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Summary. We study a general nonlinear ODE system with fast and slow variables, i.e.,
some of the derivatives are multiplied by a small parameter. The system depends on an
additional bifurcation parameter. We derive a normal form for this system, valid close to
equilibria where certain conditions on the derivatives hold. The most important condition
concerns the presence of eigenvalues with singular imaginary parts, by which we mean
that their imaginary part grows without bound as the small parameter tends to zero.
We give a simple criterion to test for the possible presence of equilibria satisfying this
condition. Using a center manifold reduction, we show the existence of Hopf bifurcation
points, originating from the interaction of fast and slow variables, and we determine their
nature. We apply the theory, developed here, to two examples: an extended Bonhoeffer–
van der Pol system and a predator-prey model. Our theory is in good agreement with the
numerical continuation experiments we carried out for the examples.

1. Introduction

In this paper we study the behavior of a class of singularly perturbed systems of ordinary
differential equations close to a Hopf bifurcation. This class consists of sufficiently
smooth autonomous systems of the form

εẋ = f (x, y,a), 0< ε ¿ 1,

ẏ = g(x, y,a), (1)

with fast variablesx ∈ Rm, slow variablesy ∈ Rn, and a bifurcation parametera ∈ R.
Becauseε is a small parameter, thex-variables change significantly faster than they-
variables.

We are in particular interested in the case where oscillations emerge as a result of
coupling of the fast and slow variables. A theory for oscillations in singularly perturbed
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systems of arbitrary fast and slow dimensions has been established by Fenichel (1983).
He distinguishes between ‘fast’ and ‘slow’ oscillations. Assuming the existence of os-
cillations for either the fast or the slow variables in the singular limitε = 0 (in a suitable
reduced system), he shows that such oscillations survive the coupling for smallε with,
respectively, the slow and the fast dynamics. However, he does not consider the case
where oscillationsoriginatefrom the coupling of fast and slow motions.

Baer & Erneux (1986) develop a theory for what they callsingular Hopf bifurcation
in the case of one fast and one slow variable (that is,m = n = 1 in system (1)). Their
two-dimensional setting implies in a trivial way that both timescales are involved in
the bifurcation mechanism. Here we extend their theory to higher-dimensional systems.
In order to avoid some technical difficulties, we first focus on the case of a single fast
variable and an arbitrary number of slow variables. Later on we consider the case where
there is also an arbitrary number of fast variables.

Hopf bifurcation. The theory of Hopf bifurcation is a tool to investigate the onset
of oscillatory behavior in a dynamical system; see for example Marsden & McCracken
(1976). It predicts that (under generic conditions) a small periodic oscillation is born when
a pair of eigenvalues crosses the imaginary axis (with nonzero speed) at an equilibrium
point. This small periodic oscillation may evolve to more complex oscillatory behavior,
but that is beyond the scope of Hopf bifurcation theory.

The characteristic feature of a singular Hopf bifurcation, as studied in this paper, is
that both fast and slow variables are involved actively in the bifurcation mechanism.
This implies that the imaginary part of the crossing eigenvalues grows without bound as
ε→ 0; see Section 2 for details. We use this growth behavior as the starting point of our
analysis for the case of a single fast variable.

Surprisingly, it turns out to be possible to carry out a fairly complete singular Hopf
bifurcation analysis for system (1). We need only one special assumption and a few
generic assumptions. The special assumption leads to a simple criterion for locating
singular Hopf bifurcation points in a given system of the form (1). We give relatively
simple expressions for a normal form, valid close to these bifurcation points, and for de-
termining the stability type of singular Hopf points. The presence of the small parameter
ε is the main reason for our (approximate) formulas to be much simpler than standard
counterparts for nonsingularly perturbed systems.

We emphasize that, because both timescales are actively involved, it is not possible
to study systems of the class (1) close to a singular Hopf bifurcation through a stan-
dard dimension reduction method (like the quasi–steady-state method popular among
mathematical biologists; see for example the textbooks by Segel (1987) and Murray
(1989)).

Organization. The organization of this paper is as follows. In sections 2, 3, and 4 we
consider the case of a single fast variable (that is,m = 1 in (1)). First, in Section 2, we
study a family of matrices, parametrized byε. For this family we establish the conditions
for eigenvalues with singular imaginary parts (that is, eigenvalues whose imaginary parts
grow without bound asε→ 0). Then we apply this result to Jacobian matrices for system
(1). We may expect singular Hopf bifurcations to occur close to equilibria where∂ f /∂x
vanishes, if an additional (open) condition holds. In Section 3 we study system (1),
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starting at a point where these criteria, and a few additional generic conditions, hold.
We derive a normal form to analyze the system in the vicinity of the starting point. This
is the first main result of the paper. We do not use a standard method, like for example
averaging or a Lie algebra approach, to derive the normal form. Instead we exploit the
singular nature of the system, and other characteristics that we meet in the course of the
construction, in order to obtain a sequence of explicit scalings and transformations. The
normal form has the structure (see (5))

u̇ = v + 1
2u2+O(√ε), v̇ = −u+O(√ε), ẇ = O(√ε),

with u andv scalars andw a vector. In Theorem 1 we give explicit expressions for the
O(√ε) terms, which are derived from certain derivatives at the starting point. The normal
form contains four groups of coefficients: a scalar coefficient describing the nonlinear
behavior of the fast subsystem, two vectors describing the coupling between the fast
(u, v) and the sloww subsystem, and a square matrix describing the linear behavior of
the slow system. In the case of two slow variables, all four coefficients are scalars. In
the case of only one slow variable, there is now-system, and we are left with only one
(scalar) coefficient. In the normal form, the original parametera is replaced by a scaled
parameterα, which only occurs in theO(√ε) part of the equation foṙu.

In Section 4 we carry out the actual bifurcation analysis. We start from the above
normal form, under the additional assumption that the linearizedw-equations are hyper-
bolic. We perform a center manifold reduction of the formw = 8(u, v). The dynamics
on the two-dimensional center manifold determines the type of Hopf bifurcation. Using
standard methods for two-dimensional Hopf bifurcation, we compute an asymptotic ap-
proximation for the Hopf bifurcation point (which is close to, but does not necessarily
coincide with, the starting point).

The theory, developed for the case of a single fast variable, can be extended without
much difficulty to the case of multiple fast variables. In Section 5 we discuss general-
izations of the results of sections 2, 3, and 4 in this direction. Some technical difficulties
arise from the fact that we have to deal with matrices instead of scalars in the fast subsys-
tem. These complications are mainly of a computational nature, and we omit the details.
The additional fast variables lead to a number of fast,O(1/

√
ε), equations in the normal

form; see (17).
In Section 6 we apply our theory to two examples: an extended Bonhoeffer–van

der Pol system and a predator-prey model. We compare our asymptotic predictions to
numerical results, obtained with the continuation packageLOCBIF. In the appendix we
derive one of the transformations used in the construction of the normal form. Although
this derivation is interesting in itself, we did not include it in the main text in order to
prevent an interruption of the main exposition.

Related results. Our study comprises the case of one fast variable and one slow variable
(that is,m= n = 1 in system (1)), which previously has been studied by Baer & Erneux
(1986). By a local analysis in the vicinity of the bifurcation point, they show how a
small, harmonically modulated, periodic solution becomes progressively pulsating as
the parametera deviates from criticality. They also explain the sudden appearance of
a large amplitude relaxation oscillation, which is associated with so-called canard limit
cycles; see also Callot, Diener, & Diener (1978), Eckhaus (1983), and Dumortier &



460 B. Braaksma

Roussarie (1995). Diener (1984) gives a nice informal introduction to canards from the
point of view of Nonstandard Analysis. Here we consider only the Hopf bifurcation
analysis itself. The analysis farther from the Hopf bifurcation point, for the higher-
dimensional case, is the subject of a sequel to this paper. For preliminary results we refer
to Braaksma (1993). It turns out that the behavior in systems with more than one slow
variable is very different from the two-dimensional case, and a number of essentially
different bifurcation scenarios apply. As the topological restrictions imposed by the
plane are removed, more complex oscillations and other essentially higher-dimensional
phenomena become possible. A striking difference is also that the transition to relaxation
oscillations tends to be much smoother in higher dimensions than in the two-dimensional
(‘canard’) case, where it is exponentially fast.

Il’yashenko gives a classification for ‘typical’ systems with one fast and two slow
variables; see Arnol’d, Aframovich, Il’yashenko, & Shil’nikov (1994), chapter 4. He
distinguishes three situations. In only one of these situations is there an equilibrium point
present, which is nondegenerate when the system is projected on the slow surface. Our
singular Hopf bifurcation study is not contained in his results, because the equilibrium
is degenerate after projection.

Often the dynamics for systems with fast and slow variables can be studied effectively
from a reduction to a (hyperbolically attracting) subsystem consisting of slow variables
only. This approach is discussed in detail by Takens (1975) and Fenichel (1979). In our
case the reduction would lead to then-dimensional subsysteṁy = g(x, y,a) on the
normally hyperbolic manifoldf (x, y,a) = 0, ∂ f /∂x < 0. Takens (1975) calls this a
constrained systemwhen f is the gradient of some function, which is a trivial condition
for scalar functions. He gives a topological classification for several generic types of con-
strained systems. From this topological viewpoint, a singular Hopf bifurcation scenario
is described by the situation depicted in Figure 1. The value ofa where the equilibrium
drops over the edge (case b)∂ f /∂x = 0 of the manifold f = 0 corresponds to the sin-
gular Hopf bifurcation value. In the terminology of Takens, case b is called a degenerate
funnel. It is not generic when considering isolated systems, but it becomes generic for
one-parameterfamiliesof constrained equations. This topological description, however,
is too rough to study the singular Hopf bifurcation in more detail. It excludes the direc-
tion transverse to the constraining manifold, and this is just the direction in which limit
cycles are found.

