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Summary. The dynamics of elastic strips, i.e., long thin rods with noncircular cross
section, is analyzed by studying the solutions of the appropriate Kirchhoff equations.
First, it is shown that if a naturally straight strip is deformed into a helix, the only
equilibrium helical configurations are those with no internal twist and whose principal
bending direction is either along the normal or the binormal. Second, the linear stability
of a straight twisted strip under tension is analyzed, showing the possibility of both
pitchfork and Hopf bifurcations depending on the external and geometric constraints.
Third, nonlinear amplitude equations are derived describing the dynamics close to the
different bifurcation regimes. Finally, special analytical solutions to these equations are
used to describe the buckling of strips. In particular, finite-length solutions with a variety
of boundary conditions are considered.
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1. Introduction

Filamentary structures can be observed in nature at all scales from microscopic chains of
molecules to macroscopic braided magnetic flux tubes in solar flares. Remarkably, despite
their different length scales and microscopic structures, unstable filaments seem to follow
universal configurational changes triggered by generic instabilities. A simple everyday
experiment is the coiling of strings, ropes, or telephone cords: If one holds the ends of a
piece of rubber tubing and twists one end relative to the other, the string will soon coil up
on itself. This is a simple example of awrithing instability, or twist-to-writheconversion,
in which a local change in twist density eventually results in a global reconfiguration
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of the string.1 Understanding the onset and dynamics of this fundamental instability is
of both theoretical and practical interest since it lies at the heart of a host of important
processes. Engineers have needed to understand the instabilities of rods to prevent the
pop-out of cables—especially in the case of suboceanic cables [42]. In biology, elastic
filaments provide idealized models with which to study the coiling behavior of different
filamentary structure such as those of proteins, polymers, DNA, and bacterial fibers [3],
[4], [5], [21], [33], [35], [41]. In physics there are many different settings where long,
thin, and twisted structures play an important role, such as the motion of vortex tubes in
hydrodynamics [22]; the formation of sun spots and the heating of the solar corona [11],
[37]; the theory of polymers and liquid crystals [14], [34]. More recently, interesting
connections between curve dynamics and integrable hierarchies of partial differential
equations have been unraveled [13], [23], [25], [28].

However, a complete mathematical model of the dynamics of even the simplest
writhing instability has proved to be difficult to obtain. The simplest mechanical for-
mulation that can capture the correct three-dimensional geometry and dynamics of this
problem is provided by theKirchhoff equationsfor thin elastic rods. Virtually all of
the analysis of the Kirchhoff model has been restricted to the stationary, i.e., time-
independent, solutions [27], [31], [35] and only a few time-dependent problems have
been tackled.

Recently we have developed a new method [16], [17], [18], [19] to study the dynamics
of filaments by introducing a novel perturbation scheme. Starting from a stationary
solution of Kirchhoff’s equation, this scheme allows us to derive a dispersion relation
from which one can determine the stability, or lack thereof, of the stationary solution. This
provides a simple and direct way to test the stability of the filament under perturbation.
Once an instability is triggered, the dynamics of the filament can become extremely
complicated. Nevertheless, a nonlinear analysis of the solution after bifurcation can be
carried out by deriving amplitude equations that describe the behavior of the filament
beyond the instability threshold [15], [17], and we derived such equations for thin elastic
rods with circular cross sections.

The goal of this paper is to extend our earlier work [17] to the case of rods with
an asymmetric cross section (referred to, in this paper, asstrips). A linear analysis of
the static Kirchhoff equations for straight strips was performed for the first time in
Champneys and Thompson (1996) [6] followed by a normal form analysis in van der
Heijden and Thompson (1998) [40]. First, we show that the class of exact helical solutions
of the Kirchhoff equations for strips is much more restricted than those for symmetric
rods. This emphasizes the highly degenerate character of the latter case. Second, two
different regimes of bifurcation of twisted straight strips are identified, in accordance with
[6], depending on the values of the parameters characterizing the elasticity of the material
and the geometry of the cross section. The dynamics of strips exhibits behaviors that are
significantly different from the case of rods with circular cross sections. In Section 3,
which focuses on the dynamical character of the instabilities, we linearize the time-
dependent equations and identify particular modes of wave propagation. We also look for
the critical point in parameter space beyond which a straight strip becomes unstable and

1 The wordwrithe is used to denote a global deformation of a filamentary structure.
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recover the results of [6]. In Section 4, we derive time-dependent amplitude equations
from the Kirchhoff equations in a regime where the system is close to bifurcation,
complementing the normal form analysis performed in [40]. Expressions for physical
quantities of interest in terms of the new variables are computed. In Section 5, we
discuss in detail static solutions of the resulting amplitude equations, and we consider
finite-length solutions to practical problems of interest. The buckling mode stability is
discussed too. We find that strips may adopt different bifurcation paths, depending not
only on the nature of the boundary conditions, but also, in some cases, on the material
elasticity and cross section geometry.

2. The Kirchhoff Model

The Kirchhoff model accounts for the dynamics of a thin elastic rod subject to internal
stresses and boundary constraints. In this model, the elastic stresses are averaged over
the rod cross sections (which are assumed to be small relative to the length of the rod)
along the space curve describing the rod centerline. This results in a one-dimensional
model that incorporates both the bending and twisting motions of the rod. The twisting
motion, as will be described below, is conveniently interpreted as the winding of a ribbon
about the axial curve.

2.1. Space Curves and Ribbons

We consider a dynamicalspace curveR(s, t) parameterized by its arclengths and time
t . A ribbon is defined as a space curveR(s, t) together with a smooth unit vector field
d2(s, t) orthogonal to that curve. Utilizing the unit tangent vector,d3 ≡ t, we can form a
third unit vectord1 = d2×d3, so that thegeneral triad(d1, d2, d3) forms a right-handed
orthonormal basis. This basis is a generalization of the Frenet triad(n, b, t) accounting
for the additional data in the definition of the ribbon. The components of the derivatives
of the general triadd1, d2, andd3 with respect to arclengths and timet are expressed in
the local basis form, respectively, thetwist matrixK(s, t) and thespin matrixW(s, t),
which we define as follows:(

∂d1

∂s

∂d2

∂s

∂d3

∂s

)
≡ (

d1 d2 d3
)

K , (1.a)(
∂d1

∂t

∂d2

∂t

∂d3

∂t

)
≡ (

d1 d2 d3
)

W. (1.b)

These matrices are antisymmetric and can be written as

K ≡
 0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

 , W ≡
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2)

The entries ofK andW are not independent. By differentiating (1.a) with respect to time
and (1.b) with respect to arclength and then equating their cross derivatives, we obtain
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a compatibility relation forK andW,

∂K
∂t
− ∂W

∂s
= [K , W] , (3)

where[K , W] = KW −WK . The componentsκi andωi form the twist vectorκ =
κ1d1+ κ2d2+ κ3d3 and thespin vectorω = ω1d1+ ω2d2+ ω3d3.

