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Summary. For systems with symmetry (or more generally, systems with invariant sub-
spaces) itis possible to find robust heteroclinic cycles with multi-dimensional connecting
manifolds.

Motivated by a problem of rotating convection with low Prandtl number, Swift and
Barany [23] considered generic Hopf bifurcation with tetrahedral symmetry. In this
situation it is possible to get bifurcation from a steady state directly to a homoclinic cycle
with atwo-dimensional set of connections. We numerically investigate the dynamics near
such cycles.

We conjecture that if a heteroclinic cycle is asymptotically stable then all connections
corresponding to the most positive expanding eigenvalues of the linearisation at the
fixed points will generically form part of an attractor. This attractor may fail to be
asymptotically stable and is, to our knowledge, the first example of this for a homoclinic
(as opposed to a heteroclinic) cycle. We prove this conjecture for homoclinic cycles with
distinct real expanding and contracting eigenvalues, and present evidence to support it
for other cases. An example due to Kirk and Silber [15] (two competing cycR$vith
(Z»)* symmetry) is discussed and continua of connections are found in this example.
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1. Introduction

Heteroclinic behaviour is an important mechanism for creating intermittent behaviour in
nonlinear systems. For systems with symmetry, there can be a network of dynamically
invariant subspaces which cause the dynamics to possess such heteroclinic cycles in
a robust manner, provided that the connections between the fixed points respect the
invariant subspaces in a certain way. The structural stability of these cycles in such
systems has been cited as possibly causing intermittent complex dynamics in several
physical systems, notably rotating convection [4].

Until now, a major emphasis has been to understand the dynamics and stability of
robust heteroclinic cycles with one dimensional connections. However, heteroclinic cy-
cles with two or more dimensional manifolds can also be robust, and as we discuss in
Section 2 there are new aspects of cycles that need to be considered, in particular their
closedness.

To motivate our investigation, we consider an example of Hopf bifurcation with
tetrahedral symmetry, originally investigated by Swift and Barany [23] as a model for
the onset of convection at low Prandtl number in a rotating fluid layer. The rest of the
paper is organised as follows: In Section 2 we defirreeteroclinic chaina chain of
connections between equilibria, andheteroclinic cyclewhere the connections imply
a cyclic ordering of the equilibria. Although continua of homoclinic connections are of
infinite codimension in systems without symmetry, they can be robust (i.e., codimension
zero) in systems with symmetry.

In Section 3 we focus our attention on homoclinic cycles. We conjecture that if the
cycle is asymptotically stable then the unstable manifold corresponding to the most
positive eigenvalues determines a subset that is a Milnor attractor, i.e., a subset that
attracts a large measure set of nearby points, but this attractor is not Liapunov stable. In
other words, we conjecture that generically a subset of the continuum of connections will
be observedo have attracting behaviour. This conjecture is proved for some classes of
homoclinic cycles where the expanding and contracting eigenvalues are real and distinct.
We give an example with complex expanding and contracting eigenvalues where almost
all nearby points have-limit sets containing the whole two-dimensional homoclinic
cycle. Moreover, in this case they visit the connections in a uniformly distributed manner.

In Section 4 we discuss some examples. In Section 4.1 we investigate the dynamics of
the local return map. In Section 4.2 we discuss an example of a heteroclinic cycESwith
symmetry given by Kirk and Silber [15]. We show that there are continua of connections
in addition to the ones they have discussed. Section 5 discusses some generalisations
and open problems.

1.1. Generic Hopf Bifurcation with Tetrahedral Symmetry

Swift and Barany [23] noticed that rotating planar convection with low Prandtl number
can undergo Hopf bifurcation with tetrahedral symmetry, if one restricts examination to
the interaction of three standing waves at<lafgles to each other.

The bifurcation displays a variety of interesting dynamical behaviour. Swift and
Barany show that there can be bifurcation from a steady state directly to chaotic dy-
namics in certain generic (i.e., codimension one) Hopf bifurcations.
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Using invariant theory to construct a normal form, they show that generic Hopf
bifurcation with the symmetry of a tetrahedr@n(i.e., the group of rotations that map
aregular solid tetrahedron onto itself) is locally governed by a third-order normal form
equation forz = (zy, 22, z3) € C3 with T x S' symmetry given by

=20 (M + y12? + onl22|® + sl 28|%) + 21 (BnZ5 + BsZ3) (1)

where|z|? = |z,|2+|2,|2+|z3|2. The other two equations are found by cyclic permutation
of the subscripts. This commutes with a group actiof of St given by

Z - Cz= (2,23, 1),
z - Rz= (Zla —2y, _23)’
z > 0z=¢"z

The group elements andR generatd while the phase shifsgeneraté&'. The normal
form (1) has six complex coefficients; y, an, as, Bn, andgs; the real part oh is the
bifurcation parameter. We write = Ag + iA|, etc., to denote the real and imaginary
parts of the parameters.

Swift and Barany [23] reduce (1) to an ODE in four dimensions by taking a quotient
by S* to reduce it to a steady-state bifurcation problem. They note there can be an
invariant sphere on which the dynamics occur. We follow their approach, and so relative
equilibria correspond to periodic orbits of the original system. SinceStreymmetry
is a normal form symmetry, one should be aware that the original dynamics will have
broken symmetry and this will perturb what we describe here. We shall not discuss this
issue in any detail but refer the reader to [10, p. 313] for a discussion of some related
issues.

There are three fixed point spaces of two (real) dimensions forced by the action of
the symmetry group:

Fix Y1 = (7, 0, 0), Fix o= (O, Z7, 0), Fix 3= (0, 0, Z3).

For A\ > 0 andyr < 0, within each subspace F;, there are fixed points, e.g.

£ = (21,0,0) for |z12 = —ARrlyr With &, & similarly defined. Thesé; are on a
single group orbit. We study homoclinic cycles between this group ortst-oélative
equilibria.