Applications. Systems with fast and slow variables are used in many fields of applica-
tions. For example, such systems arise naturally when a model includes processes that
evolve on different timescales; see Grasman (1987). We mention a few examples.

Models for nerve conduction often contain one variable describing a membrane po-
tential and a number of variables describing concentrations of, for example,Na+, K+,
andCa2+ ions. The potential typically varies much faster than the ionic concentrations.
Bertram, Butte, Kiemel, & Sherman (1995) give a mathematical classification of such
models from the perspective of bursting.

Other examples of physiological models with fast and slow variables can be found in,
for example, Segel (1987), who includes a discussion of models for thecAMPsignalling
system ofD.Discoideumamoebae; Chernavskii, Palamarchuk, Polezhaev, Solyanik, &
Burlakova (1977), who study a model describing lipid peroxidation in the cell division
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Fig. 1. Topological description of a singular Hopf bifurcation, viewed as a constrained system.
Shown is a sketch of the stable part of the slow manifold. Its boundary is represented by dashed
lines. The dot in the left two pictures represents an equilibrium point, which has fallen ‘over
the edge’ of the stable manifold in the right picture.

process; and Murray (1989), who gives many examples that are, or can be, scaled to such
a form.

Chemical models often involve fast and slow reaction processes. See for example
Petrov, Scott, & Showalter (1992), who carry out a numerical study of a model equa-
tion displaying singular Hopf characteristics. Koper & Gaspard (1992) analyze a three-
dimensional model for an electrochemical oscillator, which is an extension of an earlier
two-dimensional model due to Koper & Sluyters (1991).

Ecological models describing the interaction of a number of species may exhibit sin-
gular Hopf bifurcations, for example if the life cycles of some species are short compared
to others. In Section 6 we discuss an example. A classical field of application, which
dates back to van der Pol (1926), is the field of semiconductors. In a completely different
field, Cugno & Montrucchio (1983) study a macroeconomic model for business cycles
where one of the parameters (the accelerator, or rather, its inverse) can be considered a
small parameter. In all these examples, singular Hopf bifurcations occur at parameter
values relevant to the study of the underlying real system.

A different kind of application concerns the numerical study of bifurcations. Espe-
cially in systems depending on many parameters it is useful to have an idea of where
to look for interesting behavior, as this often tends to be confined to narrow regions.
Moreover, singularly perturbed systems are notorious for numerical difficulties, due to
stiffness problems caused by the small parameter. With our analysis it is both possible to
transform a system to a less stiff form (the normal form) and to find good starting points
in order to search for oscillatory behavior. Moreover, it might even be useful to intro-
duce an artificial small parameter in a system that in itself is not singularly perturbed, in
order to provide a starting point for a Hopf bifurcation analysis, and then eliminate this
parameter again by increasing its value to unity via a numerical continuation method.
This approach is known as thehomotopy method.

2. Eigenvalues with Singular Imaginary Parts

In this section we develop necessary and sufficient conditions for a family of matrices
to have eigenvalues with singular imaginary parts. Although the derivation of these
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conditions is essentially an exercise in linear algebra, we include it in full detail because
our further analysis depends on Proposition 1. We apply this result to (1) in order to
obtain a criterion for singular Hopf bifurcation.

First, we give a precise definition of an eigenvalue with singular imaginary part.

Definition 1. LetLε be a smooth family of square matrices, defined for 0< ε < ε0 with
ε0 some fixed (small, positive) number. We call the eigenvalueλ = λ(ε), λ = σ + iÄ of
Lε aneigenvalue with singular imaginary partiff σ = σ(ε) = O(1) and

Ä = Ä(ε)→∞ asε→ 0.

On the other hand, we call an eigenvalueλ = λ(ε) regular if λ = O(1) asε→ 0.
Our main goal in this section is to prove the following:

Proposition 1. Consider the family

Lε =
(
ε−1A ε−1B

C D

)
, 0< ε < ε0, (2)

of (n+1)-dimensional square matrices withε0 > 0 some fixed number and A∈ R, B ∈
R×Rn,C ∈ Rn ×R, D ∈ Rn ×Rn. Letλi = λi (ε),1≤ i ≤ n+ 1, be the eigenvalues
ofLε.

ThenLε has exactly two eigenvalues with singular imaginary part and n− 1 regular
eigenvalues if, and only if, the following two conditions are satisfied:

[S1] A = 0,

[S2] BC < 0.

Note thatLε has, in general, at least one eigenvalue with|λi | → ∞ asε→ 0, since∏n+1
i=1 λi = det(Lε) = O(1/ε).

Necessity of the conditions.Let us first assume thatLε has two (complex conjugate)
eigenvaluesλn, λn+1 = σ±iÄwith singular imaginary part andn−1 regular eigenvalues
λ1, . . . , λn−1. Then, using the fact that the sum of the eigenvalues of a matrix equals its
trace, we find (note that the singular imaginary parts±iÄ cancel)

2σ +
n−1∑
i=1

λi = ε−1A+ trace(D).

This equation can only be satisfied ifA = O(ε), which gives us condition [S1]. Next,
using the formula

n∑
i=1

n+1∑
j=i+1

λiλj =
n∑

i=1

n+1∑
j=i+1

Lii L j j − Li j L ji ,

for the sum of pairwise products of the eigenvalues ofLε = (Li j ), we find

Ä2+ 2σ
n−1∑
i=1

λi +
n−2∑
i=1

n−1∑
j=i+1

λiλj = ε−1A · trace(D)− ε−1BC+O(1),
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or εÄ2 + BC = O(ε), since we already know thatA = O(ε). Since by assumption
Ä → ∞ asε → 0, the above equation can only be satisfied ifBC < 0, which yields
condition [S2]. Thus we obtain, introducingω = √−BC, thatÄ = ω/

√
ε+O(√ε). This

completes the proof that the above conditions [S1] and [S2] are necessary for eigenvalues
with singular imaginary parts.

Sufficiency of the conditions.Next we show that the above conditions are not only
necessary, but also sufficient for the existence of eigenvalues with singular imaginary
parts. LetLε be a family of matrices of the form (2). Assume thatLε satisfies both
conditions [S1] and [S2], and letω2 = −BC. Then the characteristic polynomialp(λ) =
det(Lε − λI ) is given by

p(λ) = (−λ)n+1+ cn(−λ)n + ε−1
n−1∑
i=0

ci (−λ)i ,

with

cn = trace(Lε) = O(1),
cn−1 = ω2+O(ε),

ci = O(1), i = 0, . . . ,n− 2.

If we multiply p(λ) by ε, we obtainεp(λ) =∑n−1
i=0 ci (−λ)i +O(ε), which in the limit

ε → 0 becomes the(n− 1)-th order polynomial
∑n−1

i=0 ci (−λ)i . The roots of the latter
polynomial approximate (for small values ofε) the roots ofp(λ) corresponding to the
n− 1 regular eigenvalues ofLε.

On the other hand, if we multiplyp(λ) by (
√
ε)n+1 and substituteλ = 3/

√
ε, we

obtain

(
√
ε)n+1 p(3/

√
ε) = (−3)n+1+ ω2(−3)n−1+O(√ε).

In the limit ε→ 0, we findn−1 vanishing roots and two nonvanishing roots3 = ±iω.
For smallε, the nontrivial roots are perturbed to3 = O(√ε) ± i(ω + O(ε)). They
correspond to singular eigenvaluesλ = O(1)± i(ω/

√
ε +O(√ε)) of Lε.

Thus we have shown thatLε hasn−1 regular eigenvalues and two singular eigenvalues
if conditions [S1] and [S2] hold.

Remark. The above result can be extended somewhat by allowingA, B,C, and D to
depend onε (in a regular way). Condition [S1] then changes toA = O(ε). This extension
is useful when dealing withε-dependent right-hand sides in (1).

Equilibria with eigenvalues with singular imaginary parts. Let system (1) have an
equilibrium (x, y) = (x̄, ȳ) for the parameter valuea = ā. Then we say that this
equilibrium has eigenvalues with singular imaginary parts iff the Jacobian matrix

Lε =
(
ε−1 f̄x ε−1 f̄ y

ḡx ḡy

)
, (3)
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evaluated at the given equilibrium, has eigenvalues with singular imaginary parts in
the sense of the above definition. Here we use bars to denote derivatives, evaluated at
the given equilibrium. For example,̄fx denotes∂ f /∂x(x̄, ȳ, ā); the other notations are
analogous. From conditions [S1] and [S2] we know that(x̄, ȳ) has eigenvalues with
singular imaginary parts ifff̄x = 0, while f̄ yḡx < 0.

In Section 3 we take this approach as the starting point for the construction of a
normal form. TheO(1/

√
ε) size of the singular imaginary parts implies that the char-

acteristic timescale for oscillations in the corresponding eigenspace is alsoO(1/
√
ε).

This observation agrees with the timescaling in the normal form construction of Sec-
tion 3.

3. Construction of a Normal Form

3.1. Statement of the Result

In this section we derive a normal form for system (1), with a single fast variable, close
to a singular Hopf bifurcation. The precise result is as follows:

Theorem 1. Let U be an open subset ofR×Rn×R, and let f: U → R, g: U → Rn be
sufficiently smooth functions. Let(x̄, ȳ, ā) ∈ U be a point where the following conditions
on f , g, and their derivatives hold:

[N1] f̄ = 0,

[N2] ḡ = 0,

[N3] det

(
f̄x f̄ y

ḡx ḡy

)
6= 0,

[N4] f̄x = 0,

[N5] f̄ yḡx < 0,

[N6] f̄xx 6= 0,

[N7] − ( f̄xx f̄xy )

(
f̄x f̄ y

ḡx ḡy

)−1(
f̄a

ḡa

)
+ f̄xa 6= 0.

(As before, we use bars to denote the values of expressions, evaluated at the point
(x̄, ȳ, ā).)

