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Summary. Meandering of a one-armed spiral tip has been noted in chemical reactions
and numerical simulations. Barkley, Kness, and Tuckerman show that meandering can

begin by Hopf bifurcation from a rigidly rotating spiral wave (a point that is verified

in a B-Z reaction by Li, Ouyang, Petrov, and Swinney). At the codimension-two point

where (in an appropriate sense) the frequency at Hopf bifurcation equals the frequency of

the spiral wave, Barkley notes that spiral tip meandering can turn to linearly translating

spiral tip motion.

Barkley also presents a model showing that the linear motion of the spiral tip is a

resonance phenomenon, and this point is verified experimentally by Li et al. and proved

rigorously by Wulff. In this paper we suggest an alternative development of Barkley’s

model extending the center bundle constructions of Krupa from compact groups to

noncompact groups and from finite dimensions to function spaces. Our reduction works

only under certain simplifying assumptions which are not valid for Euclidean group

actions. Recent work of Sandstede, Scheel, and Wulff shows how to overcome these

difficulties.

This approach allows us to consider various bifurcations from a rotating wave. In

particular, we analyze the codimension-two Barkley bifurcation and the codimension-

twoTakens-Bogdanovbifurcation froma rotatingwave.Wealso discussHopf bifurcation

from a many-armed spiral showing that meandering and resonant linear motion of the

spiral tip do not always occur.
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Fig. 1. Epicycle motion of spiral tip: outward and inward petals.

1. Introduction

Spiral waves have been observed both in experiments [20], [13], [14] and numerical

simulations [13], [4]. See Kapral and Showalter [11] for descriptions of recent work on

spiral waves and for additional references. In our discussion we focus on one particular

aspect of spiral wave theory—the observation by Barkley [3] that linear meandering of

the spiral tip is caused by Euclidean symmetry.

Planar spirals rigidly rotate and, as a result, the tip of the spiral traces out a circle in the

plane. Winfree [20] observed that under certain circumstances the tip of a spiral can me-

ander and create flower-like movements as in Figure 1. These motions are quasi-periodic

two-frequency motions, which can be thought of as an epicycle motion superimposed on

the basic spiral wave circle. When the motion on the epicycle is in the same orientation

as the motion on the circle (either clockwise or counterclockwise), then the petals of the

flowers point in; when the motions have the opposite orientation, the petals point out.

Winfree observed both types of quasi-periodic motions and the possibility of changing

the directions of the petals—which we call a change in petality—as a system parameter
is varied.

The epicycle motion can be written as

q(t) = eiω1t (z1 + e−iω2t z2), (1.1)

where z1 ∈ R and z2 ∈ C. In these coordinates the change in petality occurs when
ω1 = ω2. We note that in order to see well-defined petals the ratio of the amplitudes

|z2|/|z1| should be large. Nevertheless, these quasi-periodic states can be formed, as
Barkley et al. [4] observed in numerical simulations of a reaction-diffusion system,

through a Hopf bifurcation from the rotating spiral wave. That observation has been

confirmed in recent chemical wave experiments by Li et al. [14].

In the epicyclemotion (1.1), Hopf bifurcation corresponds to the secondary amplitude

z2 = 0. From the standard bifurcation theory point of view, there is nothing significant

about Hopf bifurcation at this critical parameter value where ω1 = ω2. However, in

Barkley’s numerical simulation [1] and in experiments such as those by Li et al. [14]

another phenomenon is observed. As the change in petality is approached, the radius of

the second frequency |z2| grows unboundedly large. In particular, at the point of petality
change, the spiral tip appears to drift in a straight line off to infinity. See Figure 2.
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Fig. 2. Growth of flower near change in petality: path of
∫ t
0
q(s)ds, where q(t) is as in (1.1) with

ω1 = 1, z1 = 1, z2 = 0.3, and ω2 = 0.61, 0.85, 1, 1.11.

Thus, unbounded growth of the second frequency amplitude is a feature that seems to
be connected with change in petality.

As wementioned, for changes in petality to be observed, the amplitude of the epicycle

should be large, while near Hopf bifurcation points, this same amplitude must be small.

This dichotomy suggests that standard Hopf bifurcation by itself cannot provide an

explanation for petality change and unbounded growth. However, Barkley [3] made the

keen observation that Euclidean symmetry coupled with Hopf bifurcation is behind the

unbounded growth that accompanies changes in petality. The basis of his argument turns

out, in retrospect, to be quite simple.

Suppose we consider a reaction-diffusion system on the unbounded plane. Such sys-

tems of equations have Euclidean symmetry. Suppose the system has a spiral wave

solution and that the time-periodic spiral wave undergoes a Hopf bifurcation to a quasi-

periodic motion. At the point of Hopf bifurcation, symmetry forces (at least) five eigen-

values of the linearized system to be on the imaginary axis—two generated from Hopf

bifurcation and three generated by Euclidean symmetry. Assuming that center manifold

ideas hold, the time evolution of the meandering spiral (and hence the time evolution

of the meandering spiral tip) is described by a five-dimensional Euclidean equivariant

system of ODEs. There are three variables of this system representing the Euclidean

group—the translation variable p ∈ R2 ∼= C and the rotation variable ϕ ∈ S1—and the
variable q ∈ C representing the amplitude of the eigenfunction of Hopf bifurcation.
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In these variables Barkley [3] assumes that the translation symmetry acts by

Tx (p, ϕ, q) = (p + x, ϕ, q).

It follows that the ODE vector field is independent of p and that the (ϕ, q) equations
decouple; see Lemmas 3.5 and 4.1 in this paper. Suppose that a quasi-periodic solution

is found in the (ϕ, q) equations. Then p is obtained by integration. To understand how
this integration causes unbounded growth in p, rewrite (1.1) as

q(t) = eiω1t z1 + ei(ω1−ω2)t z2.

Then, for some constant C ∈ R,

p(t) =
∫ t

0

q(τ )dτ =
⎧⎨⎩
1
i

(
z1
ω1
eiω1t + z2

ω1−ω2
ei(ω1−ω2)t

)
+ C, ω1 �= ω2,

z1
iω1 e

iω1t + z2t + C, ω1 = ω2.

It follows that if z2 �= 0, then as ω2 approaches ω1 a resonant blow-up in p(t) occurs.
In particular, when ω2 − ω1 �= 0 is small the amplitude of the second term is large, the

motion of the second term is on a circle of large radius, and the motion of p(t) is a small
perturbation of this circular motion. (The center of this circle is determined by C .) Thus,
this blow-up is the source of the unbounded growth of the second frequency mode and

occurs even when the magnitude of z2 is small.
Barkley [2] performed a numerical linear stability analysis for the basic time-periodic

spiral wave solution and showed that there is a Hopf bifurcation. In particular, a simple

pair of eigenvalues was shown to cross the imaginary axis while three neutral eigenvalues

lie on the imaginary axis and the remainder of the spectrum is bounded into the left-half

plane. Starting fromBarkley’s numerical calculation,Wulff [21], in amajormathematical

work on spirals, has given a rigorous proof that resonant unbounded growth occurs in

Hopf bifurcation near the codimension-two point where ω1 = ω2. Wulff approaches the

study of thisHopf bifurcation using Liapunov-Schmidt reduction. Her proof is nontrivial,

as there are technical difficulties, such as the nonsmoothness of the group action, which

must be overcome.

In this paper we suggest an alternative to the methods in [21], which we believe helps

in the understanding of thework of Barkley andWulff. Our approach to bifurcations from

rotating waves in Euclidean equivariant differential equations extends Krupa’s ideas [12]

of bifurcation from relative equilibria. Krupa’s methods lead to the construction of and

reduction to a center bundle over the critical group orbit. We note that Biktashev et al. [5]

obtain a similar reduction for the case of one-armed spirals by considering an orbit space

reduction. For many-armed spirals, the center bundle reduction has the advantage of not

introducing singularities. Indeed, we obtain new results on bifurcation frommany-armed

spirals.