There are also three fixed point spaces of four (real) dimensions given by
Fix A1 = (Zl, Zy, 0), Fix Ao = (O, Zy, Zg), Fix Az = (Z]_, O, 23).

These have three (real) dimensions in the orbit space. Note that;Figntains bott;
andg;+1. There are other fixed point spaces that do not concern us here; see [23].

The eigenvalues of the relative equilibritgnare as follows: One eigenvalue in the
direction oft Fix A; N Fix Az is —2xg; this is negative. The remaining eigenvalues in
Fix A1 have sumay,)g and producton,|? — | 8|2 while those in FixAs have sumas)r

1 By “direction of an eigenvalue” we refer of course to the corresponding eigenspace.
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Table 1. Parameter values for the simulations of homoclinic cycles in the tetrahedral Hopf bifur-
cation.A = 1 andy = —1 are fixed and the contracting and expanding eigenvalues of the fixed
points tangent to the cycle are shown. The “Figure” column refers to the illustrations in Figure 1.

an as Bn Bs Contracting Expanding Figure
0.8+ 05 —1-5i 052 0 —145i 0.9428 0.6572 (i), (i)
0.3+ —0.65— 0.5i 0 06 —-0.9816 —0.3183 03 i (iii)
0.65+ 0.5 —09+0.5 051 049 —0.94+0.099 0.7505 0.5495 (iv)

and productas|?> — |Bs|?. By specifying the coefficients arbitrarily we can place these
eigenvalues as we wish.

Swift and Barany recognised that for open regions in the space of normal-form coef-
ficients, one can get bifurcation directly to a set of thEéaelative equilibria robustly
connected by thre®!-orbits of two-dimensional manifolds. By choosing the parameters,
it is easy to make this union of 2-manifolds asymptotically stable.

The question we address is: What are #himit sets in the case that this set is
asymptotically stable? In the case of an asymptotically stable homoclinic cycle which
is a union of one-dimensional connections there are only a finite number of possible
w-limit sets, but if the connections are on two-dimensional manifolds, the possibilities
are uncountable. To get some idea of these possibilities, we report on some numerical
experiments.

Numerical simulations. For the parameter values shown in Table 1 we have performed
simulations using the progradstool [14]. The column headed “Figure” refers to the
trajectory shown in Figure 1. To remove the group orbit given by the actidn »fS*

we use a projection onto the complex plane defined by Swift and Barany (they call this
H]_):

M1(2) = 3((@12)? + (2223) + (z321)?) /12|*.

The projectionlT corresponds to a projection of the orbit sp&%(T x S') onto C.
Figure 1 shows some typical simulations for this systemin cases where there are attracting
homoclinic cycles. (i) shows an irregular-looking transient apparently converging to
the single connection (in the orbit space), namely (ii). Figure (iii) shows a trajectory
converging apparently to the whole of the cycle, while (iv) shows an attractor for another
case of complex contracting and real expanding eigenvalues.

In general, we have observed thaiswlated connectiowithin the continuum attracts
most initial conditions if the expanding eigenvaluesrasd whereas the two dimensional
set of all connectiongs an attractor if the expanding eigenvalues eoenplex We
conjecture that this is generically the case. For the case of real and distinct expanding
and contracting eigenvalues we present a proof, and show that it is possible to have an
attractor which is the whole cycle if both expanding and contracting eigenvalues are
complex.
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(iii) (iv)

Fig. 1. Examples of trajectories evolving towards asymptotically stable homoclinic cycles with
two-dimensional sets of connections for the tetrahedral Hopf bifurcation. The projection of tra-
jectories byIT are shown, and each bounding box corresponds to the squér25 0.25] +
i[—0.25, 0.25]. The parameter values are shown in Table 1. (i) Shows a transient converging to the
attracting cycle shown in (ii). (iii) and (iv) correspond to behaviour after transients have apparently
decayed. In this projection, the group orbit of the fixed points are all projected onto the origin. In
all cases there exists a closed one-parameter continuum of homoclinic connections.

2. Definitions

Consider a finite Lie groufy acting smoothly on a smooth manifoM.? For ¥ an
isotropy subgroup of”, we defineMyx to be the manifold of all points itM with

2IfdimT" > 1 we can examine the orbit spablT’g and restrict to a connected stratum of this. In this way
we can restrict to the action of a finite group on a manifold. The example of Section 1.1 can be handled this
way, because the cycle in question lies in the trivial stratum for the actiGh of
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isotropy equal taz (a subset of Fixx2). Flows onM equivariant under the action of
leave eaciMy, invariant. Let

x=f(Xx) 2

be an ODE withC*> equivariant vector field, and let2°(M) be the class of all such
with the topology ofC> convergence on compact sets.

ConsiderasdE = {£&,, ..., &} of hyperbolic equilibria of (2). The stable and unstable
manifoldsW3(&) andW"(¢) of & € E are defined in the usual way. There is a graph
naturally defined ork as follows:

Definition 1. The directed grapls (E) with verticesE is defined as having an edge
fromé& € Eto§ € E for each nonempty

Cij = WH(E) NWEE) \ (&, &)
Suchatrajectory i€;; is called aconnecting orbiandC;; is called the set afonnections

Note that diniC;;) > O if it is nonempty; we do not assume thag . A directed
graphG(E) is transitiveif there is a directed path between any pair of pointEirt is
cyclicif it is transitive and each vertex has unigue edges entering and leaving it.