Then the system

ε
dx

dt
= f (x, y,a), 0< ε ¿ 1,

dy

dt
= g(x, y,a), (4)
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can be put in the following normal form:

u̇ = v + 1
2u2+ δ F(u, w, α)+O(δ2),

v̇ = −u+O(δ2),

ẇ = δ H(u, w)+O(δ2), (5)

with δ = O(√ε) and u, v, α ∈ R, w ∈ Rn−1. The dots denote differentiation with
respect to the slow time variableτ = δ−1t . The functions F and H have the structure

F = αu+ Fuwuw + 1
6 Fuuuu

3, H = Hww + 1
2 Huuu2.

Their coefficients can be expressed in terms of derivatives of f and g at(x̄, ȳ, ā). The
matrix Hw is invertible. The normal form is valid for(x, y,a) = (x̄ + O(√ε), ȳ +
O(ε), ā+O(ε)).

Explicit expressions for the coefficients are given by

δ = ω−1√ε,
Fuw = ( f̄ yḡy + ω2 f̄ −1

xx f̄xy) Dk,

Fuuu = ω2 f̄ −2
xx f̄xxx+ ω−2 f̄ yḡyḡx + f̄ −1

xx ( f̄xyḡx + f̄ yḡxx),

Hw = Ck ḡy Dk,

Huu = Ck ( f̄ −1
xx ḡxx + ω−2ḡyḡx),

with

ω =
√
− f̄ yḡx,

Ck = 1k(1+ ω−2ḡx f̄y),

Dk = (1− ek f̄ −1
yk

f̄y)1T
k .

Here,1 denotes then-dimensional identity matrix and1k, resp.1T
k denote1 with thekth

row, resp., thekth column deleted.ek denotes thekth n-dimensional unit vector.k is any
integer between 1 andn for which ∂ f /∂yk 6= 0 at(x̄, ȳ, ā). The relation betweenα and
the original parametera is given by

α =
{
− ( f̄xx f̄xy )

(
f̄x f̄ y

ḡx ḡy

)−1(
f̄a

ḡa

)
+ f̄xa

}
A− ω−2 f̄ yḡyḡx, (6)

whereA, the (scaled) deviation from the starting pointā, is defined byA = (a− ā)/ε.
A formula for the inverse of the matrix of first derivatives, whenf̄x = 0, is(

f̄x f̄ y

ḡx ḡy

)−1

=
(
P Q
R S

)
,

with

P = −( f̄ yḡ−1
y ḡx)

−1, Q = − f̄ yḡ−1
y P, R = −ḡ−1

y ḡxP,

S = (1′ + ḡ−1
y ḡx f̄yP)ḡ−1

y = ḡ−1
y (1′ + ḡx f̄yḡ−1

y P),
where1′ denotes the((n− 1)× (n− 1)) identity matrix.
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Remarks. In this theorem, ‘smooth’ means at leastC4. If f andg are of a higher degree
of smoothness, then theO(δ2) terms in (5) inherit the same degree of smoothness, since
we only apply analytic coordinate changes to arrive at the normal form.

We do not give expressions for the transformation(x, y) → (u, v, w). If needed,
these expressions can be derived from the sequence of transformations below, because
all transformations are given by explicit formulas. Equation (8) gives the position of
bifurcating equilibria up toO(ε) when the proper value forA is substituted.

It is not absolutely necessary to specify the small parameter explicitly in order to
apply our theory. If it is known that one variable is significantly faster than the others,
the analysis can be carried out when the ‘fast’ variable is treated like thex-variable. Thus,
a rough estimate for the position of singular Hopf points, and even stability information,
may be obtained. Only formula (14) in Theorem 2 below, yielding a more accurate
approximation for Hopf points, requires explicit knowledge of the magnitude ofε. Even
the normal form can be constructed, for an unspecified value ofδ.

Normal forms usually are not unique. This is also the case for the above situation. One
alternative possibility is to replace the cubic term1

6 Fuuuu3 by a quadratic termFuvuv.
We comment on this modification at the appropriate place in the construction below.

In our notations we neglect the difference between scalars, row and column vectors,
and matrices. It should be clear from the context which is which. As a general rule, the
dimensions can be read off from the dimensions of the function (f or g) and its index
(x and/ory). For example,f̄xy is a 1× n-dimensional row vector.

In the case of a two-dimensional system (n = 1), the above normal form is also valid,
but there are now-variables and corresponding coefficients. The only coefficient that
remains isFuuu. From Theorem 2 below we obtain that its sign determines the type of
Hopf bifurcation in the two-dimensional case.

It is not necessary to restrict a priori to a single bifurcation parameter. Often in appli-
cations, a number of parameters can be considered as bifurcation (or control) parameters.
Then it may not be clear which parameter changes lead to bifurcations, and it is not nat-
ural to distinguish one specific parameter from the onset. It is straightforward to adapt
the analysis to a vector of parametersa ∈ Rp, p > 1. Note that the parameterα remains
a scalar, because Hopf bifurcation is a codimension-one phenomenon. Equation (6) still
definesα when making the appropriate changes (for example,A is now a vector), and
α becomes a linear combination of the components of the deviation vectorA. Hopf
bifurcations occur close to points whereα vanishes, or equivalently close to a(p− 1)-
dimensional hyperplane specifyinga-values. This hyperplane is a linear approximation
of the true bifurcation manifold.

The small parameterε also may be included in the right-hand side of (4). In the latter
case, the functionsf, g should be defined in a neighborhood ofε = 0, and the starting
point must be of the form(x, y,a, ε) = (x̄, ȳ, ā,0). This simple modification only
affects the first steps in the construction of the normal form. Essentially only formulas
(6), (8), and (10) and condition [N7] change. In each of these expressions anε-dependent
term should be included, which is identical to the corresponding(a, A) dependent term
with a replaced byε andA omitted (or replaced by 1).

It is relatively straightforward to extend the result of Theorem 1 to the case of more
than one fast variable. In Section 5 we discuss this extension.
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The conditions. Before we start the construction of the normal form, we briefly discuss
the meaning of conditions [N1]–[N7]. We emphasize that these conditions are very
mild. The only special condition is [N4] which, as we will see, enables us to find Hopf
bifurcation parameter values.

The meaning of the above conditions is shown by the following:

• Conditions [N1] and [N2] simply express that(x̄, ȳ) is an equilibrium of system (4)
for a = ā. Condition [N3] implies (via the implicit function theorem) that there exists
a smooth family of equilibria(x0(a), y0(a)) in a neighborhood of̄a. Furthermore, we
use condition [N3] to prove invertibility ofHw.
• Conditions [N4] and [N5] imply that the linearization of system (4) at equilibria close

to (x̄, ȳ) and witha close toā admits a pair of eigenvalues with singular imaginary
parts for sufficiently smallε, as discussed in Section 2.
• We need condition [N6] to carry out the basicε-dependent scaling transformations

for the normal form. If f̄xx vanishes, we have to use different scalings, yielding a
normal form without the quadraticO(1) term. Depending on the values of other
derivatives, differentO(1) terms may appear if̄fxx = 0, while theO(ε) part also
changes. Furthermore we use condition [N6] to obtain some simplifications in the
derivation of normal form 5.
• Condition [N7] implies that for the real partσ = σ(x̄, ȳ, ā) of the eigenvalues with

large imaginary parts we havedσda 6= 0 at (x̄, ȳ, ā). This condition is the counterpart
of the condition in the standard Hopf bifurcation theorem that the speed of crossing
the imaginary axis at a Hopf parameter point should be nonzero; see Marsden &
McCracken (1976) or Guckenheimer & Holmes (1983).
• A geometrical interpretation of conditions [N4] and [N6] is that the equilibrium(x̄, ȳ)

should lie on a fold of the slow curvef = 0.

3.2. The Construction

The construction of the normal form (5) consists of a sequence of simple steps. Each
of these steps has a single, well-defined goal towards further simplification of the sys-
tem. This approach is different from the classical algorithmic normalization approach,
where one successively removes terms of increasing degree, for example by Lie algebra
methods; see Guckenheimer & Holmes (1983).

The first stage in the construction of the normal form consists of a sequence of scalings
and linear transformations for a Taylor expansion of (4). Thus, we obtain a system with
a constant, parameter free,O(1) part. The key idea is to introduce a new variable, a
linear combination of the slow variables, which describes theO(1) dependence of the
fast variable on the slow variables.

Taylor expansion. We start by expandingf andg in Taylor series around(x, y,a) =
(x̄, ȳ, ā) as follows:

f (x, y,a) = f̄ y(y− ȳ)+ f̄a(a− ā)

+ 1
2 f̄xx(x − x̄)2+ f̄xy(x − x̄)(y− ȳ)
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+ f̄xa(x − x̄)(a− ā)+ · · ·
+ 1

6 f̄xxx(x − x̄)3+ · · · ,

g(x, y,a) = ḡx(x − x̄)+ ḡy(y− ȳ)+ ḡa(a− ā)

+ 1
2 ḡxx(x − x̄)2+ · · · . (7)

Note that the terms̄f , ḡ, and f̄x(x − x̄) are absent from this Taylor expansion because
of conditions [N1], [N2], and [N4]. The other omitted terms are not important in the
sequel, because they are at least of orderO(ε2) in the following scaling transformations.

Scaling the parameters and the variables.Since we want to study eigenvalues with
singular imaginary parts, we scale the parametera, motivated by the results in Section 2,
with

a = ā+ εA.

Now for all fixed A ∈ R, a unique point(x0, y0) = (x0(A, ε), y0(A, ε)) exists for
sufficiently smallε > 0 such that

f (x0, y0, ā+ εA) = 0,

g(x0, y0, ā+ εA) = 0.

This follows from condition [N3] by an application of the implicit function theorem. The
degree of smoothness of the functionsx0 andy0 is the same as the degree of smoothness
of f andg. An asymptotic formula for the position of the point(x0, y0) is(

x0

y0

)
=
(

x̄
ȳ

)
− ε

(
f̄x f̄ y

ḡx ḡy

)−1(
f̄a

ḡa

)
A+O(ε2). (8)

We want to ‘regularize’ the dynamics close to theA-dependent equilibrium(x0, y0) by
scaling thex, y, andt variables appropriately. Here, ‘appropriately’ means that for the
resulting system we require that

• the system is regular forε→ 0,
• the equations for the scaled variables contain as manyO(1) terms as possible.