The group orbit of the rotating spiral wave is three-dimensional and the center sub-

space corresponding to Hopf bifurcation is two-dimensional, thus leading to a five-

dimensional center bundle. With the construction of this bundle, we recover the action

of the Euclidean group in Barkley’s five-dimensional model. The general equivariant

vector field on the center bundle can then be analyzed.
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It is our contention that center bundle techniques simplify the understanding of more

complicated bifurcations from rotating waves. To illustrate this point, we discuss Hopf

bifurcation from rotating waves recovering the results of Wulff [21] in the case of one-

armed spirals and discovering new phenomena in the case of many-armed spirals. We

also discuss the codimension-two Takens-Bogdanov bifurcation from one-armed spiral

waves.

The center bundle reduction of Krupa [12] is formulated under the assumption that the

total group of symmetries is compact and hence is not directly applicable to the problem
of meandering spirals. However, it turns out that the main requirement is compactness

of the isotropy subgroups of points on the critical group orbit. In the appendix, we

prove, under certain hypotheses, that Krupa’s theorems are valid even when the group

of symmetries is not compact and acts on an infinite-dimensional function space. In this

theorem, it suffices that the isotropy subgroups are either discrete or compact, which is

the case for spiral solutions since their isotropy subgroups are finite.

The hypotheses for the reduction described in the appendix are not satisfied in our

particular context of Euclidean symmetry due to the nonsmoothness of the group action.

Recent work of Sandstede et al. [17], [18] circumvents these hypotheses and enables the

center bundle reduction for meandering spirals to be carried out rigorously.

2. Center Bundles and Rotating Waves

We begin by describing the relevant results in Krupa [12] on center bundles. Let � be a

compact Lie group acting orthogonally on Rn , and let f : Rn → Rn be a �-equivariant

vector field. A group orbit X is a relative equilibrium if the flow of

ẋ = f (x) (2.1)

leaves X invariant. (Alternatively, X is a relative equilibrium if f is tangent to X along
X .) Note that rotating waves are relative equilibria as time evolution is the same as spatial
rotation.

Suppose that the group orbit X = �x0 is a relative equilibrium, and let� ⊂ � be the

isotropy subgroup of x0. Let Tx0X be the tangent space to the group orbit at x0, and note
that Tx0X is �-invariant. Write

Rn = Tx0X ⊕ Nx0 ,

where Nx0 is the orthogonal complement to Tx0X . We can form the normal bundle N (X)

over X by attaching γ Nx0 to the point γ x0; since Nx0 is �-invariant this construction

makes sense and the bundle is �-invariant. This bundle gives a �-invariant tubular

neighborhood of X in Rn .
Krupa then shows (see also Vanderbauwhede et al. [19]) that f may be written as

f = fN + fT

on a neighborhood of X where

• fN and fT are �-equivariant vector fields,
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• fN preserves normal fibers γ Nx0 , and
• fT is tangent to group orbits; that is, fT (x) ∈ Tx�x .

It follows that g = fN |Nx0 is a �-equivariant vector field. Moreover, g is “generic” in
the sense that any �-equivariant vector field g: Nx0→Nx0 extends, in a neighborhood
of X , to a �-equivariant vector field f : Rn→Rn .
If X is a relative equilibrium, then g(x0) = 0. The relative equilibrium X is a critical

group orbit if (dg)x0 has eigenvalues on the imaginary axis. (We note that (dg)x0 is
computable; see Proposition A.3 in the appendix.) Let Vx0 be the center subspace of
(dg)x0 . We call V = ∪{γ Vx0} the center bundle.
Next, Krupa shows that every solution x(t) to the differential equation (2.1) near X

can be written as

x(t) = γ (t)y(t), (2.2)

where y(t) is a solution to the normal vector field equation ẏ = g(y) and γ (t) ∈ � is a

smooth curve.

Suppose thatWx0 ⊂ Nx0 is a�-invariant center manifold for g. Based on (2.2), Krupa
observes that W = ∪{γWx0} is a �-invariant flow-invariant center manifold for f in a
neighborhood of the critical group orbit. In particular, if the noncritical eigenvalues of

(dg)x0 all have negative real parts, then W is attracting for the dynamics of f . As is
usually the case with center manifolds, we can project f |W onto the center bundle V .
Thus, we can understand bifurcations from critical group orbits by studying bifurcations

of the normal vector field g from equilibria.
To apply the center bundle reduction to the problem of meandering spirals, it is

necessary to generalize Krupa’s results from compact groups to noncompact groups and

from finite dimensions to infinite dimensions. We carry out this generalization, under

certain natural hypotheses, in the appendix. We note however that there are additional

technical problems coming from the action of the Euclidean group and it is necessary to

appeal to the recent results of [17], [18]. In the remainder of the main body of the paper,

we show how these ideas can be formally applied to bifurcations from spiral waves in

Euclidean equivariant systems.

3. Group Action on the Center Bundle

3.1. Trivialization of Center Bundles

We continue to use the notation from Section 2. In particular, x0 is a point with isotropy
� and X = �x0 is a critical relative equilibrium for the �-equivariant vector field f
on N (X). Recall that the action of � on points (x, v) ∈ N (X) is given by γ (x, v) =
(γ x, γ v).

Define the �-equivariant vector field g: Nx0→Nx0 as in Section 2 and let V0 = Vx0
denote the �-invariant center subspace for g with corresponding �-invariant center

bundle V = ∪{γ V0}. Although N (X) is a trivial bundle, the subbundle V is not neces-
sarily trivial (see Remark 3.4). We now give a sufficient condition for V to be a trivial
bundle.
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Lemma 3.1. Suppose that the action ρ of � on V0 extends to an action ρ of � on V0.
Then there is a trivialization

V ∼= X × V0.
The action of � on V is given by

γ (x, v) = (γ x, ργ v),

where γ ∈ �, x ∈ X, v ∈ V0.

Proof. Let (x, w) ∈ V , so x ∈ X andw ∈ Vx where Vx is the fiber over x .Write x = δx0
where δ ∈ � and observe that Vx = δV0. Hence δ−1w ∈ V0. Define the trivialization
h: V→X × V0 by

h(x, w) = (x, ρδ(δ
−1w)).

To show that h is well-defined, suppose that x = δ1x0 = δ2x0 where δ1, δ2 ∈ �. Then

δ−1
2 δ1 = σ ∈ �. The assumption on the action ρ ensures that ρσv = σv for all v ∈ V0.
We compute that

ρδ2(δ
−1
2 w) = ρδ2ρσ (σ−1δ−1

2 w) = ρδ2ρδ−1
2

δ1
(δ−1
1 δ2δ

−1
2 w) = ρδ1(δ

−1
1 w);

hence h is well-defined.
Next, we verify the action of � on X × V0. In other words, we show that h is �-

equivariant with respect to the actions on V and X × V0. Let (x, w) ∈ V as at the
beginning of the proof. Then

h(γ (x, w)) = h(γ x, γw) = (γ x, ργ δ((γ δ)−1γw))

= (γ x, ργ ρδ(δ
−1w)) = γ (x, ρδ(δ

−1w)) = γ h(x, w),

as required.

The next corollary includes the case � = 1 (one-armed spirals).

Corollary 3.2. Suppose that� acts trivially on V0. Then V ∼= X×V0 is a trivial bundle
and � acts as (x, v)→(γ x, v).

Next, we prove a general result about Hopf bifurcation from a relative equilibrium

when � = SO(2).

Proposition 3.3. Suppose that � = SO(2) and that X = �x0 is a relative equilibrium.
If X undergoes a Hopf bifurcation, then generically dim V0 = 2 and the corresponding
center bundle V = X × V0 is a trivial bundle.

Proof. If � = SO(2), then X is a point and the result is immediate. Hence, we may
suppose that � = Z�, � ≥ 1, with generator σ = R2π /� ∈ SO(2). Each irreducible

representation of � is one-dimensional (and absolutely irreducible) or two-dimensional
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(and nonabsolutely irreducible). It follows from general theory [8] that generically either

V0 is nonabsolutely irreducible or V0 is the sum of two isomorphic absolutely irreducible
representations. Either way, dim V0 = 2. Moreover, σ acts as an orientation-preserving

transformation on V0: σ z = e2π im/�z for some m = 0, . . . , [�/2]. To apply Lemma 3.1,

take ρθ z = eimθ z, θ ∈ SO(2).

