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Summary. For systems with symmetry (or more generally, systems with invariant sub-
spaces) it is possible to find robust heteroclinic cycles with multi-dimensional connecting
manifolds.

Motivated by a problem of rotating convection with low Prandtl number, Swift and
Barany [23] considered generic Hopf bifurcation with tetrahedral symmetry. In this
situation it is possible to get bifurcation from a steady state directly to a homoclinic cycle
with a two-dimensional set of connections. We numerically investigate the dynamics near
such cycles.

We conjecture that if a heteroclinic cycle is asymptotically stable then all connections
corresponding to the most positive expanding eigenvalues of the linearisation at the
fixed points will generically form part of an attractor. This attractor may fail to be
asymptotically stable and is, to our knowledge, the first example of this for a homoclinic
(as opposed to a heteroclinic) cycle. We prove this conjecture for homoclinic cycles with
distinct real expanding and contracting eigenvalues, and present evidence to support it
for other cases. An example due to Kirk and Silber [15] (two competing cycles inR4 with
(Z2)

4 symmetry) is discussed and continua of connections are found in this example.
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1. Introduction

Heteroclinic behaviour is an important mechanism for creating intermittent behaviour in
nonlinear systems. For systems with symmetry, there can be a network of dynamically
invariant subspaces which cause the dynamics to possess such heteroclinic cycles in
a robust manner, provided that the connections between the fixed points respect the
invariant subspaces in a certain way. The structural stability of these cycles in such
systems has been cited as possibly causing intermittent complex dynamics in several
physical systems, notably rotating convection [4].

Until now, a major emphasis has been to understand the dynamics and stability of
robust heteroclinic cycles with one dimensional connections. However, heteroclinic cy-
cles with two or more dimensional manifolds can also be robust, and as we discuss in
Section 2 there are new aspects of cycles that need to be considered, in particular their
closedness.

To motivate our investigation, we consider an example of Hopf bifurcation with
tetrahedral symmetry, originally investigated by Swift and Barany [23] as a model for
the onset of convection at low Prandtl number in a rotating fluid layer. The rest of the
paper is organised as follows: In Section 2 we define aheteroclinic chain, a chain of
connections between equilibria, and aheteroclinic cyclewhere the connections imply
a cyclic ordering of the equilibria. Although continua of homoclinic connections are of
infinite codimension in systems without symmetry, they can be robust (i.e., codimension
zero) in systems with symmetry.

In Section 3 we focus our attention on homoclinic cycles. We conjecture that if the
cycle is asymptotically stable then the unstable manifold corresponding to the most
positive eigenvalues determines a subset that is a Milnor attractor, i.e., a subset that
attracts a large measure set of nearby points, but this attractor is not Liapunov stable. In
other words, we conjecture that generically a subset of the continuum of connections will
beobservedto have attracting behaviour. This conjecture is proved for some classes of
homoclinic cycles where the expanding and contracting eigenvalues are real and distinct.
We give an example with complex expanding and contracting eigenvalues where almost
all nearby points haveω-limit sets containing the whole two-dimensional homoclinic
cycle. Moreover, in this case they visit the connections in a uniformly distributed manner.

In Section 4 we discuss some examples. In Section 4.1 we investigate the dynamics of
the local return map. In Section 4.2 we discuss an example of a heteroclinic cycle withZ4

2
symmetry given by Kirk and Silber [15]. We show that there are continua of connections
in addition to the ones they have discussed. Section 5 discusses some generalisations
and open problems.

1.1. Generic Hopf Bifurcation with Tetrahedral Symmetry

Swift and Barany [23] noticed that rotating planar convection with low Prandtl number
can undergo Hopf bifurcation with tetrahedral symmetry, if one restricts examination to
the interaction of three standing waves at 120◦ angles to each other.

The bifurcation displays a variety of interesting dynamical behaviour. Swift and
Barany show that there can be bifurcation from a steady state directly to chaotic dy-
namics in certain generic (i.e., codimension one) Hopf bifurcations.
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Using invariant theory to construct a normal form, they show that generic Hopf
bifurcation with the symmetry of a tetrahedronT (i.e., the group of rotations that map
a regular solid tetrahedron onto itself) is locally governed by a third-order normal form
equation forz= (z1, z2, z3) ∈ C3 with T × S1 symmetry given by

ż1 = z1
(
λ+ γ |z|2+ αn|z2|2+ αs|z3|2

)+ z1
(
βnz2

2 + βsz
2
3

)
, (1)

where|z|2 = |z1|2+|z2|2+|z3|2. The other two equations are found by cyclic permutation
of the subscripts. This commutes with a group action ofT × S1 given by

z → Cz= (z2, z3, z1),

z → Rz= (z1,−z2,−z3),

z → θz= ei θz.

The group elementsC andRgenerateT while the phase shiftsθ generateS1. The normal
form (1) has six complex coefficients:λ, γ , αn, αs, βn, andβs; the real part ofλ is the
bifurcation parameter. We writeλ = λR + iλI , etc., to denote the real and imaginary
parts of the parameters.

Swift and Barany [23] reduce (1) to an ODE in four dimensions by taking a quotient
by S1 to reduce it to a steady-state bifurcation problem. They note there can be an
invariant sphere on which the dynamics occur. We follow their approach, and so relative
equilibria correspond to periodic orbits of the original system. Since theS1 symmetry
is a normal form symmetry, one should be aware that the original dynamics will have
broken symmetry and this will perturb what we describe here. We shall not discuss this
issue in any detail but refer the reader to [10, p. 313] for a discussion of some related
issues.

There are three fixed point spaces of two (real) dimensions forced by the action of
the symmetry group:

Fix 61 = (z1, 0, 0), Fix 62 = (0, z2, 0), Fix 63 = (0, 0, z3).

For λR > 0 andγR < 0, within each subspace Fix6i , there are fixed points, e.g.
ξ1 = (z1, 0, 0) for |z1|2 = −λR/γR with ξ2, ξ3 similarly defined. Theseξi are on a
single group orbit. We study homoclinic cycles between this group orbit ofS1-relative
equilibria.

There are also three fixed point spaces of four (real) dimensions given by

Fix 11 = (z1, z2, 0), Fix 12 = (0, z2, z3), Fix 13 = (z1, 0, z3).