This is the method of ‘significant degenerations’ or ‘distinguished limits,’ cf. Eckhaus
(1979). To apply the method we substitutex = x0 + εcx X, y = y0 + εcyY, t = εct T
with ci ≥ 0 in the Taylor series (7). We also writex0 = x̄ + εx1 + O(ε2), wherex1

represents the first-order term in the above formula (8) forx0. Thus, we obtain a system
of the structure

d X

dT
= ε−cx+cy+ct−1 f̄ yY + εct f̄xxx1X + εcx+ct−1 1

2 f̄xxX2+ · · · ,
dY

dT
= εcx−cy+ct ḡx X + εct ḡyY + · · · ,

where dots represent omitted terms that are, for all allowed choices ofcx, cy andct , of
higher order than the terms shown.
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To retain the maximum number ofO(1) terms we have to solve the system of in-
equalities

−cx + cy + ct − 1≥ 0, ct ≥ 0, cx + ct − 1≥ 0, cx − cy + ct ≥ 0,

while as many equalities (instead of inequalities) are satisfied as possible. On combining
the first and the last equation, we findct ≥ 1/2, so the second inequality can not be made
an equality. The remaining three equations, however, can be solved simultaneously by
cx = 1/2, cy = 1, ct = 1/2. Therefore, we scalex, y, andt by

x = x0+
√
εX,

y = y0+ εY,
t = √εT.

The equilibrium point(x0, y0) is thus fixed to the new origin(X,Y) = (0,0). The new
O(√ε) timescale is consistent with the characteristic timescale for singular oscillations
as found in Section 2.

Note that condition [N6] is essential for the above scaling. For example, iff̄xx = 0
while f̄xxx 6= 0, we findcx = 1/3, cy = 1, ct = 1/2. The corresponding normal form
has anO(1) part with a cubic term inX instead of a quadratic term and also different
‘small’ terms.

The scaled system.If we introduce the above scalings, together with the Taylor expan-
sions for f andg, in the basic system (4), we obtain

d X

dT
= f̄ yY + 1

2 f̄xxX2+√ε (α0X + f̄xyXY+ 1
6 f̄xxxX3)+O(ε),

dY

dT
= ḡx X +√ε (ḡyY + 1

2 ḡxxX2)+O(ε). (9)

Here we introduce the scaled parameter

α0 =
{
− ( f̄xx f̄xy )

(
f̄x f̄ y

ḡx ḡy

)−1(
f̄a

ḡa

)
+ f̄xa

}
A, (10)

which combines, in terms of the deviationA from the starting point̄a, all parameter
occurrences on theO(√ε) level. We essentially keep this parameter for the rest of the
paper, including the bifurcation analysis in Section 4. The only modification toα0 consists
in adding a constant in one of the following transformations.

The above formula again shows the importance of nondegeneracy condition [N7]: If
this condition is not satisfied, thenα0 vanishes identically, and our approach will (in this
form) not be successful.

Identification of a two-dimensional subsystem.The next two steps are crucial for the
further analysis, because they partition the system into two weakly coupled subsystems.
One subsystem is two-dimensional and has anO(1) timescale; the other system is(n−1)-
dimensional (in the first stepsn-dimensional) and has a slowO(1/

√
ε) timescale.
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Consider system (9) and observe that, on theO(1) lengthscale,dY/dT depends on
X only, whiled X/dT depends linearly on theY-variables. Hence, anO(√ε)-decoupled
two-dimensional subsystem can be isolated if we introduce a new scalar variableV by

V = f̄ yY.

This yields

d X

dT
= V + 1

2 f̄xxX2+√ε (α0X + f̄xyXY+ 1
6 f̄xxxX3)+O(ε),

dV

dT
= f̄ yḡx X +√ε f̄ y(ḡyY + 1

2 ḡxxX2)+O(ε),
dY

dT
= ḡx X +√ε (ḡyY + 1

2 ḡxxX2)+O(ε).

Notice that this system contains one superfluous variable, because we introduced the
new variableV . It is straightforward to remove one of theY-variables, using the fact that
f̄ y 6= 0. For the time being, however, we keep the extra variable, because this simplifies
the intermediate expressions. We postpone removal of the superfluous variable to the
final transformation.

Slowing down the remaining variables.Condition [N5] states that̄fyḡx < 0. Hence,
we may remove the zeroth–order term in the third equation through the transformation

W = Y + ω−2ḡxV,

where (cf. Section 2)

ω =
√
− f̄ yḡx.

We obtain the system:

d X

dT
= V + 1

2 f̄xxX2+√ε ( α0X − ω−2 f̄xyḡx XV

+ f̄xyXW+ 1
6 f̄xxxX3)+O(ε),

dV

dT
= −ω2X +√ε f̄ y(−ω−2ḡyḡxV + ḡyW + 1

2 ḡxxX2)+O(ε),
dW

dT
= √ε (1+ ω−2ḡx f̄y)(−ω−2ḡyḡxV + ḡyW + 1

2 ḡxxX2)+O(ε).

Here1 denotes then-dimensional identity matrix.
Thus,wehaveobtainedadecomposition in twosubsystems,where the two-dimensional

(X,V)-subsystem and then-dimensionalW-subsystem are only weakly coupled. For
later use (in the final transformation), we observe thatf̄ yW = 0.

Simplification of theO(1) part. Our next aim is to simplify theO(1) part of the above
weakly coupled system. It is possible to eliminate all parameter-dependence on theO(1)
level by using the scalings

X = ω f̄ −1
xx u, V = ω2 f̄ −1

xx v, W = ω2 f̄ −1
xx w, T = ω−1τ.
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For these scalings we need condition [N6]. We also introduce a new small parameterδ

by

δ = ω−1√ε.

Thus, we obtain

du

dτ
= v + 1

2u2+ δ (α0u− f̄ −1
xx f̄xyḡxuv

+ ω2 f̄ −1
xx f̄xyuw + 1

6ω
2 f̄ −2

xx f̄xxxu
3)+O(δ2),

dv

dτ
= −u+ δ f̄ y(−ω−2ḡyḡxv + ḡyw + 1

2 f̄ −1
xx ḡxxu

2)+O(δ2),

dw

dτ
= δ (1+ ω−2ḡx f̄y)(−ω−2ḡyḡxv + ḡyw + 1

2 f̄ −1
xx ḡxxu

2)+O(δ2).

Simplification of the O(δ) part. Now that we have simplified theO(1) part to a pa-
rameterless form, we focus on further simplification of theO(δ) part. In order not to
disturb theO(1) part, we have to restrict ourselves to near-identity transformations from
now on, where ‘near-identity’ meansO(δ) close to the identity. Our program consists of
three steps. First, we remove the linear term inv in the third equation, and we remove the
entireO(δ) part in the second equation. The main effect of these steps is that they linearly
decouple thew-variables from the(u, v)-variables (at least up to theO(δ2) level). This is
necessary for the center manifold computations in Section 4. We then proceed to remove
a term in the first equation and, finally, we remove the superfluous variable in the third
equation.

Linear decoupling of the subsystems.In order to remove thev-term in the third equa-
tion, we transformw to

w̃ = w + δ (1+ ω−2ḡx f̄y)ω
−2ḡyḡxu.

It is clear that this (near-identity) transformation removes thev-dependent term from
theO(δ)part of the third equation, while it only has anO(δ2)effect on the other equations.
A side effect of the transformation is that it creates a linear term inu in theO(δ2) part
of the third equation (and after the next transformation, also anO(δ3) linear term inw̃),
which did not contain linear terms before. This undesirable effect can be prevented by
anO(δ2) change inw̃, but since we neglectO(δ2) terms in the sequel we do not go into
the details.

To remove theO(δ) part in the second equation, we introduce

ũ = u− δ f̄ y(−ω−2ḡyḡxv + ḡyw̃ + 1
2 f̄ −1

xx ḡxxu
2),

and we modify the bifurcation parameterα to

α = α0− ω−2 f̄ yḡyḡx.
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This yields the system

dũ

dτ
= v + 1

2ũ2+ δ (αũ− (ω−2 f̄ yḡyḡx + f̄ −1
xx ( f̄xyḡx + f̄ yḡxx))ũv

+ ( f̄ yḡy + ω2 f̄ −1
xx f̄xy)ũw̃ + 1

6ω
2 f̄ −2

xx f̄xxxũ
3)+O(δ2),

dv

dτ
= −ũ+O(δ2),

dw̃

dτ
= δ (1+ ω−2ḡx f̄y)(ḡyw̃ + 1

2( f̄ −1
xx ḡxx + ω−2ḡyḡx)ũ

2)+O(δ2). (11)

Removing theuv-term. So far we have used fairly straightforward transformations to
transform (4) into a system with fixedO(1)-part and only six terms in theO(δ)-part. We
can remove one moreO(δ)-term, but this requires a less straightforward (near-identity)
transformation. We refer to Appendix A for the derivation of the transformation formulas.
We introduce

˜̃u = ũ+ 1
3δCuv(

1
2ũ2v − ũ2+ v2), ṽ = v − 1

3δCuvũv,

whereCuv = −(ω−2 f̄ yḡyḡx+ f̄ −1
xx ( f̄xyḡx+ f̄ yḡxx)) represents the coefficient of theũv-

term in the first of the previous system equations. Upon application of this transformation,
we obtain

d ˜̃u
dτ
= ṽ + 1

2
˜̃u2+ δ (α ˜̃u+ ( f̄ yḡy + ω2 f̄ −1

xx f̄xy) ˜̃uw̃

+ 1
6(ω

2 f̄ −2
xx f̄xxx+ ω−2 f̄ yḡyḡx + f̄ −1

xx ( f̄xyḡx + f̄ yḡxx)) ˜̃u3
)

+O(δ2),

dṽ

dτ
= −˜̃u+O(δ2),

dw̃

dτ
= δ (1+ ω−2ḡx f̄y)(ḡyw̃ + 1

2( f̄ −1
xx ḡxx + ω−2ḡyḡx) ˜̃u2

)

+O(δ2). (12)

Remark. It is a matter of taste to remove either theũv-term or theũ3-term. We have
chosen to remove thẽuv-term in order to obtain a system similar to the Bonhoeffer–van
der Pol equation (in Li´enard form), which is the prototype for two-dimensional slow/fast
systems. For some systems, however, it may be more natural to drop the cubic term. For
example, for chemical systems, the productũ · v often corresponds to a reaction term. If
we remove the cubic term instead of the product term, the˜̃uṽ-term will have the same
coefficient as the cubic term now has (without the factor 1/6), while all other coefficients
remain unchanged.

