponding number.
Before proceeding to the numerical results, just a brief note about notation: The initial
data for (10) is a vectoyy € R(*. In presenting the initial data used in each experiment,
we shall give the list of the components wfin the following way: Instead of writing
Yo = (a1, 2, ..., an), we shall writeyp; = 31, @i§j.i.
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We start, in Figure 3, with some simple cases illustrating that solutions with initial
data inS, converge toy® ast — +oo.

In the cases (a) and (b) of Figure 3, the initial data is monodispersed (i.e., only one
component ofyp is nonzero), and in both cases numerical solutions converge to the
expectedy”). Case (c) is a typical result with “small” arbitrary initial data.

In the next set of experiments, shown in Figure 4, we present situations where the
initial datayy is very close to an equilibrium: Namely, we use= 21 and initial data
very close toy@?.

We again observe thay € S, implies thaty(r) — ¥y ast — +oc. In all three
cases (a), (b), and (c) we take initial data that is a perturbation of the equiliénby
the addition of 107 to the component = 6, 5, and 3, respectively. We clearly observe
that the solutions follow heteroclinic orbits connectifig® to y .

The last set of experiments is intended to pursue this type of observation a step further:
In Figure 5 we show that by carefully choosing the initial dat&imear an equilibrium
in S,, we can obtain a solution cascading down a number of equilibria before getting
close to the limit equilibriunmy®.

In both cases of Figure 5, the initial data is a small perturbation of the equilibrium
y©@D and lies inS,. Hence, according to Conjecture 2, it is expected that in both cases
the solutions converge t@?, as is in fact the case (at least numerically). By carefully
choosing the way we pertu@@®?, we can force the solution to follow a given network
of heteroclinic orbits. In case (a), the initial data is a small perturbatiop?®f with a
dominant fourth component, since>t yp4 > Yo2. Thus, the system behaves in the
short time as ifyy € Sa, and the solution follows a heteroclinic orbit frop?? to y@.

After some time neag®, the solution finally converges to the limit equilibriup® .

In case (b), the transient behaviour is modified by now choosing an initial data that is a
small perturbation of?Y with 1> Yoo > Yos5 > Yo3 > Yoo If this is done carefully,

we can capture numerically a solution that follows the network of heteroclinic orbits
connectingy®? to y© to y©® to y® and, finally, toy®, as shown in (b).

These results and the robustness of the numerical behaviour seem to indicate not only
that Conjecture 2 is true, but also that (10) is in fact a Morse-Smale system.

5. Final Remarks

Ofthe two conjectures made in this paper, Conjecture 2 on the global dynamics of (10), is
clearly the most important. Its proof will, likely, entail the discovery of appropriate Lya-
punov functionald/, for then-dimensional system (10), for alle N. If the Lyapunov
functionals are constructed in a convenient manner, it should be possible to prove that, as
n — oo, the functionald/, would converge, in an appropriate sense, to some functional
V, at least for some types of rate coefficieatg. By showing the limit functionaV/ to

be a Lyapunov functional for the limit system obtained from (10) by letting> oo,

one would probably be able to prove rigorously the occurrence of gelation for extended
families of rate coefficients and initial data.

This program obviously is also connected to the one of relating the attractors of each
of the finite n-dimensional systems (10) with the attractor of the infinite-dimensional
limit system, which has an infinite number of equilibiid,, componentwise convergent
to zero ad — oo.

We hope to return to these problems in the future.
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Fig. 3. Numerical solutions to (10) faa « = jk with (a)n = 6,
Yoj = 0.2551"1; (b) n= 30, Yoj = 1035]'5; (C) n= 10, Yoj =
210788 ,+4-10778; 3+2-1078; 4+5-10758; 5+ 7- 1075 6+
8- 10_951',7 +7-10 (Sj,g +2- 10_75]"10.
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Fig. 4. Numerical solutions to (10) fo; x = jk with n = 21
and (a)yoj = 1078j,6 + 0002267531,21, (b) Yoj = 1076]',5 +

0.0022675%; 21; (C) Yo; = 10778j 3 + 0.00226757%; »1.
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Fig. 5. Numerical solutions to (10) fa = jk withn = 21 and (@), = 107125 ,+10758; 4+
0.00226753; 51; (b) Yo; = 107285, 5 + 10-185, 5 + 1025, 5 + 1055,  + 0.00226753; .
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