These have three (real) dimensions in the orbit space. Note that Fix1j contains bothξj

andξj+1. There are other fixed point spaces that do not concern us here; see [23].
The eigenvalues of the relative equilibriumξ1 are as follows: One eigenvalue in the

direction of1 Fix 11 ∩ Fix 13 is −2λR; this is negative. The remaining eigenvalues in
Fix 11 have sum(αn)R and product|αn|2− |βn|2 while those in Fix13 have sum(αs)R

1 By “direction of an eigenvalue” we refer of course to the corresponding eigenspace.
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Table 1. Parameter values for the simulations of homoclinic cycles in the tetrahedral Hopf bifur-
cation.λ = 1 andγ = −1 are fixed and the contracting and expanding eigenvalues of the fixed
points tangent to the cycle are shown. The “Figure” column refers to the illustrations in Figure 1.

αn αs βn βs Contracting Expanding Figure

0.8+ 0.5i −1− 5i 0.52 0 −1± 5i 0.9428, 0.6572 (i),(ii)
0.3+ i −0.65− 0.5i 0 0.6 −0.9816, −0.3183 0.3± i (iii)

0.65+ 0.5i −0.9+ 0.5i 0.51 0.49 −0.9± 0.099i 0.7505, 0.5495 (iv)

and product|αs|2 − |βs|2. By specifying the coefficients arbitrarily we can place these
eigenvalues as we wish.

Swift and Barany recognised that for open regions in the space of normal-form coef-
ficients, one can get bifurcation directly to a set of threeS1-relative equilibria robustly
connected by threeS1-orbits of two-dimensional manifolds. By choosing the parameters,
it is easy to make this union of 2-manifolds asymptotically stable.

The question we address is: What are theω-limit sets in the case that this set is
asymptotically stable? In the case of an asymptotically stable homoclinic cycle which
is a union of one-dimensional connections there are only a finite number of possible
ω-limit sets, but if the connections are on two-dimensional manifolds, the possibilities
are uncountable. To get some idea of these possibilities, we report on some numerical
experiments.

Numerical simulations. For the parameter values shown in Table 1 we have performed
simulations using the programdstool [14]. The column headed “Figure” refers to the
trajectory shown in Figure 1. To remove the group orbit given by the action ofT × S1

we use a projection onto the complex plane defined by Swift and Barany (they call this
51):

5(z) = 3
(
(z1z2)

2+ (z2z3)
2+ (z3z1)

2
)

/|z|4.

The projection5 corresponds to a projection of the orbit spaceR6/(T × S1) onto C.
Figure 1 shows some typical simulations for this system in cases where there are attracting
homoclinic cycles. (i) shows an irregular-looking transient apparently converging to
the single connection (in the orbit space), namely (ii). Figure (iii) shows a trajectory
converging apparently to the whole of the cycle, while (iv) shows an attractor for another
case of complex contracting and real expanding eigenvalues.

In general, we have observed that anisolated connectionwithin the continuum attracts
most initial conditions if the expanding eigenvalues arerealwhereas the two dimensional
set of all connectionsis an attractor if the expanding eigenvalues arecomplex. We
conjecture that this is generically the case. For the case of real and distinct expanding
and contracting eigenvalues we present a proof, and show that it is possible to have an
attractor which is the whole cycle if both expanding and contracting eigenvalues are
complex.
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Fig. 1. Examples of trajectories evolving towards asymptotically stable homoclinic cycles with
two-dimensional sets of connections for the tetrahedral Hopf bifurcation. The projection of tra-
jectories by5 are shown, and each bounding box corresponds to the square [−0.25, 0.25] +
i [−0.25, 0.25]. The parameter values are shown in Table 1. (i) Shows a transient converging to the
attracting cycle shown in (ii). (iii) and (iv) correspond to behaviour after transients have apparently
decayed. In this projection, the group orbit of the fixed points are all projected onto the origin. In
all cases there exists a closed one-parameter continuum of homoclinic connections.

2. Definitions

Consider a finite Lie group0 acting smoothly on a smooth manifoldM .2 For 6 an
isotropy subgroup of0, we defineM6 to be the manifold of all points inM with

2 If dim 0 ≥ 1 we can examine the orbit spaceM /00 and restrict to a connected stratum of this. In this way
we can restrict to the action of a finite group on a manifold. The example of Section 1.1 can be handled this

way, because the cycle in question lies in the trivial stratum for the action ofS1
.
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isotropy equal to6 (a subset of Fix6). Flows onM equivariant under the action of0
leave eachM6 invariant. Let

ẋ = f (x) (2)

be an ODE withC∞ equivariant vector field, and letX∞0 (M) be the class of all suchf
with the topology ofC∞ convergence on compact sets.

Consider a setE = {ξ1, . . . , ξk}of hyperbolic equilibria of (2). The stable and unstable
manifoldsWs(ξ) andWu(ξ) of ξ ∈ E are defined in the usual way. There is a graph
naturally defined onE as follows:

Definition 1. The directed graphG(E) with verticesE is defined as having an edge
from ξi ∈ E to ξj ∈ E for each nonempty

Ci j = Wu(ξi ) ∩Ws(ξj ) \ {ξi , ξj }.

Such a trajectory inCi j is called aconnecting orbitandCi j is called the set ofconnections.

Note that dim(Ci j ) > 0 if it is nonempty; we do not assume thati 6= j . A directed
graphG(E) is transitiveif there is a directed path between any pair of points inE. It is
cyclic if it is transitive and each vertex has unique edges entering and leaving it.

Definition 2. If G(E) is transitive then we define theheteroclinic chain

H(E) =
⋃

(ξi ,ξj )∈E

Wu(ξi ) ∩Ws(ξj )

of all links between equilibria inE. Often there is a nontrivial0-action on H(E);
because of this we consider the quotientG̃(E) = G(E)/0 by identifying vertices and
connections on the same group orbits. IfG̃(E) is a cyclic graph then we say thatH(E) is
aheteroclinic cycle. If G̃(E) has a single vertex then we callH(E) ahomoclinic cycle.

Such a heteroclinic chainH(E) is said to berobust if for all ε > 0 there exists a
neighbourhoodNε of f in X∞0 (M) such that eachg ∈ Nε has a set of fixed points,
Ẽ = {η1, . . . , ηk} and a heteroclinic chainH(Ẽ) with

(a) ‖ξi − ηi ‖ < ε,
(b) C̃i j is equivariantly diffeomorphic toCi j for any pair(i, j ).

There may in fact be an infinite number of connections (this occurs in a system
investigated by Guckenheimer and Worfolk [13]), but we will assume that this is not the
case.

Attractors. There is a fair amount of debate over what definition of an attractor is most
useful. The strongest definition usually used is asymptotic stability, but previous work on
heteroclinic cycles (notably Melbourne’s concept ofessential asymptotic stability[19])
and other dynamics in invariant subspaces (e.g., [1]) suggests that this is too strong for
some uses. We use the definition of Milnor [21]; between these there are a variety of
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definitions, see for instance [19], [17], [18], [3], [15]. We use Milnor’s definition even
though what we prove will be stable in a stronger sense; the examples of Brannath [3]
and Kirk and Silber [15] have heteroclinic cycles that are Milnor attractors but are not
essentially asymptotically stable.