Definition 2. If G(E) is transitive then we define theeteroclinic chain

HE) = | W'G)nWoE)
(& .§)eE

of all links between equilibria irE. Often there is a nontrivial’-action onH (E);
because of this we consider the quoti&E) = G(E)/T" by identifying vertices and
connections on the same group orbit$GIfE) is a cyclic graph then we say that(E) is
aheteroclinic cyclelf G(E) has a single vertex then we c#ll(E) ahomoclinic cycle

Such a heteroclinic chaihl (E) is said to beobustif for all ¢ > 0 there exists a
neighbourhood\, of f in X°(M) such that eacly € N, has a set of fixed points,

E = {01, ..., n} and a heteroclinic chaihl (E) with

@ & —nill <e,
(b) Cj; is equivariantly diffeomorphic t€;; for any pair(, j).

There may in fact be an infinite number of connections (this occurs in a system
investigated by Guckenheimer and Worfolk [13]), but we will assume that this is not the
case.

Attractors. There is a fair amount of debate over what definition of an attractor is most
useful. The strongest definition usually used is asymptotic stability, but previous work on
heteroclinic cycles (notably Melbourne’s concepestential asymptotic stabilif§9])

and other dynamics in invariant subspaces (e.g., [1]) suggests that this is too strong for
some uses. We use the definition of Milnor [21]; between these there are a variety of
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definitions, see for instance [19], [17], [18], [3], [15]. We use Milnor’s definition even
though what we prove will be stable in a stronger sense; the examples of Brannath [3]
and Kirk and Silber [15] have heteroclinic cycles that are Milnor attractors but are not
essentially asymptotically stable.

Definition 3. A compact invariant se§ is a (Milnor) attractor if its basin B(S) =

{x: w(X) C S} has positive Lebesgue measure. It im@mimal attractorif there is no
proper compact invariant subset with basin equ#l(8) up to a set of Lebesgue measure
zero.

2.1. Robust Heteroclinic Chains

As shown by dos Reis [22], Field [7], and Guckenheimer and Holmes [12] among others,
the invariant subspace structure caused by a group action can cause heteroclinic chains
to be robust (for a review of such behaviour, see [16]). If all connections are robust
within invariant subspaces, they cannot be broken by perturbations that preserve the
invariant subspaces. Notably, if the connections are of the form saddle-sink or source-
saddle when restricted to the invariant subspace, they will be robust. We consider the
following hypotheses:

(H)

(a) For any nonempty connectid@); there exists an isotropy subgroap such that
Ci; C Mg, i.e., all trajectories ilC;; have the same isotropy.

(b) For anyX in (a),&; is a sink for the flow restricted to Fig), i.e., dimWs(§) N
My) = dim Ms.

(c) H(E) contains all unstable manifolds of pointskn

(d) The eigenspaces tangentGg andC;; at&; C Fix A; lie within a single isotypic
component ofA;.

Note that (H) can be broken in a variety of ways. If (Ha) is not satisfied then the
connectiorC;; contains connections of more than one isotropy type (an example where
this is the case is discussed in Section 4.2). If (Hb) or (c) are not satisfied, it is still
possible to have robustness of connections, e.g., between two fixed points that are both
saddles withinMy, as long as the connections dretransverse (see Field [6], [7],

[8], [9]), necessarily meaning than difV" (&) N My) + dim(W5(&;) N My,) is larger

that dim(My). Heteroclinic chains subject to assumptions (H) are robust to equivariant
perturbations. (Hc) implies among other things that there are no unstable eigenvalues in
directions that are transverse to the heteroclinic cycle. (Hd) effectively means that there
are no further constraints caused by symmetry to the flow on the connecting space; this
is discussed at length in [17], in particular their Section 4.4.

We write Bs(§) = {X € M: ||x —&| < 8}. The following lemma is interesting in that
it highlights a new phenomenon present only when the connecting set has dimension
greater than one. For one-dimensional connections (which are always closed) a chain
need not be a cycle.
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Fig. 2. Thistwo-dimensional set of connections betwégen
andé, on the sphere is not closed; the closure contains the
saddle point, one side of its stable manifold, and its unstable
manifold.

Lemma 1. If a heteroclinic chain has connecting sets that satisfy (H), are closed, and
have dimension greater than or equal to two, then it is a cycle.

Proof. Suppose we have a closed heteroclinic chain between equilibGansider any
&, for small enougts, (H) implies that if dim(W"(§;)) = d; thenBs (&) N WE.(§)) is
topologically a(d; — 1)-sphere and therefore connected;if- 1. For eaclk, Bs(§) N
WHY() N WS(&) is either empty or @ — 1-manifold without boundary and so equal to
Bs (&) N WY(&j). Thus there is a unique connection away from gnynd the graph is
cyclic. O

A homoclinic cycle with one-dimensional connections is always closed; however, for
more general homoclinic cycles, this is not the case, as the following example shows.

Example of ahomoclinic cycle thatis not closed Consider a homoclinic cycle between
three equilibria{&y, &5, €3} on a group orbit with connections frof to & shown in
Figure 2 (and cyclic permutations). This shows a 2-sphere containing all connections in
a homoclinic cycle including both fixed poingg andé,. One can robustly get a saddle
point on the connection, as shown in the figure, that prevents the homoclinic cycle from
being closed.

One can of course include the saddle point shown in Figure 2 and obtain a closed
noncyclic heteroclinic chain. However in general there may be limit cycles or even
chaotic sets in the closure of a heteroclinic chain. The example from tetrahedral Hopf
bifurcation is numerically observed to be closed.
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It is possible to give sufficient conditions for the stability of heteroclinic cycles (see
Theorem 1) as a direct application of results of Krupa and Melbourne [17]. Assume (by
renumbering if necessary) that there are connections &amé; ;. We define, as in
Krupa and Melbourne, four sets of eigenvalues of the linearisatialf @ ). SetP, to
be the flow-invariant subspace containibig .1). We decompose the tangent spacg at
into

T.R"=TrreTceTe®Tt,

where
Tr, = P_1NP radial eigenspace
Tg = P_1N(Tr)t contractingeigenspace
Te = RNt expandinggigenspace
Tt = (R4 PRt transverseeigenspace

These linear subspaces are mapped into themselves by virtue of the invariance of the
P,. We shall only consider the case whérg and Tt are trivial; if all eigenvalues in
these directions are negative they essentially do not change the picture, although they do
complicate calculations.

