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Summary. The dynamics of elastic strips, i.e., long thin rods with noncircular cross
section, is analyzed by studying the solutions of the appropriate Kirchhoff equations.
First, it is shown that if a naturally straight strip is deformed into a helix, the only
equilibrium helical configurations are those with no internal twist and whose principal
bending direction is either along the normal or the binormal. Second, the linear stability
of a straight twisted strip under tension is analyzed, showing the possibility of both
pitchfork and Hopf bifurcations depending on the external and geometric constraints.
Third, nonlinear amplitude equations are derived describing the dynamics close to the
different bifurcation regimes. Finally, special analytical solutions to these equations are
used to describe the buckling of strips. In particular, finite-length solutions with a variety
of boundary conditions are considered.
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1. Introduction

Filamentary structures can be observed in nature at all scales from microscopic chains of
molecules to macroscopic braided magnetic flux tubes in solar flares. Remarkably, despite
their different length scales and microscopic structures, unstable filaments seem to follow
universal configurational changes triggered by generic instabilities. A simple everyday
experiment is the coiling of strings, ropes, or telephone cords: If one holds the ends of a
piece of rubber tubing and twists one end relative to the other, the string will soon coil up
onitself. This is a simple example ofaithing instability, ortwist-to-writheconversion,

in which a local change in twist density eventually results in a global reconfiguration
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of the string! Understanding the onset and dynamics of this fundamental instability is
of both theoretical and practical interest since it lies at the heart of a host of important
processes. Engineers have needed to understand the instabilities of rods to prevent the
pop-out of cables—especially in the case of suboceanic cables [42]. In biology, elastic
filaments provide idealized models with which to study the coiling behavior of different
filamentary structure such as those of proteins, polymers, DNA, and bacterial fibers [3],
[41, [5], [21], [33], [35], [41]. In physics there are many different settings where long,
thin, and twisted structures play an important role, such as the motion of vortex tubes in
hydrodynamics [22]; the formation of sun spots and the heating of the solar corona [11],
[37]; the theory of polymers and liquid crystals [14], [34]. More recently, interesting
connections between curve dynamics and integrable hierarchies of partial differential
equations have been unraveled [13], [23], [25], [28].

However, a complete mathematical model of the dynamics of even the simplest
writhing instability has proved to be difficult to obtain. The simplest mechanical for-
mulation that can capture the correct three-dimensional geometry and dynamics of this
problem is provided by th&irchhoff equationdor thin elastic rods. Virtually all of
the analysis of the Kirchhoff model has been restricted to the stationary, i.e., time-
independent, solutions [27], [31], [35] and only a few time-dependent problems have
been tackled.

Recently we have developed a new method [16], [17], [18], [19] to study the dynamics
of filaments by introducing a novel perturbation scheme. Starting from a stationary
solution of Kirchhoff’s equation, this scheme allows us to derive a dispersion relation
from which one can determine the stability, or lack thereof, of the stationary solution. This
provides a simple and direct way to test the stability of the filament under perturbation.
Once an instability is triggered, the dynamics of the filament can become extremely
complicated. Nevertheless, a nonlinear analysis of the solution after bifurcation can be
carried out by deriving amplitude equations that describe the behavior of the filament
beyond the instability threshold [15], [17], and we derived such equations for thin elastic
rods with circular cross sections.

The goal of this paper is to extend our earlier work [17] to the case of rods with
an asymmetric cross section (referred to, in this papestrgss). A linear analysis of
the static Kirchhoff equations for straight strips was performed for the first time in
Champneys and Thompson (1996) [6] followed by a normal form analysis in van der
Heijden and Thompson (1998) [40]. First, we show that the class of exact helical solutions
of the Kirchhoff equations for strips is much more restricted than those for symmetric
rods. This emphasizes the highly degenerate character of the latter case. Second, two
differentregimes of bifurcation of twisted straight strips are identified, in accordance with
[6], depending on the values of the parameters characterizing the elasticity of the material
and the geometry of the cross section. The dynamics of strips exhibits behaviors that are
significantly different from the case of rods with circular cross sections. In Section 3,
which focuses on the dynamical character of the instabilities, we linearize the time-
dependent equations and identify particular modes of wave propagation. We also look for
the critical point in parameter space beyond which a straight strip becomes unstable and

1 The wordwrithe is used to denote a global deformation of a filamentary structure.
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recover the results of [6]. In Section 4, we derive time-dependent amplitude equations
from the Kirchhoff equations in a regime where the system is close to bifurcation,
complementing the normal form analysis performed in [40]. Expressions for physical
guantities of interest in terms of the new variables are computed. In Section 5, we
discuss in detail static solutions of the resulting amplitude equations, and we consider
finite-length solutions to practical problems of interest. The buckling mode stability is
discussed too. We find that strips may adopt different bifurcation paths, depending not
only on the nature of the boundary conditions, but also, in some cases, on the material
elasticity and cross section geometry.

2. The Kirchhoff Model

The Kirchhoff model accounts for the dynamics of a thin elastic rod subject to internal
stresses and boundary constraints. In this model, the elastic stresses are averaged over
the rod cross sections (which are assumed to be small relative to the length of the rod)
along the space curve describing the rod centerline. This results in a one-dimensional
model that incorporates both the bending and twisting motions of the rod. The twisting
motion, as will be described below, is conveniently interpreted as the winding of a ribbon
about the axial curve.

2.1. Space Curves and Ribbons

We consider a dynamicapace curvdR(s, t) parameterized by its arclengsland time

t. A ribbonis defined as a space curks, t) together with a smooth unit vector field
da(s, t) orthogonal to that curve. Utilizing the unit tangent vecthr= t, we can form a
third unit vectord; = d, x ds, so that thgeneral triad(d,, dz, d3) forms a right-handed
orthonormal basis. This basis is a generalization of the Frenet(tridd t) accounting

for the additional data in the definition of the ribbon. The components of the derivatives
of the general triad,, d,, andds with respect to arclengthand timet are expressed in

the local basis form, respectively, theist matrixK (s, t) and thespin matrixW (s, t),
which we define as follows:

ad; 0dd, 9ds )
= £ = ) =(dy dy d3)K, la
< s 0s 0s ( e ) (1.2)
ad; 9dd, ads )
= £ = ) =(dy dy d3)W. 1b
( at ot ot (d dz da) (1.b)
These matrices are antisymmetric and can be written as
0 —K3 K2 0 —w3 W2
K= K3 0 —K1 , W = w3 0 —wq . (2)
—K2 K1 0 —w? w1 0

The entries oK andW are not independent. By differentiating (1.a) with respect to time
and (1.b) with respect to arclength and then equating their cross derivatives, we obtain
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a compatibility relation foK andw,

oK W

ot ds [K. W @
where[K, W] = KW — WK. The components; andw; form thetwist vectork =
k1d1 + k202 + k3d3 and thespin vectorw = w;d; + wod; + wsds.

The equations (1.a) constitute the generalization of the Frenet-Serret equations for the

ribbon. The component; is called thewist densityand defines the amount of rotation
of the local basigd,, d,, d3) around the tangent vectdg as the arc lengtk increases.
The twist vector components can be expressed as functions of thezabgtereen the
vectord; and the normah to the curve, the Frenet curvaturgand the torsion:

s

(k1, K2, K3) = (K sin¢,«x cos¢,t + E) 4%

The quantitieg, g—g andks play related but distinct roles. ThHersion t is a property
of the curve alone and is a measure of its nonplanarity. Hence, a curve with null torsion
is a plane curve, and any two ribbons having the same curvature and torsion for all
s andt correspond to the same space cuR/@and can only be distinguished by the
orientation of the local basis. Thetrinsic twist density% is a property of the ribbon
alone, representing the rotation of the local basis with respect to the Frenet frame as the
arc length increases. A ribbon without intrinsic twist is callddenet ribbon Indeed, in

a Frenet ribbon, the anglebetween the binormdd and the vector fieldl, is constant;

hence the binormal is representative of the orientation of the local tshsid,, d3). The

total twist densityxs, is a property of both the space curve and the ribbon, measuring
the total rotation of the local basis around the space curve as the arc length increases.

2.2. The Kirchhoff Equations

The central idea of the model is that the rod is modeled as a sequence of contiguous
segments between which the forces and moments are determined. The required assump-
tions are: (i) the rod ighin, i.e., the width of any cross section is much smaller than
any other length scale (e.gk,| 1) involved in the problem; (ii) the rod is unshearable
and inextensible, i.e., each cross section remains normal to the axial space curve and
can be identified by its arclength coordinate; (iii) the elastic stresses are linear in the
strains. A detailed derivation of the Kirchhoff equations can be found in [2], [8]. More
general models, including the effects of shear deformations and extensibility [1], as well
as nonlinear constitutive elastic laws [27], can also be considered.

By averaging the forces and moments over each cross section, one can obtain the
equations for the forcés(s, t), acting on each cross section, and for the morive(s t).
These equations are closed by using the constitutive relation of linear elasticity relating
the torqueM to the twist vectok. Together, they read:

F' = EA a3’ (5&)
M/+d3XF:E(|2dlxal+|1dzxa2), (5b)
M = E l1k1d; + E lokod, + MJK3d3, (5C)
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where()’ and() stand, respectively, for arclength and time derivatigésthe (constant)
mass per unit volume of the rod amtithe cross sectional area; the quantitieand|,
are the principal moments of inertia of the cross sectibms Young’s modulusu is
the shear modulus, antldepends on the cross section shape. In the particular case of a
circular cross section of radius R, one Has= |, = J/2 = 7 R*4. The product<E I,
andE I, are theprincipal bending stiffnessed the rod, and. J is thetorsional stiffness
The tangential component of the forek,- F, is thetensionalong the rod.
The coupled equations (5) constitute the dynamical Kirchhoff equations. These are
three vector equations involving the local baglg, d», d3) and its derivatives, the force
F and the torquéM, which total nine degrees of freedom; hence, the system is closed.
We can further simplify the Kirchhoff model by choosing the following length, time,
and mass scales as measuring units:

[l [&11
L] =,/ — T =, =— M] =&y Al 6
which amounts to make the replacements

9 A0 A a2 EA 32
— = =, K — | —kK, — > ——, (7.a
as I, 0s I1 ot2 §|1 ot2

F— EAF, M — EvAILIM. (7.b)

The Kirchhoff equations then reduce to the dimensionless form

F' = 83, (8a)
M/—i-dng:adlxdl—}—dzxdg, (8b)
M = k1dq 4+ akods + brads, (8C)
with
I wd J
= = b= —=_—1—— 9
a |;|_’ I1 2|1(l+0‘)’ ©

whereo denotes the Poisson ratio, which ranges from 0, corresponding to hyperelasticity
(ifthere is no striction as the material is stretched) to 1/2, corresponding to incompressible
media (if the volume is unchanged as the material is stretched) [24]. The coastant
measures the asymmetry of the cross section. Our convention is to orient the vector
fieldsd; andd, such thatl; and I, are, respectively, the larger and smaller bending
stiffnesses. In this case, we have

O<ac<l, (10

the value 1 being reached in the dynamically symmetric case where the moments of
inertia are identical. The constanis thescaled torsional stiffnes#n the particular case
of a circular cross section, one has

b= ! € g1 (11)
T 140 37
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Fig. 1. The domains covered i@, b) space by various cross section shapes
are enclosed in black lines (solid = ellipses, dash = rectangles, dot = isosceles
triangles, dash-dot = elliptic lintans). The shades of gray pertain to the topics
discussed in Sections 3 (where two bifurcation regimes are distinguished) and
5 (where the constant is introduced). Dark gray = tapelike regime with

n < 1, light gray = thick regime withu < 1, white = thick regime with

u > 1. The functions o& andb appearing as diagram coordinates are chosen
S0 as to provide a realistic visual representation of the relative importance of
each region.