Definition 3. A compact invariant setS is a (Milnor) attractor if its basinB(S) =
{x: ω(x) ⊂ S} has positive Lebesgue measure. It is aminimal attractorif there is no
proper compact invariant subset with basin equal toB(S) up to a set of Lebesgue measure
zero.

2.1. Robust Heteroclinic Chains

As shown by dos Reis [22], Field [7], and Guckenheimer and Holmes [12] among others,
the invariant subspace structure caused by a group action can cause heteroclinic chains
to be robust (for a review of such behaviour, see [16]). If all connections are robust
within invariant subspaces, they cannot be broken by perturbations that preserve the
invariant subspaces. Notably, if the connections are of the form saddle-sink or source-
saddle when restricted to the invariant subspace, they will be robust. We consider the
following hypotheses:

(H)

(a) For any nonempty connectionCi j there exists an isotropy subgroup6 such that
Ci j ⊂ M6 , i.e., all trajectories inCi j have the same isotropy.

(b) For any6 in (a), ξj is a sink for the flow restricted to Fix(6), i.e., dim(Ws(ξj ) ∩
M6) = dim M6 .

(c) H(E) contains all unstable manifolds of points inE.
(d) The eigenspaces tangent toCi j andCji at ξj ⊂ Fix 1j lie within a single isotypic

component of1j .

Note that (H) can be broken in a variety of ways. If (Ha) is not satisfied then the
connectionCi j contains connections of more than one isotropy type (an example where
this is the case is discussed in Section 4.2). If (Hb) or (c) are not satisfied, it is still
possible to have robustness of connections, e.g., between two fixed points that are both
saddles withinM6 , as long as the connections are0-transverse (see Field [6], [7],
[8], [9]), necessarily meaning than dim(Wu(ξi ) ∩ M6) + dim(Ws(ξj ) ∩ M6) is larger
that dim(M6). Heteroclinic chains subject to assumptions (H) are robust to equivariant
perturbations. (Hc) implies among other things that there are no unstable eigenvalues in
directions that are transverse to the heteroclinic cycle. (Hd) effectively means that there
are no further constraints caused by symmetry to the flow on the connecting space; this
is discussed at length in [17], in particular their Section 4.4.

We writeBδ(ξ) = {x ∈ M : ‖x− ξ‖ < δ}. The following lemma is interesting in that
it highlights a new phenomenon present only when the connecting set has dimension
greater than one. For one-dimensional connections (which are always closed) a chain
need not be a cycle.
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Fig. 2. This two-dimensional set of connections betweenξ1

andξ2 on the sphere is not closed; the closure contains the
saddle point, one side of its stable manifold, and its unstable
manifold.

Lemma 1. If a heteroclinic chain has connecting sets that satisfy (H), are closed, and
have dimension greater than or equal to two, then it is a cycle.

Proof. Suppose we have a closed heteroclinic chain between equilibriaξj . Consider any
ξj ; for small enoughδ, (H) implies that if dim(Wu(ξj )) = dj thenBδ(ξj ) ∩Wu

loc(ξj ) is
topologically a(dj − 1)-sphere and therefore connected ifdj > 1. For eachk, Bδ(ξj ) ∩
Wu(ξj )∩Ws(ξk) is either empty or adj − 1-manifold without boundary and so equal to
Bδ(ξj ) ∩Wu(ξj ). Thus there is a unique connection away from anyξj , and the graph is
cyclic.

A homoclinic cycle with one-dimensional connections is always closed; however, for
more general homoclinic cycles, this is not the case, as the following example shows.

Example of a homoclinic cycle that is not closed.Consider a homoclinic cycle between
three equilibria{ξ1, ξ2, ξ3} on a group orbit with connections fromξ1 to ξ2 shown in
Figure 2 (and cyclic permutations). This shows a 2-sphere containing all connections in
a homoclinic cycle including both fixed pointsξ1 andξ2. One can robustly get a saddle
point on the connection, as shown in the figure, that prevents the homoclinic cycle from
being closed.

One can of course include the saddle point shown in Figure 2 and obtain a closed
noncyclic heteroclinic chain. However in general there may be limit cycles or even
chaotic sets in the closure of a heteroclinic chain. The example from tetrahedral Hopf
bifurcation is numerically observed to be closed.
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It is possible to give sufficient conditions for the stability of heteroclinic cycles (see
Theorem 1) as a direct application of results of Krupa and Melbourne [17]. Assume (by
renumbering if necessary) that there are connections fromξi to ξi+1. We define, as in
Krupa and Melbourne, four sets of eigenvalues of the linearisation ofd f (ξi ). SetPi to
be the flow-invariant subspace containingCi (i+1). We decompose the tangent space atξi

into

Tξi R
n = Tri ⊕ T ci ⊕ T ei ⊕ T ti ,

where

Tri = Pi−1 ∩ Pi radial eigenspace,
T ci = Pi−1 ∩ (Tri )

⊥ contractingeigenspace,
T ei = Pi ∩ (Tri )

⊥ expandingeigenspace,
T ti = (Pi−1+ Pi )

⊥ transverseeigenspace.

These linear subspaces are mapped into themselves by virtue of the invariance of the
Pi . We shall only consider the case whereTri andT ti are trivial; if all eigenvalues in
these directions are negative they essentially do not change the picture, although they do
complicate calculations.

We call the matrices inT ei andT ci corresponding to this “block diagonalisation”
Ei and−Ci , respectively. Note that the eigenvalues ofEi need not all have positive real
parts; we assume merely that the generalised eigenspace of the eigenvalues with positive
real part has dimension≥ 1. Following the notation of [17] we set

ci = minimum real part of eigenvalue ofCi ,

ei = maximum real part of eigenvalue ofEi .

3. A Conjecture about the Dynamics of Heteroclinic Cycles

We recall a restriction of a more general theorem of Krupa and Melbourne giving suf-
ficient conditions for the asymptotic stability of a heteroclinic cycle (their definition
implies that the cycle is closed).

Theorem 1. ([17]) Suppose we have a closed heteroclinic cycle satisfying (H), with no
radial or transverse eigenvalues and such that

m∏
j=1

cj >

m∏
j=1

ej . (3)

Then the cycle is asymptotically stable.

Define the principal unstable manifold [17]Wpu(ξj ) to be the invariant manifold of
trajectories tangent to the generalised eigenspace ofej . We define theprincipal connec-
tions

Cp
i j = Wpu(ξi )

⋂
Ws(ξj ).