We call the matrices i g and T ¢ corresponding to this “block diagonalisation”
E; and—C;, respectively. Note that the eigenvalue€pfneed not all have positive real
parts; we assume merely that the generalised eigenspace of the eigenvalues with positive
real part has dimension 1. Following the notation of [17] we set

¢ = minimum real part of eigenvalue f;,
e = maximum real part of eigenvalue & .

3. A Conjecture about the Dynamics of Heteroclinic Cycles

We recall a restriction of a more general theorem of Krupa and Melbourne giving suf-
ficient conditions for the asymptotic stability of a heteroclinic cycle (their definition
implies that the cycle is closed).

Theorem 1. ([17]) Suppose we have a closed heteroclinic cycle satisfying (H), with no
radial or transverse eigenvalues and such that

ch >1_[e,. 3
j=1 j=1

Then the cycle is asymptotically stable.

Define the principal unstable manifold [1WP!(&;) to be the invariant manifold of
trajectories tangent to the generalised eigenspaege We define therincipal connec-
tions

CP = WPE) [\ W)
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Note thatCi’]-J is nonempty ifC;; is nonempty and closed. We define fimincipal hete-
roclinic cycle HP(E) to be the union of the equilibri& and the principal connections
cP.

i

Conjecture 1. Suppose a closed heteroclinic cyclg B satisfies (H) and (3). Then
generically the principal heteroclinic cycle HE) is a (Milnor) attractor which decom-
poses into a finite number of minimal attractors.

In this conjecture we do not assume absence radial or transverse eigenvalues to the
cycle; just that they are all negative by (Hc). From here on, to simplify the presentation,
we will assume that they are not present, although this is not a central assumption for
our results.

This conjecture doesot necessarily hold if we drop the assumption (Ha) and look at
heteroclinic chains rather than cycles, as we discuss in Section 4.2. We prove a weaker
version of this for homoclinic cycles with distinct real expanding and contracting eigen-
values and no radial or transverse directions in Theorem 2. We also give an example
where the expanding and contracting eigenvalues are complex and the whole chain is the
w-limit set of a full measure set of nearby initial conditions, and thus a minimal attractor.
We present numerical evidence in Section 4 covering some of the other cases.

3.1. Homoclinic Cycles with d-Dimensional Sets of Connections

We now discusiomoclinic cyclen more detail. In this case, we can essentially reduce

the problem to looking at some neighbourhood of a single equilibrium, for exagple
Assuming there are no transverse or radial eigenvalues, we decompose the tangent space
into

T,R"=Tc®Te.

The expanding and contracting tangent spates and T e, are assumed to be-
dimensional.
In a neighbourhood aof; we transform the vector field into its linearised form,

'l.) - Mev,
Il) == Mcw, (4)

where thed x d matricesMe, M, have all eigenvalues positive, resp., negative.

Approximation of the return map. By scaling a neighbourhood of the equilibrium to
put M and M. into Jordan normal form we can define a sectibfi:
HM = {(v,w): [|w] =1} ={(v,0): veR?, e (5)

This will transversely intersect all trajectories approaching some neighbourhded of
Similarly, the sectiorH ©“0 defined by

HOW = {(v, w): vll =1} = {(¢, w): ¢ € 7%, weRY
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intersects all trajectories leaving a neighbourhoog,0Both of these sets are topolog-
ically a product of al-disk with a(d — 1)-sphere. The centres of the disks correspond
to WS.(51) N HIW (v = 0), resp.Wi.(&1) U H®W (w = 0). Note that if we refer to
Si-1 ¢ RY x S9-1 then we mean the subsgd, w): w € S%1.

We examine the dynamics in a neighbourhood of this cycle by approximating the
maps¥; and®;,

] iny ¥ 0] iny W [ i
_; Hl(ln)_ng(out)_; Hz(ln)_gHz(out)_gH:;m)“.

If x is a group element such thak; = &, note thaty H™ = H}, etc. We can find

thenth root of the return map frorhll(m) to itself by considering the map
fi = X71 o @10V,

wherey & = &. We shall therefore drop the subscript, refexto' o ®; as® and note
that by computing the dynamics of this map and consideringthierate, we recover
the return map ot .
Rather than dwell here on the derivation of the return map, we list below the possible
return maps and refer to Appendices A and B for their derivation for arbittaxth
real distinct eigenvalues and fdr= 2.

Case of arbitrary d with distinct real eigenvalues. Assume all eigenvalues are real
and distinct and order them > --- > Aq > O andy; > --- > y4 > 0 so that a local
change of coordinates gives

Me:d|aq)\,l, ...,)\,d), Mc :diag_yl,..., _yd).
In this case Appendix B gives a return map
fv, w) =@, w),

where to leading order we have

Vo= A @)(ETTOwq, ., e Ty,
w' = g(r(v). (6)
We defineT: RY\ {0} — R* implicitly by
Z vjzez’\jT(”) =1
i

andr: RY\ {0} - %1 by
Ti(v) = Ty,

A(¢) is an arbitrary smooth map fro®~1 to invertible linear maps oY, andg
is a smooth map o8%~! to itself (this is arbitrary due to hypothesis (Hd); see [17]
Proposition 4.9).
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Case ofd = 2. There are four cases for homoclinic cycles, corresponding to the ex-
panding and contracting eigenvalues being real or complex. We write

Me = diag(r1, A2) or < roo )

—w A

with A, 4i, andw positive for the expanding linearisation, and

= diag(—y1, — or —ror >
c gd—r1, —¥2) (_p —y

with y, 31, andp positive. To lowest order, the map, contributes a linear magp(¢)
transverse to the continuum of connections and a circle gigpon the continuum of
connections.