Remark 3.4. (a) We give a simple example of a bifurcation from a relative equilibrium
for which the center bundle is not a trivial bundle. Take � = SO(2), � = Z2, V0 ∼= R,
and suppose that � acts nontrivially on V0. (In other words, we consider a symmetry-
breaking steady-state bifurcation in the normal vector field.) Then the center bundle V
is a Möbius band.

(b) By results of Fiedler et al. [6], the analysis that follows does not depend crucially

on whether V is a trivial bundle.

3.2. The Center Bundle for Spirals

Now suppose that � = SE(2), the special Euclidean group consisting of rotations and
translations. We suppose that X = SE(2)x0 is a relative equilibrium where x0 is an
�-armed spiral. In other words the isotropy subgroup � ∼= Z�. As a manifold SE(2) is

diffeomorphic to R2 × S1. The assumptions on the symmetry of x0 imply that

X = SE(2)x0 ∼= SE(2)/Z�
∼= R2 × (S1/Z�) ∼= C× S1;

that is, X is a cylinder with coordinates (p, ϕ).

Lemma 3.4. The action of (x, θ) ∈ SE(2) on (p, ϕ) ∈ X is

(x, θ)(p, ϕ) = (eiθ p + x, ϕ + �θ). (3.1)

Proof. To verify (3.1), note that the action of SE(2) on X is just induced by the action of
group multiplication in SE(2). Group multiplication in SE(2) is most easily understood

through the action of SE(2) on R2 = C. Let w ∈ C; then

(x, θ)w = eiθw + x .

It follows that

(x, θ)(y, ψ)w = (x, θ)(eiψw + y) = eiθ (eiψw + y) + x = ei(θ+ψ)w + (eiθ y + x).

Hence, the group multiplication on SE(2) induced by its action on C is

(x, θ)(y, ψ) = (eiθ y + x, ψ + θ).

Substituting (p, ϕ) for (y, ψ) gives the action of SE(2) on X when � = 1. For general

�, the angle θ acts on C as in the � = 1 case, but θ acts on S1/Z� as an �-fold covering.

That is, we must add �θ to ϕ.
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Lemma 3.5. Hopf bifurcation from an �-armed spiral reduces generically to Hopf bi-
furcation of a five dimensional vector field on a trivial center bundle

V = X × V0
that is equivariant under the action,

Tx (p, ϕ, q) = (p + x, ϕ, q),

Rθ (p, ϕ, q) = (eiθ p, ϕ + �θ, emiθq),
(3.2)

where 0 ≤ m ≤ [�/2].

Proof. Whether or not V is a trivial bundle is independent of the C factor in X . Hence,
it follows from Proposition 3.3 that V is a trivial bundle. The action of SE(2) on the X
coordinates follows from (3.1). The action on the V coordinates follows fromLemma 3.1
and the proof of Proposition 3.3.

4. Meandering and Resonant Growth of a One-Armed Spiral

In this section, we analyze Hopf bifurcation from a one-armed spiral. In Subsection 4.1,

wewrite down the general equivariant vector field on the center bundle. In Subsection 4.2,

we solve these equations and obtain the conditions for resonant growth. Finally, in

Subsection 4.3, we interpret these results in the context of Hopf bifurcation in a partial

differential equation, recovering the results of Barkley andWulff on the meandering and

resonant growth of spirals.

4.1. Equivariant Vector Fields on the Center Bundle

For a one-armed spiral, we have � = 1, m = 0 in Lemma 3.5.

Lemma 4.1. Let F be a system of differential equations on the center bundle V that is
SE(2)-equivariant with respect to the � = 1, m = 0 action. Then F has the form

(a) ṗ = eiϕ f (q),

(b) ϕ̇ = Fϕ(q),

(c) q̇ = Fq(q).

(4.1)

Proof. Symmetry invariance of a system of differential equations means that solutions
are transformed to solutions by that symmetry. Thus, translation invariance implies that

if

z(t) = (p(t), ϕ(t), q(t))
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is a solution to (4.1), then so is

y(t) = (p(t) + x, ϕ(t), q(t))

for any x ∈ C. Since ż(t) = ẏ(t), it follows that

F(z(t)) = F(y(t)),

for all solutions z(t). In particular,

F(p + x, ϕ, q) = F(p, ϕ, q),

for all x . Hence F is independent of p and the differential equations have the form

ṗ = F p(ϕ, q),

ϕ̇ = Fϕ(ϕ, q),

q̇ = Fq(ϕ, q).

(4.2)

Similarly, the rotational invariance of (4.2) implies that

F p(ϕ + θ, q) = eiθ F p(ϕ, q),

Fϕ(ϕ + θ, q) = Fϕ(ϕ, q),

Fq(ϕ + θ, q) = Fq(ϕ, q).

Thus, Fϕ and Fq are independent of ϕ, which verifies (4.1)(b,c).
To complete this proof we must verify (4.1)(a). Define

H(ϕ, q) = e−iϕF p(ϕ, q),

and note that

H(ϕ + θ, q) = e−i(ϕ+θ)F p(ϕ + θ, q) = e−iϕe−iθeiθ F p(ϕ, q) = H(ϕ, q).

It follows that H(ϕ, q) = f (q) is independent of ϕ and that (4.1)(a) is valid.

4.2. Periodic Solutions and Resonant Growth

Suppose that q(t) is a 2π /ω2 periodic solution to

q̇ = Fq(q)

in the center bundle equations (4.1). We define ω1 = Fϕ(q(0)). (These frequencies are
related to, but not identical to, the frequencies ω1 and ω2 that appear in the introduction,

see equation (4.7).)

We can solve

ϕ̇ = Fϕ(q(t))
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for ϕ(t) and

ṗ = eiϕ(t) f (q(t))

for p(t) to obtain a solution (p(t), ϕ(t), q(t)) to (4.1). In the next theorem we recover
the resonance conditions of Barkley and Wulff for these solutions.

Theorem 4.2. Let (p(t), ϕ(t), q(t)) be a solution to (4.1). Then

ϕ(t) = ω1t + ϕ̃(t), (4.3)

where ϕ̃(t) is 2π /ω2 periodic. If

ω1 + kω2 = 0

for some integer k, then generically p(t) undergoes unbounded resonant growth.

Proof. The function Fϕ(q(t)) is 2π /ω2 periodic since q(t) is. Therefore, we can write
Fϕ(q(t)) as a Fourier series in t obtaining

ϕ̇ =
∞∑

n=−∞
Bneinω2t ,

where Bn ∈ C and B−n = Bn . Every term except n = 0 in the Fourier series yields a

periodic function on integration and hence ϕ(t) has the form in (4.3) where ω1 = B0 =
Fϕ(q(0)).
Next, consider the differential equation

ṗ = eiϕ(t) f (q(t)) = eiω1t H(t), (4.4)

where H(t) is smooth and 2π /ω2 periodic. We may write H(t) as the uniformly conver-
gent Fourier series

H(t) =
∞∑

n=−∞
Dneinω2t ,

where Dn ∈ C.
Suppose that ω1 + kω2 is close to zero for some nonzero integer k. Then integration

of (4.4) yields

p(t) =
⎧⎨⎩Dkt + P(t)eiω1t , ω1 + kω2 = 0,

Dk
i(ω1+kω2)e

i(ω1+kω2)t + P(t)eiω1t , ω1 + kω2 �= 0,

where P(t) is a smooth bounded 2π /ω2 periodic function. Generically, Dk �= 0. Hence,

by varying ω2 so that ω1 + kω2 goes through zero, the first summand in p(t) undergoes
unbounded resonant growth, while P(t) remains uniformly bounded for these values
of ω2.
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4.3. Hopf Bifurcation from a One-Armed Spiral

Let H be a space of functions with domain R2 on which the Euclidean group E(2) acts

as

γ u(z) = u(γ −1z),

where u ∈ H and γ ∈ E(2). Consider a partial differential equation

ut = F(u, λ), (4.5)

where F : H �→ H is E(2)-equivariant and λ is a real bifurcation parameter. Let Rθ

denote rotation of the plane through angle θ . Suppose that

u(t) = Rω1t x0 (4.6)

is a rotating wave solution to (4.5) with period 2π /ω1.