112 P. Ashwin and P. Chossat

Note thatCp
i j is nonempty ifCi j is nonempty and closed. We define theprincipal hete-

roclinic cycle Hp(E) to be the union of the equilibriaE and the principal connections
Cp

i j .

Conjecture 1. Suppose a closed heteroclinic cycle H(E) satisfies (H) and (3). Then
generically the principal heteroclinic cycle Hp(E) is a (Milnor) attractor which decom-
poses into a finite number of minimal attractors.

In this conjecture we do not assume absence radial or transverse eigenvalues to the
cycle; just that they are all negative by (Hc). From here on, to simplify the presentation,
we will assume that they are not present, although this is not a central assumption for
our results.

This conjecture doesnotnecessarily hold if we drop the assumption (Ha) and look at
heteroclinic chains rather than cycles, as we discuss in Section 4.2. We prove a weaker
version of this for homoclinic cycles with distinct real expanding and contracting eigen-
values and no radial or transverse directions in Theorem 2. We also give an example
where the expanding and contracting eigenvalues are complex and the whole chain is the
ω-limit set of a full measure set of nearby initial conditions, and thus a minimal attractor.
We present numerical evidence in Section 4 covering some of the other cases.

3.1. Homoclinic Cycles with d-Dimensional Sets of Connections

We now discusshomoclinic cyclesin more detail. In this case, we can essentially reduce
the problem to looking at some neighbourhood of a single equilibrium, for exampleξ1.
Assuming there are no transverse or radial eigenvalues, we decompose the tangent space
into

Tξ1R
n = T c1⊕ T e1.

The expanding and contracting tangent spacesT c1 and T e1 are assumed to bed-
dimensional.

In a neighbourhood ofξ1 we transform the vector field into its linearised form,

v̇ = Mev,

ẇ = Mcw, (4)

where thed × d matricesMe, Mc have all eigenvalues positive, resp., negative.

Approximation of the return map. By scaling a neighbourhood of the equilibrium to
put Me andMc into Jordan normal form we can define a sectionH (in):

H (in) = {(v,w): ‖w‖ = 1} = {(v, θ): v ∈ Rd, θ ∈ Sd−1}. (5)

This will transversely intersect all trajectories approaching some neighbourhood ofξ1.
Similarly, the sectionH (out) defined by

H (out) = {(v,w): ‖v‖ = 1} = {(φ,w): φ ∈ Sd−1, w ∈ Rd}
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intersects all trajectories leaving a neighbourhood ofξ1. Both of these sets are topolog-
ically a product of ad-disk with a(d − 1)-sphere. The centres of the disks correspond
to Ws

loc(ξ1) ∩ H (in) (v = 0), resp.,Wu
loc(ξ1) ∪ H (out) (w = 0). Note that if we refer to

Sd−1 ⊂ Rd × Sd−1 then we mean the subset{(0, w): w ∈ Sd−1}.
We examine the dynamics in a neighbourhood of this cycle by approximating the

maps9i and8i ,

· · · 8n→ H (in)
1

91→ H (out)
1

81→ H (in)
2

92→ H (out)
2

82→ H (in)
3 · · · .

If χ is a group element such thatχξ1 = ξ2, note thatχH (in)
j = H (in)

j+1, etc. We can find

thenth root of the return map fromH (in)
1 to itself by considering the map

f1 = χ−1 ◦81 ◦91,

whereχξ1 = ξ2. We shall therefore drop the subscript, refer toχ−1 ◦81 as8 and note
that by computing the dynamics of this map and considering thenth iterate, we recover
the return map onH (in).

Rather than dwell here on the derivation of the return map, we list below the possible
return maps and refer to Appendices A and B for their derivation for arbitraryd with
real distinct eigenvalues and ford = 2.

Case of arbitrary d with distinct real eigenvalues. Assume all eigenvalues are real
and distinct and order themλ1 > · · · > λd > 0 andγ1 > · · · > γd > 0 so that a local
change of coordinates gives

Me = diag(λ1, . . . , λd), Mc = diag(−γ1, . . . ,−γd).

In this case Appendix B gives a return map

f (v,w) = (v′, w′),

where to leading order we have

v′ = A(τ (v))(e−γ1T(v)w1, . . . ,e
−γdT(v)wd),

w′ = g(τ (v)). (6)

We defineT : Rd \ {0} → R+ implicitly by∑
j

v2
j e2λj T(v) = 1

andτ : Rd \ {0} → Sd−1 by

τi (v) = eλi T(v)vi .

A(φ) is an arbitrary smooth map fromSd−1 to invertible linear maps onRd, and g
is a smooth map ofSd−1 to itself (this is arbitrary due to hypothesis (Hd); see [17]
Proposition 4.9).
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Case ofd = 2. There are four cases for homoclinic cycles, corresponding to the ex-
panding and contracting eigenvalues being real or complex. We write

Me = diag(λ1, λ2) or

(
λ ω

−ω λ

)
,

with λ, λi , andω positive for the expanding linearisation, and

Mc = diag(−γ1,−γ2) or

( −γ ρ

−ρ −γ
)
,

with γ , γi , andρ positive. To lowest order, the map81 contributes a linear mapA(φ)
transverse to the continuum of connections and a circle mapg(φ) on the continuum of
connections.

If the cycle is closed thenA(φ) is an arbitrary continuous map fromS1 to invertible
2× 2 matrices, whereasg is a smooth diffeomorphism of the circle. If the cycle is not
closed,A andg are only defined for an open domain and range.

As detailed in Appendix A, we obtain mapsf : H (in)→ H (in) of the form

f (v1, v2, θ) = (v′1, v′2, θ ′). (7)

Depending on the expanding eigenvalues we computeτ andT thus:

Real Complex

τ(v) arg

(
v1

v2e(λ2−λ1)T

)
arg

(
v1

v2

)
+ ω

λ
ln ‖v‖

T(v) soln. of − 1
λ

ln ‖v‖
v2

1e2λ1T + v2
2e2λ2T = 1

and then we definef for real contracting eigenvalues by(
v′1
v′2

)
= A(τ (v))

(
cosθe−γ1T(v)

sinθe−γ2T(v)

)
,

θ ′ = g(τ (v)), (8)

and for complex contracting eigenvalues by(
v′1
v′2

)
= e−γT(v)A(τ (v))

(
cos(θ − ωT(v))
sin(θ − ωT(v))

)
,

θ ′ = g(τ (v)). (9)

3.2. ω-Limit Sets for Arbitrary d with Distinct Real Eigenvalues

We use the local return map to demonstrate that for asymptotically stable homoclinic
cycles under certain assumptions, theω-limit set for most points near the homoclinic
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cycle generically will be just the principal heteroclinic cycle. In particular, there will
be a discrete set of connections (at most two leaving any point) that are essentially
asymptotically stable. Define

e± = (±1, 0, 0, . . .) ∈ Sd−1 ⊂ H (out), w± = g(e±) ∈ Sd−1 ⊂ H (in),

b± = (±1, 0, 0, . . .) ∈ Sd−1 ⊂ H (in),

and the following subsets

E(δ) = {(v,w) ∈ H (in): ‖v‖ < δ
}
,

F(δ) = {(v,w) ∈ H (in): min(‖w − w+‖, ‖w − w−‖) < δ
}
,

B(δ) = E(δ) ∩ F(δ).