The equations (1.a) constitute the generalization of the Frenet-Serret equations for the
ribbon. The componentκ3 is called thetwist densityand defines the amount of rotation
of the local basis(d1, d2, d3) around the tangent vectord3 as the arc lengths increases.
The twist vector components can be expressed as functions of the angleζ between the
vectord1 and the normaln to the curve, the Frenet curvatureκ, and the torsionτ :

(κ1, κ2, κ3) =
(

κ sinζ ,κ cosζ ,τ + ∂ζ

∂s

)
. (4)

The quantitiesτ , ∂ζ

∂s , andκ3 play related but distinct roles. Thetorsionτ is a property
of the curve alone and is a measure of its nonplanarity. Hence, a curve with null torsion
is a plane curve, and any two ribbons having the same curvature and torsion for all
s and t correspond to the same space curveR and can only be distinguished by the
orientation of the local basis. Theintrinsic twist density∂ζ

∂s is a property of the ribbon
alone, representing the rotation of the local basis with respect to the Frenet frame as the
arc length increases. A ribbon without intrinsic twist is called aFrenet ribbon. Indeed, in
a Frenet ribbon, the angleζ between the binormalb and the vector fieldd2 is constant;
hence the binormal is representative of the orientation of the local basis(d1, d2, d3). The
total twist density, κ3, is a property of both the space curve and the ribbon, measuring
the total rotation of the local basis around the space curve as the arc length increases.

2.2. The Kirchhoff Equations

The central idea of the model is that the rod is modeled as a sequence of contiguous
segments between which the forces and moments are determined. The required assump-
tions are: (i) the rod isthin, i.e., the width of any cross section is much smaller than
any other length scale (e.g.,|κ|−1) involved in the problem; (ii) the rod is unshearable
and inextensible, i.e., each cross section remains normal to the axial space curve and
can be identified by its arclength coordinate; (iii) the elastic stresses are linear in the
strains. A detailed derivation of the Kirchhoff equations can be found in [2], [8]. More
general models, including the effects of shear deformations and extensibility [1], as well
as nonlinear constitutive elastic laws [27], can also be considered.

By averaging the forces and moments over each cross section, one can obtain the
equations for the force,F(s, t), acting on each cross section, and for the momentM(s, t).
These equations are closed by using the constitutive relation of linear elasticity relating
the torqueM to the twist vectorκ. Together, they read:

F′′ = ξA d̈3, (5.a)

M ′ + d3× F = ξ
(
I2d1× d̈1+ I1d2× d̈2

)
, (5.b)

M = E I1κ1d1+ E I2κ2d2+ µJκ3d3, (5.c)
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where( )′ and ˙( ) stand, respectively, for arclength and time derivatives;ξ is the (constant)
mass per unit volume of the rod andA the cross sectional area; the quantitiesI1 and I2

are the principal moments of inertia of the cross section,E is Young’s modulus,µ is
the shear modulus, andJ depends on the cross section shape. In the particular case of a
circular cross section of radius R, one hasI1 = I2 = J/2 = π R4/4. The productsE I1
andE I2 are theprincipal bending stiffnessesof the rod, andµJ is thetorsional stiffness.
The tangential component of the force,d3 · F, is thetensionalong the rod.

The coupled equations (5) constitute the dynamical Kirchhoff equations. These are
three vector equations involving the local basis(d1, d2, d3) and its derivatives, the force
F and the torqueM , which total nine degrees of freedom; hence, the system is closed.

We can further simplify the Kirchhoff model by choosing the following length, time,
and mass scales as measuring units:

[L] =
√

I1

A , [T ] =
√

ξ I1

EA , [M ] = ξ
√
AI1, (6)

which amounts to make the replacements

∂

∂s
→
√
A
I1

∂

∂s
, κ →

√
A
I1

κ,
∂2

∂t2
→ EA

ξ I1

∂2

∂t2
, (7.a)

F→ EA F, M → E
√
AI1M . (7.b)

The Kirchhoff equations then reduce to the dimensionless form

F′′ = d̈3, (8.a)

M ′ + d3× F = a d1× d̈1+ d2× d̈2, (8.b)

M = κ1d1+ aκ2d2+ bκ3d3, (8.c)

with

a ≡ I2

I1
, b ≡ µJ

E I1
≡ J

2I1(1+ σ)
, (9)

whereσ denotes the Poisson ratio, which ranges from 0, corresponding to hyperelasticity
(if there is no striction as the material is stretched) to 1/2, corresponding to incompressible
media (if the volume is unchanged as the material is stretched) [24]. The constanta
measures the asymmetry of the cross section. Our convention is to orient the vector
fields d1 andd2 such thatI1 and I2 are, respectively, the larger and smaller bending
stiffnesses. In this case, we have

0 < a ≤ 1, (10)

the value 1 being reached in the dynamically symmetric case where the moments of
inertia are identical. The constantb is thescaled torsional stiffness. In the particular case
of a circular cross section, one has

b = 1

1+ σ
∈
[

2

3
, 1

]
. (11)
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A

B

Fig. 1. The domains covered in(a, b) space by various cross section shapes
are enclosed in black lines (solid = ellipses, dash = rectangles, dot = isosceles
triangles, dash-dot = elliptic lima¸cons). The shades of gray pertain to the topics
discussed in Sections 3 (where two bifurcation regimes are distinguished) and
5 (where the constantµ is introduced). Dark gray = tapelike regime with
µ < 1, light gray = thick regime withµ < 1, white = thick regime with
µ > 1. The functions ofa andb appearing as diagram coordinates are chosen
so as to provide a realistic visual representation of the relative importance of
each region.