Final transformation. Finally, we remove the superfluous̃w–variable (recall that we
kept allY–variables when we introduced the additional variableV). We use condition
[N5], which implies thatf̄ yk 6= 0 for somek ∈ {1, . . . ,n}, to eliminate the corresponding
variablew̃k.
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From the observation above thatf̄ yW = 0, it follows that f̄ yw̃ = O(δ) since we
have only changedW through multiplication with a scalar coefficient and a near-identity
transformation. This relation permits us to expressw̃k in terms of the other̃w-variables
as

w̃k = − f̄ −1
yk

n−1∑
i=1(i 6=k)

f̄ yi w̃i +O(δ).

Hence, then-vector of thew̃-variables can, after elimination of̃wk, be expressed in
the(n− 1)-vectorŵ = (w̃1, . . . , w̃k−1, w̃k+1, . . . , w̃n) of the remaining variables as

w̃ = (1− ek f̄ −1
yk

f̄y)1T
k ŵ +O(δ).

Using this relation we eliminatẽwk from the right-hand sides in the above system
(12). Omitting the equation for̃wk (which is equivalent to multiplication of the right-
hand side of the last equation in (12) on the left by1k) and dropping the hats and tildes,
the system is in the normal form announced in Theorem 1 (dots denote differentiation
with respect to the time variableτ ):

u̇ = v + 1
2u2+ δ (αu+ Fuwuw + 1

6 Fuuuu
3)+O(δ2),

v̇ = −u+O(δ2),

ẇ = δ (Hww + 1
2 Huuu2)+O(δ2).

It is clear that no further terms can be removed on theO(δ) level. The parameterα
and the coefficientsHw determine the linear behavior of the(u, v) andw subsystems,
while the nonlinear stability of the(u, v) subsystem is governed byFuuu. The other two
coefficients,Fuw andHw, represent the coupling strengths.

It still is possible to simplify one or more of the coefficientsFuw, Hw, andHuu by
linear transformations ofw. For example,Hw can be brought in Jordan normal form, or
du/dτ can be made to depend on only onew-variable directly by introducing the scalar
coordinatew∗ = Fuww. We do not pursue this matter further, because determining the
most convenient simplification depends on the particular system under study.

Invertibility of Hw. The only part of Theorem 1 that remains to be proven is the invert-
ibility of Hw. This can be proven as follows.

The determinant of the Jacobian of (4) at the starting point(x̄, ȳ, ā) equals

ε−1 det

(
f̄x f̄ y

ḡx ḡy

)
.

The determinant of the Jacobian of the normal form (5) at the origin equalsδn detHw.
Since we have transformed (4) into (5) using only invertible transformations, both de-
terminants agree if we take the change of timet → τ into account, or

ε−1 det

(
f̄x f̄ y

ḡx ḡy

)
=
(

dτ

dt

)n+1

δn−1 detHw.
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If we evaluate the above expression using thatdτ /dt = δ−1 andδ = √ε/ω, we obtain

detHw = ω−2 det

(
f̄x f̄ y

ḡx ḡy

)
6= 0.

Hence,Hw is invertible.

4. Hopf Bifurcation Analysis

In this section we analyze the Hopf bifurcation in system (4). We make one further
assumption: The matrixHw in the normal form (5) has no elliptic part. Because this is
a generic assumption, it does not impose a severe restriction on our theory. Below we
briefly comment on the case whereHw also has an elliptic part.

For the analysis it is convenient to perform a further reduction of the normal form
using center manifold theory.

4.1. Reduction to a Center Manifold

If the matrix Hw in the normal form (5) has no elliptic part, system (5) is in the proper
format for a center manifold reduction, since the nonhyperbolic(u, v)-part and the
hyperbolicw-part are linearly decoupled.

The full computation of a center manifold is generally a considerable task. We are
satisfied, however, with a quadraticO(1) approximation, since this yields enough infor-
mation for the Hopf bifurcation analysis below. The center manifold can be expressed
as a graph (cf. Guckenheimer & Holmes (1983) or Kuznetsov (1996)),

w = 8(u, v, δ) = 1
28

0
uuu2+80

uvuv + 1
28

0
vvv

2+O(3)
+ δ ( 1

28
1
uuu2+81

uvuv + 1
28

1
vvv

2+O(3))+O(δ2),

whereO(3) represents cubic and higher-order terms inu andv. Actually, we do not need
theO(δ) terms in the bifurcation analysis. We do need, however, one of the quadratic
O(δ) terms to determine the quadraticO(1) part completely.

The determining condition for8 is that it satisfies the equatioṅ8 = δ(Hw8 +
1
2 Huuu2)+O(δ2), or

80
uuuv +80

uvv
2−80

uvu
2−80

vvuv + δ (81
uuuv +81

uvv
2−81

uvu
2−81

vvuv)

= δ (Hw(
1
28

0
uuu2+80

uvuv + 1
28

0
vvv

2)+ 1
2 H2

uu)+O(3)+O(δ2).

From inspection of theO(1) terms, it is clear that80
uv = 0 and that80

uu = 80
vv, but

their common value is not yet determined. In order to determine their value, we have to
go one step further in the expansion and consider the coefficients ofδu2 andδv2. For
these coefficients we find, respectively,

−81
uv = 1

2 Hw8
0
uu+ 1

2 Huu and 81
uv = 1

2 Hw8
0
vv,

and on adding these equations we obtain

80
uu = 80

vv = − 1
2 H−1

w Huu,
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such that the center manifold approximation reads

w = 8(u, v, δ) = − 1
4 H−1

w Huu(u
2+ v2)+O(3)+O(δ). (13)

The corresponding equations in the center manifold are (up to higher-order terms):

u̇ = v + 1
2u2

+ δ(αu+ (− 1
4 FuwH−1

w Huu+ 1
6 Fuuu)u

3− 1
4 FuwH−1

w Huuuv2),

v̇ = −u.

Remark. The above approach for computing a center manifold can also be applied when
the matrixHw has an elliptic part. The equations for the center manifold become more
complex, because we must incorporate a number ofw-variables, equal to the dimension
of the elliptic part. This dimension will always be even, becauseHw has no vanishing
eigenvalues.

4.2. The Hopf Bifurcation

The center manifold equations are in a form that enables us to apply a standard formula for
determining the type of Hopf bifurcation in two-dimensional systems. This formula can
be found in many textbooks dealing with nonlinear ODEs; see for example Guckenheimer
& Holmes (1983) or Kuznetsov (1996). If we combine this formula with previous results,
we have the following theorem.

Theorem 2. Consider system (4), satisfying the assumptions of Theorem 1 and the
additional assumption that the matrix Hw in the corresponding normal form (5) has no
elliptic part. Then system (4) undergoes, for sufficiently smallε, a Hopf bifurcation at
a = ā+ εA+O(ε√ε), where A is the solution of the equation{

− ( f̄xx f̄xy )

(
f̄x f̄ y

ḡx ḡy

)−1(
f̄a

ḡa

)
+ f̄xa

}
A = ω−2 f̄ yḡyḡx. (14)

This Hopf bifurcation is super(sub)critical if

1
2 Fuuu− FuwH−1

w Huu > (<)0. (15)

Remarks. In Theorem 2, ‘supercritical’ means that the bifurcation creates a stable limit
cycle for values ofA corresponding toα > 0 and ‘subcritical’ means that the bifurcation
creates an unstable limit cycle for values ofA corresponding toα < 0.

If the expression determining the stability type of the Hopf bifurcation vanishes, the
Hopf bifurcation is degenerate and cannot be studied using the current normal form,
because neglected higher-order terms come into play. Takens (1973) studies degenerate
Hopf bifurcations in a general setting.

Our stability formula in the above Theorem 2 agrees in the two-dimensional case with
formulas (2.27)–(2.28), obtained by Baer & Erneux (1986). Note that only theFuuu/2
term remains.
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If Hw has an elliptic part, the situation is degenerate. The center manifold equations,
obtained from the normal form (5), do not yield enough information to study this degener-
ate situation. For example, in the simplest case we need to study a so-called ‘Hopf-Hopf’
bifurcation on a four-dimensional center manifold; see Guckenheimer & Holmes (1983)
or Kuznetsov (1996). If we normalize the center manifold equations, however, the cubic
part appears to be degenerate and it is not possible to obtain bifurcation information. One
way to resolve this problem might be to compute the normal form (5) up to higher order,
but maybe a completely different approach is needed. In the higher-dimensional case,
we must also take resonances into account: This is not a problem in the four-dimensional
case, because one pair of eigenvalues isO(1), while the other pair isO(δ), such that no
(strong) resonances occur.