Let X = SE(2)x0 be the connected component of the grouporbit ofu(t) in phase space
under the action ofE(2). As noted byRand [15], Renardy [16], and others, it is possible to

study bifurcation from rotating waves by transferring the problem to the rotating frame.

Substituting (4.6) into (4.5) yields that x0 is an equilibrium for the equation

ut = F̃(u, λ) = F(u, λ) − ω1ξu,

where

ξu = d
dt
Rtu

∣∣∣∣
t=0

.

The operator (dF̃)x0,λ has three eigenvalues on the imaginary axis corresponding to the

continuous group orbit SE(2). Barkley [2] showed numerically that the rotating wave

u(t) could undergo a Hopf bifurcation as an additional simple pair of eigenvalues cross
the imaginary axis. We suppose that this bifurcation occurs at λ = 0. Let V0 ∼= C be the
corresponding center subspace.

Theorem 4.3 ([17], [18]). There exists a reduction of (4.5) to the center bundle V =
X × V0. The reduced equations have the form

ẏ = F(y, λ),

where y = (p, ϕ, q) ∈ V and F has the form in equations (4.1).

It follows from the reduction procedure that

Fϕ(0, 0) = ω1, Fq(0, 0) = 0, and f (0, 0) = 0.

Note that in equation (4.1), the original rotating wave solution corresponds to the equi-

librium q = 0. Also, the critical eigenvalues generically cross the imaginary axis trans-

versely on variation of λ. Consequently, the vector field Fq(q, λ) on V0 satisfies

dq Fq(0, 0) = iω2 and Re dq Fqλ (0, 0) �= 0.
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Thus, there is a Hopf bifurcation in the q̇ equation of (4.1) to an approximately 2π /ω2
periodic solution q(t). We suppose that the Hopf bifurcation is supercritical.
The amplitude and frequency of the periodic solution q(t, λ) vary as functions of λ.

To leading order, the amplitude varies as a
√

λ and the frequency varies asω2+bλwhere
a and b are real coefficients. We set ω1(λ) = Fϕ(q(0, λ)) and define ω2(λ) to be the

frequency of q(t, λ). Thus

ω1(λ) = ω1 + O(
√

λ), ω2(λ) = ω2 + O(λ). (4.7)

Note that ωj (0) coincides with ωj as defined in this subsection and in the introduction

for each j = 1, 2. On the other hand, the ωj ’s in Subsection 4.2 correspond to ωj (λ)

evaluated at a specific value of λ.

It follows from Theorem 4.2 that linear meandering occurs at λ = λ0 if

ω1(λ0) + kω2(λ0) = 0,

for some integer k. We call this resonance a k-resonance. In particular, resonant growth
occurswhenω1(0)+kω2(0) is close to zero for some integer k.We can expect unbounded
growth in p(t) as λ approaches the resonance point, and linear drifting in p(t) at the
resonance point. However, by inspection of pictures, only when k = ±1 or k = ±2 do
the concepts of petality and changes in petality appear to be relevant.

Visualization of Hopf Bifurcation from aOne-Armed Spiral. To illustrate resonance
and petality issues, we have numerically integrated equations (4.1). Specifically, we

consider the equations

ṗ = eiϕ(0.2− 0.6i)q,
ϕ̇ = 1,

q̇ = (λ − 0.95i)q − (1− 0.1i)q|q|2.
(4.8)

Figure 3 shows plots of ( f1, f2) for six values of λ, where

f1 = cosϕ(t) + Re p(t) and f2 = sinϕ(t) + Im p(t).

These coordinates approximate the movements of the spiral tip in the lab frame. The q̇
equation in (4.8) undergoes a supercritical Hopf bifurcation at λ = 0, and the frequency

of the corresponding periodic solution is ω2(λ) = −0.95−0.1λ. Since ω1(λ) ≡ 1, there

is a resonance at λ = 0.5.

As previously mentioned, in order to see well-defined petals in the simple epicycle

motion described by (1.1), the amplitude of the second frequency must be larger than

the amplitude of the primary frequency. That is, in order to see well-defined petals, we

must have

|z2|
|z1| > M, (4.9)
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Fig. 3. Numerical simulation of (4.8) for λ = 0.1, 0.3, 0.4, 0.5, 0.6, and 0.8.

for some real positive number M . Suppose that the secondary motion arises via a Hopf
bifurcation and that |z1| ≈ 1. Then near a point of k-resonance, we have

|z2|
|z1| ≈

√
λ|Dk |

ω1

(
1+ k ω2

ω1

) ,

where Dk is a Fourier coefficient and we have suppressed the dependence of ω1, ω2 on
λ. Thus, if we define τ = ω2/ω1, then (4.9) becomes

λ >
M2ω21

|Dk |2 (1+ kτ)2. (4.10)

This defines a sequence of “resonance tongues” in the τλ plane in which changes of

petality canbeobserved in addition to unboundedgrowthof theflower near the resonance.

See Figure 4. Since limk→∞ |Dk | = 0, the tongues eventually narrow as k → ∞.
If the point (τ, λ) is in exactly one tongue (as is the point labeled A in Figure 4),

then an epicycle motion with well-defined petals will be observed. A change in petality

occurs as the resonance is crossed. If the point is in a tongue corresponding to a k
resonance, then each petal will be (approximately) traced out k times before a new petal
is formed. However, in the case where the point is in more than one tongue (as is point B

in Figure 4), then the motion involves multiple harmonics and petality is an ill-defined

concept for these points. However, we will still observe unbounded growth of the flower

as the resonance is crossed.
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Fig. 4. Resonance tongues described by (4.10).

5. Hopf Bifurcation from �-Armed Spirals

In this section we discuss Hopf bifurcation from �-armed spirals where � > 1. Suppose

that an �-armed spiral wave undergoes a simple Hopf bifurcation with frequency ω2.

Let V0 be the center subspace of the bifurcation in the normal directions to X at x0. The
SE(2) action is given as in (3.2):

(p, ϕ, q) �→ (eiθ p + x, ϕ + �θ, eimθq),

for some m = 0, . . . , [�/2].

The isotropy subgroup in SE(2) of the �-armed spiral is Z�. Note that the action of

Z� on V0 is faithful (in other words, the kernel of the action is trivial) precisely when �

and m are coprime. For example, if the eigenfunction associated with Hopf bifurcation
from a two-armed spiral (� = 2) is invariant under rotation by π , then m = 0, and � and

m are not coprime.
For all � and m, the solutions arising from Hopf bifurcation are quasi-periodic. How-

ever, there are differences in the resultingmotions in physical spacedependingonwhether

� and m are coprime. In particular,

• When � and m are not coprime, the spiral tip does not meander and the codimension-
two bifurcation to resonant growth does not occur. What does occur is that (approxi-

mately) the spiral rigidly rotates at a rate that depends quasi-periodically on time.

• When � andm are coprime, Hopf bifurcation leads tomeandering and to codimension-
two resonant growth. The points where resonance occurs depend on both � and m.

In the remainder of this section, we give the precise statements and proofs of these results.

5.1. Hopf Bifurcations without Meandering

First, we analyze the equations on the center bundle when � and m are not coprime. We
prove:
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Theorem 5.1. Let F be an SE(2)-equivariant system of differential equations on the
center bundle V corresponding to an �-armed spiral where � > 1. If � and m are not
coprime, then F p = 0 and p(t) is constant. In particular, there is no resonant growth.
Moreover, the spiral in the physical plane does not meander. Rather, the motion is a

rigid rotation by Rϕ(t), where ϕ(t) is quasi-periodic in t .

Proof. As in the proof of Lemma 4.1, the action of translations on V implies that F is
independent of p. The main difference comes in the equation

ṗ = F p(ϕ, q).

Here the action of rotations implies that

eiθ F p(ϕ, q) = F p(ϕ + �θ, emiθq), (5.1)

for all θ . Since � and m are not coprime there is an integer j ≥ 2 such that � = j�′ and
m = jm ′. Setting θ = 2π / j in (5.1) yields

e2π i / j F p(ϕ, q) = F p(ϕ + 2�′π, e2m
′π i q) = F p(ϕ, q).