If the cycle is closed thei(¢) is an arbitrary continuous map frost to invertible
2 x 2 matrices, whereagis a smooth diffeomorphism of the circle. If the cycle is not
closed,A andg are only defined for an open domain and range.

As detailed in Appendix A, we obtain mags H™ — H of the form

f(v1, v2,0) = (vy, v5, 0). 7

Depending on the expanding eigenvalues we compuated T thus:

Real Complex
v v w
T(v) arg( ppelhatT ) arg( vs )+ 2in vl
T() soln. of —ZIn|v|
v2ePal 4 y2e?el =1

and then we defind for real contracting eigenvalues by

/
!
L)

0/

cosge T
A('L'(U)) < SingefygT(v) )

g(z(v), (8)

and for complex contracting eigenvalues by

V] T coS0 — T (v))
( vi > =€’ A(T(”))( Sin@ — T (v)) )

0" = g(z(v)). 9)

3.2. w-Limit Sets for Arbitrary d with Distinct Real Eigenvalues

We use the local return map to demonstrate that for asymptotically stable homoclinic
cycles under certain assumptions, thdimit set for most points near the homoclinic
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cycle generically will be just the principal heteroclinic cycle. In particular, there will
be a discrete set of connections (at most two leaving any point) that are essentially
asymptotically stable. Define

et =(+1,0,0,...) e "1 c HOW, wt = get) e STt c HIY,

bt = (£1,0,0,...) e L c H™,

and the following subsets

E@) = |, w) e H™: |v|| <5},

F©) = {(, w) e H™: min(Jw — wT |, lw —w™|) < 8},

B(S) = E(8) N F ().

Write m(-) as Lebesgue measure BfA x S%~1. A cuspoidal wedgén H ™ is defined
fore > 0 by

V(o) ={(v.w) e H™: 1— (1;(v))* < €°} .

This consists of all points that are mapped to withif * by the projection of the local
map¥ ontoS'~! ¢ H©YW, The subset& andF andV NENF are shown schematically
in Figure 3.

Theorem 2. Suppose a closed homoclinic cycleB) satisfying (H) has equilibria
with real distinct eigenvalues and no transverse or radial eigenvalues. Suppose the sets
of connections are of dimension>d 2. If

miny; = yq > A1 = Maxi;,
I |

then H(E) is asymptotically stable and, moreover, generically the principal homoclinic
cycle HP(E) is an essentially asymptotically stable Milnor attractor that is not Liapunov
stable.

Proof. The asymptotic stability oH can be obtained by applying Theorem 1. Thus
lvll = O under iteration byf ; we wish to prove that for an asymptotically full measure
set of initial conditionsw will limit towards w*. DefineH P to be the connections that
crossH ™ atw = w* (and therefored ©“ aty = e*).

Attraction of HP is shown in Lemma 3. The fact th&tP is not Liapunov stable
can be seen on observing that for any> 0, V(¢)¢ intersects all neighbourhoods
of (0, w¥). O

In fact, the assumption thét(E) is closed is not necessary, as lon@gss nonempty
thenCiﬁ’ is nonempty (this is closed because it is one-dimensional); this is because we
argue local to connections id P.
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Fig. 3. This figure shows schematically the subsg{g) F(e) andN = V(e) N
E(e)NF (e) inthe sectiorH ™ = R? x S*; St is obtained by identifying the opposite
faces ofE (¢). The point(0, w™) is marked; this corresponds to the intersection of a
principal connection with this section. The set of all connections is represented by
the central line.

Definer = e so thaty; = r* 7; (v). Sincer € -1, we have

1— (u(v))?

d d
Yowr=) 7w’

IA
—
|
)
N
Ny
<
()

A
<
S
iy

where we have used the properties thak A, andvZe?1T = v2r =21 < 1,
For Sa measurable subset®Rf x S4-1 we define

m(SN E(8))

M= T Ee)

The following is contained in [19]; we include it here for completeness.
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Lemma 2. The set \(¢) has asymptotically full measure. More precisely, given 0
there is a K(¢) such that for all small enoughwe have

ms(V (€)% < K(e) 8571,

whereé = A1/k> > 1. Thus ;(V(e)®) — 0ass — 0.

Proof. Observe that

V(EFNEE® = {(v,w) e H™: o <8  and  1— (11(v))? > €2}
rp d
C {(v, w): vl <8  and  €2(v)?n < va}
2

c {w.w: <5 and vff(&zlez)%},

88t
/1:1=5$E /+ Fvi=—62

e MEG)

Thus

m(V (e)° N E(9))

IA

= Ke
for someK > 0, and the result follows. O

This implies that the sat (¢) has asymptotically full measure near the set of connections
sl c H™,

Lemma 3. For the system described in Theorem 20 id generically an attractor.

Proof. We show there are constants> 1, 8 > 0, K > 1, andeg > 0 such that for all
€o > € > 0 we have

@ f(V(e)) C F(Ke),
(b)  f(E(e)) C E(e),
(© f(V(eo) NE(e) NF(ep)) C V(™).

Recall that

W', w), w' w, w) = (AC)E T Pwy, ..., e " Vug), gz (v)).

(@) Setk = max, H H Thus 1- (71 (v))? < €2 implies that]|g(z (v)) —w*| < Ke.

(b) This follows by observing thatv’|| < maxs || A(¢) || ||v||’1 and so for any 1<
o< j\’—j there is areg such that|v'|| < [|v]|? if |v] < €o.

(c) We definev®™ = A(et)b* and then generically (due to Ha, Hd) we can assume
thatwf #0 andvf # 0. Essentially we wish to show that the image of most points
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passing throughd ©“ neare™ hit H™ with a nonzero component in the direction,
because they are nearly collinear with.
We can findeg such that(v, w) € E(eg) N F (o) implies that

(e—J/1T(v)wl L e—VdT(v)wd)

is arbitrarily close to a scalar multiple bft, asT is arbitrarily large for smaléy and
y1 >y fori > 1.