Write m(·) as Lebesgue measure onRd × Sd−1. A cuspoidal wedgein H (in) is defined
for ε > 0 by

V(ε) = {(v,w) ∈ H (in): 1− (τ1(v))
2 < ε2

}
.

This consists of all points that are mapped to withinε of e± by the projection of the local
map9 ontoSd−1 ⊂ H (out). The subsetsE andF andV∩E∩F are shown schematically
in Figure 3.

Theorem 2. Suppose a closed homoclinic cycle H(E) satisfying (H) has equilibria
with real distinct eigenvalues and no transverse or radial eigenvalues. Suppose the sets
of connections are of dimension d≥ 2. If

min
i
γi = γd > λ1 = max

i
λi ,

then H(E) is asymptotically stable and, moreover, generically the principal homoclinic
cycle Hp(E) is an essentially asymptotically stable Milnor attractor that is not Liapunov
stable.

Proof. The asymptotic stability ofH can be obtained by applying Theorem 1. Thus
‖v‖ → 0 under iteration byf ; we wish to prove that for an asymptotically full measure
set of initial conditions,w will limit towardsw±. DefineH p to be the connections that
crossH (in) atw = w± (and thereforeH (out) atv = e±).

Attraction of H p is shown in Lemma 3. The fact thatH p is not Liapunov stable
can be seen on observing that for anyε > 0, V(ε)c intersects all neighbourhoods
of (0, w±).

In fact, the assumption thatH(E) is closed is not necessary, as long asCi j is nonempty
thenCp

i j is nonempty (this is closed because it is one-dimensional); this is because we
argue local to connections inH p.



116 P. Ashwin and P. Chossat

Fig. 3. This figure shows schematically the subsetsE(ε) F(ε) and N = V(ε) ∩
E(ε)∩F(ε) in the sectionH (in) = R2×S1; S1 is obtained by identifying the opposite
faces ofE(ε). The point(0, w+) is marked; this corresponds to the intersection of a
principal connection with this section. The set of all connections is represented by
the central line.

Definer = e−T so thatvi = r λi τi (v). Sinceτ ∈ Sd−1, we have

1− (τ1(v))
2 =

d∑
i=2

τ 2
i =

d∑
i=2

(r−λi vi )
2

≤ r−2λ2

d∑
i=2

v2
i

≤ v
−2

λ2
λ1

1

d∑
i=2

v2
i ,

where we have used the properties thatλi ≤ λ2 andv2
1e2λ1T = v2

1r−2λ1 ≤ 1.
For Sa measurable subset ofRd × Sd−1 we define

mδ(S) = m(S∩ E(δ))

m(E(δ))
.

The following is contained in [19]; we include it here for completeness.
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Lemma 2. The set V(ε) has asymptotically full measure. More precisely, givenε > 0
there is a K(ε) such that for all small enoughδ we have

mδ(V(ε)
c) < K (ε) δξ−1,

whereξ = λ1/λ2 > 1. Thus mδ(V(ε)c)→ 0 asδ→ 0.

Proof. Observe that

V(ε)c ∩ E(δ) = {
(v,w) ∈ H (in): ‖v‖ < δ and 1− (τ1(v))

2 ≥ ε2
}

⊂
{
(v,w): ‖v‖ < δ and ε2(v1)

2
λ2
λ1 ≤

d∑
2

v2
i

}
⊂
{
(v,w): ‖v‖ < δ and v2

1 ≤ (δ2/ε2)
λ1
λ2

}
,

Thus

m(V(ε)c ∩ E(δ)) ≤
∫ δξ ε−ξ

v1=−δξ ε−ξ

∫ δ2

v2
2+···+v2

d=−δ2
dv

= K ε−ξ δξ
m(E(δ))

δ
,

for someK > 0, and the result follows.

This implies that the setV(ε) has asymptotically full measure near the set of connections
Sd−1 ⊂ H (in).

Lemma 3. For the system described in Theorem 2, Hp is generically an attractor.

Proof. We show there are constantsρ > 1,β > 0, K > 1, andε0 > 0 such that for all
ε0 > ε > 0 we have

(a) f (V(ε)) ⊂ F(K ε),
(b) f (E(ε)) ⊂ E(ερ),
(c) f (V(ε0) ∩ E(ε) ∩ F(ε0)) ⊂ V(ερβ).

Recall that

(v′(v,w),w′(v,w)) = (A(τ (v))(e−γ1T(v)w1, . . . ,e
−γdT(v)wd), g(τ (v))

)
.

(a) SetK = maxφ
∥∥∥ dg

dφ

∥∥∥. Thus 1− (τ1(v))
2 < ε2 implies that‖g(τ (v))−w±‖ ≤ K ε.

(b) This follows by observing that‖v′‖ < maxφ ‖A(φ)‖‖v‖
γd
λ1 and so for any 1<

ρ <
γd

λ1
there is anε0 such that‖v′‖ < ‖v‖ρ if ‖v‖ < ε0.

(c) We definev± = A(e±)b± and then generically (due to Ha, Hd) we can assume
thatw±1 6= 0 andv±1 6= 0. Essentially we wish to show that the image of most points
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passing throughH (out) neare± hit H (in) with a nonzero component in thev1 direction,
because they are nearly collinear withv±.

We can findε0 such that(v,w) ∈ E(ε0) ∩ F(ε0) implies that

(e−γ1T(v)w1, . . . ,e
−γdT(v)wd)

is arbitrarily close to a scalar multiple ofb±, asT is arbitrarily large for smallε0 and
γ1 > γi for i > 1.