Alternative methods. There are other ways to obtain Hopf bifurcation information from
system (5) apart from the center manifold approach. We have checked that the following
approaches are feasible (and give the same results!):

• Express(u, v) in polar coordinates and average over the angular coordinate. We have
to carry out averaging up to third order and do some work to prove validity, since
standard textbook averaging theorems are not adapted to slow/fast systems.
• Kuznetsov (1996) gives a general formula (originally due to Howard & Kopell and

Diekman & van Gils; see the reference in Kuznetsov (1996)) for Hopf bifurcation in
finite dimensional systems. This formula requires as its main data eigenvectors and
conjugate eigenvectors at the bifurcating equilibrium.
• For δ = 0, system (5) is integrable and admits a family of closed orbits around the

stationary point at the origin. For smallδ we can construct an approximate Poincar´e
map. Its fixed points correspond to limit cycles.

The last approach, which uses a Poincar´e map, turns out to be particularly fruitful. It gives
lots of additional information on the orbit structure close to the bifurcating equilibrium,
for example on the shape of limit cycles, secondary bifurcations and transitional behavior.
We will devote a separate paper to this approach; see Braaksma (1993) for preliminary
results.

If only an approximation for the position of the Hopf bifurcation point is desired
(without stability information), it is not necessary to go through the full normalization
procedure. Formula (10) gives, withα equated to zero, a value forA and hence anO(ε)
correction for the starting valuēa. Formula (8) gives the correspondingO(ε) correction
for the position of the bifurcating equilibrium(x̄, ȳ).

It is also possible to compute asymptotic expansions for singular Hopf points directly
from thecharacteristicpolynomial of the linearizationmatrixof (4), although this requires
a considerable computational effort.

5. More than One Fast Variable

In this section we consider the modifications to the results of sections 2, 3, and 4, for
the case where system (1) has more than one fast variable. Most remarks made in those
sections remain valid.
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5.1. Eigenvalues with Singular Imaginary Parts

Suppose that, in the notation of Section 2,A is anm-dimensional square matrix instead
of a scalar, with the dimensions ofB and C changed accordingly. Now we trivially
obtain eigenvalues with singular imaginary parts whenA has imaginary eigenvalues.
Such eigenvalues, however, do not arise from the interaction of large and small entries
in Lε, unlike those we obtained in Proposition 1. Eigenvalues of the latter type (which
we will call nontrivial eigenvalues with singular imaginary parts) arise if, and only if,
the following generalized conditions hold:

[S1a] det(A) = 0,

[S2a]
∑m

i=1

∑n
j=1

∑m
k=1 bi j cjk det(Aik)(−1)i+k/

∑m
i=1 det(Aii ) < 0.

Here,bi j andcjk represent the entries ofB andC, and det(Ai j ) denotes the minor of
det(A), obtained when thei -th row and j -th column are deleted. The square root of
the negative of the left-hand side of formula [S2a] gives the coefficient of theO(1/

√
ε)

leading term of the nontrivial eigenvalues with singular imaginary parts. We omit the
proof of this generalization of Proposition 1. Apart from some cumbersome bookkeeping,
it is analogous to the original proof. Observe that conditions [S1a] and [S2a] reduce to
[S1] and [S2] whenm= 1.

A particular simplification arises when the matrixA is in Jordan normal form. Con-
dition [S1a] now implies that one of the diagonal entries ofA, say the lowermost (m-th)
one, vanishes and so all minors det(Ai j ) vanish, except for det(Amm). Hence, condition
[S2a] simplifies to

n∑
j=1

bmjcjm < 0,

which is essentially the same as condition [S2]. This simplified condition also holds
when a corresponding row and column (same index) inA vanish.

5.2. The Normal Form

It is possible to extend the result of Theorem 1 to the case of more than one fast variable.
The main difference is that the inclusion of additional fast variables introduces a third,
fast timescale ofO(1/

√
ε) in the normal form. The generalized theorem reads as follows.

Theorem 3. LetU be an open subset ofRm×Rn×Rand let f: U → Rm, g: U → Rn be
sufficiently smooth functions. Let(x̄, ȳ, ā) ∈ U be a point where the following conditions
on f , g, and their derivatives hold:

[N0a] The Jacobian matrixf̄x is in real Jordan form,

[N1a] f̄ = 0,

[N2a] ḡ = 0,
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[N3a] det

(
f̄x f̄ y

ḡx ḡy

)
6= 0,

[N4a] ( f̄m)xm = 0,

[N5a] ( f̄m)y ḡxm < 0,

[N6a] ( f̄m)xmxm 6= 0,

[N7a] − ( ( f̄m)xmx ( f̄m)xmy )

(
f̄x f̄ y

ḡx ḡy

)−1(
f̄a

ḡa

)
+ ( f̄m)xma 6= 0.

Then the system

ε
dx

dt
= f (x, y,a), 0< ε ¿ 1,

dy

dt
= g(x, y,a), (16)

can be put in the following normal form:

δ ξ̇ = E(u, ξ)+O(δ),
u̇ = v + 1

2u2+ δ F(u, w, α)+O(δ2),

v̇ = −u+O(δ2),

ẇ = δ H(u, w)+O(δ2), (17)

with δ = O(√ε) andξ ∈ Rm−1,u, v, α ∈ R, w ∈ Rn−1. The dots denote differentiation
with respect to the slow time variableτ = δ−1t . The functions E, F, and H have the
structure

E = Eξ ξ+ 1
2 Euuu2, F = αu+Fuξuξ+Fuwuw+ 1

6 Fuuuu
3, H = Hww+ 1

2 Huuu2.

Their coefficients can be expressed in terms of derivatives of f and g at(x̄, ȳ, ā). The
matrices Eξ and Hw are invertible. The normal form is valid in anO(√ε) neighborhood
of x̄m and in anO(ε) neighborhood of̄x1, . . . , x̄m−1, ȳ, ā.

Remarks. For the sake of simplicity, the assumptions in this theorem have not been
formulated to be as general as possible. In particular, the Jordan assumption [N0a] is
superfluous. Without this assumption, however, the formulation of conditions [N4a]–
[N7a] would become much more complicated. Moreover, a transformation off̄x, in
order to decouple the additional fast variables, would anyhow be the first step in the
construction of the normal form.

For a ‘general’ system (that is,̄fx is not in Jordan form), condition [N4a] changes to
det( f̄x) = 0, a condition that is easily tested. Hence, it is not difficult to check beforehand,
for a given system, whether it is worthwhile to putf̄x in Jordan form in order to compute
the above normal form.

The construction. Since the construction of the normal form for Theorem 3 is analogous
to that for Theorem 1, we only briefly sketch the relevant modifications.
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We can essentially copy the construction of Section 3.2, while keeping track of the
additional fast variables. We need to make some preparations, however.

First we have to consider the scaling of the variables. Them-th fast variable, which
corresponds to the vanishing eigenvalue, has to be scaled with

√
ε, like the single fast

variable in Section 3.2. The other fast variables, however, have to be scaled withε instead.
This is a consequence of the fact that the corresponding rows inf̄x do not vanish. The
slow variables have to be scaled withε, again like Section 3.2. The scaled system has
the structure (compare also (9)):

√
ε

dX̂

dT
= ̂̄f x̂ X̂ + ̂̄f yY + 1

2
̂̄f xmxm

X2
m +O(

√
ε),

d Xm

dT
= ( f̄m)yY + 1

2( f̄m)xmxm X2
m

+√ε (α0Xm + ( f̄m)xmx̂ XmX̂ + ( f̄m)xmy XmY

+ 1
6( f̄m)xmxmxm X3

m)+O(ε),
dY

dT
= ḡx Xm +

√
ε (ḡx̂ X̂ + ḡyY + 1

2 ḡxxX2
m)+O(ε), (18)

whereXm denotes the scaled fast variable, corresponding to the vanishing eigenvalue in

f̄x; X̂ = (X1, . . . , Xm−1) denotes the remaining scaled fast variables; andf̄m, ̂̄f denote
the corresponding right-hand sides.

After the system has been scaled, we have to (linearly) decouple the additional fast
variableŝX from the slow variables, while preserving the Jordan structure off̄x. This is
accomplished by the following linear near-identity transformation:

X̂ → X̂ −√ε (̂̄f x̂)
−2̂̄f yḡxm Xm − ε (̂̄f x̂)

−1̂̄f yY,

Xm → Xm,

Y → Y + ε ḡx̂(
̂̄f x̂)

−1X̂.

This transformation removes the linear termŝ̄f yY and
√
εḡx̂ X̂ from the scaled equations,

while modifying the term

√
ε ḡyY to

√
ε (ḡy − ḡx̂

̂̄f x̂
̂̄f y)Y,

and leaving the remaining three linear terms unchanged. Note that this transformation
also modifies some of the nonlinear coefficients.

After these preparations have been made, the construction of Section 3.2 can be
carried out without any difficulties. The additional fast variables are not involved in the
further transformations.

Explicit expressions for the coefficients of the functionsE, F , andH and the parameter
α can be obtained, as those in the single fast variable case were, by keeping track of the
effects of the transformations.
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The Hopf bifurcation. Extension of the results of Section 4 is straightforward. The
graph of a center manifold is given by

ξ = − 1
2 E−1

ξ Euuu2+O(3)+O(δ), w = 8(u, v, δ),

where8 is given by (13). This yields the following Hopf bifurcation theorem.

Theorem 4. Consider system (16), satisfying the assumptions of Theorem 3 and the
additional assumption that the matrices Eξ and Hw in the corresponding normal form
(17) have no elliptic parts. Then system (16) undergoes, for sufficiently smallε, a Hopf
bifurcation at a= ā+ εA+O(ε√ε), where A is the solution of the equation{

− ( ( f̄m)xmx ( f̄m)xmy )

(
f̄x f̄ y

ḡx ḡy

)−1(
f̄a

ḡa

)
+ ( f̄m)xma

}
A

= −( f̄m)ygygxm/( f̄m)ygxm. (19)

This Hopf bifurcation is super(sub)critical if

1
2 Fuuu− FuwH−1

w Huu− 3
2 Fuξ E−1

ξ Euu > (<)0. (20)

6. Examples

In this section we discuss two examples of systems (with one fast variable) exhibiting
a singular Hopf bifurcation. We also compare the asymptotic results, obtained from
application of Theorems 1 and 2, to numerical results.