Within the framework of linear elasticity theory [24], [26], [36], it is possible to
compute the parametersa andb for a given cross section shape. For instance, if we
consider elliptic cross sections with semi-axesA andB (A < B), we have

a = A2

B2
, b = 1

1+ σ

2a

1+ a
. (12)

Extensive computations of torsional and bending stiffness for various shapes have
been compiled in the classical engineering literature. The cases of elliptic-, rectangular-,
and elliptic-limaçon-shaped cross sections are treated in [36]. In general, rods with cross
sections made up of assembled flat pieces, like X or H shapes, have low torsional stiff-
nesses (smallb). In addition, we computed approximate values for isosceles-triangular
cross sections. Rather than giving the cumbersome formula fora andb in terms of the
free parameters, we represent, in Figure 1, the domain covered in the(a, b) space for
each of these particular shapes for realistic Poisson ratio (that is, forσ varying between
0 and 1/2). More data can be found, for example, in [32].

3. Equilibrium and Stability of Strips

In this section we consider the helical, circular, and straight static solutions of the Kirch-
hoff equations for strips. We first show that the class of equilibrium helical shapes is more
restricted in the generic casea 6= 1 than in the case of symmetric cross sections. Indeed,
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this result, as well as the ones described in Sections 4 and 5, show that the symmetric
case is highly degenerate and that the behavior of strips is richer.

Experimental, analytical, and numerical results for static strips have been obtained
recently by Champneys, Thompson, and van der Heijden [6], [7], [38], [39], [40]. In
[6], they present a linear analysis of the static Kirchhoff equations for a straight strip
and investigate numerically the existence of localizing buckling modes. This analysis is
completed by a normal form analysis in [40] where it is shown that infinite rods have
a tendency to localize after the bifurcation. Here, we will be able to obtain additional
insights into the behavior of solutions close to the straight state through an amplitude
equation analysis of the full, dynamical Kirchhoff equations valid for finite and infinite
rods under a variety of boundary conditions. We first develop, in Section 3.2, a general
perturbation scheme for the dynamical Kirchhoff equations near a given reference state;
and then, in Section 3.3, perform a dynamical stability analysis for the straight strip by
linearizing the Kirchhoff equations around the straight solution, recovering the results
of Champneys and Thompson in the static case along the way. These results provide the
necessary background for the amplitude equation analysis described in Section 4.

3.1. Simple Equilibrium Solutions

In order to investigate the existence of equilibrium solutions to the Kirchhoff equations
for strips, we consider the static form of system (8). To do so, we integrate (8.a) once
with respect to arclength, introduce the components of the force in the local basisF =
F1d1+ F2d2+ F3d3, and project (8) along this basis to obtain a system of six equations
involving the six unknownsF1, F2, F3, κ1, κ2, andκ3:

F ′1+ κ2F3− κ3F2 = 0, (13.a)

F ′2+ κ3F1− κ1F3 = 0, (13.b)

F ′3+ κ1F2− κ2F1 = 0, (13.c)

κ ′1+ (b− a) κ2κ3− F2 = 0, (13.d)

a κ ′2+ (1− b) κ1κ3+ F1 = 0, (13.e)

b κ ′3+ (a− 1) κ1κ2 = 0. (13.f)

If a = 1, we see from (13.f) that the twist densityκ3 is constant.
The trivial equilibrium solutions of these equations are straight strips, for which

κ1 = κ2 = 0. Inserting this into (13) leads to a general solution of the form

κ = κ3d3, F = F3d3, (14)

whered3 has a constant orientation along the arclength, andκ3 and F3 are arbitrary
constants. Hence, for givena andb, the straight strips constitute a two-parameter family
of solutions, characterized by a twist densityκ3 and tensionF3.

Helical solutions are obtained by assuming constant Frenet curvatureκ and torsion
τ , and using expressions (4) for the twist vector. We now show, by contradiction, that
the only possible helical strips are Frenet strips, that is, strips with zero internal twist.
Notice that, unlike the casea = 1, we cannot assumea priori that the twist density
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κ3 is constant. Hence, we takeζ in (4) to be an arbitrary function ofs. Equations (13)
expressed in terms ofζ read:

F ′1− (ζ ′ + τ)F2+ κF3 cosζ = 0, (15.a)

F ′2+ (ζ ′ + τ)F1− κF3 sinζ = 0, (15.b)

F ′3+ κF2 sinζ − κF1 cosζ = 0, (15.c)

F2 = κ
[
(b+ 1− a)ζ ′ + (b− a)τ

]
cosζ , (15.d)

F1 = κ
[
(b+ a− 1)ζ ′ + (b− 1)τ

]
sinζ , (15.e)

b ζ ′′ = (1− a) κ2 sinζ cosζ. (15.f)

We now prove thatζ is constant along the strip and is actually an integer multiple of
π /2. Consider the following linear combination of (15.a) and (15.b):[

F ′1− (ζ ′ + τ)F2+ κF3 cosζ
]

sinζ

+ [F ′2+ (ζ ′ + τ)F1− κF3 sinζ
]

cosζ = 0, (16)

which reduces to

F ′1 sinζ + F ′2 cosζ + (ζ ′ + τ)(F1 cosζ − F2 sinζ ) = 0. (17)

Substituting (15.d) and (15.e) into (17) yields (providedκ 6= 0)

[4b+ 2(1− a) cos 2ζ ] ζ ′′ − (1− a)(2ζ ′ + τ)2 sin 2ζ = 0. (18)

We can substitute the expression forζ ′′ from (15.f) into (18) to obtain

(1− a)κ2 sin 4ζ + 2b[2κ2− 4ζ ′2− 4τζ ′ − τ 2] sin 2ζ = 0. (19)

Assumingζ ′ 6= 0 for s lying in some interval, we multiply both sides of (15.f) byζ ′ and
integrate this equation once:

bζ ′2 = (1− a) κ2 sin2 ζ + C = (1− a)κ2

2
(1− cos 2ζ )+ C, (20)

whereC is an integration constant. We can eliminateζ ′2 between (19) and (20):

4bτζ ′ = 3(1− a)κ2 cos 2ζ + 2(b+ a− 1)κ2− 4C − bτ 2. (21)

Squaring both sides of (21) and eliminatingζ ′2 by using (20) yields

8bτ 2[(1− a)κ2(1− cos 2ζ )+ 2C]

− [3(1− a)κ2 cos 2ζ + 2(b+ a− 1)κ2− 4C − bτ 2]2 = 0. (22)

Sinceζ is assumed not constant, the coefficient of every power of cos 2ζ must vanish in-
dependently in equation (22). However, the coefficient of cos2 2ζ , namely−9(1−a)2κ4,
is negative for any nonvanishing value of the curvature, contradicting our assumption
thatζ varies withs. Returning to (15.f) and settingζ ′′ = 0, we see that

ζ = n
π

2
, n ∈ Z. (23)
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Fig. 2.A binormal helix (left) and a normal helix (right).