By continuity of A(z (v))(u) and the fact that (v) is close toe* andu is close tdb™,
we can find a constarf; > 0 such that

d
2 2
vl>K1§ V'
i=2

for any (v, w) € V(eg) N E(ep) N F(eo). Thus we have

d
1-n@)? = Y a@)’
i=2

A
A

i 128
o[,

A

Ky

whereg =1 — i—j > 0. Therefore we can chooggsmall enough and use (b) to assure
that if (v, w) € V(eg) N E(e) N F(&p) then

1— 1.0 (v, w))? < €%,

Combining results (a), (b), and (c) means that for at @ < /K,

f(V(e”)NEEF)NF(Ke)) C V()N E(eé) N F(Ke),

implying that, if we define

pn+1

Ny = V(") NE@E 7 )N F(Ke",

then forn > 0
f(Nn) C Npya.

This means that all points iNp converge uniformly t@0, w*) € H™. Lemma 2 implies
that this set has asymptotically full measure n@amw*). O

Note that we have constructed an asymptotically full measure set that converges
uniformly to (0, w*). It may be that an open dense set of points conveayaniformly
to (0, w*): See the discussion in Section 5.
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3.3. w-Limit Sets for Complex Expanding Eigenvalues

In this case we do not have a general result comparable to that for real expanding
eigenvalues, but make the following conjecture, a special case of Conjecture 1.

Conjecture 2. Suppose we have a closed homoclinic cycle with two-dimensional con-
nections satisfying (H). Suppose it has a complex pair of expanding eigenyaliies

A > 0, and contracting eigenvalues with real parts all less thap < 0. If y > A then

the set is asymptotically stable, and generically, an asymptotically full measure set of
nearby initial conditions have-limit sets that contain the whole of the two-dimensional
set.

Case of S@2) acting on the connections.Suppose that the isotropy subgroups of the
fixed pointsg; contains a copy 080(2) that acts on the set of connections nontrivially.
Generically the expanding and contracting eigenvalues are complex, &ay» and
—y =+ ip, and we consider the mapping (18). In this céswill be a rigid rotation and
scaling (independent @f) while g(¢) will be a uniform rotation, i.e.,

cos¢  sing
—sin¢g cos¢

A=A0< ) (@) =9+ x.

whereAg # 0, ¢, andy are real numbers. We writ@;, v2) = (r cosy, r siny) and
the return mapping okl W has the form

r' = Aor
Y =6—=Inr —¢,

RS q>|v

0 = w—i—wlnr
= —Inr.

Thus, given a trajectoryry, ¥, 6n) = f"(ro, Yo, 6p) and defining

,3:%>1,

we can write

nog L _ 1\
o= A" = AT = () (Aéﬁ'l’r°) ’

and we definK (independent ofp) ands (linearly dependent ory) such that
rh=Ks".
Thus
Yn = 01 — g(ln K+ 8"Ins) — ¢

and
w n
Onh = VYn_1+ x(ln K+ 8"Ins).
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We can write

Oni1 = On1+ (ﬁ“);p>5“ms+ (‘”;p In K —;).

Klz(ﬂw;p>ﬂlns, K2=<w;pInK—§),

we get an expression for even term®phas

Setting

k
Ok =60+ Y _(Ka(B)'™Y +Ky),
1=1

and on evaluating the sum, we obtain

Ky

o G (10

K1
Ok = ——— + 6 K2k
2k (’32_1+ o)+ 2K+
Note that the dominant term is exponential as lon¢{ast 0—in other words, as long
as

y A
z ;é —
) w
—and corresponds to an assumption that the pitch of the contracting and expanding

spirals near the fixed point are not equal and opposite.
We investigate the sequence (10) by means of the following proposition.

Proposition 1. For giveni > 1 and almost all G, C,, and G, the sequence
{C1+Con+C3r™ ne N}

is dense if0, 1]. Moreover, if G = 0 then for almost all @ and G this sequence is
uniformly distributed with respect to Lebesgue measure.

Proof. FixanyCy, C,, andCs nonzero and consider the sequesice: C1+Cok+Cark.

Since this is unbounded, the result follows directly from Corollary 2.4 in Melbourne and
Stewart [20]. The second part is a restatement of a theorem quoted in Cornfeld et al. [5,
p. 164]. O

From this, we obtain

Theorem 3. Suppose the hypotheses of Conjecture 2 hold. Suppose additionally that
the vector field on each connection commutes with a nontrivial acti6®d?) that fixes

the end points. Then the results of Conjecture 2 hold; in particular, the cycle is a minimal
attractor.

Without an assumption O(2) symmetry, we expect that the sequence of return angles
6Ok is almost always uniformly distributed with respect to a Lebesgudvalenimeasure.
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(i) (i)

Fig. 4. The black region shows all initial points for the real contracting, real expanding case that
stay uniformly close t&@ = 6* under the action of the map (7). The square represents-)
within (i) [0, 0.11?, (ii) [0, 107%]2.

4. Examples

We consider examples illustrating dynamics near closed homoclinic cycles with two-
dimensional connecting sets. We report on simulations of approximate return maps near
such homoclinic cycles. We also consider an example described by Kirk and Silber [15]
which shows the necessity of our assumption (Ha).

4.1. Simulations of the Approximate Return Map

We have investigated the mappings (8) and (9) by examining individual trajectories as
well as by scanning through the phase space to plot out the basins of attraction.