Within the framework of linear elasticity theory [24], [26], [36], it is possible to
compute the parametessandb for a given cross section shape. For instance, if we
consider elliptic cross sections with semi-axeandB (A < B), we have

A2 b 1 2a

= —, = — 12
B2 l1+01+a 12

a

Extensive computations of torsional and bending stiffness for various shapes have
been compiled in the classical engineering literature. The cases of elliptic-, rectangular-,
and elliptic-limacon-shaped cross sections are treated in [36]. In general, rods with cross
sections made up of assembled flat pieces, like X or H shapes, have low torsional stiff-
nesses (smab). In addition, we computed approximate values for isosceles-triangular
cross sections. Rather than giving the cumbersome formukadodb in terms of the
free parameters, we represent, in Figure 1, the domain covered {a,thespace for
each of these particular shapes for realistic Poisson ratio (that is Marying between
0 and 1/2). More data can be found, for example, in [32].

3. Equilibrium and Stability of Strips

In this section we consider the helical, circular, and straight static solutions of the Kirch-
hoff equations for strips. We first show that the class of equilibrium helical shapes is more
restricted in the generic caae# 1 than in the case of symmetric cross sections. Indeed,
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this result, as well as the ones described in Sections 4 and 5, show that the symmetric
case is highly degenerate and that the behavior of strips is richer.

Experimental, analytical, and numerical results for static strips have been obtained
recently by Champneys, Thompson, and van der Heijden [6], [7], [38], [39], [40]. In
[6], they present a linear analysis of the static Kirchhoff equations for a straight strip
and investigate numerically the existence of localizing buckling modes. This analysis is
completed by a normal form analysis in [40] where it is shown that infinite rods have
a tendency to localize after the bifurcation. Here, we will be able to obtain additional
insights into the behavior of solutions close to the straight state through an amplitude
equation analysis of the full, dynamical Kirchhoff equations valid for finite and infinite
rods under a variety of boundary conditions. We first develop, in Section 3.2, a general
perturbation scheme for the dynamical Kirchhoff equations near a given reference state;
and then, in Section 3.3, perform a dynamical stability analysis for the straight strip by
linearizing the Kirchhoff equations around the straight solution, recovering the results
of Champneys and Thompson in the static case along the way. These results provide the
necessary background for the amplitude equation analysis described in Section 4.

3.1. Simple Equilibrium Solutions

In order to investigate the existence of equilibrium solutions to the Kirchhoff equations
for strips, we consider the static form of system (8). To do so, we integrate (8.a) once
with respect to arclength, introduce the components of the force in the localFbasis
F1d; + F2d2 + F3ds, and project (8) along this basis to obtain a system of six equations
involving the six unknowns-1, F, F3, k1, k2, andks:

Fi+Kk2F3 —ksF2 =0, (13.a)
F,+ksF1 —kaF3 =0, (13.b)
F. 4 k1F2 — koFy = O, (13.0)
ky+ (b—a) ks — F, =0, (13.d)
aky+ (1—b)kiks+ F1 =0, (13.e)
bri+ (@a—1) kik2 = 0. (13.9)

If a =1, we see from (13.f) that the twist densityis constant.
The trivial equilibrium solutions of these equations are straight strips, for which
k1 = k2 = 0. Inserting this into (13) leads to a general solution of the form

K = K3d3, F= F3d3, (14)

whered; has a constant orientation along the arclength, andnd F3; are arbitrary
constants. Hence, for giverandb, the straight strips constitute a two-parameter family
of solutions, characterized by a twist densityand tensior;.

Helical solutions are obtained by assuming constant Frenet curvatme torsion
7, and using expressions (4) for the twist vector. We now show, by contradiction, that
the only possible helical strips are Frenet strips, that is, strips with zero internal twist.
Notice that, unlike the case = 1, we cannot assume priori that the twist density
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k3 is constant. Hence, we takein (4) to be an arbitrary function &f. Equations (13)
expressed in terms gfread:

Fi— (' +1)F2+kFzcos; =0, (15.a)
Fy+ (¢’ + t)F1 — kFssing =0, (15.b)
F; +kFzsing — kFicosg =0, (15.c)
Fo=«[(b+1-a)¢ + (b—a)r]cost, (15.d)
Fi=«[(b+a—1¢ + (b—1r]sing, (15.e)
b¢” = (1—a) k?sin¢ cost. (15.f)

We now prove that is constant along the strip and is actually an integer multiple of
/2. Consider the following linear combination of (15.a) and (15.b):

[F{ — (¢ 4+ ©)F2 + kFscosg | sing
+[F5+ (¢’ + ©)F1 — kF3sing] cos¢ =0, (16)

which reduces to
F,sin¢ + Fycos¢ + (¢' + t)(Ficosc — Fpsing) = 0. a7
Substituting (15.d) and (15.e) into (17) yields (provideg: 0)
[4b+2(1—a)cosZ]¢” — (1—a)2 +1)?sin =0. (18
We can substitute the expression §§rfrom (15.f) into (18) to obtain
(1 —a)?sin4; + 2b[2«? — 4¢% — 477 — 1?|sin2 = 0. (19

Assumings’ # 0 for slying in some interval, we multiply both sides of (15.f) byand
integrate this equation once:

1 — a)k?

5 (1—cosZ)+C, (20)

bs? = (1—a)k?sif¢ 4+ C =

whereC is an integration constant. We can eliminatebetween (19) and (20):
4br¢’ =3(1—a)k?cosZ + 2(b +a — 1)k — 4C — b2, (21
Squaring both sides of (21) and eliminatig/g by using (20) yields

8br?[(1 — a)k?(1 — cos Z) + 2C]
—[3(1 —ax?cosZ +2(b +a— 1)x? — 4C — br?)?> = 0. (22)
Since¢ is assumed not constant, the coefficient of every power of gosust vanish in-
dependently in equation (22). However, the coefficient of 2gsnamely—9(1—a)?«?,

is negative for any nonvanishing value of the curvature, contradicting our assumption
that¢ varies withs. Returning to (15.f) and setting’ = 0, we see that

e =n%, nez. (23
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Fig. 2. A binormal helix (left) and a normal helix (right).

We can now solve the system (15). For giweandz, two solutions arise, depending
only on the parity of. The helices and rings corresponding to exeare referred to as
binormal heliceandbinormal rings since the direction of highest bending stiffneds (
lies along the binormal. If we further require that the rings must be closed on themselves,
the boundary conditions impos£ to be an integer. The helices and rings corresponding
to odd values of are namedormal helicesandnormal rings since the direction of
highest bending stiffness lies along the normal. Both types of helices, represented in
Figure 2, arérenet helicesIn the binormal case, we have

Kk = kdy + td3, F=(b-az«, 2%
whereas in the normal case, the solution is
Kk = kdy + td3, F=bm-Lr«. (25

For fixeda # 1 andb, the helical and ringlike strips together form a two-parameter
family, characterized by a Frenet curvatur@nd a Frenet torsion in contrast to the
degenerate cage= 1, where there exists a three-parameter family of helical solutions,
characterized by curvature, torsion, and an arbitrary constant twist density.

3.2. Perturbation Scheme

If an exact solution of the Kirchhoff equations (8) is known, perturbed states of the
system in a small neighborhood of this reference solution can be systematically studied
by expanding the relevant variables as power series in a small pararchteacterizing

the distance from the (unperturbed) reference state. To do so, we introduce a near-identity
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rotation matrixB mapping the unperturbed local basis onto the perturbed basis:
(di dz d3)=(dP dY dY ) B. (26)
We now expand the entries Bfas series of. The simplest form of the expansion is
B=1+cA® +6* (AP +59) 4% (A® +89) +..., 27

wherel is the identity matrix and th&®’s are general antisymmetric matrices,

0 —aék) oték)
AV=1 of 0 o | (28
—ag() a;k) 0

The matricesS® are symmetric and are found to depend only on the entriégoto
A®=D_Our goal is to obtain expressions for the entries of the twist métrand the
spin matrixW in terms of the perturbed variables. Using definitions (1.a) and (26), we

have
% [(d? d® d¥ )B]=(d® d¥ dY )BK, (29)

which can be reexpressed as
© 4O 4O © 3B
(d? dy dy’ ) |K B-BK+_—|=0 (30)
Since the basis vectors are independent and the niatsrthogonal, (30) yields
B
K=BT(K?B+ —|. 31
( + P s) (3D

Analogous expressions hold for the spin veetolWe are now able to write down the
Kirchhoff equations (8) to ordd, for any given unperturbed state, in terms of the six
variables

X0 — (Fl(k)7 FYO,F® 0l o), aék)) (32)