We can now solve the system (15). For givenκ andτ , two solutions arise, depending
only on the parity ofn. The helices and rings corresponding to evenn are referred to as
binormal helicesandbinormal rings, since the direction of highest bending stiffness (d2)
lies along the binormal. If we further require that the rings must be closed on themselves,
the boundary conditions imposen/2 to be an integer. The helices and rings corresponding
to odd values ofn are namednormal helicesandnormal rings, since the direction of
highest bending stiffness lies along the normal. Both types of helices, represented in
Figure 2, areFrenet helices. In the binormal case, we have

κ = κd2+ τd3, F = (b− a)τκ, (24)

whereas in the normal case, the solution is

κ = κd1+ τd3, F = (b− 1)τκ. (25)

For fixeda 6= 1 andb, the helical and ringlike strips together form a two-parameter
family, characterized by a Frenet curvatureκ and a Frenet torsionτ in contrast to the
degenerate casea = 1, where there exists a three-parameter family of helical solutions,
characterized by curvature, torsion, and an arbitrary constant twist density.

3.2. Perturbation Scheme

If an exact solution of the Kirchhoff equations (8) is known, perturbed states of the
system in a small neighborhood of this reference solution can be systematically studied
by expanding the relevant variables as power series in a small parameterε characterizing
the distance from the (unperturbed) reference state. To do so, we introduce a near-identity
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rotation matrixB mapping the unperturbed local basis onto the perturbed basis:(
d1 d2 d3

) ≡ ( d(0)
1 d(0)

2 d(0)
3

)
B. (26)

We now expand the entries ofB as series ofε. The simplest form of the expansion is

B ≡ 1+ ε A(1) + ε2
(
A(2) + S(2)

)+ ε3
(
A(3) + S(3)

)+ · · · , (27)

where1 is the identity matrix and theA(k)’s are general antisymmetric matrices,

A(k) ≡
 0 −α

(k)
3 α

(k)
2

α
(k)
3 0 −α

(k)
1

−α
(k)
2 α

(k)
1 0

. (28)

The matricesS(k) are symmetric and are found to depend only on the entries ofA(1) to
A(k−1). Our goal is to obtain expressions for the entries of the twist matrixK and the
spin matrixW in terms of the perturbed variables. Using definitions (1.a) and (26), we
have

∂

∂s

[(
d(0)

1 d(0)
2 d(0)

3

)
B
] = ( d(0)

1 d(0)
2 d(0)

3

)
B K , (29)

which can be reexpressed as

(
d(0)

1 d(0)
2 d(0)

3

) [
K (0) B− B K + ∂B

∂s

]
= 0. (30)

Since the basis vectors are independent and the matrixB is orthogonal, (30) yields

K = B>
(

K (0) B+ ∂B
∂s

)
. (31)

Analogous expressions hold for the spin vectorω. We are now able to write down the
Kirchhoff equations (8) to orderk, for any given unperturbed state, in terms of the six
variables

X(k) ≡
(

F (k)
1 , F (k)

2 , F (k)
3 , α

(k)
1 , α

(k)
2 , α

(k)
3

)
. (32)

3.3. Stability Analysis for the Straight Rod

3.3.1. Dispersion Relation.The stability analysis is performed by linearizing the Kirch-
hoff equations around the static straight solution. This is achieved by substituting the
expansions for the force, twist, and spin vectors, truncated to first order, into the system
(8), taking (14) as expressions for the unperturbed variablesF(0) andκ(0), and setting
ω(0) = 0. This yields, in matrix form,

L X (1) = 0, (33)
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where the linear operatorL takes the form

L≡



∂2

∂s2−γ 2−2γ ∂
∂s 0 2ργ 3 ∂

∂s ργ 2 ∂2

∂s2−ργ 4− ∂2

∂t2 0
2γ ∂

∂s
∂2

∂s2−γ 2 0 ργ 4−ργ 2 ∂2

∂s2+ ∂2

∂t2 2ργ 3 ∂
∂s 0

0 0 ∂2

∂s2 0 0 0
0 −1 0 (b−a)γ 2+ ∂2

∂s2− ∂2

∂t2 (b−a−1)γ ∂
∂s 0

1 0 0 (1+a−b)γ ∂
∂s (b−1)γ 2+a

(
∂2

∂s2− ∂2

∂t2

)
0

0 0 0 0 0 b ∂2

∂s2−(1+a) ∂2

∂t2


.

(34)

The constantsγ andρ are defined as

γ ≡ κ
(0)
3 , ρ ≡ F (0)

3

(κ
(0)
3 )2

. (35)

For ρ to be well-defined, we limit our analysis to strips with nonzero twist. The pa-
rameterγ represents the twist density of the initial state (the twisted straight rod). The
dimensionless parameterρ controls the critical value of the physical parameter where
buckling occurs. For a rod with circular cross sections, the Euler-Love-Timoshenko
buckling occurs forρ < b2/4. Buckling can occur either by a decrease in tensionF (0)

3

with constant twist, by an increase in the twist densityκ
(0)
3 with constant tension, or,

in general, by decreasing the parameterρ past a critical value. Next, we look for the
fundamental solutions, ornormal modes, of (33),

X(1) = A u expγ (σ t + ins), (36)

whereA is a constant complex amplitude,u is a constant vector with a fixed norm,σ is
a complex constant, andn is a real constant. The factorγ in the exponential has been
introduced for convenience. In the following,n is called thespatial frequency(although,
strictly speaking, this name would more appropriately refer tonγ ) and, similarly,σ is
called thegrowth exponent. Inserting (36) into (33) yields

M u = 0, (37)

whereM is a matrix involvingσ andn:

M≡


−(1+n2)γ 2 −2inγ 2 0 2inργ 4 −(1+n2)ργ 4−σ 2γ 2 0

2inγ 2 −(1+n2)γ 2 0 (1+n2)ργ 4+σ 2γ 2 2inργ 4 0
0 0 −n2γ 2 0 0 0
0 −1 0 (b−a−n2−σ 2)γ 2 i (b−a−1)nγ 2 0
1 0 0 i (1+a−b)nγ 2 (b−1−an2−aσ 2)γ 2 0
0 0 0 0 0 [−bn2−(1+a)σ 2]γ 2

 .