Since j > 1 it follows that F p = 0. In particular, p(t) is constant and there is no resonant
growth and no meandering.

The remaining components of the system on the five-dimensional center bundle have

the form

ϕ̇ = Fϕ(ϕ, q),
q̇ = Fq(ϕ, q).

This can be viewed as an SO(2)-equivariant system on the three-dimensional center

bundle SO(2)x0 × V0. In these equations we have a Hopf bifurcation in the normal (q)
directions leading to a periodic solution, and there is drift along the SO(2) group orbit

leading to a quasi-periodic ϕ(t)—just as in the case of one-armed spirals.
The interpretation of ϕ(t) in physical space is that the plane is rigidly rotating by Rϕ(t).

(In the case of one-armed spirals, the plane also translates since p(t) is not constant.) In
the corresponding quasi-periodically varying rotating frame, the spiral is approximately

stationary. In fact, this spiral also varies quasi-periodically (as a function of q(t)), but
close to the point of Hopf bifurcation, this fluctuation is negligible.

Remark. There is an alternative abstract explanation of the failure of the spiral tip to
meander or undergo resonant growthwhen � andm are not coprime, based on ideas in [7],
[12]. Since the kernel of the action of Z� on V0 is nontrivial, the bifurcating periodic
solutions are fixed pointwise by the kernel Zk of the action. (Here k divides � and k > 1

by assumption.) Hence the bifurcation takes place in the fixed-point subspace Fix(Zk).
As usual, this is a flow-invariant subspace for the underlying SE(2)-equivariant vector

field. Moreover, the largest subgroup of SE(2) that preserves Fix(Zk) is the normalizer
SO(2) of Zk . Hence the flow on Fix(Zk) is an SO(2)-equivariant flow and all drifts take

place inside SO(2). In particular, the translation coordinate on the center bundle remains

constant.
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5.2. Hopf Bifurcations with Meandering

Now assume that � andm are coprime. As usual, let ω1 denote the frequency of the basic
�-armed spiral solution and let ω2 be the frequency coming from Hopf bifurcation. Our

main result is that the conditions for resonant growth depend on both � and m in the
following manner.

Theorem 5.2. Assume that � and m are coprime and let m0 be the smallest positive
integer such that

mm0 ≡ 1 (mod �).

Then codimension-two resonant growth occurs when

ω2 ∼ 1

�

(
m − 1

j� + m0

)
ω1, (5.2)

where j is an integer.

For example, when � = 2 and m = 1, the resonance condition becomes

ω2 ∼ j
2 j + 1ω1,

where j is an integer.
The proof of Theorem 5.2 is organized as follows.

• First, we calculate the equivariant vector field on the center bundle. To make the anal-
ysis of this vector field tractable, we consider a pull-back to a vector field on the group.

This step is a special case of the more general approach of Fiedler et al. [6]. Indeed,

we wish to thank B. Fiedler for showing us that certain computational difficulties can

be circumvented by pulling the differential equation from the center bundle over the

group orbit back to a differential equation on a bundle over the group itself.

• Second, we compute necessary and sufficient conditions for resonant growth in the
pull-back equations.

• Finally, we reinterpret these results for the original vector field on the center bundle.
The action of SE(2) on the center bundle V is given in Lemma 3.5. Unlike the � = 1

case, the ϕ̇ and q̇ equations depend on ϕ. In fact, the general SE(2)-equivariant system

of differential equations on V when � > 1 has the form

ṗ = F p(ϕ, q),

ϕ̇ = Fϕ(ϕ, q),

q̇ = Fq(ϕ, q),

(5.3)

where

F p(ϕ + �θ, emiθq) = eiθ F p(ϕ, q),

Fϕ(ϕ + �θ, emiθq) = Fϕ(ϕ, q),

Fq(ϕ + �θ, emiθq) = emiθ Fq(ϕ, q).

(5.4)
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The techniques which were used in the � = 1 case to study resonances will not work

for equations (5.3) because of the dependence of the equations on ϕ. To circumvent this

difficulty, define the local diffeomorphism

ρ: SE(2) × V0 −→ V,

ρ(y, ψ, v) = (y, �ψ, emiψv),

where 0 ≤ ψ < 2π . Define an action of SE(2) on the bundle SE(2) × V0 by

(x, θ)(y, ψ, v) = (eiθ y + x, ψ + θ, v), (x, θ) ∈ SE(2). (5.5)

With this action, ρ is SE(2) equivariant. To verify this point, calculate

ρ((x, θ)(y, ψ, v)) = ρ(eiθ y + x, ψ + θ, v) = (eiθ y + x, �(ψ + θ), emi(ψ+θ)v),

and, using (3.2), calculate

(x, θ)ρ(y, ψ, v) = (x, θ)(y, �ψ, emiψv) = (eiθ y + x, �ψ + �θ, emiθemiψv).

Using ρ, the differential equation (5.3) pulls back to a differential equation on SE(2)×
V0 that is equivariant under the action (5.5) of SE(2). Since this action is identical to

the � = 1, m = 0 action encountered in Section 4, it follows from Lemma 4.1 that the

pull-back has the form

ẏ = eiψg(v),

ψ̇ = Gψ(v),

v̇ = Gv(v).

(5.6)

Proposition 5.3. The pull-back equations on the group are related to the original equa-
tions on the group orbit as follows:

g(v) = F p(0, v),

Gψ(v) = 1
�
Fϕ(0, v),

Gv(v) = Fq(0, v) − mi
�

vFϕ(0, v).

Proof. The function (y(t), ψ(t), v(t)) is a solution to the pull-back differential equation
(5.6) if and only if ρ(y(t), ψ(t), v(t)) = (y(t), �ψ(t), emiψ(t)v(t)) is a solution to (5.3).
Thus, differentiation leads to

ẏ = F p(�ψ, emiψv),

�ψ̇ = Fϕ(�ψ, emiψv),

miemiψvψ̇ + emiψ v̇ = Fq(�ψ, emiψv).
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Comparing the y-component with the y-component in (5.6), we have

e−iψF p(�ψ, emiψv) = g(v),

independent of ψ . Setting ψ = 0 yields the relation g(v) = F p(0, v). The remaining

relations are verified similarly.

Not every systemof equations of the form (5.6) arises as the pull-back of a system (5.3)

on the center bundle: The pull-back equations are additionally equivariant with respect

to an action of the isotropy subgroup Z�. It follows from the following lemma that the

full group of symmetries of the pull-back equations is a semidirect product of SE(2)

and Z�.

Lemma 5.4. The pull-back equations are equivariant under the action (5.5) of SE(2)

and under the following action of Z�:

(y, ψ, v) �→ (e2π i /�y, ψ, e2π im/�v). (5.7)

There are no further restrictions on the pull-back equations.

Proof. We have already established that the pull-back equations are SE(2)-equivariant

under the action (5.5) and hence have the form (5.6). Next, we verify theZ�-equivariance

for the Gv-component,

Gv(v) = Fq(0, v) − mi
�

vFϕ(0, v) = Fq(2π, v) − mi
�

vFϕ(2π, v)

= e−2πmi /�Fq(0, e2πmi /�v) − mi
�

vFϕ(0, e2πmi /�v) (by (5.4))

= e−2πmi /�Gv(e2πmi /�v).

The verification of (5.7) for the remaining components is similar.

Conversely, suppose that we are given a system of equations on SE(2) × V0 that
is equivariant under the actions (5.5), (5.7). By SE(2)-equivariance, we can write the

equations in the form (5.6) where g, Gψ , Gv depend on v. Define

F p(ϕ, q) = eiϕ/�g(e−imϕ/�q),

Fϕ(ϕ, q) = �Gψ(e−imϕ/�q),

Fq(ϕ, q) = eimϕ/�Gv(e−imϕ/�v) + mivGψ(e−inϕ/�v).

(5.8)

Then the system on SE(2) × V0 is the pull-back of the system defined by (5.8). It

remains to show that (5.8) is well-defined and equivariant under the action (3.2). Again

concentrating on the third component, note that Fq is well-defined if and only if

Fq(ϕ + 2π, q) = Fq(ϕ, q).