3.3. Stability Analysis for the Straight Rod

3.3.1. Dispersion Relation.The stability analysisis performed by linearizing the Kirch-
hoff equations around the static straight solution. This is achieved by substituting the
expansions for the force, twist, and spin vectors, truncated to first order, into the system
(8), taking (14) as expressions for the unperturbed varigBsand«©, and setting

»© = 0. This yields, in matrix form,

LX® =0, (33)
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where the linear operatdr takes the form

2 2 2
a%—a 2;22)/% 0 20)/383% ; pyza%—mg“—a% 0
235 a9y 0 pvi-py®ig+ip 2py°5 0
0 0 5 0 0 0
L= > 2, 92 92 ]
0 -1 o0Mb-ay>+LH-2L (b-alyl 0
1 0 0 (a-byi b-hyia(&H-5) 0
0 0 0 0 0 b —(1+a)d,
(34)
The constanty andp are defined as
F(O)
_ .0 _ 3
Yy = K3 ’ P = (Kéo))z' (35)

For p to be well-defined, we limit our analysis to strips with nonzero twist. The pa-
rametery represents the twist density of the initial state (the twisted straight rod). The
dimensionless parametgrcontrols the critical value of the physical parameter where
buckling occurs. For a rod with circular cross sections, the Euler-Love-Timoshenko
buckling occurs forp < b?/4. Buckling can occur either by a decrease in tenﬁéﬁ%

with constant twist, by an increase in the twist densify with constant tension, or,

in general, by decreasing the parametgpast a critical value. Next, we look for the
fundamental solutions, arormal modegsof (33),

XD = Auexpy (ot +ins), (36)

whereA is a constant complex amplitudejs a constant vector with a fixed norm,is

a complex constant, andis a real constant. The factgrin the exponential has been
introduced for convenience. In the followingis called thespatial frequencyalthough,
strictly speaking, this name would more appropriately refamtd and, similarly,o is
called thegrowth exponentinserting (36) into (33) yields

Mu =0, 37

whereM is a matrix involvinge andn:

—(1+n?)y?2 —2iny? 0 2inpy* —(1+n?)pyt—o?y? 0
2iny2 —(14nd)y2 0 (1A+nd)py*+o2y? 2inpy* 0
0 0 —n%y? 0 0 0
M= 2_ 2.2 2
0 -1 0 (b—a—n“—0o9y i(b—a—1ny 0
1 0 0 i(l+a—bny? (b—1-an’—ac?)y? 0
0 0 0 0 0 For?— (14a)o?y

(38)

There exist nontrivial solutions fan only if detM = 0. This condition yields the
dispersion relation

n’ ((A+ao?+br? ) ({aM® -2+ QA+ay 2>+ + y*} o*
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Fig. 3. The dispersion relation foa = 1/2,b = 3/2,p = 3/2,y = 1.

The straight strip is stable for these values of the parameters (the patho-
logical exponentially growing T modes that lie on the vertical axis are not
considered to be unstable; see text).

+{2ar®+[L+a)(p—b) +1-4a+a’+1L+ay I nt
+RA+ab—p)—2(1—a+ad) +2p+31+a—h)y?n
+A+a(p—-b+1+a®+[2(p—b) +1+a]y ?} o?

+@1-n®)? {an*+[(1+a) b+ p) — b® — 2a] n?

+ (p+1-b(p+a—b})=0. (39)

The stability of the straight strip with given values of the paramedgbs y, andp can
be studied by analyzing the dispersion relation. Modes that grow exponentially in time,
characterized by Re) > 0, correspond to thanstable modesSince the dispersion
relation is an equation in?, its roots come in pairs with opposite signs—hence the
straight rod becomes linearly unstable if the dispersion relation allows for normal modes
with positive or nonreal values of?. Exceptions to this rule are the modes witk= 0
and arbitrarys corresponding to the factar in (39). We now make the assumption that
nonreal values o2 are not allowed by the dispersion relation. This is confirmed for
a wide range of values of the system parameters, and is readily established for certain
fixed spatial frequencies, independently of the values of the parameters.

In order to determine the region where unstable modes are allowed, we must inves-
tigate the conditions for the existencerafutral modesharacterized by = 0. Before
doing this, we first examine and identify various sets of solutions of the dispersion
relation.

The dispersion relation is displayed in Figure 3 for particular values of the parameters
for which the straight rod is stable. The left-hand side of (39) is a product of three factors,
each one vanishing on a different branch, or set of branches, of the dispersion relation. In
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the following, the branch associated with the first faatéyjs referred to as th€ branch
because the corresponding norfiahodeslescribe variations itensionin the course
of time. The branch associated with the second fa¢iora) o2 + br?, is referred to as
theS branchbecause among the corresponding norgadodesthere is a neutral mode
representing aelf-rotationof the strip around its centerline. The third factor, referred to
as theR branch is associated with nonaxisymmetric rotation of the filament.

The null space of the operatar for a given solution of the dispersion relation is
determined by solving the equation (37) for the corresponding valuesnfin. On the
T and S branches, the normalized solutiarere given byur andus, where

ur = (0,0,1,0,0,0), (40.a)
us=(0,0,0,0,0,1). (40.b)

The T modes.The T branch corresponds to fundamental solutions of the linearized
Kirchhoff equations of the form,

F=(py®+e Arexpyot)ds, k=yds, =0, (41)

where Ar ando are arbitrary complex constants. These modes are such that the strip
remains straight and is subject to an applied longitudinal tension either oscillating in
time with an arbitrary frequency, or growing in time exponentially. The exponentially
growing modes, being present in the whole parameter space, do not actually correspond
to an instability, but reflect instead the arbitrariness of the time dependence of the tensile
constraints that can be applied to the rod. The static T mede: (0) corresponds to

a constant deviation in tension from the unperturbed configuration, which can be taken
into account by redefining.

The S modes.Taking into account the expressions (31) for the components of the twist
vector, and setting

b
2

Ce= — 4
ST 1+4a’ 42

the S branch is seen to correspond to the following real fundamental solutions:
F=py®ds, (43.a)
k ={y +eny[iAsexpiny (s£cst) + c.c.]} ds, (43.b)
w ==+ e nycs[iAsexpiny(s+cst) + c.c.] ds, (43.c)

where As is an arbitrary real amplitudeny is an arbitrary real frequency, and “c.c.”
indicates the complex conjugate of the preceding termnFgr 0, these are the well-
known lineartwist wavegor torsional waveg24]) traveling along the straight rod at
fixed velocitycs. Forn = 0, the near-identity matriB takes the form

1 —8As 0
B=| eAs 1 0. (44
0 0 1

To first order, this represents a fixed global rotation of the straight rod around its center-
line.
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The R modes.We now consider the third factor of the dispersion relation (39). We see
thatn®> = 1, 0 = 0O satisfies the dispersion relation for all values of the parameters.
Setting

v=nzl (45)
and keeping the terms of lowest degree iando in the dispersion relation yields
o2 = —py?? +o0(v?), (46)

which holds in a neighborhood of the poimts= +1, ¢ = 0. The asymptotic branches

(46) are referred to in the following as tRebranchesand the corresponding nornfal
modeddescribe, for = 0, arotation of the straight rod around an axis different from

its centerline. The R modes are unstable it 0, that is, if the rod is in a state of
compression rather than extension. In an experiment where the rod is initially subject to
a strong positive tension which is gradually decreased, these unstable R modes, which
account for the tendency of the rod to bend under compression, do not show up as long
as the tension remains positive. The solutigrof equation (37) fon = 1 ando = 0 is

URE (0’ 0’ 0’ 17i’0)’ (47)

whereas the solution for= —1,0 = 0is the complex conjugatey,. The corresponding
real solutions (static R modes) take the form

F=py2ds, (48.a)
ail) = Agexpiys+c.c, (48.b)
oS =iAgexpiys+c.c., (48.c)
o =0, (48.d)

where Ar is an arbitrary complex amplitude. It is convenient to represent some of the
quantities of interest in terms of the spatially fixed coordinate tiggdey, e7). Choosing
d to point alonge;, the unperturbed basig!”, d, d) is represented as

cosys —sinys O

( d<l°> d§°> déo) )=(e e e )| sinys cosys 0 |. (49
0 0 1
It is now possible, using (26), to express the perturbed tangent \ekciothe form
d3 =e; — 2¢ (ImAg ex + ReAr ey). (50)

Comparingds with the unperturbed tangent vecnb§°) = ez, one sees that (50) repre-
sents, to first order, a fixed global rotation around an axis distinct from the unperturbed
centerline.

We now examine the nonstatic R modes, corresponding to $ma# 0 in equation
(46). Assuming that the corresponding solutionsf equation (37) do not differ much
from ug anduy, and using (46), we obtain real solutions of the form

F~ py?ds, (51.a)
al? ~ Agexpiy[v(s+ crt) + 5] +c.c., (51.b)
oy’ ~ i Agexpiy[v(s+ crt) + 5] +c.C., (51.c)

o ~0, (51.d)



Dynamics of Strips 17
whereAg is a complex amplitude; is a small real constant, and
0
Cé =py’= Fé . (52

Taking the sum and the difference of two solutions of type (51) with opposite values
of v and complex conjugate values 8k, and computing for both combinations the
corresponding tangent vectdg, we obtain two different types of wave propagation
along the two axes:

(1) d3z=es+ 2¢ (IArRexpiyv(sx crt) +c.C.) ex, (53.a)
(2) d3=e;—2¢ (Arexpiyv(stcgrt) +c.c.) ey. (53.b)

These expressions describe the familiar plane waves propagating in rods under tension
with a velocity proportional to the square root of the tension [24]. In twisted strips, these
plane waves appear only at low frequencies (sl

A typical plot of the dispersion relation is shown in Figure 3, and the previously
discussed T, S, and R branches are indicated.