(38)

There exist nontrivial solutions foru only if detM = 0. This condition yields the
dispersion relation,

n2
(

(1+ a) σ 2+ bn2
) ( {

a (n2− 1)2+ (1+ a)γ−2 (n2+ 1)+ γ−4
}

σ 4
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Fig. 3. The dispersion relation fora = 1/2, b = 3/2, ρ = 3/2, γ = 1.
The straight strip is stable for these values of the parameters (the patho-
logical exponentially growing T modes that lie on the vertical axis are not
considered to be unstable; see text).

+ {2a n6+ [(1+ a)(ρ − b)+ 1− 4a+ a2+ (1+ a)γ−2] n4

+ [2(1+ a)(b− ρ)− 2(1− a+ a2)+ 2(ρ + 3(1+ a− b))γ−2] n2

+ (1+ a)(ρ − b)+ 1+ a2+ [2(ρ − b)+ 1+ a]γ−2
}

σ 2

+ (1− n2)2
{
a n4+ [(1+ a)(b+ ρ)− b2− 2a] n2

+ (ρ + 1− b)(ρ + a− b)} ) = 0. (39)

The stability of the straight strip with given values of the parametersa, b, γ , andρ can
be studied by analyzing the dispersion relation. Modes that grow exponentially in time,
characterized by Re(σ ) > 0, correspond to theunstable modes. Since the dispersion
relation is an equation inσ 2, its roots come in pairs with opposite signs—hence the
straight rod becomes linearly unstable if the dispersion relation allows for normal modes
with positive or nonreal values ofσ 2. Exceptions to this rule are the modes withn = 0
and arbitraryσ corresponding to the factorn2 in (39). We now make the assumption that
nonreal values ofσ 2 are not allowed by the dispersion relation. This is confirmed for
a wide range of values of the system parameters, and is readily established for certain
fixed spatial frequencies, independently of the values of the parameters.

In order to determine the region where unstable modes are allowed, we must inves-
tigate the conditions for the existence ofneutral modescharacterized byσ = 0. Before
doing this, we first examine and identify various sets of solutions of the dispersion
relation.

The dispersion relation is displayed in Figure 3 for particular values of the parameters
for which the straight rod is stable. The left-hand side of (39) is a product of three factors,
each one vanishing on a different branch, or set of branches, of the dispersion relation. In
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the following, the branch associated with the first factor,n2, is referred to as theT branch,
because the corresponding normalT modesdescribe variations intensionin the course
of time. The branch associated with the second factor,(1+a) σ 2+bn2, is referred to as
theS branch, because among the corresponding normalS modes, there is a neutral mode
representing aself-rotationof the strip around its centerline. The third factor, referred to
as theR branch, is associated with nonaxisymmetric rotation of the filament.

The null space of the operatorL for a given solution of the dispersion relation is
determined by solving the equation (37) for the corresponding values ofσ andn. On the
T and S branches, the normalized solutionsu are given byuT anduS, where

uT ≡ (0, 0, 1, 0, 0, 0) , (40.a)

uS ≡ (0, 0, 0, 0, 0, 1) . (40.b)

The T modes.The T branch corresponds to fundamental solutions of the linearized
Kirchhoff equations of the form,

F = (ργ 2+ ε AT expγ σ t) d3, κ = γ d3, ω = 0, (41)

whereAT andσ are arbitrary complex constants. These modes are such that the strip
remains straight and is subject to an applied longitudinal tension either oscillating in
time with an arbitrary frequency, or growing in time exponentially. The exponentially
growing modes, being present in the whole parameter space, do not actually correspond
to an instability, but reflect instead the arbitrariness of the time dependence of the tensile
constraints that can be applied to the rod. The static T mode (σ = 0) corresponds to
a constant deviation in tension from the unperturbed configuration, which can be taken
into account by redefiningρ.

The S modes.Taking into account the expressions (31) for the components of the twist
vector, and setting

c2
S ≡

b

1+ a
, (42)

the S branch is seen to correspond to the following real fundamental solutions:

F = ργ 2 d3, (43.a)

κ = {γ + ε nγ
[
i AS expinγ (s± cS t)+ c.c.

]}
d3, (43.b)

ω = ± ε nγ cS
[
i AS expinγ (s± cS t)+ c.c.

]
d3, (43.c)

where AS is an arbitrary real amplitude,n is an arbitrary real frequency, and “c.c.”
indicates the complex conjugate of the preceding term. Forn 6= 0, these are the well-
known lineartwist waves(or torsional waves[24]) traveling along the straight rod at
fixed velocitycS. Forn = 0, the near-identity matrixB takes the form

B =
 1 −εAS 0

εAS 1 0
0 0 1

. (44)

To first order, this represents a fixed global rotation of the straight rod around its center-
line.
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The R modes.We now consider the third factor of the dispersion relation (39). We see
that n2 = 1, σ = 0 satisfies the dispersion relation for all values of the parameters.
Setting

ν ≡ n∓ 1 (45)

and keeping the terms of lowest degree inν andσ in the dispersion relation yields

σ 2 = −ργ 2ν2+ o(ν2), (46)

which holds in a neighborhood of the pointsn = ±1, σ = 0. The asymptotic branches
(46) are referred to in the following as theR branches, and the corresponding normalR
modesdescribe, forσ = 0, arotation of the straight rod around an axis different from
its centerline. The R modes are unstable ifρ < 0, that is, if the rod is in a state of
compression rather than extension. In an experiment where the rod is initially subject to
a strong positive tension which is gradually decreased, these unstable R modes, which
account for the tendency of the rod to bend under compression, do not show up as long
as the tension remains positive. The solutionuR of equation (37) forn = 1 andσ = 0 is

uR ≡ (0, 0, 0, 1, i, 0) , (47)

whereas the solution forn = −1,σ = 0 is the complex conjugate,u∗R. The corresponding
real solutions (static R modes) take the form

F = ργ 2 d3, (48.a)

α
(1)
1 = AR expi γ s+ c.c., (48.b)

α
(1)
2 = i AR expi γ s+ c.c., (48.c)

α
(1)
3 = 0, (48.d)

whereAR is an arbitrary complex amplitude. It is convenient to represent some of the
quantities of interest in terms of the spatially fixed coordinate triad(eX, eY, eZ). Choosing
d(0)

3 to point alongeZ, the unperturbed basis(d(0)
1 , d(0)

2 , d(0)
3 ) is represented as

(
d(0)

1 d(0)
2 d(0)

3

) = ( eX eY eZ
)  cosγ s − sinγ s 0

sinγ s cosγ s 0
0 0 1

. (49)

It is now possible, using (26), to express the perturbed tangent vectord3 in the form

d3 = eZ − 2ε (ImAR eX + ReAR eY). (50)

Comparingd3 with the unperturbed tangent vectord(0)
3 = eZ, one sees that (50) repre-

sents, to first order, a fixed global rotation around an axis distinct from the unperturbed
centerline.