Based on the results of the previous sections, we have the following useful criterion
for locating singular Hopf bifurcation points: One should search for Hopf points in the
neighborhood of equilibria wherefx vanishes, whilefygx < 0, or equivalently, solve
the set ofn+2 equationsf = 0, g = 0, fx = 0 and test if the obtained solutions satisfy
fygx < 0. The solution of this set of equations gives a rough approximation for the
position of the bifurcation point. After having computed the normal form coefficients
using Theorem 1, an application of Theorem 2 gives information on the type of Hopf
bifurcation and a better estimate for the position of the bifurcation point.

An extended Bonhoeffer–van der Pol system.Consider the system

εẋ = y1+ x − 1
3x3,

ẏ1 = y2− x,

ẏ2 = a+ by1− y2, (21)

with 0< ε ¿ 1 anda,b ∈ R. We consider the parametera as the bifurcation parameter,
while the secondary parameterb may take arbitrary values. This system is an extension
of the Bonhoeffer–van der Pol system. The latter system has been studied by several
authors as a prototype model for two-dimensional singular Hopf bifurcation and canard
behavior; see the references given in the introduction.
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We will look for equilibria that satisfy the conditions of Theorem 1. Putf (x, y,a) =
y1+ x− 1

3x3 andg(x, y,a) = (y2− x,a+ by1− y2). First we look for equilibriaf =
0, g = 0 where additionallyfx = 1−x2 vanishes. A straightforward computation shows
that±(1,−2/3,1) are the only such equilibria. Because the system is point-symmetric,
we can restrict to(1,−2/3,1). The corresponding parameter value isā = 2/3 b+ 1,
whereb ∈ R is arbitrary. This means that there is a one-parameter family of candidates
for singular Hopf bifurcation. The relevant partial derivatives at these points are

f̄x = 0, f̄xx = −2, f̄xxx = −2,

f̄ y = (1 0) , f̄xy = (0 0) , f̄a = (0 0) , f̄xa = (0 0) ,

ḡx =
(−1

0

)
, ḡy =

(
0 1
b −1

)
, ḡxx =

(
0
0

)
, ḡa =

(
0 0
1 −2/3

)
,

and (
f̄x f̄ y

ḡx ḡy

)−1

=
(b −1 −1

1 0 0
b 0 −1

)
.

It is easy to check that the conditions of Theorem 1 are satisfied, such that we can use
that theorem (we must takek = 1) to obtain the normal form

u̇ = v + 1
2u2+ δ (αu+ uw − 1

12u3)+O(δ2),

v̇ = −u+O(δ2),

ẇ = δ (−w − 1
2bu2)+O(δ2).

The bifurcation parameterα is defined by

α = −2A,

with A given bya = ā + εA. SinceHw = (−1) clearly has no elliptic part, Theo-
rem 2 gives the existence (for sufficiently smallε) of a Hopf bifurcation point atα = 0.
This point corresponds toa = 2/3 b+ 1+ O(ε√ε), whereb is arbitrary. The corre-
sponding equilibrium is given by(x, y1, y2) = (1,−2/3,1) + O(ε2), cf. (8). Stability
formula (15) yields that the bifurcation is supercritical forb > b0, subcritical forb < b0,
and degenerate forb = b0, whereb0 = −1/4+O(√ε).

Thus, we have found a line of Hopf bifurcations in the(b,a) plane. Forb > b0 we
find stable limit cycles below this line, and forb < b0 we find unstable limit cycles
above the line. Due to the symmetry, the reflection of this line in theb-axis is also a line
of Hopf bifurcations.

For b = 0 we have a special situation, since the equation forw decouples. On the
(hyperbolically attracting) invariant planew = 0 the system behaves exactly like the
two-dimensional Bonhoeffer–van der Pol system studied by several authors; see the
references in the introduction. This behavior includes the ‘canard’ explosion of the size
of the limit cycle in an exponentially small parameter region. Forb 6= 0 there is no such
explosion; the limit cycle grows more gradually, and more complex oscillations may
develop as well. We come back to this matter in a sequel to this paper.



482 B. Braaksma

Fig. 2. Hopf bifurcation values for (21) forb = 3/2 (upper points), 0 (middle), and−3/2
(lower). Plotted is log10 ε vs.a for the equilibrium close to(1,−2/3,1), for the range 10−4 <
ε < 1. The corresponding asymptotic values fora are (up toO(ε3/2)) 2, 1, and 0, respectively.
Crosses on the lowest curve mark equilibria with a positive third eigenvalue.

Fig. 3. Curve of degenerate Hopf bifurcation for (21). Plotted is log10 ε vs.b for the equilib-
rium close to(1,−2/3,1). The asymptotic value forb is−1/4.
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Fig. 4. Hopf bifurcation curves for (21),ε = 0.1. Plotted isb vs. a for both equilibria
±(1,−2/3,1). On the right, the bifurcation curves end in Bogdanov-Takens points (BT) at
(b,a) ≈ (10.92,±8.30). Degenerate Hopf bifurcation points (DH) are located at(b,a) ≈
(−0.271,±0.818). Both curves continue indefinitely to the left, and remain almost straight
lines.

Koper (1995) carries out a detailed numerical bifurcation study for a system similar
to (21) and finds a very complicated bifurcation structure close to the line of singular
Hopf bifurcation.

In Figures 2–4 we present numerical results for (21). These results were obtained with
the continuation packageLOCBIF. The agreement between the numerical experiments
and our asymptotic predictions is excellent. Note that for any fixed value ofε > 0, the
Hopf bifurcation curve in the(a,b) plane ends in Bogdanov-Takens points. At these
points, the Jacobian has a nilpotent part with two zero eigenvalues. A short calculation
shows that these points occur at equilibria corresponding to parameter valuesb = (1+√

1+ 4ε)/2ε,a = ±2/3 εb2
√
εb. This result is not in contradiction with our theory,

since botha andb are of orderO(1/ε) here, such that they2-equation is as fast as the
x-equation. Hence, the system is not of the form (1) anymore, and our theory does not
apply.

The lower curve in Figure 2, corresponding tob = −3/2, exhibits turning points atε =
2/3,a = ±1/3

√
3, x = ±1/

√
3. This turning point behavior is typical for negative values

of b and is associated with a vanishing third eigenvalue. At these turning points the Hopf
curve folds back on itself. Along the segment marked with crosses, the Hopf equilibrium
moves, via the origin and with a positive third eigenvalue, from the neighborhood of
(1,−2/3,1) to the neighborhood of(−1,2/3,−1) (for other values ofb < 0, this
would yield two asymptotically parallel lines and not two asymptotically coinciding
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lines). The combination of a zero eigenvalue with a pair of eigenvalues on the imaginary
axis gives rise of course to an additional degeneracy; see for example Guckenheimer &
Holmes (1983) or Kuznetsov (1996), and their references, for a discussion of the so-called
‘Fold-Hopf’ codimension-two bifurcation. It is easy to check that this combination of
eigenvalues implies thatε = −1/b. Hence, in the asymptotic limit, this codimension-two
bifurcation cannot occur close to singular Hopf points, just as with the Bogdanov-Takens
bifurcation.

A predator-prey model. Consider the system

εẋ = x P(x, y,a), x ∈ R, 0< ε ¿ 1,

ẏ = yQ(x, y,a), y ∈ Rn.

This is the basic structure for a predator-prey model, where a number of predators hunt
for the same prey. For more information we refer to the literature; see for example
chapter 3 in Murray (1989). The variablex represents the size of a prey population, and
the variablesy represent sizes of different predator populations, all feeding on the same
prey. The small parameterε expresses the fact that the life cycle of the prey species is
much shorter than that of the predators, which is a reasonable assumption, for example,
in the case of insect-eating birds.

To be more specific, we suppose that the growth rate functionsP andQ can be written
asP = P1(x,a) − P2(y) andQ = Q1(x) − Q2(y). Furthermore, we suppose that the
functionsP2, Q1, andQ2 are all positive (which is a standard assumption for predator-
prey models), and that the functionP1 is positive on an open set (but not necessarily
at x = 0). In the absence of predators (y = 0), the prey species will evolve until it
reaches an equilibrium point whereP1(x,a) = 0, or will become extinct. In the absence
of prey, all predators will become extinct. Hence, oscillations are only possible if there
is a nonzero population of prey and at least one predator species. We will investigate the
possibilities of singular Hopf bifurcation. According to condition [N4] in Theorem 1, we
should look for equilibria where∂/∂x(x P(x, y,a)) vanishes. If we exclude the trivial
equilibrium, this implies thatP′1(x̄, ā) = 0. Condition [N5] is always satisfied because
of the opposite signs ofP2 andQ1, and condition [N6] translates toP ′′1 (x̄, ā) 6= 0. The
other conditions may fail for someP andQ of the given type, but since these conditions
are generic they will be satisfied for ‘most’ choices. From this knowledge we conclude
that singular Hopf bifurcation is possible for genericP andQ (of the given type) only
if the functionP1 is not monotonous. Nonmonotonicity ofP1 is related to the so-called
Allee effect. Such models typically exhibit a threshold phenomenon; see Murray (1989)
for a discussion.

We restrict the class of models even further and suppose thatP1 is a quadratic func-
tion, P2, Q1, and Q2 are linear andQ2 is a diagonal matrix (which means that there
are no interactions between the predators other than their competition for the same
food resources). After a rescaling of the variables and parameters, we may assume
that P1(x,a) = −x2+ 2x + a, P2 = (p1y1+ · · · + pnyn), Q1 = (q1x, . . . ,qnx)T , and
Q2 = diag(ri + yi ), wherea > −1 is the bifurcation parameter andpi ,qi , ri ,1≤ i ≤ n,
are positive constants withqi > ri .