By continuity of A(τ (v))(u) and the fact thatτ(v) is close toe± andu is close tob±,
we can find a constantK1 > 0 such that

v′21 > K1

d∑
i=2

v′2i

for any(v,w) ∈ V(ε0) ∩ E(ε0) ∩ F(ε0). Thus we have

1− τ1(v
′)2 =

d∑
i=2

τi (v
′)2

≤ v′1
−2

λ2
λ1

d∑
2

v′2i

≤ K
− λ2
λ1

1 ‖v′‖2β,

whereβ = 1− λ2
λ1
> 0. Therefore we can chooseε0 small enough and use (b) to assure

that if (v,w) ∈ V(ε0) ∩ E(ε) ∩ F(ε0) then

1− τ1(v
′(v,w))2 < ε2ρβ.

Combining results (a), (b), and (c) means that for all 0< ε < ε0/K ,

f (V(ερ) ∩ E(ε
ρ

β ) ∩ F(K ε)) ⊂ V(ερ
2
) ∩ E(ε

ρ2

β ) ∩ F(K ερ),

implying that, if we define

Nn = V(ερ
n+1
) ∩ E(ε

ρn+1

β ) ∩ F(K ερ
n
),

then forn ≥ 0

f (Nn) ⊂ Nn+1.

This means that all points inN0 converge uniformly to(0, w±) ∈ H (in). Lemma 2 implies
that this set has asymptotically full measure near(0, w±).

Note that we have constructed an asymptotically full measure set that converges
uniformly to (0, w±). It may be that an open dense set of points convergenonuniformly
to (0, w±): See the discussion in Section 5.
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3.3. ω-Limit Sets for Complex Expanding Eigenvalues

In this case we do not have a general result comparable to that for real expanding
eigenvalues, but make the following conjecture, a special case of Conjecture 1.

Conjecture 2. Suppose we have a closed homoclinic cycle with two-dimensional con-
nections satisfying (H). Suppose it has a complex pair of expanding eigenvaluesλ± iω,
λ > 0, and contracting eigenvalues with real parts all less than−γ < 0. If γ > λ then
the set is asymptotically stable, and generically, an asymptotically full measure set of
nearby initial conditions haveω-limit sets that contain the whole of the two-dimensional
set.

Case of SO(2) acting on the connections.Suppose that the isotropy subgroups of the
fixed pointsξi contains a copy ofSO(2) that acts on the set of connections nontrivially.
Generically the expanding and contracting eigenvalues are complex, sayλ ± iω and
−γ ± iρ, and we consider the mapping (18). In this caseA will be a rigid rotation and
scaling (independent ofφ) while g(φ) will be a uniform rotation, i.e.,

A = A0

(
cosζ sinζ
− sinζ cosζ

)
, g(φ) = φ + χ,

whereA0 6= 0, ζ , andχ are real numbers. We write(v1, v2) = (r cosψ, r sinψ) and
the return mapping onH (in) has the form

r ′ = A0r
γ

λ ,

ψ ′ = θ − ρ
λ

ln r − ζ,

θ ′ = ψ + ω
λ

ln r.

Thus, given a trajectory(rn, ψn, θn) = f n(r0, ψ0, θ0) and defining

β = γ

λ
> 1,

we can write

rn = A

∑n

k=0
βk

0 r β
n

0 = A
βn−1
β−1

0 r β
n

0 = (A0)
−1
β−1

(
A

1
(β−1)

0 r0

)βn

,

and we defineK (independent ofr0) ands (linearly dependent onr0) such that

rn = Ksβ
n
.

Thus

ψn = θn−1− ρ
λ
(ln K + βn ln s)− ζ

and

θn = ψn−1+ ω
λ
(ln K + βn ln s).
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We can write

θn+1 = θn−1+
(
βω − ρ
λ

)
βn ln s+

(
ω − ρ
λ

ln K − ζ
)
.

Setting

K1 =
(
βω − ρ
λ

)
β ln s, K2 =

(
ω − ρ
λ

ln K − ζ
)
,

we get an expression for even terms ofθn as

θ2k = θ0+
k∑

l=1

(K1(β
2)(l−1) + K2),

and on evaluating the sum, we obtain

θ2k =
(

K1

β2− 1
+ θ0

)
+ K2k+ K1

β2− 1
(β2)k. (10)

Note that the dominant term is exponential as long asK1 6= 0—in other words, as long
as

γ

ρ
6= λ

ω

—and corresponds to an assumption that the pitch of the contracting and expanding
spirals near the fixed point are not equal and opposite.

We investigate the sequence (10) by means of the following proposition.

Proposition 1. For givenλ > 1 and almost all C1, C2, and C3, the sequence

{C1+ C2n+ C3λ
n: n ∈ N}

is dense in[0, 1]. Moreover, if C2 = 0 then for almost all C1 and C3 this sequence is
uniformly distributed with respect to Lebesgue measure.

Proof. Fix anyC1,C2, andC3 nonzero and consider the sequencesk = C1+C2k+C3λ
k.

Since this is unbounded, the result follows directly from Corollary 2.4 in Melbourne and
Stewart [20]. The second part is a restatement of a theorem quoted in Cornfeld et al. [5,
p. 164].

From this, we obtain

Theorem 3. Suppose the hypotheses of Conjecture 2 hold. Suppose additionally that
the vector field on each connection commutes with a nontrivial action ofSO(2) that fixes
the end points. Then the results of Conjecture 2 hold; in particular, the cycle is a minimal
attractor.

Without an assumption ofSO(2) symmetry, we expect that the sequence of return angles
θk is almost always uniformly distributed with respect to a Lebesgueequivalentmeasure.
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Fig. 4. The black region shows all initial points for the real contracting, real expanding case that
stay uniformly close toθ = θ± under the action of the map (7). The square represents(v1, v2)
within (i) [0, 0.1]2, (ii) [0, 10−3]2.

4. Examples

We consider examples illustrating dynamics near closed homoclinic cycles with two-
dimensional connecting sets. We report on simulations of approximate return maps near
such homoclinic cycles. We also consider an example described by Kirk and Silber [15]
which shows the necessity of our assumption (Ha).

4.1. Simulations of the Approximate Return Map

We have investigated the mappings (8) and (9) by examining individual trajectories as
well as by scanning through the phase space to plot out the basins of attraction.