3.3.2. Unstable Modes and Critical Point. The neutral modes described earlier (the
static T, S, and R modes) exist everywhere in parameter space. Their existence is not an
indication that the rod is unstable but merely a consequence of particular symmetries of
the equations. We now look for the remaining neutral modes by setting0 in the
dispersion relation. As vanishes, the third factor of the dispersion relation (39) equated

to zero reads

an*4+[14+a)b+p) —b>—2a]n’+(p+1—b)(p+a—b)=0. (54)

This equation does not involve. In order for neutral modes to exist, (54) must admit
real solution&for n, or positive solutions fon?. The position of the roots in the complex
plane can be determined by considering the conditions for the discriminahe sum

of the squared rootxs, and the product of the squared rodisto vanish:

A=[1+a)b+p)—b>—2a]>’—4a(p+1—-b)(p+a—b)=0, (55.a)
b? — (1 +a)b+ p) _

YX=2+

(p+1-bp+a-b) _
a

0, (55.b)

I 0. (55.¢)

2 Actually, solutions with imaginarm exist in some cases and are acceptable as well: They describe deforma-
tions proportional to hyperbolic functions of the arclength (gii s and cosly |n| s). They are meaningful

only if finite-length strips are considered. If the strip is long enough, priff large, they are (with an appro-

priate normalization factor) exponentially small everywhere along the strip except in a close neighborhood
of the strip ends, so that they introduce boundary layers. As such, they are not involved in the large-scale
geometry of the strip and may be ignored for the purpose of the nonlinear analysis of Section 4. In Section
5, we treat specifically finite-length problems. Nevertheless, we compute only dominant-order solutions, in
which the hyperbolic modes may be shown to play no role. Therefore, they are dropped from the discussion
for the remainder of the paper.
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4
—+ £=0
A=0
+
2 1

Fig. 4. Stability diagram foa = 1/2, withb extending beyond physical
range. The small frames concern the regions between the curves in the
(b, p) plane and show the locations in the complex plane of the two solu-
tions forn?, with positive real axis pointing right and positive imaginary
axis pointing up. The isolated point on the anis= 0 is part of the curve

A = 0. The gray zone is the region of instability.

The last relation factors to

Mn=p+1-b=0, (56.a)
Mg=p+a—b=0, (56.b)

which are exactly the conditions for the strip to be a normal helix or a binormal helix,
respectively, in the limit of vanishing curvature: see (35) and (24)—(25).

For fixeda # 1, the curveA = 0, the parabol& = 0, and the straight lin€lg = 0
are found to meet at exactly two points_, p_) and(b,, o) in the (b, p) plane, with

b=1+a++/1—a, (57.a)
pr=1++1—a. (57.b)

Figure 4 depicts the situation far= 1/2, which is a typical case in the sense that any
value ofa other than 1 leads to the same qualitative layout of the curves. This diagram
is equivalent to Figure 1(a) in Champneys and Thompson (1996) [6]. See Table 1 for a
translation of Champneys and Thompson’s notations into our notations. Since equation
(54) does not depend an p is the only relevant parameter that can be adjusted in the
course of an experiment and is accordingly referred to asdh&ol parameterHigh
values ofp correspond to conditions of strong tension, and in this regime, the straight strip
is stable, that isg? < O for any realn, or positiven®. As p decreases from the region
of stability, it eventually reaches a critical valpe for which the first neutral mode,
which we will refer to as th@eutral C modeshows up and, beyond this critical point,
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Table 1. Correspondence between our notations and Champneys,
Thompson, and van der Heijden’s notations. Their parameteas
been renameg in order to distinguish it from oup. Also, their defi-
nition of v differs from one paper to another so that the original symbol
v in the table pertains to [6], [7], [39], whereas the symb@lertains

to [40].
Our Notations van der Heijden et al. Notations

_ H ~ 1 ~ _ ~ _ 1
a_ml?l(%jp’zl?‘s?lm p=a—-1 or p=1-1

__ min(1+p.1) __ 2min(1+p, _a _ _ 1 _
b=""00"" = Than v=g-1 or v=yg

_ min(d+5,1) _  4min(145,1) D= 2a

T @+2mZ T (2+5)2(1+9)2m? - <1T)a>b b

m= E or m= ﬁ

the dispersion relation admits solutions with reahnd positives, which correspond

to unstable modes. One sees from Figure 4 thap asosses the critical value, two
qualitatively different situations arise, depending on the value dfb ranges between

b_ andb,, the first neutral mode appears with a spatial frequency= 0, leading to

a pitchfork bifurcation. Ifb lies outside this interval, two opposite critical frequencies
+nc appear, each one being a double root of equation (54), leading to a Hamiltonian
Hopf bifurcation. Note that, foa # 1, the line of normal helicesly = 0 is always
located below the pitchfork linBElg = 0, which proves, in the small-curvature limit, that
the normal helices are unstable.

In the symmetric casea(= 1), the curveA = 0 degenerates into a parabola and
two identical vertical straight lines, whild = 0 also corresponds to a pair of identical
straightlines. There is no possibility of a zero-frequency bifurcation, except for the single
valueb = 2 (see Figure 5).

In the case of a flat elliptic cross section, that is, veitsufficiently small, the interval
[b_, b;] covers 3/4 of the physical range bfin the case of elliptic cross sections,
with only the smaller values lying outside this interval, leading to a zero-frequency
bifurcation for most of the physical valuestfThis is visible in Figure 1, which shows
the boundanb = b_ in (a, b) space as the common edge of the two darkest shades
of gray. Therefore, the pitchfork regime corresponds to flat cross sections with large
enough torsional stiffness. In the following, this regime will be termedt#pelike
regime in compliance with the terminology of van der Heijden et al. [40], while the
regime corresponding tac # 0 will be named thehick regime

In the tapelike regime, the first instability appear§svanishes; hence, the straight
rod becomes unstable due to the presence of nearby binormal helical strips. From equation
(56.b), the critical value op in the tapelike regime is

pe-=b—a. (58)

In the thick regime, the first instability appears as the discrimi@amtinishes. We
now have to determine the critical valugd!, of p, and the critical values-n{! of the
frequency ¢-n denoting the positive one) in this case. ok 1, pl is the smallest
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Fig. 5. Stability diagram fom = 1 (symmetric case). The small frames
concern regions enclosed in solid lines and show the locations of the two
solutions fom? in the complex plane, with positive real axis pointing right
and positive imaginary axis pointing up. The gray zone is the region of
instability. The tapelike (i.e., pitchfork) regime interval degenerates into
a single point.

root of equation (55.a),

(b-1-a)|[b@dl+a) —4a—-2/alb—-2v/b-2a
PC = [ > L (59
1-a)
The frequencyl is then given by the positive double root of (54):
th b2 — 1+a)b+pd)
nc=,/1+ a . (60

Figures 6 and 7 show the solutions of the dispersion relation for slightly supercritical
states of the rod in the tapelike and thick regimes, respectively.
Fora = 1, realistic rods havb < 1 and only the thick regime values are relevant. In
this case, one obtains the well-known Love criterion for twist instability [26],
_ b2 _ b
pEl=—, ngl= ‘1— —‘ :

4 2 (62)

Having obtained the critical frequencie§- andn¥!, we must now determine the corre-
sponding solutions" andull of equation (37). We obtain for both regimes

Uc = (—ipyzx, ,0)/2, 0,1,ix, O) , (62
wherey vanishes in the tapelike regime apd= x™ in the thick regime, with
= pl+a—-b+md)? _  nl@+1-b 63

nf@a+1-b  pf+anMH2—b+1
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Fig. 6. The dispersion relation far = 1/2,b = 3/2,p = 0.97,andy =1
(a slightly supercritical state of the tapelike regime).

Inserting expression (62) farc into (36) and computing the corresponding twist
vector to first order using (31) yields

k1 =¢ y(Nc — x)({ Acexpiyncs + c.c.), (64.a)

ko = € (1 — ncx)(Ac expiyncs + c.c.), (64.b)

K3=1Y, (64.c)
0.17 02
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Fig. 7. The dispersion relation fa= 1, b= 2, p = 208, andy = 1 (a
slightly supercritical state of the thick regime).
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Fig. 8. Strips in coiled state for tapelike regime valuas=£ 1/10, b = 2/11, upper
picture) and thick regime valuea & 7/20 b = 14/27, lower picture) of the material

parameters. The shape of the strip is a helix in the tapelike case, but not in the thick
case.

whereAc is an arbitrary complex amplitude. We choose to write the real neutral C mode
(64) in both regimes as a sum of two complex conjugate modes, even for zero critical
frequencync, in order to adopt a uniform notation.nt = 0, the imaginary part of the
complex amplitudeA¢ is irrelevant, because the solution dependsferonly through
the combinatiorAc + A%. Therefore, in the tapelike regime, we conventionally seiém
to zero.

In the tapelike regime, taking into account the fact that= x = 0, the twist vector
reduces to

Kk = ¢ yReAc dy + y ds. (65)

Moreover, it is easily checked thBt= (b — a)y«. From (24), we see that the neutral C
mode in the tapelike regime is just a binormal helix with torsioand curvature y Ac
(see Figure 8). This tendency of the strip to assume the shape of a binormal helix has
been termedapelike behavioby van der Heijden et al. [40].

In the symmetric case = 1, x = sgn2 — b) = +1, and (64) reduces to

k1 =¢y(NcF 1 Acexpiyncs+ c.c.), (66.a)
k2 = & y(LF nc)(Acexpiyncs + c.c.), (66.b)
K3 =Y. (66.c)

The Frenet curvature and torsion are constant; hence, the C mode in tlze-edsence
again describes a helix, but this time with a constant twist density which differs from
pure torsion.

In the thick regime, foa # 1, the expressions (64) describe buckling states for which
the strip does not assume a helical shape (see Figure 8).

To summarize, as the control parameietecreases from the region of stability and
meets its critical valugc, a neutral mode of type (64) (the neutral C mode) appears and,
asp crosses the critical value, the appearance of unstable exponentially growing modes
invalidates the linear description of the strip near the straight state. It is then necessary
to proceed to a nonlinear analysis of these buckling modes.
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4. Nonlinear Analysis

Our goal in this section is to study the behavior of the linearly unstable C modes and their
interactions with other excitable or neutral modes in the nonlinear regime. An important
effect of the nonlinearities is to curb the exponential growth of the C modes, allowing the
system to eventually reach a new stable state or to oscillate between different states. The
nonlinear analysis consists of studying the system close to the bifurcation in a regime
where the perturbation parameteiprovides an effective measure of the distance to
the critical point. It is then possible to study the dynamics in a systematic manner by
expanding the Kirchhoff equations order by orderito obtain a hierarchy of linear
equations. Furthermore, the amplitudes of the neutral modes are allowed to vary on
long space and time length scales. To third order in this hierarchy, one can extract, as a
solvability condition, a system @mplitude equationrs-namely, a system of equations
governing the dynamics of the amplitude of the C mode (plus other relevant normal
modes) that captures the essential nonlinear effects. These methods, first introduced in
hydrodynamics, have proved to be of great value in a host of physical problems [10],
[12], [29], [30].