But this equality follows from the Z� equivariance of Gψ and Gv . Similarly, it is easily

checked from definition (5.8) that Fq satisfies the required SE(2)-equivariance condi-

tion.
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This completes the first stage of the proof of Theorem 5.2. Next, we analyze the

pull-back equations, emulating Theorem 4.2. Let v(t) be a 2π /ω̃2 periodic solution to
v̇ = Gv(v). We suppose that this periodic solution is a result of Hopf bifurcation in the

v̇ equation. Define ω̃1 = Gψ(v(0)). As in Subsection 4.2, we solve ψ̇ = Gψ(v(t)) for
ψ(t) and ẏ = eiψ(t)g(v(t)) for y(t) to obtain a solution (y(t), ψ(t), v(t)).

Theorem 5.5. Let (y(t), ψ(t), v(t)) be the solution constructed above for the pull-back
equations (5.6). Generically, y(t) undergoes unbounded resonant growth if and only if

ω̃1 + kω̃2 = 0, (5.9)

for some integer k satisfying

km ≡ 1 (mod �). (5.10)

Proof. The condition (5.9) is immediate from Theorem 4.2.We show that the additional
condition (5.10) is a consequenceof theZ�-equivariance (5.7) and, furthermore, that these

are the only restrictions on k.
Since � and m are coprime, Z�-equivariance is equivalent to the conditions

(a) g(e2πmi /�v) = e2π i /�g(v),

(b) Gψ(e2π i /�v) = Gψ(v),

(c) Gv(e2π i /�v) = e2π i /�Gv(v).

(5.11)

It follows from (5.11)(c) and the uniqueness of periodic solutions in (generic) Hopf

bifurcation that the periodic solution to the v̇ equation satisfies

v

(
t + 2π

�w̃2

)
= e2π i /�v(t). (5.12)

This observation is a special case of the spatio-temporal symmetries of symmetric Hopf

bifurcation discussed in [8].

It follows from (5.12) and (5.11)(b) that solutions to the ψ̇ equation have the form

ψ(t) = ω̃1t + ψ̃(t),

where ψ̃ is
2π

�w̃2
periodic. Finally, using (5.11)(a), we can rewrite the ẏ equation as

ẏ = eiw̃1t h(t),

where h is 2π /w̃2 periodic and

h
(
t + 2mπ

�ω̃2

)
= e2π i /�h(t). (5.13)

Write h as a Fourier series

h(t) =
∑
k
hkeikω̃2t .
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It follows from (5.13) that hk = 0 unless k satisfies condition (5.10). In particular, these
are the only values of k for which the resonance (5.9) is possible.
Finally, we write down pull-back equations that exhibit the required resonances. Set

Gψ(v) = ω̃1 and Gv(v) = iω̃2v. These functions clearly satisfy conditions (5.11)(b,c)
and yield a 2π /ω̃2 periodic solution v(t). The function g(v) = vk satisfies condi-

tions (5.11)(a) provided k satisfies condition (5.10) and yields those resonances (5.9)
for which k ≥ 0. To obtain the remaining resonances, consider g(v) = vk .

The third stage of the proof of Theorem 5.2 is to relate the frequencies ω̃j in the

pull-back equations with the frequencies ωj in the original equations on the center

bundle. Recall that the periodic solutions in the v̇ equations arise via Hopf bifurcation

and hence the frequencies ω̃j (λ) vary smoothly with the bifurcation parameter λ. As in

Subsection 4.3, we redefine ω̃j = ω̃j (0). Then Theorem 5.5 implies that resonant growth

occurs when

ω̃2 ∼ −1
k
ω̃1, (5.14)

for some integer k satisfying condition (5.10).
It follows from Proposition 5.3 that the frequencies ω̃j and ωj are related as follows:

ω̃1 = Gψ(0) = 1

�
Fϕ(0, 0) = 1

�
ω1,

and

iω̃2 = (dGv)0 = (dq Fq)0,0 − mi
�
Fϕ(0, 0) = iω2 − mi

�
ω1.

Substituting these expressions into condition (5.14) yields the resonance criterion

ω2 ∼ km − 1
�k

ω1, (5.15)

where k satisfies (5.10).
Finally, we observe that equation (5.10) always has solutions for � and m coprime.

If we let m0 be the smallest positive integer k satisfying (5.10), then, since � and m are
coprime, all solutions to (5.10) have the form k = j� + m0 for some integer j . This
completes the proof of Theorem 5.2.

6. Takens-Bogdanov Bifurcation

As mentioned previously, our approach can be applied to study other bifurcations from

spiral waves. To illustrate this point, we consider two other bifurcations from one-armed

spirals: steady-state bifurcation and the codimension-two Takens-Bogdanov bifurcation.

By Corollary 3.2, the associated center bundle will be a trivial bundle (this is not neces-

sarily the case for these bifurcations from a many-armed spiral).

Steady-state bifurcation leads to a saddle-node (or limit point) bifurcation of rotating

wave spiral solutions with frequency close to ω1. We omit the details and pass to the
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more interesting Takens-Bogdanov bifurcation. In this case, the operator (dF̃)x0,0 in

Subsection 4.3 has a nonsemisimple double zero eigenvalue and the corresponding center

subspace V0 is identified with R2. Let q = (x, y) ∈ R2 = V0. In normal form, the q̇
equation in (4.1) can be written as

ẋ = y,

ẏ = μ1 + μ2y + x2 + bxy,
(6.1)

where μ1 and μ2 are unfolding parameters and b = ±1 (cf. [9]). We consider the case
b = −1, since it leads to stable limit cycles in (6.1).
A schematic of the phase portraits corresponding to regions in the unfolding space

is given in Figure 5. Of particular interest is region A which is bounded by a curve of

Hopf bifurcations and a curve of homoclinic bifurcations. Consider a path P1 through
this region. As P1 crosses into region A, there is a Hopf bifurcation from one of the
equilibria. The resulting periodic solution of (6.1) generates quasi-periodic motion for

the full system (4.1). As the homoclinic bifurcation curve is approached, the period of the

periodic solution gets larger and tends to infinity (that is, its frequency gets smaller and

tends to zero). Hence P1 crosses an infinite number of resonance points. Consequently,
in parameter space, p(t) will experience unbounded growth for an infinite number of
parameter values along P1. However, as mentioned in the previous section, only the first
one or two resonances should exhibit a well-defined change in petality in addition to

unbounded growth.

Finally, consider a path P2 through the saddle-node varietyμ1 = 0. The interpretation

of this bifurcation is the following. In region B, a spiral wave is observed. As P2 crosses
into region C, the spiral wave disappears and the dynamics enters a part of phase space

not modeled by the center manifold equations.

A. Appendix

In recentwork, Sandstede et al. [17], [18] have generalized the center bundle construction

of Krupa [12], described in Section 2, from compact groups to noncompact groups and

from finite dimensions to infinite dimensions. In particular, they prove Conjecture 4.3

and provide a rigorous justification of the techniques in this paper. A major technical

difficulty overcome in the work of [21], [17], [18] is the lack of smoothness of the action

of SE(2) on functions u: R2→R.
Independently, we have obtained a simplified reduction under the assumption (S1)—

see below—that the action of the Lie algebra of the group is “smoother” than the lin-

earized vector field defining the dynamical system. This assumption fails for actions of

SE(2) but is satisfied in many important cases. Examples include the group SO(2) acting

on L2(�) for a circular bounded domain �, and the noncompact group of translations

T(2) ∼= R2 inside of SE(2) acting on L2(R2); see Example A.1. Hence our reduction,
which is presented in this appendix, can be viewed as a rigorous and nontrivial exten-

sion of the methods of [12]. At the same time, our reduction hints at the full picture for

noncompact group actions without addressing the technical difficulties resolved by [21],

[17], [18].
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Fig. 5. Unfolding of Takens-Bogdanov singularity in (6.1).

Under assumption (S1), we obtain the required decomposition f = fN + fT into nor-
mal and tangent vector fields and we obtain the factorization (2.2) into normal dynamics

coupled with drift along group orbits. To obtain a smooth center bundle, it is necessary

that the critical eigenfunctions for the normal vector field are acted upon smoothly by the

group; see assumption (S2). (It turns out that assumption (S2) is automatically satisfied

for reaction-diffusion equations; see Sandstede et al. [17], [18].)