This is a much easier way to examine multiple approaches to the fixed point than direct
simulation of an ODE, because for the ODE there is an ‘asymptotic slowing down’ with
each approach to the fixed point. We present examples where

A(φ) =
(

1 1
−1 1

)
, g(φ) = φ + 1,

and use a Newton method to solve the equation forT(v). Figure 4 shows the basin
of attraction ofH p in the (v1, v2) plane atθ = θ−. Black points correspond to initial
conditions that remain within 0.3 of θ±. In this case, the expanding eigenvalues are
λ1 = 0.5 andλ2 = 0.3, while the contracting ones are−γ1 = −0.8 and−γ2 = −0.6. In
agreement with Theorem 2, the measure of the basin of attraction limits to full measure on
approaching the connection. Figure 5 shows the same plots but for complex contracting
eigenvalues−0.6± i and real expanding eigenvalues 0.3 and 0.5. Note that the structure
of the basin complement is much more complicated than in the real contracting case,
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Fig. 5. The black region shows all initial points for the complex contracting, real expanding case
that stay uniformly close toθ = θ±. The square represents(v1, v2)within (i) [0, 0.1]2, (ii) [0, 10−3].

and we conjecture it may even be ‘riddled’ [1], [2]. Nonetheless, the images suggest that
the measure of the basin is asymptotically full nearH p.3

4.2. A Vector Field withZ4
2 Symmetry

As another example, we consider a heteroclinic chain investigated by Kirk and Silber
[15]. This is a pair of competing cycles on four equilibria for a flow onR4 equivariant
underZ4

2 acting by reflections in all the coordinate hyperplanes. One cycle is of the form

ξ1→ ξ2→ ξ3→ ξ1,

and the other is

ξ1→ ξ2→ ξ4→ ξ1,

whereξi has nonzero components only in thei th component. The equilibria have unstable
manifolds of dimension one except forξ2 that has dimension two, and at this point the
expanding eigenvalue in theξ3 direction is assumed to be stronger than that in theξ4

direction. In Figure 6 we illustrate some of the main features of this cycle. (a) shows the
first cycle in the invariant spacex4 = 0 while (b) shows the second cycle in the invariant
spacex3 = 0. (c) gives the simplest possible dynamics in the planex1 = x2 = 0
consistent with the description; note that there is an extra saddle point labelledη. Thus
the simplest closed heteroclinic chain containing the two cycles is (d), with some one-
dimensional and some two-dimensional connections. (This is still a simplification in

3 We have prepared a short video showing the structure of the basin of attraction, available on request to
P. Ashwin (please include a blank VHS videocassette with any request).
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Fig. 6. (a), (b) Sketch of the two competing cycles in Kirk and Silber’s ex-
ample. (c) Simplest consistent dynamics in thex1 = x2 = 0 invariant plane
involves addition of an extra equilibrium,η, with dimWu(η) = 2. (d) Simplest
consistent closed heteroclinic chain. The numbers on the connections indicate
the dimensions of the connecting sets.

that all of the−ξi are also involved in the closure of the unstable manifolds of this set).
Note that the connectionsξ2 to ξ3 involve a one-dimensional connecting set in the plane
x1 = x4 = 0 and a two-dimensional connecting set in the invariant three-spacex1 = 0;
thus (Ha) is broken.

Kirk and Silber have shown that in a robust way, one can find such cycles where both
of the one-dimensional cycles are simultaneously attracting; this suggests that (Ha) is a
necessary assumption for Conjecture 1.

5. Discussion

We have shown how some of the behaviour seen in the example of Section 1.1 can be
explained theoretically, in particular how we can robustly have a continuum of connec-
tions that are asymptotically stable, while only a discrete set of them are attractors. We
have also shown some ideas of what one might expect for more general cases. A crucial
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hypothesis is (Ha), that all connections between a given pair of equilibria lie within a
single isotropy type. There are also genericity assumptions that can be thought of as
requiring that the principal connections are not at inclination or orbit flip bifurcations.
We have also indicated that closedness of a heteroclinic chain, which is automatic for
one-dimensional connections, is not automatic for higher dimensional cases, and this
needs to be properly addressed.

For homoclinic cycles that are asymptotically stable, the most positive expanding
eigenvalues seem to determine the asymptotic behaviour of most initial nearby points;
if this is a single real eigenvalue, we get a one-dimensional attractor, whereas if it is a
complex pair, the rotation causes a trajectory to be thrown out in many directions in this
eigenspace on successive approaches to the fixed point. What is possibly surprising is
that the dimension and complexity or otherwise of the weakest contracting eigenspace
appears not to be important for the asymptotic behaviour.

This paper poses a variety of questions related to attractors for systems containing
robust heteroclinic chains, and we recall some of them here:

1. Prove or find counterexamples to Conjecture 1 and the special case, Conjecture 2.
2. Account for the effect of transverse and radial eigenvalues.
3. Understand heteroclinic chains that break hypothesis (H) in various ways.
4. Understand what happens in the case that the eigenvalues are real and multiple.

This can happen if, for example, there is an irreducible nontrivial group action that
commutes with the flow on the connecting orbits.

The notion of stability we have used can very likely be strengthened to say that, at
least in the case of a closed homoclinic cycle, a full measure set of initial points converge
to the principal homoclinic cycleH p. This may even be open and dense, but because we
do not have Liapunov stability, it would have nonuniform convergence of points in the
basin toH p.

The dimension of the phase space needs to be reasonably large (greater than three) to
observe this behaviour; hence, it cannot be seen for very simple group actions at generic
bifurcations. However for higher dimensional systems (e.g., parabolic PDEs) we expect
these structures to be characteristically present, even if the group is relatively simple, for
example in higher dimensional (reducible) representations ofO(2).

Appendix A: Derivation of the Local Return Map for d = 2

We use the notation defined in Section 3. The form of the mapping between the neigh-
bourhoods of adjacent equilibria is independent of the dynamics near the equilibria.
Observe that8: H (out)→ H (in) can be written (to linear order inw1, w2) as

8(φ,w1, w2) = (v′1, v′2, θ ′),
where (

v′1
v′2

)
= A(φ)

(
w1

w2

)
,

θ ′ = g(φ).
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A andg are smoothly dependent onφ ∈ S1 for closed cycles;A: S1 → GL(R2) and
g: S1 → S1. Note that, in particular, the matrix norm ofA is uniformly bounded in
φ. Moreover, continuity ofA andU imply that its image lies within one connected
component of the image space; det(A) lies on one side of zero.