We now examine the nonstatic R modes, corresponding to small|ν| 6= 0 in equation
(46). Assuming that the corresponding solutionsu of equation (37) do not differ much
from uR andu∗R, and using (46), we obtain real solutions of the form

F ' ργ 2 d3, (51.a)

α
(0)
1 ' AR expi γ [ν(s± cRt)+ s] + c.c., (51.b)

α
(0)
2 ' i AR expi γ [ν(s± cRt)+ s] + c.c., (51.c)

α
(0)
3 ' 0, (51.d)
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whereAR is a complex amplitude,ν is a small real constant, and

c2
R ≡ ργ 2 ≡ F (0)

3 . (52)

Taking the sum and the difference of two solutions of type (51) with opposite values
of ν and complex conjugate values ofAR, and computing for both combinations the
corresponding tangent vectord3, we obtain two different types of wave propagation
along the two axes:

(1) d3 = eZ + 2ε (iAR exp iγ ν(s± cRt)+ c.c.) eX, (53.a)

(2) d3 = eZ − 2ε (AR exp iγ ν(s± cRt)+ c.c.) eY . (53.b)

These expressions describe the familiar plane waves propagating in rods under tension
with a velocity proportional to the square root of the tension [24]. In twisted strips, these
plane waves appear only at low frequencies (small|ν|).

A typical plot of the dispersion relation is shown in Figure 3, and the previously
discussed T, S, and R branches are indicated.

3.3.2. Unstable Modes and Critical Point.The neutral modes described earlier (the
static T, S, and R modes) exist everywhere in parameter space. Their existence is not an
indication that the rod is unstable but merely a consequence of particular symmetries of
the equations. We now look for the remaining neutral modes by settingσ = 0 in the
dispersion relation. Asσ vanishes, the third factor of the dispersion relation (39) equated
to zero reads

a n4+ [(1+ a)(b+ ρ)− b2− 2a] n2+ (ρ + 1− b)(ρ + a− b) = 0. (54)

This equation does not involveγ . In order for neutral modes to exist, (54) must admit
real solutions2 for n, or positive solutions forn2. The position of the roots in the complex
plane can be determined by considering the conditions for the discriminant1, the sum
of the squared roots6, and the product of the squared roots5, to vanish:

1 ≡ [(1+ a)(b+ ρ)− b2− 2a]2− 4a(ρ + 1− b)(ρ + a− b) = 0, (55.a)

6 ≡ 2+ b2− (1+ a)(b+ ρ)

a
= 0, (55.b)

5 ≡ (ρ + 1− b)(ρ + a− b)

a
= 0. (55.c)

2 Actually, solutions with imaginaryn exist in some cases and are acceptable as well: They describe deforma-
tions proportional to hyperbolic functions of the arclength (sinhγ |n| s and coshγ |n| s). They are meaningful
only if finite-length strips are considered. If the strip is long enough, or ifγ is large, they are (with an appro-
priate normalization factor) exponentially small everywhere along the strip except in a close neighborhood
of the strip ends, so that they introduce boundary layers. As such, they are not involved in the large-scale
geometry of the strip and may be ignored for the purpose of the nonlinear analysis of Section 4. In Section
5, we treat specifically finite-length problems. Nevertheless, we compute only dominant-order solutions, in
which the hyperbolic modes may be shown to play no role. Therefore, they are dropped from the discussion
for the remainder of the paper.
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Fig. 4. Stability diagram fora = 1/2, withb extending beyond physical
range. The small frames concern the regions between the curves in the
(b, ρ) plane and show the locations in the complex plane of the two solu-
tions forn2, with positive real axis pointing right and positive imaginary
axis pointing up. The isolated point on the axisρ = 0 is part of the curve
1 = 0. The gray zone is the region of instability.

The last relation factors to

5N ≡ ρ + 1− b = 0, (56.a)

5B ≡ ρ + a− b = 0, (56.b)

which are exactly the conditions for the strip to be a normal helix or a binormal helix,
respectively, in the limit of vanishing curvature: see (35) and (24)–(25).

For fixeda 6= 1, the curve1 = 0, the parabola6 = 0, and the straight line5B = 0
are found to meet at exactly two points(b−, ρ−) and(b+, ρ+) in the(b, ρ) plane, with

b± ≡ 1+ a±√1− a, (57.a)

ρ± ≡ 1±√1− a. (57.b)

Figure 4 depicts the situation fora = 1/2, which is a typical case in the sense that any
value ofa other than 1 leads to the same qualitative layout of the curves. This diagram
is equivalent to Figure 1(a) in Champneys and Thompson (1996) [6]. See Table 1 for a
translation of Champneys and Thompson’s notations into our notations. Since equation
(54) does not depend onγ , ρ is the only relevant parameter that can be adjusted in the
course of an experiment and is accordingly referred to as thecontrol parameter. High
values ofρ correspond to conditions of strong tension, and in this regime, the straight strip
is stable, that is,σ 2 < 0 for any realn, or positiven2. As ρ decreases from the region
of stability, it eventually reaches a critical valueρC for which the first neutral mode,
which we will refer to as theneutral C mode, shows up and, beyond this critical point,
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Table 1. Correspondence between our notations and Champneys,
Thompson, and van der Heijden’s notations. Their parameterρ has
been renamed̃ρ in order to distinguish it from ourρ. Also, their defi-
nition ofν differs from one paper to another so that the original symbol
ν in the table pertains to [6], [7], [39], whereas the symbolν̃ pertains
to [40].

Our Notations van der Heijden et al. Notations

a = min
(
1+ ρ̃, 1

1+ρ̃

)
ρ̃ = a− 1 or ρ̃ = 1

a − 1

b = min(1+ρ̃,1)

1+ν
= 2 min(1+ρ̃,1)

(2+ρ̃)(1+ν̃)
ν = a

b − 1 or ν = 1
b − 1

ρ = min(1+ρ̃,1)

(1+ν)2m2 = 4 min(1+ρ̃,1)

(2+ρ̃)2(1+ν̃)2m2 ν̃ = 2a
(1+a)b − 1

m= b√
aρ

or m= b√
ρ

the dispersion relation admits solutions with realn and positiveσ , which correspond
to unstable modes. One sees from Figure 4 that, asρ crosses the critical value, two
qualitatively different situations arise, depending on the value ofb. If b ranges between
b− andb+, the first neutral mode appears with a spatial frequencynC = 0, leading to
a pitchfork bifurcation. Ifb lies outside this interval, two opposite critical frequencies
±nC appear, each one being a double root of equation (54), leading to a Hamiltonian
Hopf bifurcation. Note that, fora 6= 1, the line of normal helices5N = 0 is always
located below the pitchfork line5B = 0, which proves, in the small-curvature limit, that
the normal helices are unstable.