Throughout the appendix, smooth means Ck for k sufficiently large. We do not re-
quire that the group acts smoothly (or even continuously) on the whole of the infinite-

dimensional space.

A.1. The Generalized Center Bundle Reduction

Let � be a finite-dimensional Lie group (not necessarily compact) acting by unitary

transformations on a Hilbert space H. Let x0 ∈ H. We assume that the group orbit
X = �x0 is a smoothly embedded submanifold of H. Let π : N (X)→X denote the
normal bundle in H, with fibers Nx = (Tx X)⊥. Write points in N (X) as (x, v), where

x ∈ X and v ∈ Nx . The map β: N (X)→H, β(x, v) = x + v is a local diffeomorphism.

Since the action of � is unitary, N (X) is invariant under the action (x, v)→(γ x, γ v)
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and β: N (X)→H is �-equivariant. Since β is one-to-one on the homogeneous space X ,
it follows that β restricts to a diffeomorphism on some �-invariant neighborhood of X .

The dynamical system. We suppose that f : H→H is a �-equivariant “infinite-dimen-

sional vector field” on H (a nonlinear partial differential operator, say). Suppose that

f satisfies the usual technical conditions so as to generate a smooth local semiflow on
H. That is, f = A + N where the linearity A is sectorial and the nonlinearity N is
sufficiently smooth on the domainHα of a fractional power Aα of A for some α ∈ [0, 1);
see Henry [10] for the precise definitions. We note that Hα is a dense and �-invariant

subspace of H. The graph norm ‖u‖α = ‖u‖ + ‖Aαu‖ makes Hα into a Hilbert space

and f is smooth when regarded as an operator f : Hα→H.
We suppose from now on that α has been chosen with these properties. Roughly

speaking, α quantifies the “semilinearity” of f where the nonlinearity N is strictly

smoother than A (so α is required to be strictly less than 1).

The Lie algebra. The Lie algebra L(�) consists of linear operators ξ : H→H defined

by ξu = d
dt γt u|t=0 where γt ∈ � is a curve at the identity. Typically, the operators ξ are

unbounded and hence are not defined on the whole ofH. We let H̃ denote the common

domain of the elements of L(�) and note that H̃ is �-invariant. It follows from our

assumption on X that X ⊂ H̃.
Recall that α ∈ [0, 1) is chosen so that f : Hα→H is smooth. It is natural to make

the simplifying assumption,

(S1) Hα ⊂ H̃.
In particular, each infinitesimal generator ξ ∈ L(�) is bounded as anoperator ξ : Hα→H.
(Roughly speaking, the Lie algebra elements are strictly smoother than the linear vector

field A.)
Under assumption (S1), we obtain a complete generalization of the results in [12].

Theorems A.2 and A.5 correspond to [12, Theorems 2.1 and 2.2].

Example A.1. Suppose thatH = L2(R2) consists of functions u: R2→R and that the
group � = SE(2) acts by u(x) �→ u(γ −1x). A calculation shows that L(SE(2)) is

generated by

ξ1u = ∂u
∂x1

, ξ2u = ∂u
∂x2

, ξ3u = x1
∂u
∂x2

− x2 ∂u
∂x1

.

Suppose that the linear part A of the evolution operator f is the Laplacian A = �. The

generators ξ1, ξ2 corresponding to translation have fewer derivatives than A and are rela-
tively bounded with respect to A. In particular, we can choose α ∈ [1/2, 1) in assumption
(S1). However, the generator ξ3 corresponding to rotation includes multiplication by the

unbounded functions x1 and x2, and hence violates assumption (S1) for all α.
Note that the group of translations T(2) ∼= R2 satisfies assumption (S1). In addition,

the rotation group SO(2) satisfies (S1) provided we restrict to L2(�) for � a bounded

circularly symmetric subset of R2.



Meandering of the Spiral Tip: An Alternative Approach 581

In the remainder of this subsection we suppose that x0 has discrete isotropy subgroup
�. (This assumption is relaxed in Subsection A.2 below.)

Theorem A.2. Suppose that assumption (S1) is valid. Suppose further that X = �x0
is a submanifold of H and that the isotropy subgroup � of x0 is discrete. There is a
�-invariant neighborhood U of X = �x0 in DA and smooth �-equivariant nonlinear
operators fN , fT : U→H such that

(i) f |U = fN + fT ,
(ii) fN (u) ∈ Nπ(u) for all u ∈ U, and
(iii) fT (u) ∈ Tu�u.

Proof. For u ∈ X we trivially have H = Nπ(u) ⊕ Tu�u. Observe that this splitting
remains valid for u close to X in the graph norm since Tu�u = L(�)u varies smoothly
with respect to this norm. Now define fN (u) and fT (u) by projecting f (u) onto Nπ(u)
and Tu�u, respectively. Again, the subspaces Nπ(u) and Tu�u vary smoothly with u, and
hence the associated projections are smooth.

The operators fN and fT are called the normal and tangent components of f . Note that
fT is tangent to group orbits everywhere but fN is normal to group orbits only when
restricted to X . Let g = f |Nx0∩U denote the restriction of the normal operator to the
normal fiber over x0. Observe that g is �-equivariant.

The standard results relating (dg)x0 with (d f )x0 are valid in this general setting, as we
now describe. Suppose that X is a relative equilibrium, so f (x0) = ξ x0 where ξ ∈ L(�).

Define f̃ (u) = f (u) − ξu, so that x0 is an equilibrium for f̃ . Then (d f̃ )x0 is a linear
operator on Tx0N (X) = Nx0 ⊕ Tx0X ∼= Nx0 ⊕ L(�). Moreover, (d f̃ )x0 is sectorial, since
(d f )x0 is sectorial and ξ is defined on the domain of a fractional power.

Proposition A.3. Regarded as an operator on Nx0 ⊕ L(�), (d f̃ )x0 has the form

(d f̃ )x0 =
(

(dg)x0 0

� −ad(ξ)

)
. (A.1)

Proof. Restricting to the dense subspace H̃ ⊂ H ensures that the mappings f , g, and
so on are smooth. Recall that f has the decomposition f = fN + fT into normal and
tangent components, so f̃ has the corresponding decomposition f̃ = fN + f̃T where
f̃T (u) = fT (u) − ξu. We show first that

(d fN )x0 =
(

(dg)x0 �

� �

)
, (d f̃T )x0 =

(
0 0

� �

)
,

thus verifying the entries in the first column of (d f̃ )x0 .
The form of (d fN )x0 follows from the definition g = fN |Nx0 . Now recall that fT (u) =

Q(u) f (u) where Q(u): H→H is the projection onto Tu�u with kernel Nπ(u). Since
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ξu ∈ Tu�u, we have f̃T (u) = Q(u) f̃ (u). For all w ∈ Tx0N (X), we compute that

(d f̃T )x0w = ((dQ)x0w) f̃ (x0) + Q(x0)(d f̃ )x0w = Q(x0)(d f̃ )x0w ∈ Tx0X,

since f̃ (x0) = 0. Hence (d f̃T )x0 has the required form.
It remains to verify the entries in the secondcolumnof (d f̃ )x0 . Letηx0 = d

ds γ (s)x0|s=0 ∈
Tx0X , and observe that

(d f )x0ηx0 = (d f )x0
d
ds

γ (s)x0
∣∣∣∣
s=0

= d
ds
f (γ (s)x0)

∣∣∣∣
s=0

= d
ds

γ (s) f (x0)
∣∣∣∣
s=0

= η f (x0) = ηξ x0.

Hence,

(d f̃ )x0ηx0 = (
(d f )x0 − ξ

)
ηx0 = (ηξ − ξη)x0 = −ad(ξ)(η)x0.

Identifying Tx0X with L(�), we have (d f̃ )x0η = −ad(ξ)η as required.

Remark. It follows that, modulo the eigenvalues of−ad(ξ), the spectrum of (dg)x0 co-
incides with the (relatively computable) spectrum of (d f̃ )x0 . The eigenvalues of−ad(ξ)

are viewed as neutral. Indeed, when � is abelian we have ad(ξ) ≡ 0.