Once the amplitude equations are established, it becomes possible to consider a variety
of problems of interest.

4.1. Principle Ingredients of the Nonlinear Analysis

4.1.1. Behavior Near Criticality. Near the bifurcation point, a continuum of unstable
modes is allowed to grow, with spatial frequencies spread over a small interval centered
aroundn = nc¢ and slightly positive time exponents It is easy to determine the spatial
bandwidthsn, and the time exponent intervéd, of the unstable modes as functions of
the distancép = p — pc separating the control parameter from its critical valize € 0

in the supercritical case). The order of magnitudgrofor small —§p is given by the
distance separating nearby real roots of (54), namely

S b >R/
@én)'-=2 o (67.a)

h 2+\/Z_\/E—x/Z
(sn) :\/ o | (67.b)

where(8n)™ and (8n)"" denote the tapelike and thick regimes respectively, and where
A andX are analytic functions ofp defined in (55.a) and (55.b). In the tapelike regime
¥ + /A is an analytic function afp which, to leading order, is linear iip. In the thick
regimeA is also linear irsp to leading order, an tends to a nonzero value &s — 0.

In both regimes we have
sn ~ /—=3p. (68)

A similar result forSo can be obtained from the dispersion relation (39) by studying the
dependence af ondp forn = nc:

S0 ~ /—8p. (69)
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In order fordn anddo to be analytic in the perturbation parameteiit is necessary
to consider states close enough to the critical point for the varidgpan the control
parameter to be of order.

4.1.2. Slowly Varying Amplitudes and Multiple Scales.The main idea behind the
nonlinear analysis is to express the first-order solution of the Kirchhoff equations as
a linear combination of a number of the normal modes considered in Section 3, with
the constant complex amplitudég being replaced by nonconstant amplitudess, t)

which vary slowly with space and time. This enables one to take into account the slight
dispersion of the spatial frequenciesind the time exponents aroundny andoy and

3p = 0. Thus, we require

d . . .
s [A(s, t) expy (oxt +ings)| ~ iy (N + 8n) Ac(s, t) expy (oxt +ings),  (70)

by setting
a A
— ~4n ~ e Ay 71
55 A~ e A (77
Similarly, we require that
0
3—Atk~3aAk~gAk. 72

This condition of slow dependence in space and time can be formalized by introducing
new space and time variables describing the variations of the relevant functions on
different scales,

s~80 ~ g ls® ~g25@ .. (73.a)
t e t©@ g Tt 2@ (73.b)
and treating functions af andt as if they depend on these new scales in an independent

manner. The differential operators can then be expanded as sums of operators acting on
the different scales:

9 9 5, 9
s~ 250 T Casm TF @ T (74.2)
R s, 9

prialew +¢ PTIE +¢ YY) + e (74.b)

Exponential factors are considered to vary only on ¢t andt© scales, whereas
the slowly varying amplitudesi(s, t), are taken to depend on the longer scat€, (
t@,..., s s@ ) and notors® ort©,

4.1.3. Relevant Normal Modes.Taking into account all the relevant modes, the first-
order solution of the Kirchhoff equations takes the form,

XD =3 As?, s?, . tP @ ) ueexpy (ot @ +ins@).  (75)
k



Dynamics of Strips 25

In theory, we should include in (75) the neutral C mode responsible for instability
and all other modes which can interact with the C mode through nonlinear effects. In
practice, however, we restrict the number of included modes by conjecturing that the
fast oscillating modes, namely, the modes with< 0 and|o| > |¢|, can be omitted
from the analysis. This assumption—which requires that all the observed phenomena
are quasistatic—is presumed to hold in the course of an experiment where the control
parameterp is gradually decreased from its critical value. In situations that are not
guasi-static, it is more difficult to justify the absence of the oscillatory modes. Since
the Kirchhoff equations describe a conservative system, we cannot expect these modes
to be exponentially damped in time as in dissipative situations. However, a nonlinear
analysis reveals in this case that these modes cannot become unstable by coupling with
other modes and that they are only relevant in the dynamics if they are initially excited.
Therefore, we consider physical situations, where these modes are not present in the
dynamics.

As a consequence, we only retain neutral modes. There are four of them: the static
T, S, R, and C modes. As we shall see, the S and T modes play a crucial role in the
dynamics and cannot be omitted in the description, whereas it can be shown that the R
mode decouples completely from the dynamics of the C and S modes. Hence, we drop
the R mode dependence in the first-order solution as well.

4.1.4. The Fredholm Alternative. Expressions (74.a) and (74.b) can be used to obtain
an expansion of the linear operatoappearing in equation (33):
L=L@+eLl®4+2L@ ..., (76)

where the operatois® with k > 0 involve derivatives with respect to the longer space
and time scales. Expanding the Kirchhoff system order by order, we have

order gt
LOX® =0, (77

order g2
LO X@ = QO[X®] — L® x®, (78)

order 3

LO x® _ C(30)[X(l)] + Qéo)[X(l), X@]
FQPIXD] —L® X@ _ L@ X, (79)

whereCY is a cubic function of its arguments and contains derivatives with respect to the

short (i.e.s© andt©) scales, and th@i(k)’s are quadratic functions of their arguments
and derivatives up to th&® andt® space and time scales.

The amplitude equations can be obtained by applying-teeholm alternativeo
the third-order system: that is, by requiring that the third-order solution is spatially

bounded. This ensures that the contribution of the third-order solution is one order of
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magnitude smaller than the second-order contribution faraaiidt. Therefore, the most
important features of the dynamics are contained in the first- and second-order solutions,
in conjunction with the amplitude equations extracted to third-order. To second order,
the Fredholm alternative is identically satisfied. In view of (78) and of the condition for
boundedness, which is discussed in the following paragraphs, it might appear that the
equations resulting from the second-order system should contain quadratic terms in the
amplitudes. However, due to symmetries of the system, these terms vanish identically.
Therefore, the second-order system can always be solved, and the solution is bounded
and can be expressed in terms of the first-order solution.

The condition for boundedness is imposed by requiring that the right-hand side of
(79) is orthogonal to every vector in the null space of the operator adjoinftowe
first define the inner produgk | y) between two vectors andy functions ofs® and
t© as

+o00 +o00
x1y) E/ ds(o)/ dt© xty, (80)

oo o0

wherext denotes complex conjugate transposg,afe.,
xt = (x")*. 81

An appropriate normalization of (80) will be introduced shortly. The adjoint operator
(L©@)" is defined the usual way, namely,

(x| LOy) = <(L(0))Jr X | y) VX, Y. (82
The Fredholm alternative consists in imposing the condition
(Y1Z)=0 VY: (L9 v=0 (83

where the column vecta stands for the right-hand side of (79). Since the normal modes
in the null space of the adjoint operatr®) " constitute a basis for that space, it is
sufficient to impose the condition (83) for all vectoff the form

Y =vexpy(6t© +ins©®),

whereo is imaginaryn is real, and the pair, n satisfy the dispersion relation. Inserting
this into (83) yields the simpler condition

(vexpy(ot® +ins®)|Z)=0 Vo,nv:vtM =0, (84)

where the matris depends on andn as defined in (38). Furthermore, since we include
only neutral modes in (75), the right-hand siélef (79) is actually independent of
and is consequently orthogonal to every normal modeavigh 0. Hence, we can further
simplify (84) by only considering the modes with= 0. This yields the final form of
the Fredholm condition (with the proper normalization factor):

1 +L
lim —/ ds@ vt Z exp(—iyns® =0  vn v :viM|,_o=0. (85
L—soo 2L —L
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4.2. Derivation of the Amplitude Equations

4.2.1. The Complete First-Order Solution. Taking into account the explicit form of
the three retained neutral modes near criticality, the first-order solution (75) reads

X® = Ar ur + As Us + (Ac uc expiyncs® + c.c.). (86)
Hence, the complete first-order solution is
Fi¥ = —xpcy?(i Acexpiynes® + c.c., (87.a)
F3¥ = pcy?(Acexpiyncs® +c.c), (87.b)
Fél) = Ar, (87.c)
o’ = (Acexpiyncs® +c.c.), (87.d)
as? = x(iAcexpiyncs® +c.c), (87.e)
agl> = As. (87.9)

The variation in control parameter is handled through the tension amphtudgince
we consider only states of the rod for which the control parametdeparts from its
critical value by a term of ordef, we setAr = 0, postponing a perturbative contribution
of tension to second order. The first-order contributions to the components of the twist
vector are given by (31) and read

kP = y(nc — x)(iAcexpiys® +cc), (88.2)
i = y (1= nex)(Acexpiys® +c.c), (88.b)
kg = 0. (88.c)

That is, to first order, only the C mode affects the curvature, and the twist density is
unchanged. Next, we compute the first-order contributions to the components of the
tangent vectods in the fixed basigex, ey, €7). Introducing

f=ds;-(ex +iey), (89.a)
z=d3 e, (89.b)
and expanding
F=ef® 4 ¢27@ ... (90.a)
2=14e2D 427 4 ... (90.b)
we have
FO = —i [(1— x) Acexpiyncs?®
+(1+ x) AL exp—iyncs®] expiys?, (91.9)
zP =o0. (91.b)

We now compute the first-order contribution to the centerline siset). To do so,
we have to evaluate integrals of type

fds As?, s@ . yexpiyns?©, (92
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with n £ 0. Therefore, To leading order, the integral (92) simplifies to
/ds As?, s@ . )expiyns?® = 7:—ri]A(s(l), s@, . )expiyns®. (93
Introducing for the centerlinR a set of complex cylindrical coordinates defined as
észw+m@=/dﬁ, (94.a)
ZER~€Z:/dSZ (94.b)
we obtain from (91) and (93)

Ac exp(iyncs®)

y L1+nc
1
+1 +ri( AL exp (—i yncs(o))] expiys?, (95.a)
—nNc
z% =0 (95.b)