In the symmetric case (a = 1), the curve1 = 0 degenerates into a parabola and
two identical vertical straight lines, while5 = 0 also corresponds to a pair of identical
straight lines. There is no possibility of a zero-frequency bifurcation, except for the single
valueb = 2 (see Figure 5).

In the case of a flat elliptic cross section, that is, witha sufficiently small, the interval
[b−, b+] covers 3/4 of the physical range ofb in the case of elliptic cross sections,
with only the smaller values lying outside this interval, leading to a zero-frequency
bifurcation for most of the physical values ofb. This is visible in Figure 1, which shows
the boundaryb = b− in (a, b) space as the common edge of the two darkest shades
of gray. Therefore, the pitchfork regime corresponds to flat cross sections with large
enough torsional stiffness. In the following, this regime will be termed thetapelike
regime, in compliance with the terminology of van der Heijden et al. [40], while the
regime corresponding tonC 6= 0 will be named thethick regime.

In the tapelike regime, the first instability appears as5B vanishes; hence, the straight
rod becomes unstable due to the presence of nearby binormal helical strips. From equation
(56.b), the critical value ofρ in the tapelike regime is

ρTL
C ≡ b− a. (58)

In the thick regime, the first instability appears as the discriminant1 vanishes. We
now have to determine the critical values,ρ th

C , of ρ, and the critical values±nth
C of the

frequency (+nth
C denoting the positive one) in this case. Fora < 1, ρ th

C is the smallest
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Fig. 5. Stability diagram fora = 1 (symmetric case). The small frames
concern regions enclosed in solid lines and show the locations of the two
solutions forn2 in the complex plane, with positive real axis pointing right
and positive imaginary axis pointing up. The gray zone is the region of
instability. The tapelike (i.e., pitchfork) regime interval degenerates into
a single point.

root of equation (55.a),

ρ th
C ≡

(b− 1− a)
[
b(1+ a)− 4a− 2

√
a (b− 2)

√
b− 2a

]
(1− a)2 . (59)

The frequencynth
C is then given by the positive double root of (54):

nth
C ≡

√
1+ b2− (1+ a)(b+ ρ th

C )

2a
. (60)

Figures 6 and 7 show the solutions of the dispersion relation for slightly supercritical
states of the rod in the tapelike and thick regimes, respectively.

Fora = 1, realistic rods haveb ≤ 1 and only the thick regime values are relevant. In
this case, one obtains the well-known Love criterion for twist instability [26],

ρa=1
C ≡ b2

4
, na=1

C ≡
∣∣∣∣1− b

2

∣∣∣∣ . (61)

Having obtained the critical frequenciesnTL
C andnth

C, we must now determine the corre-
sponding solutionsuTL

C anduth
C of equation (37). We obtain for both regimes

uC ≡
(−iργ 2χ, ργ 2, 0, 1, i χ, 0

)
, (62)

whereχ vanishes in the tapelike regime andχ = χ th in the thick regime, with

χ th ≡ ρ th
C + a− b+ (nth

C)2

nth
C(a+ 1− b)

≡ nth
C(a+ 1− b)

ρ th
C + a(nth

C)2− b+ 1
. (63)
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Fig. 6. The dispersion relation fora = 1/2,b = 3/2,ρ = 0.97, andγ = 1
(a slightly supercritical state of the tapelike regime).

Inserting expression (62) foruC into (36) and computing the corresponding twist
vector to first order using (31) yields

κ1 = ε γ (nC− χ)(i AC expi γ nCs+ c.c.), (64.a)

κ2 = ε γ (1− nCχ)(AC expi γ nCs+ c.c.), (64.b)

κ3 = γ , (64.c)
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Fig. 7. The dispersion relation fora = 1
2, b = 5

2, ρ = 2.08, andγ = 1 (a
slightly supercritical state of the thick regime).
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Fig. 8. Strips in coiled state for tapelike regime values (a = 1/10, b = 2/11, upper
picture) and thick regime values (a = 7/20, b = 14/27, lower picture) of the material
parameters. The shape of the strip is a helix in the tapelike case, but not in the thick
case.

whereAC is an arbitrary complex amplitude. We choose to write the real neutral C mode
(64) in both regimes as a sum of two complex conjugate modes, even for zero critical
frequencynC, in order to adopt a uniform notation. IfnC = 0, the imaginary part of the
complex amplitudeAC is irrelevant, because the solution depends onAC only through
the combinationAC+A∗C. Therefore, in the tapelike regime, we conventionally set imAC

to zero.
In the tapelike regime, taking into account the fact thatnC = χ = 0, the twist vector

reduces to

κ = ε γ ReAC d2+ γ d3. (65)

Moreover, it is easily checked thatF = (b− a)γ κ. From (24), we see that the neutral C
mode in the tapelike regime is just a binormal helix with torsionγ and curvatureε γ AC

(see Figure 8). This tendency of the strip to assume the shape of a binormal helix has
been termedtapelike behaviorby van der Heijden et al. [40].

In the symmetric casea = 1, χ = sgn(2− b) = ±1, and (64) reduces to

κ1 = ε γ (nC∓ 1)(i AC expi γ nCs+ c.c.), (66.a)

κ2 = ε γ (1∓ nC)(AC expi γ nCs+ c.c.), (66.b)

κ3 = γ. (66.c)

The Frenet curvature and torsion are constant; hence, the C mode in the casea = 1 once
again describes a helix, but this time with a constant twist density which differs from
pure torsion.

In the thick regime, fora 6= 1, the expressions (64) describe buckling states for which
the strip does not assume a helical shape (see Figure 8).