For singular Hopf bifurcation purposes we seek an equilibrium whereP′1 vanishes. The
only equilibrium where all̄y-values are positive (a zerōyi -value amounts to a dimension
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reduction) isx̄ = 1, ȳi = qi − ri , ā = −1 +∑n
i=1 pi ȳi . A tedious calculation, for

which a computer algebra package is useful (we used MAPLE) gives the normal form
coefficients of Theorem 1 as (we tookk = n, but any value is allowed)

Fuw = p̂, Fuuu = −ω2+0, Hw = −R+ω−2q̂ p̂, Huu = ω−2(−R+0)q̂,
and the bifurcation parameterα relates to the scaled parameterA = (a− ā)/ε via

α = −2S−1A− 0,
whereω2 =∑ pi qi ȳi ,0 =

∑
pi qi ȳ2

i /
∑

pi qi ȳi , S=∑ pi qi , R= diag(ȳ1, . . . , ȳn−1),
p̂ = (p1(ȳ1 − ȳn), . . . , pn−1(ȳn−1 − ȳn)), andq̂ = (q1ȳ1, . . . ,qn−1ȳn−1)

T . Sums are
taken over the range 1≤ i ≤ n. The special structure of the functionsP and Q
enables us to show that, apart from one pair of complex conjugate eigenvalues close
to the imaginary axis withO(1/ε) imaginary parts, all other eigenvalues of the system,
linearized at(x̄, ȳ, ā), are real and negative. This follows easily from inspection of the
characteristic equation, written in the form(ελ +∑ pi qi ȳi /(ȳi + λ))

∏
(ȳi + λ) = 0,

since all constants in this equation are positive.
Hence, an application of Theorem 2 gives a singular Hopf bifurcation ata = ā −

1
2εS0 + O(ε√ε). The corresponding center manifold is attracting. The stability for-
mula (15) reads

− 1
2ω

2+ 1
20 −

1

Sω2

n∑
i=1

n+1∑
j=i+1

pi qi pj qj (ȳi − ȳj )
2.

The Hopf bifurcation is supercritical (subcritical) if the above expression is positive
(negative). Due to the large number of parameters, it is not easy to determine the stability
type of the Hopf bifurcation, but for any given numerical values this computation is a
straightforward exercise.

A particular simplification arises when all predator equilibrium populations have the
same size,̄yi = ȳ0. The stability formula then simplifies to12 ȳ0(1− S), such that stable
(unstable) oscillations occur forS = ∑

pi qi < (>)1. Note that bothFuw and Huu

vanish in this case, such that the(u, v)-andw-subsystems in the normal form decouple
and the situation is essentially two-dimensional. A perturbation argument shows that for
ȳi = ȳ0 + ηi , with |ηi | small, the stability type of theηi = 0 situation persists. This
implies that both super- and subcritical Hopf bifurcations are possible when theȳ-values
are not identical.

For the numerical experiments (again performed withLOCBIF), we used a different
simplification in order to reduce the number of parameters. We took a three-predator
(n = 3) system and fixedr1 = 1.2, r2 = 1.0, r3 = 0.8. Furthermore, we took allp- and
q- values equal top0 andq0, respectively. This leaves us four parameters—ε, a, p0, and
q0—to play with.

In Figure 5 we present a comparison between asymptotic and numerical results. On
the log-log scale it is clearly seen that the agreement is excellent. Even for the not-so-
small value ofε = 1, the error is within ten percent. Based on the slope of the curve, it
appears that the error decays likeε2 instead ofε

√
ε.

In Figure 6 we present an asymptotic curve and numerical values for the position of
degenerate Hopf points. Keeping the other parameters fixed, we letp0 andq0 vary and
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Fig. 5. Plot of the accuracy of asymptotic predictions for Hopf bifurcation for the predator-prey
system. Plotted (on logarithmic scales) are the differences1a between asymptotic and numerical
values for 10−2.5 < ε < 1. Parameter values arep0 = 0.25,q0 = 1.5, r1 = 1.2, r2 = 1.0, r3 =
0.8. The asymptotic value fora is a = −0.625− 0.31125ε +O(ε3/2).

computed the corresponding Hopf bifurcation value fora. The agreement is again good.
The asymptotic formula for the degenerate Hopf bifurcation curve, which is obtained by
equating the stability formula above to zero, readsp0 = ((q0−1)2−2/75)/(3q0(q0−1)2).
Note that both curves end at(q0, p0) = (1.2,0.0926), because thēy1 equilibrium value
here crosses the zero axis and assumes “impossible” (negative population) values.

Appendix A A Transformation to Simplify (11)

In this Appendix we describe a method to find a transformation which removes theuv-
term in (11). We perform the calculations for a reduced(u, v) subsystem only, omitting
theα- andw-dependent terms. It is easy to check that these terms are not affected by
transformations of the class (24). Consider the system

u̇ = v + 1
2u2+ δ(Cuvuv + 1

6Cuuuu
3)+O(δ2),

v̇ = −u+O(δ2). (22)

We seek a transformation that removes theuv-term without affecting theO(1) part
or introducing newO(δ) terms. As before, we do not bother about creating additional
higher-order terms. The resulting system should have the structure

˙̃u = ṽ + 1
2ũ2+ δ( 1

6C̃uuuũ
3)+O(δ2),
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Fig. 6. Curve of degenerate Hopf bifurcation for the predator-prey system. Plotted are both
asymptotic and numerical values forq0 vs. p0. The corresponding values fora are not shown.
Parameter values areε = 0.01, r1 = 1.2, r2 = 1.0, r3 = 0.8. The Hopf bifurcation is
supercritical below and subcritical above this curve. The curves end atq0 = 1.2, whereȳ1

vanishes.

˙̃v = −ũ+O(δ2). (23)

Furthermore, we want an explicit (finite) expression for the transformation, and not just a
formal series expansion. Therefore we restrict to a class of polynomial transformations.
We consider transformations of the form

ũ = u+ δ
K∑

k=0

φk(v)u
k,

ṽ = v + δ
L∑
`=0

ψ`(v)u
`, (24)

whereφk, ψ` are polynomials inv andK , L are positive (finite) integers.
The result of introducing this near-identity transformation in system (23) is (always

summing over the obvious index variable and range)

u̇(1+ δ
∑

kφkuk−1)+ v̇(δ
∑

φ′kuk) = v + δ
∑

ψ`u
`

+ 1
2u2+ δu

∑
φkuk + δ( 1

6C̃uuuu
3)+O(δ2),

u̇(δ
∑

`ψ`u
`−1)+ v̇(1+ δ

∑
ψ ′`u

`) = −u− δ
∑

φkuk +O(δ2).

If we use (22) to substitute foṙu and v̇, we find that theO(1) terms cancel, while the



488 B. Braaksma

O(δ) terms read

(v + 1
2u2)

∑
kφkuk−1− u

∑
φ′kuk + Cuvuv + 1

6Cuuuu
3

=
∑

ψ`u
` + u

∑
φkuk + 1

6C̃uuuu
3, (25a)

(v + 1
2u2)

∑
`ψ`u

`−1− u
∑

ψ ′`u
` = −

∑
φkuk. (25b)

From these equations we try to determine a suitable transformation of the form (24).
First we determine the value ofL. The highest-order term inu on the left-hand side

of (25b) is( 1
2 LψL − ψ ′L)uL+1. SinceψL is a nonzero polynomial (by assumption), this

term cannot vanish and hence must equal the highest-order term on the right-hand side,
−φK uK , which implies thatL = K − 1.

Next we determineK . It can be shown easily thatK 6= 2 leads to a contradiction.
For example, ifK > 2, the equation for the highest-order coefficients inu in (25a)
reads1

2 KφK − φ′K = φK . The only polynomial solution of this equation isφK = 0,
which is impossible since (by definition) the highest-order coefficient does not vanish.
We omit the simple arguments showing that the casesK = 0 andK = 1 also lead to
contradictions. ForK = 2 the situation is different. TheφK -terms in the equation for the
highest-order coefficients cancel, and we must take additional cubic terms into account.
The resulting equation for theu3 terms reads−φ′2+ 1

6Cuuu = 1
6C̃uuu. It admits solutions

of the formφ2 = 1
6(Cuuu−C̃uuu)v+c1. The coefficientC̃uuu and the integration constant

c1 are as yet undetermined.
Thus, we haveK = 2, L = 1, and it remains to determine the coefficients ofφ2 and

the polynomialsφ0, φ1, ψ0, ψ1. These polynomials satisfy the following set of equations,
which is obtained when we collect terms with equal powers ofu in (25a) and (25b),

1
2φ1− φ′1 = φ1, (26a)

2vφ2− φ′0+ Cuvv = ψ1+ φ0, (26b)

vφ1 = ψ0, (26c)
1
2ψ1− ψ ′1 = −φ2, (26d)

− ψ ′0 = −φ1, (26e)

vψ1 = −φ0. (26f)

These equations actually constitute two independent subsystems. Equations (26a),
(26c), and (26e) can be solved simultaneously forφ1 andψ0. They only admit the trivial
solutionφ1 = ψ0 = 0. Equations (26b), (26d), and (26f) can be solved forφ2, φ0, and
ψ1. The unique solution is

φ2 = 1
6Cuvv − 1

3Cuv − 1
2c2,

φ0 = 1
3Cuvv

2− c2v,

ψ1 = − 1
3Cuvv + c2,

wherec2 is a new integration constant. Becausec2 affects linear terms and we do not
want to change the linear part, it is necessary to putc2 = 0. A comparison with our
previous result forφ2 yieldsC̃uuu = Cuuu− Cuv andc1 = 1

3Cuv.
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To summarize, the desired transformation (24) reads

ũ = u+ 1
3δCuv(

1
2u2v − u2+ v2), ṽ = v − 1

3δCuvuv,

and the new coefficient for the cubic term isC̃uuu = Cuuu− Cuv.

Remark. Using a similar approach, it is possible to remove theu3-term in (22) instead
of theuv-term. In that case, the coefficient for theuv-term in the resulting system will
beC̃uv = Cuv − C̃uuu.
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