4.2.2. The Second-Order Solution.The general second-order solution is obtained by
adding a particular solution to the general solution of the first-order (homogeneous) sys-
tem. Only particular solutions are needed since, by redefining the first-order amplitudes,
we can cancel the homogeneous contribution to the second-order solution. However, this
does not hold for the tension because, havingfset 0, we must explicitly include a
constant second-order contributi&s to the tension, accounting for the possible vari-
ation of tension away from the boundary condition. We do not state explicitly the full
second-order solution. Instead, we limit ourselves to giving expressions for quantities
of interest describing leading-order perturbative effects, i.e., which do not have a first-
order counterpart. Namely, the tensiéﬁ), the twist densitycéz), the tangent vector
component®?, and the centerline coordinafé? in thee;, direction are given by

Fy? = y?[~¥r (A2expdyncs© +cc)] + Br, (96.a)

1
K2 =y {[ch\ys — 5(1 —x3] (AZexpdyncs® +c.c)

— (@-2x + %) |Ac|2}+§s—ﬁ\j, (96.b)
22 = (14 4?) | A — 1_TX2 (A2 expdyncs® +c.c), (96.¢)
7@.TL _ _zf ds A, (96.d)
Z7@.th _ 14;_nXCZ (iAZexpdyncs® +cc)— 1+ x?) / ds|Acl®, (96.e)

where (96.d) and (96.e) hold for the tapelike and thick regimes respectivelyaadd
Wg are given functions od andb which vanish in the casga = 1 and over the whole
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tapelike regime domain. In the thick regime, these coefficients take the form
pcL— X, (97.a)

b(1— %) + Q- [1+x2— LA+nd)]
4bnc

The expressions (96.d) and (96.e) ©¥ account for the contraction of the buckled
ribbon in thee; direction due to inextensibility of the material.

th
T

I
NI

th
"IJS

(97.b)

4.2.3. Left Null Space of the Linearized Kirchhoff Operator. As mentioned in Sec-
tion 4.1.4, we have to determine the left null space of the madrictefined in (38) for
o = 0. Solving the equation

viM =0
for the row vectov™, we find six linearly independent solutions, two vectagscor-
responding to the R branch which we do not need in our analysis: Eof), we have

vi= ( 0 01 00O 0), (98.a)
vg = ( 0O 00 OO 1). (98.hb)
Forn = nc, we have

v+=< i(x+2nc+nx) 1+ 2ncx +n2
¢ (1—n2)2 (1—n2)?

and finally, forn = —n¢, we have the complex conjugate of (99).

—y? iy 0>, (99)

4.2.4. The Amplitude Equations. We obtain the amplitude equations from (85), taking

the three vectors (98)—(99) in turn as expressiongfoll he right-hand side of (79) being
real,v¢ leads to the same equation as its complex conjugate. The equations corresponding
tovy, v§, andv{ are subsequently referred to as hé, and C equationsespectively.

A subtle point must be mentioned here: Applying the Fredholm condition to order 3,
we find nontrivial C- and S-equations, although the T-equation is identically satisfied,
leaving the amplitud®; undetermined. In order to close the system, it is necessary to
find a nontrivial T-equation by computing the Fredholm condition/fpto order 4. The
computation is rather tedious, and not much could be gained by including it here, so that
only the final results are given.

The C-, S-, and T-equations assume different although similar forms in the tapelike
and thick regime. As stated before, in the tapelike regime, the imaginary pAg isf
meaningless. We may thus set it arbitrarily to zero, so that the equations read, in both
regimes

3 The reader accustomed to amplitude equations might wonder about the absence of a linday itethe

r.h.s. of the first amplitude equation describing the main instability. This linear term is actually hidden in the
definition of the amplitudeBr which describes, at the extremities of the rod, the variation of tension away
from the critical value.
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b 32 , 92
<(at<1>>2 R (as<1>>2> Ao

.2 2

= v A |:Q (; 95D chy_2> — MN [Ac| ] ; (100.a)
! : e ) A= N2IACE 100.b
_9%Br 2 ) 07 2
(9sD)2 = <—N(1+ X )(8'{(1))2 — pcy m) |Acl®, (100.c)

where, as stated before, the T-equation (100.c) is obtained from the Fredholm condition
to fourth order. These equations form a system of nonlinear Klein-Gordon equations
coupling the C, S, and T modes, which are equivalent, provided time dependence is
dropped, to the normal forms obtained by van der Heijden et al. [40]. The advantages
of the amplitude-equation approach is that explicit relations have been obtained (in the
previous section) between physical quantities and the variables involved in the reduced
system. This allows for the investigation of practical problems (see Section 5). The
fundamental role played by the S and T modes in the buckling process is now obvious:
If we setAs = 0 or Br = 0in (100), we see that¢ is constrained to have a fixed or
traveling-wave-like modulus, restricting drastically the behavior of the solutions.

The constantss, M, N, and Q and the combinatiorch% are all functions of the
material parameters andb, whereas the time-scale constahis, in addition, an in-
homogeneous function of the twist densjty They are defined as follows. The twist
velocity cs is, as before, given by (42). The expressionsdgrP, Q, N, andM are
different in the two regimes. The tapelike regime values are

Pt =1+y72 (101.a)
Q™" =2(b-a), (101.b)
1+ a—Db)?
Py =1 % (101.¢)
NTL =2, (101.d)
Mt =2(b-a), (101.e)
whereas the thick regime values are
o 5 (14 x? (1+n2) +4ncy
Ph"=1+ax“+ VTR , (102.a)
Q" =2pc(1+ ), (102.b)
day?

Pth thy2 = , 102.
(cc) 1+ ay? (102.c)
N =1, (102.d)

2
M = pe(L+ 42 — [b(l —xH+d-a) <1+ 2 - dEnox ”C)X)]
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1
<(an—)x+1—ax2+7[b(1—xz)+xz—a—(1—a)ncx]>
(]
1 3
+ éné(1+ ax®) + bl +4nd)x% + (5 - 4ncx) (b—a)
3 . 1 5,\ ,
+ Ex—4nc x*b-—1D—-@A+a) §+§nc xX°. (102.e)

The buckling velocityc? is strictly positive everywhere except at the regime boundaries
b = by, where it vanishes. The time-scale constarand the coupling constan@@ and
M are strictly positive for all values &, b, andy .

Amplitude equations fora = 1. In the symmetric case, (100) reduces to

4 92 92
[(“ y2b2> oty ~ (as<1>)2] fe

b2 9As By
= Ay 28 BT p2iacp). 103.
2 (yas(b 2,0(; v | Cl) ( a)

92 b 32 _ —yb?9|Ac?
GtD)2 ~ 2(@sD)2 ) ST T2 ps@®

32Br 92 b2y2 92 ,
(as(l))z =2 ((3t(1))2 + 4 (as(l))2> |AC| . (103C)

(103.b)

In the amplitude equations previously derived by Goriely and Tabor [16], we did not
take into account the second-order variation of tension. The new amplitude equations
derived here, which are the result of a fourth-order expansion, reveal the subtle nonlinear
coupling of tension to the amplitude.

5. Buckling of Strips near Threshold

In this section, we proceed to an extensive analysis of the amplitude equations (100)
in the static case (that is, we drop dependence in time). Since the notation is valid for
both regimes (with the restriction that the imaginary partAef must be set to zero

in the tapelike case), we discuss them in parallel. Indeed, unless explicitly mentioned,
all subsequent results pertain to both regimes. In Section 5.1, we investigate briefly
some patrticular infinite-length solutions, recovering and complementing Champneys,
Thompson, and van der Heijden’s results. In Section 5.2, we discuss in a general way an
important class of finite-length, static solutions (i.e., clamped solutions). This allows us
to introduce the necessary background for the treatment of three practical problems of
interest, corresponding to different types of end loading, which we complete in Section
5.3. Since, in the previous section, we computed explicit forms for physical quantities in
terms of the amplitudes, imposition of the boundary conditions becomes a transparent
and easy task.
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5.1. Infinite-Length Solutions of Interest

5.1.1. Spatially Uniform Strips. Animportant class of static, infinite solutions consists
in the spatially uniform strips. We look for a solution to the system (100) of the form

Ac(s?D, t®y = | Aclexpks?, (104.a)
As(sP, D) = Ag, (104.b)
Br(s?,t?) = By, (104.c)

wherek is a constant spatial frequency. In the tapelike regime, we must tserero
becauséc is real. We find two distinct solutions, given by

(D JAcl=0, (105.a)

2P 2K
@) IAclz\/—QBTJr Kpe (105.b)

2MNpcy?

The first one is, of course, the straight rod, which is unstabl&fo& 0, and the second

one is a supercritical, homogeneous buckling state which develops as the tension drops
from its critical value* As already mentioned and illustrated in Figure 8, in the thick
regime, the buckling state is not helical for< 1. In the tapelike regime, the bifurcating
solution is an exact binormal helix, and (105.b) reduces to

1/ By

where we have used (58), (101), and the factkhatO in the tapelike regime. Combining
(106) with the second-order expressions (96.a) and (96.b), the binormal-helix relations
(24) may be recovered, confirming this helical solution matches an exact feature of the
Kirchhoff system.

5.1.2. Homoclinic Strips. Another important class of infinite solutions is the spatially
homoclinic strips. Such buckling modes correspond to bounded, aperiodic solutions of
the static amplitude equations. The time-independent form of the system (100) can be
written in a more compact form. Indeed, we see that the static form of the S-equation
(100.b) can be integrated once with respectty yielding

dAs _ yQN|Ac?
ds® b

+ Ks, (107

4 At first sight, it might seem that the supercritical behavior of the homogeneous solution with tension taken
as control parameter contradicts the results of Thompson and Champneys in [38], where it is demonstrated
that helices are subcritical under dead loading. Actually, there is no contradiction, because our definition of
the tension is different from that of Thompson and Champneys. They define the tension as the force exerted
in the fixedez direction, whereas we define it as the tangential component of the force, which is not the same
for helices.
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whereKs is an integration constant. Similarly, the static form of the T-equation (100.c)
may be integrated twice with respects®,

Br = —pcy2(1+ xHN|Acl? + K7, (108)

where we have introduced only one nonzero integration cond{anin order to avoid
unphysical terms linear isf¥. Substitution of (107) and (108) into the time-independent
form of the C-equation (100.a) gives

2P d?Ac 2Q , 2M 5> 2Ks Kt

—+1 —— | NJA —_— = Ac=0, (10
r2Q (ds<1>)2+[< p X Q) Al v pcyz] © (109
which is closed inAc. Equations (107)—(109) may be further simplified by introducing
the following definitions:

2P
v=""_F, 110.a
9 ( )
Ks=vyY, (110.b)
Kt = vocy 2T, (110.c)
3 1+x®»b Mb
=21 - 110.
h= [ s Ok ] (110)
3bv _
Ac = A. 110.
C 40Nz (110.e)

Note that the definition (110.e) is valid onlyif > 0. We have found that it is always
the case except in a small, unphysical region of(thé) space corresponding o> 2
and extremely lowa. Therefore, from now on, we only consider the case- 0. The
final forms of the amplitude equations are, respectively,

2 F°A T -2mA+[A*A=0 (111.3)
y (ds(l))z V — Y .
—2
d A _ 3[A
WE =y (y + L—J) (111.b)
— 31+ xdb[Af
Br = pcy?v [T — (+X—)|| ) (111.c)
4Qu

The new C-equation (111.a) is closed in the variaklevhile the new S-equation (111.b)
and T-equation (111.c) show that the twist and tension amplitddesd Bt are driven
passively by the buckling amplitudé.