Thisis a much easier way to examine multiple approaches to the fixed point than direct
simulation of an ODE, because for the ODE there is an ‘asymptotic slowing down’ with
each approach to the fixed point. We present examples where

A<¢)=( 1 i) 09) = +1.

and use a Newton method to solve the equationTfar). Figure 4 shows the basin

of attraction ofHP in the (vq, v2) plane aty = 6~. Black points correspond to initial
conditions that remain within.8 of 6%. In this case, the expanding eigenvalues are
A1 = 0.5andr, = 0.3, while the contracting ones are/; = —0.8 and—y, = —0.6. In
agreementwith Theorem 2, the measure of the basin of attraction limits to full measure on
approaching the connection. Figure 5 shows the same plots but for complex contracting
eigenvalues-0.6+i and real expanding eigenvalue8 @nd 05. Note that the structure

of the basin complement is much more complicated than in the real contracting case,
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(i) (i)

Fig. 5. The black region shows all initial points for the complex contracting, real expanding case
that stay uniformly close 1 = 6*. The square represertis, v,) within (i) [0, 0.1]?, (ii) [0, 1073].

and we conjecture it may even be ‘riddled’ [1], [2]. Nonetheless, the images suggest that
the measure of the basin is asymptotically full neidt.3

4.2. A Vector Field withZz§ Symmetry

As another example, we consider a heteroclinic chain investigated by Kirk and Silber
[15]. This is a pair of competing cycles on four equilibria for a flowRhequivariant
underZ$ acting by reflections in all the coordinate hyperplanes. One cycle is of the form

§&1> & —> & — &,
and the other is

§1—> & — & — &,

whereg; has nonzero components only in thiecomponent. The equilibria have unstable
manifolds of dimension one except fer that has dimension two, and at this point the
expanding eigenvalue in thg direction is assumed to be stronger than that insthe
direction. In Figure 6 we illustrate some of the main features of this cycle. (a) shows the
first cycle in the invariant spacg = 0 while (b) shows the second cycle in the invariant
spacexs = 0. (c) gives the simplest possible dynamics in the plapne= x, = 0
consistent with the description; note that there is an extra saddle point labellbds

the simplest closed heteroclinic chain containing the two cycles is (d), with some one-
dimensional and some two-dimensional connections. (This is still a simplification in

3 We have prepared a short video showing the structure of the basin of attraction, available on request to
P. Ashwin (please include a blank VHS videocassette with any request).
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Fig. 6. (a), (b) Sketch of the two competing cycles in Kirk and Silber's ex-
ample. (c) Simplest consistent dynamics in #ae= x, = 0 invariant plane
involves addition of an extra equilibrium, with dimW"(n) = 2. (d) Simplest
consistent closed heteroclinic chain. The numbers on the connections indicate
the dimensions of the connecting sets.

that all of the—¢&; are also involved in the closure of the unstable manifolds of this set).
Note that the connectiors to &5 involve a one-dimensional connecting set in the plane
X1 = X4 = 0 and a two-dimensional connecting set in the invariant three-spae€0;
thus (Ha) is broken.

Kirk and Silber have shown that in a robust way, one can find such cycles where both
of the one-dimensional cycles are simultaneously attracting; this suggests that (Ha) is a
necessary assumption for Conjecture 1.

5. Discussion

We have shown how some of the behaviour seen in the example of Section 1.1 can be
explained theoretically, in particular how we can robustly have a continuum of connec-

tions that are asymptotically stable, while only a discrete set of them are attractors. We
have also shown some ideas of what one might expect for more general cases. A crucial
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hypothesis is (Ha), that all connections between a given pair of equilibria lie within a
single isotropy type. There are also genericity assumptions that can be thought of as
requiring that the principal connections are not at inclination or orbit flip bifurcations.
We have also indicated that closedness of a heteroclinic chain, which is automatic for
one-dimensional connections, is not automatic for higher dimensional cases, and this
needs to be properly addressed.

For homoclinic cycles that are asymptotically stable, the most positive expanding
eigenvalues seem to determine the asymptotic behaviour of most initial nearby points;
if this is a single real eigenvalue, we get a one-dimensional attractor, whereas if it is a
complex pair, the rotation causes a trajectory to be thrown out in many directions in this
eigenspace on successive approaches to the fixed point. What is possibly surprising is
that the dimension and complexity or otherwise of the weakest contracting eigenspace
appears not to be important for the asymptotic behaviour.

This paper poses a variety of questions related to attractors for systems containing
robust heteroclinic chains, and we recall some of them here:

1. Prove or find counterexamples to Conjecture 1 and the special case, Conjecture 2.

2. Account for the effect of transverse and radial eigenvalues.

3. Understand heteroclinic chains that break hypothesis (H) in various ways.

4. Understand what happens in the case that the eigenvalues are real and multiple.
This can happen if, for example, there is an irreducible nontrivial group action that
commutes with the flow on the connecting orbits.

The notion of stability we have used can very likely be strengthened to say that, at
least in the case of a closed homoclinic cycle, a full measure set of initial points converge
to the principal homoclinic cyclél P. This may even be open and dense, but because we
do not have Liapunov stability, it would have nonuniform convergence of points in the
basin toH .

The dimension of the phase space needs to be reasonably large (greater than three) to
observe this behaviour; hence, it cannot be seen for very simple group actions at generic
bifurcations. However for higher dimensional systems (e.g., parabolic PDES) we expect
these structures to be characteristically present, even if the group is relatively simple, for
example in higher dimensional (reducible) representatio®(aj.

Appendix A: Derivation of the Local Return Map for d = 2
We use the notation defined in Section 3. The form of the mapping between the neigh-

bourhoods of adjacent equilibria is independent of the dynamics near the equilibria.
Observe that: H©W — HM can be written (to linear order i, wy) as

D (¢, w1, wp) = (vy, v5,0"),

V] w1
(1) -o(2)

0" = 9(¢).

where
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A andg are smoothly dependent gne S for closed cyclesA: St — GL(R?) and
g: S* — S Note that, in particular, the matrix norm @f is uniformly bounded in

¢. Moreover, continuity ofA andU imply that its image lies within one connected
component of the image space; @&t lies on one side of zero.