Case (i): Real expanding and real contracting eigenvalues.A local change of coor-
dinates gives

Me =
(
λ1 0
0 λ2

)
, Mc =

( −γ1 0
0 −γ2

)
,

where the constantsλi andγi are real and positive. We will assume thatλ1 > λ2 > 0
andγ1 > γ2 > 0. The flow for the initial value problem for (4) is

vi (t) = eλi tvi (0),

wi (t) = e−γi twi (0). (11)

The ‘time of flight’ from H (in) to H (out) is given byT such thatv2
1e2λ1T + v2

2e2λ2T = 1,
giving a unique solutionT(v) > 0. In what follows we shall make use of the estimates

ln ‖v‖− 1
λ1 ≤ T(v) ≤ ln ‖v‖− 1

λ2 . (12)

Thus the mapping9: H (in)→ H (out) can be written as

9(v1, v2, θ) = (τ, w1, w2),

where (
w1

w2

)
=
(

cosθe−γ1T

sinθe−γ2T

)
,

τ (v) = arg

(
v1eλ1T

v2eλ2T

)
= arg

(
v1

v2e(λ2−λ1)T

)
,

where arg refers to the angle the vector makes to 1-axis, measured in the positive direction,
i.e.,

arg

(
r cosθ
r sinθ

)
= θ

for all positiver . The return mapf has the form

f (v1, v2, θ) = (v′1, v′2, θ ′),

where (
v′1
v′2

)
= A(τ (v))

(
cosθe−γ1T(v)

sinθe−γ2T(v)

)
,

θ ′ = g(τ (v)). (13)
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Case (ii): Real expanding and complex contracting eigenvalues.Suppose that

Me =
(
λ1 0
0 λ2

)
, Mc =

( −γ ω

−ω −γ
)
,

with real constantsλ1 > λ2 > 0, γ > 0, andω 6= 0. As before, we defineT(v) > 0 to
be the solution ofv2

1e2λ1T + v2
2e2λ2T = 1 and the flow is given by

v1(t) = eλ1tv1(0),

v2(t) = eλ2tv2(0),

w1(t) = e−γ t (w1(0) cosωt + w2(0) sinωt),

w2(t) = e−γ t (w2(0) cosωt − w1(0) sinωt).

We can write the local map9(v1, v2, θ) = (τ, w1, w2) where

τ(v) = arg

(
v1eλ1T

v2eλ2T

)
,

and(
w1

w2

)
= e−γT

(
cosθ cosωT + sinθ sinωT
sinθ cosωT − cosθ sinωT

)
= e−γT

(
cos(θ − ωT)
sin(θ − ωT)

)
.

This gives a return mapf of the form f (v1, v2, θ) = (v′1, v′2, θ ′) where(
v′1
v′2

)
= e−γT(v)A(τ (v))

(
cos(θ − ωT(v))
sin(θ − ωT(v))

)
,

θ ′ = g(τ (v)). (14)

Case (iii): Complex expanding and real contracting eigenvalues.We perform a local
change of coordinates such that

Me =
(

λ ω

−ω λ

)
, Mc =

( −γ1 0
0 −γ2

)
,

where the constants satisfyω 6= 0, λ > 0, andγ1 > γ2 > 0.
It is a simple matter to find the flow for the initial value problem for (4), resulting in

v1(t) = eλt (v1(0) cosωt + v2(0) sinωt),

v2(t) = eλt (v2(0) cosωt − v1(0) sinωt),

w1(t) = e−γ1tw1(0),

w2(t) = e−γ2tw2(0). (15)

The flow (15) induces a map fromH (in) to H (out) which can be written as

9(v1, v2, θ) = (τ (v), w1, w2).
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This can be found by first computing the time of flightT > 0 such that:

(v2
1 + v2

2)e
2λT = 1,

implying that

T = − 1

2λ
ln(v2

1 + v2
2) = ln ‖v‖− 1

λ ,

wherev2 = v2
1 + v2

2. Thus we can write

9(v1, v2, θ) = (τ (v), ‖v‖
γ1
λ cosθ, ‖v‖ γ2λ sinθ),

where

τ(v) = arg

(
v1

v2

)
+ ln ‖v‖ ωλ .

This means that we can write the action of the return map asf (v1, v2, θ) = (v′1, v′2, θ ′)
where (

v′1
v′2

)
= A(τ (v))

(
cosθ‖v‖ γ1λ
sinθ‖v‖ γ2λ

)
,

θ ′ = g(τ (v)). (16)

Case (iv): Complex expanding and complex contracting eigenvalues.Finally, con-
sider the case where a local change of coordinates gives linear parts

Me =
(

λ ω

−ω λ

)
, Mc =

( −γ ρ

−ρ −γ
)
,

with real constantsλ > 0,ω 6= 0, γ > 0, andρ 6= 0. Solving (4) gives the flow

v1(t) = eλt (v1(0) cosωt + v2(0) sinωt),

v2(t) = eλt (v2(0) cosωt − v1(0) sinωt),

w1(t) = e−γ1t (w1(0) cosρt + w2(0) sinρt),

w2(t) = e−γ2t (w2(0) cosρt − w1(0) sinρt). (17)

The map fromH (in) to H (out) induced by this flow is

9(v1, v2, θ) = (τ, w1, w2).

This can be found by first computing the time of flightT > 0 such that

(v2
1 + v2

2)e
2λT = 1,

implying that

T = 1

2λ
ln(v2

1 + v2
2) = ln r

1
λ ,
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with r 2 = v2
1 + v2

2. Thus we can write

9(v1, v2, θ) = (τ, w1, w2),

where

τ = arg

(
v1

v2

)
+ ln ‖v‖ ωλ ,

and (
w1

w2

)
= ‖v‖ γλ

(
cos(θ − ρ

λ
ln ‖v‖)

sin(θ − ρ

λ
ln ‖v‖)

)
.

This implies that the return mapf has the formf (v1, v2, θ) = (v′1, v′2, θ ′) where(
v′1
v′2

)
= ‖v‖ γλ A(τ (v))

(
cos(θ − ρ

λ
ln ‖v‖)

sin(θ − ρ

λ
ln ‖v‖)

)
,

θ ′ = g(τ (v)). (18)

Appendix B: Derivation of the Local Return Map for Arbitrary d and Distinct Real
Eigenvalues

In the case of distinct real eigenvalues one can simplify the analysis of Appendix A.
Writing H (in) as in (5) observe that8: H (out)→ H (in) can be written (to linear order in
w1, w2) as

8(v,w) = (v′, w′),
where

v′ = A(v)w,

w′ = g(v),

and A and g are (by virtue of hyperbolicity and closedness) smoothly dependent on
φ ∈ Sd−1 with A: Sd−1 → GL(Rd) andg: Sd−1 → Sd−1 a smooth diffeomorphism.
DefineT : Rd \ {0} → R+ such that∑

j

v2
j e2λj T(v) = 1,

andτ : Rd \ {0} → Sd−1 by

τi (v) = eλi T(v)vi .

Note that‖τ(v)‖ = 1 and also

ln ‖v‖− 1
λ1 ≤ T ≤ ln ‖v‖− 1

λd . (19)

The return mapf : H (in)→ H (in) can be written

f (v,w) = (v′, w′),
where

v′ = A(τ (v))(e−γ1T(v)w1, . . . ,e
−γdT(v)wd),

w′ = g(τ (v)). (20)
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