The equation foA (111.a) admits a family of spatially localized solutions of the form

A= /2T — 2y) expip sechy/T — 2ys®, (112

whereg is a constant phase that is arbitrary in the thick regime and takes the value 0 or
7 in the tapelike regime. Note that these solutions are defined ofly-i2y > 0. From
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(111) in conjunction with the first- and second-order solutions computed in Section 4, it
can be shown that this condition impliE@’xg > pc atinfinity. Therefore, all solutions of

the form (112) are subcritical. This is in accordance with results of van der Heijden et al.
[71, [39], [40], which demonstrate numerically (and confirm analytically in [40] through

a normal-form analysis) the existence of subcritical, spatially homoclinic solutions. Ad-
ditionally, in the case of a noncircular cross section, they show numerical evidence of
multimodal homoclinic orbits. Such solutions lie beyond the scope of dominant-order
amplitude equations. Their investigation might be considered by pursuing the nonlinear
analysis of Section 4 to obtain higher-order coupling terms in the system.

5.2. Clamped, Finite-Length Solutions

We now focus on the more practical case of finite-length strips subject to given boundary
conditions. Two classes of end-constraints may be considered:

Supported strip: the positions in space of both strip extremities are imposed (i.e., either
fixed in place or moved during the course of an experiment), but the directions in space
of the tangents to the strip at the ends are free, unconstrained parameters.

Clamped strip: the positions in space of both strip ends are imposed and, additionally,
the tangents to the strip are constrained to face each other, that is, to, be lined up.

We consider only the clamped case, which is especially easy to implement at the level
of the amplitude equations. Furthermore, we make the assumption that the strip length
is much greater than the characteristic twist lengtA. One elegant way to formalize
this is to define the so-far unspecified order parameter

e=(yL)™, (113

wherelL is the length of the strip. We refer to this limit as to thege-twist-angle limit

since the quantity in the right-hand side of (113) is the inverse of the angle between the
unperturbed local bases at strip extremities, thatisties the number of twist turns.

We specify the arclength parameter origin so that

L
s=s0@ = 1@ = j:E = +(2pe)~t (114

at strip ends. We need to impose that the tangent vectors at the boundg(iels/2),

are parallel to each other and, additionally, that they are parallel to the Wdid?) —
R(—L/2) joining the strip extremities. Using expressions (91) and (95) giving the first
nontrivial contributions tals andR, we find that the condition for a clamped strip is
equivalent to

Ac(£2y) ) =0 A(x@2) ) =0, (115

which, in addition, implies that the tangent vectors lie in thaedirection. It can be

shown that solutions to the static C-equation (111.a) vanishing at given points have a
constant phase. An important consequence of this is that, under the condition of clamped
ends, there is no distinction to be made, at least to leading order, between the tapelike
and thick regime problems. Indeed, the boundary conditions freeze the value of the



Dynamics of Strips 35

phase of the Hamiltonian Hopf bifurcation to a constant value, and this phase is the
only extra degree of freedom of the thick regime with respect to the tapelike regime.
Furthermore, the constant value of the phase cannot be determined from amplitude
equations or boundary conditions, so that there is no distinction to be made between
regimes in subsequent results. Nevertheless, the value of the phase is needed in order
to reconstruct the geometry of the strip in the thick regime. Surprisingly, the phase
cannot be obtained from the leading order amplitude equations (111). The proper thing
to do would be to introduce second-order contributions to the normal mode amplitudes
and apply higher-order Fredholm conditions. This would yield small corrections to the
amplitude equations, eventually allowing the determination of the phase.

We now need to find nontrivial solutions of the C-equation (111.a) vanishing at at
least two distinct and opposite values of the arclength parameter. They are found to form
a one-parameter family of periodic solutions which may be written in terms of Jacobi’s
elliptic function cn,

2(T - 2y) T-2

cn sY k|, 11
%21 az_1/%" | (116

Al =k

where the elliptic moduluk is a constant ranging in the intervi, 1[. We assume

that the stable bifurcating solution is the fundamental one, that is, the solution whose
amplitude vanishes only at the strip ends and does not create additional nodes along the
strip. Taking into account (114) and introducing tteemplete elliptic integral of the first

kind K(k), which gives the zeroes of the function cn@s+ 21)K(k),| € Z, we may

relate the moduluk to the constant andy:

T — 2y = 4K(K)?(2k? - 1). (117
Substituting (117) into (116) yields
|Al = Al en(2KK&ys? [ K)|, (118
with
Al = 2V2KkK(K). (119

From the last equation, we see that the elliptic modilissa growing function of the

maximum value of the buckling amplitudgA| ., taking the limits 0 fof A| _ — 0

and 1 for|A| _ — oco. This means that the buckling mode becomes more and more
localized as it develops. Indeed, the function cn deforms continuously from a cosine
function fork = 0 into a fully localized sech function &sapproaches unity, so that the
spatially homoclinic solution of Section 5.1.2 is recovered. This result sheds new light
onto a problem addressed by Thompson and Champneys in [38], in the case of rods with
circular cross sections. They raise the question: which, of the helical solution of Love
[26] and the localized solution of Coyne [9], is the preferred buckling mode under given
boundary conditions? Their approach consists in comparing energetically the localized
solution with the infinite, unmodulated helix, which is argued to be a valid approximation
away from the rod boundaries. Their conclusions, confirmed by experiments, support
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the idea of an initial helical mode which is quickly replaced by a localized mode along

the bifurcation path. Here, we take into account the finiteness of the rod in a rigorous
manner and find, in the clamped case, a smooth and quick deformation from an initial
sinusoidally modulated helix into a localized configuration (see Figure 13). Hence, we
recover previous results, but with the additional information that the process of mode-
switching is continuous rather than involving a secondary bifurcation.

We now compute several quantities of interest for the purpose of solving the practical
problems described below. Taking into account the boundary conditions (115), we obtain,
from (96), (101.d), and (102.d), the twist densi§f“sand the tensiofr$"%at the strip
extremities, as well as the distanz&9= Z(L/2) — Z(—L/2) between end points:

ends_ 2 (AAS\TE o 120
K3 - y +8 dS(l) +0(8 )s ( a.)
andsz ,OC)/Z + SZB-?ndS—i— 0(82), (120.b)

eyt
ZeS— | — eN(1+ XZ)/ ds? |Acl? + o(e). (120.c)
-2yt

In addition, the total twist angl@®"%Sbetween strip ends may be shown, using (113), to
admit the expansion,

gends _ 1 +e |:AS (i) — Ag <_i>i| + o(e). (121
2y 2y

We now introduce the definition,

_ @y —>
Z = —y/ dsV |A]", (122

2yt

which, from (118) and (119), may be evaluated in termg&,dBking into account ele-
mentary properties of elliptic functions,

Z = 8K(k)? <1 —k? - %‘8) , (123

where EK) is thecomplete elliptic integral of the second kindsing (122) together with
the definition (110.e), the static amplitude equations (111), and the boundary conditions
(115), we may express (120)—(121) in terms of the consfanjs andZ:

K& = (14 £2vy) + 0(e?), (124.a)
FENIS— pey2(1+ 2vT) + 0(e?), (124.b)
,3(1+ x»HbvZ

Zends= L 1+8
{ 4Qu

+ 0(82):| , (124.c)

3z
gends _ —1 |:1_+_ 2y (7 — 4—) + 0(82):|. (124.d)
"
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The quantitiey, T, andZ have now a clear physical meaning: They are proportional to
dominant-order nontrivial contributions to, respectively, the end toMER&'S = bic§nds

the end tension, and the distance between strip extremities. They have been defined in
such a way that the formulation of the results of the Section 5.3, where we consider
practical problems, is as simple and universal as possible.

5.3. Three Practical Problems of Interest

In order to describe a real experiment, we must specify, in addition to the strip-clamping
condition (115), the type dbadingthat we impose at strip ends, that is, whether the
values of the parametef®, ¥, Z, and "% are determined by stress or geometrical
constraints. Indeed, the type of loading determines crucially the bifurcation scenario
beyond the criticality [38]. This is confirmed by our finite-length results. We investigate
three cases corresponding to different types of loading and find that the buckled strip
presents very dissimilar behaviors.

5.3.1. Dead Loading.The first problem that we consider is the case of dead loading at
the strip extremities. That is, we impose the values of the topgaed the tensioll at
the ends, one of which is held fixed and the other one is controlled in the course of the
experiment, and we allow the distanZeand the twist angle*€"%Sto vary passively in
response to changes in the control parameters.

It is straightforward to obtain a bifurcation diagram for the system under this set of
boundary conditions: We simply plot the maximum of the buckling amplit@ﬁﬁax,

against  — T, which we take as a control parameter. Parametric expressions for both
guantities as functions ¢fare provided by (117) and (119). Figure 9 shows the result-
ing diagram. One of its most remarkable features is its universal character: Indeed, it
only depends on the assumption that the strip is clamped and in the large-twist-angle
limit. Another noticeable point is the fact that the bifurcation is subcritical. As a conse-
guence, there exists no stable bifurcating branch connecting continuously to the reference
(straight) state. The lack of a stable static solution beyond the bifurcation point implies
that the system must perform a dynamical jump right after the bifurcation in order to
reach a distant equilibrium state.