Case (i): Real expanding and real contracting eigenvaluesA local change of coor-

dinates gives
(2 O _(-n O
Me_( 0 % ) Mc_( 0 - )

where the constants andy; are real and positive. We will assume that> 1, > 0
andy; > y, > 0. The flow for the initial value problem for (4) is

v () = €'vi(0),
wi(t) = e "'w;(0). (11)

The ‘time of flight' from H™ to H©" is given byT such thav?e?1T + v2e?2T = 1,
giving a unique solutiofM (v) > 0. In what follows we shall make use of the estimates

Infloll ™% < T) < Injjv] . (12
Thus the mapping’: H™ — H©Y can be written as

W (vq, v2,0) = (1, wy, wa),

wy \ _ [ cosge T
wy )~ \ singe 2T )
Ule)‘lT vy
T(v) < Vel >= arg( ppette—t)T )

where arg refers to the angle the vector makes to 1-axis, measured in the positive direction,

i.e.,
ar rcosd \ P
9 rsing | —

for all positiver. The return magf has the form

where

Il
Y
2
Qg

f(v1, v2,0) = (v1, v3,0"),

where

v\ cospe T
( V) > - A(t(v))< singe 2T )’

g(z(v)). (13)

A
|
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Case (ii): Real expanding and complex contracting eigenvaluesSuppose that

_ )\,]_ 0 _ 4 w
Me—<0 )\’2>9 MC_(-(D _)/)’

with real constanté; > A, > 0,y > 0, andw # 0. As before, we defin& (v) > 0to
be the solution 0b2e?1T + v2e*2T = 1 and the flow is given by

vit) = €%v1(0),
va(t) = €2'v,(0),
wi(t) = e (w1(0) coswt + wy(0) Sinwt),
wa(t) = €77 (w2(0) coswt — w1(0) sinwt).

We can write the local mag (v1, v, 6) = (T, w1, wo) Where

1T
() = arg( ziziﬂ )

and

Wi\ _ gyt cosd coswT + singd sineT \ — cogf — wT)
wa sind coswT — cosh sinwT | sin(@ —oT) )°

This gives a return mayp of the form f (vy, vz, 6) = (vy, v5, 0') where

V] T COSG — G)T(U))
( % ) =e7 A(T(“))< Sin@ — T (v)) )

0" = g(t(v)). (14)

Case (iii): Complex expanding and real contracting eigenvaluesWe perform a local
change of coordinates such that

- A w _ —Y1 0
ne(25) (7 2)

where the constants satisfy# 0,1 > 0, andy; > y» > 0.
Itis a simple matter to find the flow for the initial value problem for (4), resulting in

v1(t) = €' (v1(0) coswt + v2(0) sinwt),
va(t) = €'(v2(0) coswt — v1(0) Sinwt),
wi(t) = e " wy(0),
wa(t) = €' w,(0). (15)

The flow (15) induces a map frotd ™ to H©“ which can be written as

W (vy, v2,0) = (T(v), wy, wa).
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This can be found by first computing the time of flight> 0 such that:
W2 +v3)e?T =1,
implying that
T = —% IN@W? +v3) = In ||~ 7,
wherev? = vZ 4 v3. Thus we can write
W(v1, v, 0) = (x(), llv]l* cost, [lv]* sing),
where
T(v) = arg( Z; >+In loll%.

This means that we can write the action of the return mefgas vz, 6) = (vy, v5, 6”)

where
/
()
L)

9/

A(z()) ( cosOjvl” )

. )
sind|jv|| *

g(z(v)). (16)

Case (iv): Complex expanding and complex contracting eigenvalue&inally, con-
sider the case where a local change of coordinates gives linear parts

_( *» @ _( v »p
e=(L0) we=(505)
with real constantd > 0,w # 0,y > 0, andp # 0. Solving (4) gives the flow

vi(t) = €'(v1(0) coswt + v2(0) Sinwt),

va(t) = €(v2(0) coswt — v1(0) sinwt),

wi(t) = e (w1(0) cospt + wo(0) sinpt),

wo(t) = €772 (w,(0) cospt — w1 (0) sinpt). (17)

The map fromH ™ to H©YW induced by this flow is
W (v, v2,0) = (7, w1, w2).
This can be found by first computing the time of flight- 0 such that
(vf + v%)ezn =1,
implying that

1 1
T= ZIn(vf—i-v%):lnrz,
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with r2 = v2 + v3. Thus we can write

lIl(vls v2, 9) = (Ta w1, wZ)s
T = arg( U1 ) +In|v|l?,
v2

wi \ _ ez (€00 — ZInjvl)
wo ) =1V sing — Znopy )

This implies that the return map has the formf (vy, vo, 8) = (v, v5, ") where

v cogh — ZIn vl
vy ’

vl * AT (v)) ( sin(@ — 2 In |[v]))
0" = 9(z(v)). (19)

where

and

Appendix B: Derivation of the Local Return Map for Arbitrary d and Distinct Real
Eigenvalues

In the case of distinct real eigenvalues one can simplify the analysis of Appendix A.
Writing H™ as in (5) observe thab: H©"W — H{™ can be written (to linear order in
w1, wg) as
O (v, w) = (', w),
where
vV = AQv)w,
!/

w = g(v),

and A andg are (by virtue of hyperbolicity and closedness) smoothly dependent on
¢ € S twith A: -1 — GL(RY) andg: S%1 — S a smooth diffeomorphism.
DefineT: RY\ {0} — R* such that

YT =1,
i

andr: RY\ {0} - S%1hy
7 (v) = €Ty,
Note that||z(v)|| = 1 and also
nfvl ™% < T <Infu) . (19
The return mapf: H@™ — H can be written
f(v,w) =@, w),
where
Vo= A )(E Ty, L, e T Wyy),
w' = g(z(v)). (20)
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