When � is compact, the adjoint action of � preserves an inner product and it follows

that ad(ξ) is a skew-symmetricmatrix. In particular, the eigenvalues of−ad(ξ) are purely

imaginary. This is the case also for noncompact groups, provided that the trajectory

through x0 is compact (in other words, the closure of {exp tξ, t ∈ R} is a compact
subgroup of �).

In general, however, the eigenvalues of −ad(ξ) need not be purely imaginary. A

somewhat hypothetical example is provided by the group of matrices

� =
{(

a b
0 0

)
, a, b ∈ R, a �= 0

}
.

A basis for the Lie algebra is given by

ξ1 =
(
1 0

0 0

)
, ξ2 =

(
0 1

0 0

)
,

and we calculate that ad(ξ1) has eigenvalues 0 and 1.

Corollary A.4. The normal vector field g generates a smooth local semiflow on Nx0 .

Proof. Recall that (d f̃ )x0 is sectorial. By Proposition A.3, the spectra of (d f̃ )x0 and
(dg)x0 differ by finitely many eigenvalues of finite multiplicity. Substituting vectors of
the form (�, 0) into the formula (A.1), we obtain the estimate

‖((dg)x0 − μ)−1‖ ≤ ‖((d f̃ )x0 − μ)−1‖,
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for all μ in the resolvent of (d f̃ )x0 . Hence, sectoriality of (d f̃ )x0 implies sectoriality of
(dg)x0 [10, Definition 1.3.1]. The domain D(dg)x0 is given by D(dg)x0 = D(d f )x0 ∩ Nx0
and the nonlinearities in g are as smooth as those in f ; hence g generates a smooth local
semiflow.

Theorem A.5. Suppose that the hypotheses of TheoremA.2 andCorollary A.4 are valid.
Let u(t) and v(t) be the solution trajectories for the initial value problems defined by
the vector fields f and g with initial condition v0 ∈ Nx0 . Then, there is a smooth curve
at the identity γ (t) ∈ �, such that

u(t) = γ (t)v(t).

Proof. Since fT (v(t)) ∈ L(�)v(t) and� is discrete, we can uniquely write fT (v(t)) =
ξ(t)v(t) for a smooth curve ξ(t) ∈ L(�). Let γ (t) be the solution to the initial value
problem d

dt γ = γ ξ , γ (0) = e. Then γ (t) is a smooth curve at the identity as required.
Define ũ(t) = γ (t)v(t). We show that ũ(t) is a solution for the vector field f . It

follows by uniqueness of solutions that ũ = u and hence that u = γ v.

The solution v(t) lies inside Hα ∩ Nx0 for t > 0 and is smooth as a function

(0, ∞)→Hα where defined (see [10, Sections 3.3 and 3.4]). It follows from assumption

(S1) that ũ(t) is a priori at least once differentiable as an H-valued map for t > 0. (A

posteriori, ũ(t) = u(t) is smooth as an Hα-valued map.) Applying the chain rule, we

compute that

d
dt
ũ(t) = d

dt
γ (t)v(t) = γ (t)

d
dt

v(t) + d
ds

γ (t + s)v(t)
∣∣∣∣
s=0

= γ (t)g(v(t)) + γ (t)ξ(t)v(t)

= γ (t) fN (v(t)) + γ (t) fT (v(t))

= γ (t) f (v(t)) = f (ũ(t)).

It follows from Theorem A.5 that bifurcation from a relative equilibrium can be

understood abstractly in terms of bifurcation from an equilibrium for the �-equivariant

evolution operator g coupled with drifts along the group.
If the spectrum of the linearization (dg)x0 of the normal vector field intersects the

imaginary axis, and the remainder of the spectrum is bounded away from the imaginary

axis, then the center manifold theorem applies on Nx0 . Since the action of � is unitary,
the norm on H is smooth and �-invariant. Hence, we can choose a smooth �-invariant

“cut-off” function χ : H→R and we can construct a unique smooth �x -invariant center

manifold Wx for the cut-off normal vector field χ fN |Nx on each fiber Nx ∩ Hα , x ∈ X .
By construction, Wγ x = γWx and hence the resulting center bundle W = ∪x∈XWx is
�-invariant and at least once differentiable since� acts differentiably onHα . In addition,

each Wx is a local center manifold for f |Nx , so that W is a local center bundle for f . In
order to proceed as in the main part of the paper, we require that

(S2) � acts smoothly on elements in the center manifold Wx0 for the normal vector
field g.
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It follows from assumption (S2) that W is a smooth bundle and that � acts smoothly

on W . (Again, we note that [17], [18] have recently shown that assumption (S2) is
automatically satisfied for reaction-diffusion equations.)

A.2. Reductive Isotropy Subgroups

In this subsection, we show that the results of Section A.1, in particular Theorems A.2

and A.5, are valid for more general classes of isotropy subgroup �. We continue to

assume that � is a finite-dimensional Lie group acting by unitary transformations onH,
that assumption (S1) is valid, and that X = �x0 is a smooth submanifold ofH.
The proof of Theorem A.2 breaks down when x0 has isotropy subgroup� of positive

dimension. For example, there may be points u of lower dimensional isotropy near x0
in which case dim Tu�u is not constant. This difficulty is present even for compact Lie
groups acting onRn and is the main technical difficulty overcome in Krupa [12].We now
use the ideas in [12] to enlarge the class of isotropy subgroups� for which TheoremsA.2

and A.5 are valid.

Recall that � is reductive if � has a faithful finite dimensional representation and

every finite dimensional representation of � is completely reducible (every �-invariant

subspace has a �-invariant complement). In particular, compact groups are reductive.

The next result generalizes [12, Lemma 2.3].

Lemma A.6. Suppose that assumption (S1) is valid, that X = �x0 is a submanifold of
H, and that the isotropy subgroup� of x0 is reductive. There exists a smooth�-invariant
subbundle K ⊂ T N (X)|Hα such that for all u in a �-invariant neighborhood U ⊂ Hα

of X,

(i) Ku ⊂ Tu�u, and
(ii) Nπ(u) ⊕ Ku = H.

Proof. The subspace L(�) ⊂ L(�) is invariant under the adjoint action of� and hence,

by reductivity, there is an invariant subspace Y ⊂ L(�) such that

L(�) = L(�) ⊕ Y.

Let u = (γ x0, v) ∈ Hα ⊂ N (X) and define

Ku = (AdγY )u.

Note that Ku is well-defined due to the invariance of Y . To verify this point, suppose
that γ1x0 = γ2x0. Then γ −1

2 γ1 ∈ �, and so Adγ1Y = Adγ2Y . Hence K is a subbundle of
N (X) satisfying condition (i). In contrast to the tangent spaces Tu�u, the subspaces Ku
are of constant dimension near X and condition (ii) is satisfied.
To show that K is �-invariant, we prove that Kγ u = γ Ku . Indeed, if u = (δx0, v),

then

Kγ u = (Adγ δY )γ u = (AdγAdδY )γ u = γ (AdδY )u = γ Ku .

Finally, smoothness of the bundle is proved as in [12].
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It is now straightforward to extend Theorem A.2 from discrete isotropy subgroups

to reductive isotropy subgroups. Simply project f (u) onto Nπ(u) and Ku . Similarly, the
curve ξ(t) in the proof of Theorem A.5 is chosen to lie in Kv(t). The remaining proofs

in Section A.1 are unchanged.

Remark. The assumptions underlying our generalization of Krupa’s center bundle re-
duction can be summarized as follows. The simplifying assumption (S1) ensures that

the generalization from finite dimensions to infinite dimensions runs smoothly. We re-

quire that the relative equilibrium X = �x0 is a smooth embedded submanifold of
H. Assumption (S2) guarantees that the center bundle is smooth and not merely once
differentiable.

Our results are proved for two classes of isotropy subgroups of x0: � discrete and �

reductive. Actually, we require only that there is an invariant complement for L(�) ⊂
L(�) under the adjoint action of� (this is trivially the casewhen� is discrete even if� is

not reductive). An example where this property is violated is provided by the subgroup

� = T(2) of translations in � = SE(2). We conjecture that there is no analogue of

Theorems A.2 and A.5 in such cases.
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