5.3.2. Rigid Loading. The second problem considered is the case of rigid loading:
Here, the twist anglé ®"%is held fixed to its initial value, while the distanZebetween
strip ends is controlled during the experiment. The dynamical quarfitiésd T are
passive parameters.

Abifurcation diagram is obtained by plotting the maximum buckling ampli1®§-ﬁax
against the end shorteningZ, for which a parametric expression is provided by (123).
The diagram is shown in Figure 10, which is, once again, universal. Here, the straight strip
adopts quasistatically a stable buckled state which develops as the strip ends are brought
closer to each other. Figure 13 represents the bifurcating solution for several values of
the distance between strip ends. The crucial role played by the boundary conditions is
now obvious: This behavior is completely different from the dynamical jump predicted
in the case of dead loading.



38 A. Goriely, M. Nizette, and M. Tabor

~ |41
~ < max
~
~
~ N »6
~
~
~
~
~
N
N
N
N\ r4
N
AN
N
N
N
\
L \
2 \
\
\

\ —_—
'\ 27 - T
—16 -8 8 16

Fig. 9. Bifurcation diagram for a clamped strip with dead loading:
maximum of the buckling amplitude as a function of end torque and
tension.

5.3.3. Mixed Loading. The last case that we investigate is also the richest one. Here,
we consider a mixed set of boundary conditions constituted of one geometrical constraint
and one stress constraint. Namely, we keep the twist anjf¢fixed to its reference
value,e 1, and control the tension. The parameterg andZ are passive.

|41

max

—Z

4 8 12 16

Fig. 10. Bifurcation diagram for a clamped strip with rigid loading:
maximum of the buckling amplitude as a function of end shortening
for fixed twist angle.
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Keeping the twist angle fixed to the valee! implies, from (124.d), that
V= (125

Substituting this into (117) yields an expression for the control paramedsta function
of k:

T = —4K(k)? [1—2k2+E (k2—1+ E(—k)ﬂ (126)
u K(k)

which, together with (119), is used to build a bifurcation diagram. We point out that,
unlike in the previous cases, the bifurcation diagram is not universal, but depends on the
material parameteesandb through the constapi. Consequently, we have to discuss the
set of possible behaviors depending on the valye. d this end, we first determine the
subcritical or supercritical character of the bifurcation as a functien @he bifurcation
is subcritical if (126) defines a growing function lofat the origink = 0. On the other
hand, the bifurcation is supercritical if (126) defines a decreasing functikrabthe
origin. Computing the Taylor series of (126) abdut= 0 to order 2 reveals that the
bifurcation is supercritical if

O<pu<l, (127
and, subcritical if
uw>1 (128

Hence, foru > 1, there is no stable static solution beyond the bifurcation point, so that
the system must perform a dynamical jump, such as in the case of dead loading. On
the other hand, forr < 1, there exists a stable, supercritical buckled state emerging
from the straight solution at the bifurcation point. The boundarg 1 in (a, b) space

is represented in Figure 1 as the common edge of the white and light gray regions. A
simple analytical expression for this boundary is obtained as a snexipansion,

66 60288 ,

= — 3 12
b= 292" Z2017° T 0@ (129

which remains a good approximation throughout the physical parameter range. The su-
percritical caseu < 1 presents an additional striking feature, which is illustrated in
Figure 11, representing the bifurcation diagram in the particular gase?2/3. We see

here that the bifurcating branch possesses a second critical point at a finite value of the
control parametef , beyond which it folds back subcritically. We give an interpretation

of this fact in the next paragraph. For now, we establish a proof of the existence and
uniqueness of this folding point in the interyale ]0, 1[. The existence of the folding

point is established by the observation that (126) defines a functlowlich is decreas-

ing atk = 0, but which goes to positive infinity in the limkt— 1. In order to prove the
uniqueness of the folding point, we first derive a relation betweamd the value ok

at the folding point. This is achieved by differentiating the right-hand side of (126) with
respect tk, equating the result to zero, and solving farThis relation, together with
(119), provides parametric expressions of the buckling amplitude at the folding (limit)
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Fig. 11. Bifurcation diagram for a clamped strip with mixed loading
(n = 2/3): maximum of the buckling amplitude as a function of tension
for fixed twist angle.

point, W;Zx as a function ofx. Graphical inspection of this relation (see Figure 12)
reveals the uniqueness of the value of the amplitude at the folding point for given

We now discuss the implications of the existence of a folding point in the bifurcation
diagram. As mentioned before, for < 1, a stable buckling state emerges from the
straight state after it has lost its stability, and develops as the tefisistowered. At

207 —LP
|A |max
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u

— @

0 0.2 0.4 06 08

Fig. 12. Maximum of the buckling amplitude at the mixed-loading
limit point as a function of«.
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Fig. 13. Caoiling of a clamped strip with fixed twist angle as tension or end shortening is varied.
The parameter values ase= 1/10,b = 2/11 = p = 2/3, and belong to the tapelike regime.

The diagrams are obtained using the explicit expressions for the strip shape derived in Section 5.
The two arrows on the right-hand side of the diagram corresponds to the two different buckling
paths of Figure 11. The dash line corresponds to the upper branch of the bifurcation diagram when
a decrease of the amplitude is obtained by decreasing the tension, and the solid line follows the
lower part of the bifurcation curve and corresponds to the buckling to a modulated helical strips
form a straight rod.

the folding point, provided that the buckling state remains stable up to there, a minimal
value of the tension is reached below which there exists no stable static state, and the
system is forced to perform a dynamical jump. Consequently, the folding point marks
a secondary bifurcation, a so-calliait-point bifurcation This implies that the upper

part of the bifurcating branch (above the limit point) is unstable. Figure 13 shows the
buckled strip forw = 2/3 and several values of the tension. The third picture downwards

in the figure corresponds to the limit-point value of the tension.

We assumed that the buckling mode remained stable up to the limit point. Now we
give arguments in favor of this. To this end, we need to linearize the full, dynamical
amplitude equations (100) about the equilibrium solution, and look for normal modes of
the form

x(sP, 1Dy = x(sP)expt ), (130

wherex is a compact notation for the set of dynamical variables involved in the linearized
amplitude equations. As usual, the stability of the equilibrium solution is determined by
the analysis of the allowed eigenvaluesThe existence of a solution to the linearized
system satisfying the boundary conditions and corresponding to an eigenvalue with
positive real part is a necessary and sufficient condition for the equilibrium solution
to be unstable. Hence, the onset of instability is determined by the investigation of
eigenvalues with zero real part. Two cases are considered:

Quasistatic bifurcation Reg = 0, Ima = 0). This occurs at points of the bifurcation
diagram where either two branches of static solutions meet, or one branch folds back. The
only points matching this criterion are the two bifurcations identified above (buckling
and limit points). There exists no other quasistatic bifurcation.
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Temporal Hamiltonian Hopf bifurcation (degenerat@ with Res = 0, Ima # 0). This
corresponds to the onset of sustained temporal oscillations. We argue here that this type
of bifurcation is unlikely to happen. Indeed, such a bifurcation involves the coalescence
of two purely imaginary eigenvalues, one of them acquiring a positive real part as the
control parameter bypasses a critical value. The main idea behind our argument is to
consider the effect of a very small dissipation in the system. Independently of the way the
dissipation term is introduced in the amplitude equations, if it is sufficiently small, we
expect the eigenvalues to be nearly unchanged with respect to the conservative case. In
particular, we expect the imaginary part of the eigenvalue which loses stability to remain
nonzero. This, in turn, implies the existence of periodic solutions in a neighborhood of
the bifurcation, even in the damped case. This would mean that a damped strip with
static boundary conditions could sustain oscillations without energy input. Hence, we
conjecture that the weak-amplitude buckling branch remains stable up to the limit point.

6. Conclusions

In this paper, we derived amplitude equations governing the dynamics of strips near
the onset of twist instability. In Section 3, we performed a dynamical linear analysis
of the Kirchhoff equations for strips around the straight solution. We identified several
modes of wave propagation, namely, flexural and torsional waves (called respeRtively
andS modes). The R mode is found to be responsible for the pop-out of rods subject
to longitudinal compression. Furthermore, below a critical tension-to-squared-twist, the
straight strip becomes dynamically unstable. This result generalizes Love’s criterion for
the stability of twisted rods. Two distinct regimes of bifurcation are identified. In the
case of very asymmetric cross sections with a high torsional stiffness, we found a regime
of pitchfork bifurcation, inducing what van der Heijden et al. terrtegatlike behaviar

This corresponds to a bifurcating solutidd fnod@ assuming the shape of a binormal
helix, as defined in the beginning of Section 3. In the other cases, the bifurcation is a
Hamiltonian Hopf bifurcation, and the postinstability solution is not helical (except in
the case of circular cross sections, as discovered by Love).

In Section 4, we performed a nonlinear analysis of the dynamical Kirchhoff equations
for twisted straight strips in a state close to bifurcation. The resulting amplitude equations
are a set of three nonlinear Klein-Gordon equations coupling the twist density and the
longitudinal tension to the writhing C mode responsible for the buckling of twisted strips.
The flexural, twist-independent, R mode decouples completely from the C and S modes.
These equations provide the starting point for the analysis of a large variety of problems,
such as the investigation of traveling waves or the determination of the equilibrium
shape assumed by the strip under given boundary constraints. As an important example,
we examined in detail the buckling of a finite-length strip clamped at the ends, in the
large-twist-angle limit, for three different types of loading at the strip extremities. We
found that, in the case of dead loading, the strip performs a dynamical jump at the
bifurcation point, whereas under rigid loading, a stable buckling mode sets up beyond
the criticality. The new equilibrium solution is found to deform continuously from a
sinusoidally modulated helix into a localized solution along the bifurcation path. The
third type of loading considered involves a geometrical constraint (fixed twist angle)
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and a dynamical constraint (controlled tension). In this particular setting, the bifurcation
path may be either subcritical or supercritical depending on material parameters and, in
the latter case, presents a secondary bifurcation (a limit point) beyond which the system
is forced to perform a dynamical jump. Arguments are given in favor of the stability of
the buckling solution up to the limit point.

Future plans involve the analysis of time-dependent features of the amplitude equa-
tions for the twisted strip derived here. We hope that it will reveal new dynamical behavior
such as breathers and traveling wave solutions. The bulk of the analysis performed here
can then be directly used in this more general setting.
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