To summarize, as the control parameterρ decreases from the region of stability and
meets its critical valueρC, a neutral mode of type (64) (the neutral C mode) appears and,
asρ crosses the critical value, the appearance of unstable exponentially growing modes
invalidates the linear description of the strip near the straight state. It is then necessary
to proceed to a nonlinear analysis of these buckling modes.
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4. Nonlinear Analysis

Our goal in this section is to study the behavior of the linearly unstable C modes and their
interactions with other excitable or neutral modes in the nonlinear regime. An important
effect of the nonlinearities is to curb the exponential growth of the C modes, allowing the
system to eventually reach a new stable state or to oscillate between different states. The
nonlinear analysis consists of studying the system close to the bifurcation in a regime
where the perturbation parameterε provides an effective measure of the distance to
the critical point. It is then possible to study the dynamics in a systematic manner by
expanding the Kirchhoff equations order by order inε to obtain a hierarchy of linear
equations. Furthermore, the amplitudes of the neutral modes are allowed to vary on
long space and time length scales. To third order in this hierarchy, one can extract, as a
solvability condition, a system ofamplitude equations—namely, a system of equations
governing the dynamics of the amplitude of the C mode (plus other relevant normal
modes) that captures the essential nonlinear effects. These methods, first introduced in
hydrodynamics, have proved to be of great value in a host of physical problems [10],
[12], [29], [30].

Once the amplitude equations are established, it becomes possible to consider a variety
of problems of interest.

4.1. Principle Ingredients of the Nonlinear Analysis

4.1.1. Behavior Near Criticality. Near the bifurcation point, a continuum of unstable
modes is allowed to grow, with spatial frequencies spread over a small interval centered
aroundn = nC and slightly positive time exponentsσ . It is easy to determine the spatial
bandwidthδn, and the time exponent intervalδσ , of the unstable modes as functions of
the distanceδρ = ρ−ρC separating the control parameter from its critical value (δρ < 0
in the supercritical case). The order of magnitude ofδn for small−δρ is given by the
distance separating nearby real roots of (54), namely

(δn)TL ≡ 2

√
6 +√1

2a
, (67.a)

(δn)th ≡
∣∣∣∣∣∣
√

6 +√1

2a
−
√

6 −√1

2a

∣∣∣∣∣∣ , (67.b)

where(δn)TL and(δn)th denote the tapelike and thick regimes respectively, and where
1 and6 are analytic functions ofδρ defined in (55.a) and (55.b). In the tapelike regime
6+√1 is an analytic function ofδρ which, to leading order, is linear inδρ. In the thick
regime1 is also linear inδρ to leading order, and6 tends to a nonzero value asδρ → 0.
In both regimes we have

δn ∼
√
−δρ. (68)

A similar result forδσ can be obtained from the dispersion relation (39) by studying the
dependence ofσ on δρ for n = nC:

δσ ∼
√
−δρ. (69)
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In order forδn andδσ to be analytic in the perturbation parameterε, it is necessary
to consider states close enough to the critical point for the variationδρ in the control
parameter to be of orderε2.

4.1.2. Slowly Varying Amplitudes and Multiple Scales.The main idea behind the
nonlinear analysis is to express the first-order solution of the Kirchhoff equations as
a linear combination of a number of the normal modes considered in Section 3, with
the constant complex amplitudesAk being replaced by nonconstant amplitudesAk(s, t)
which vary slowly with space and time. This enables one to take into account the slight
dispersion of the spatial frequenciesn and the time exponentsσ aroundnk andσk and
δρ = 0. Thus, we require

∂

∂s

[
Ak(s, t) expγ (σkt + inks)

] ∼ i γ (nk + δn) Ak(s, t) expγ (σkt + inks), (70)

by setting

∂ Ak

∂s
∼ δn Ak ∼ ε Ak. (71)

Similarly, we require that

∂ Ak

∂t
∼ δσ Ak ∼ ε Ak. (72)

This condition of slow dependence in space and time can be formalized by introducing
new space and time variables describing the variations of the relevant functions on
different scales,

s∼ s(0) ∼ ε−1 s(1) ∼ ε−2 s(2) ∼ · · · , (73.a)

t ∼ t (0) ∼ ε−1 t (1) ∼ ε−2 t (2) ∼ · · · , (73.b)

and treating functions ofs andt as if they depend on these new scales in an independent
manner. The differential operators can then be expanded as sums of operators acting on
the different scales:

∂

∂s
≡ ∂

∂s(0)
+ ε

∂

∂s(1)
+ ε2 ∂

∂s(2)
+ · · · , (74.a)

∂

∂t
≡ ∂

∂t (0)
+ ε

∂

∂t (1)
+ ε2 ∂

∂t (2)
+ · · · . (74.b)

Exponential factors are considered to vary only on thes(0) and t (0) scales, whereas
the slowly varying amplitudes,Ak(s, t), are taken to depend on the longer scales (t (1),
t (2),. . . , s(1), s(2),. . . ), and not ons(0) or t (0).

4.1.3. Relevant Normal Modes.Taking into account all the relevant modes, the first-
order solution of the Kirchhoff equations takes the form,

X(1) =
∑

k

Ak(s
(1), s(2), . . . , t (1), t (2), . . .) uk expγ (σkt (0) + inks(0)). (75)
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In theory, we should include in (75) the neutral C mode responsible for instability
and all other modes which can interact with the C mode through nonlinear effects. In
practice, however, we restrict the number of included modes by conjecturing that the
fast oscillating modes, namely, the modes withσ 2 < 0 and|σ | À |ε|, can be omitted
from the analysis. This assumption—which requires that all the observed phenomena
are quasistatic—is presumed to hold in the course of an experiment where the control
parameterρ is gradually decreased from its critical value. In situations that are not
quasi-static, it is more difficult to justify the absence of the oscillatory modes. Since
the Kirchhoff equations describe a conservative system, we cannot expect these modes
to be exponentially damped in time as in dissipative situations. However, a nonlinear
analysis reveals in this case that these modes cannot become unstable by coupling with
other modes and that they are only relevant in the dynamics if they are initially excited.
Therefore, we consider physical situations, where these modes are not present in the
dynamics.

As a consequence, we only retain neutral modes. There are four of them: the static
T, S, R, and C modes. As we shall see, the S and T modes play a crucial role in the
dynamics and cannot be omitted in the description, whereas it can be shown that the R
mode decouples completely from the dynamics of the C and S modes. Hence, we drop
the R mode dependence in the first-order solution as well.

4.1.4. The Fredholm Alternative. Expressions (74.a) and (74.b) can be used to obtain
an expansion of the linear operatorL appearing in equation (33):

L ≡ L (0) + ε L (1) + ε2 L (2) + · · · , (76)

where the operatorsL (k) with k > 0 involve derivatives with respect to the longer space
and time scales. Expanding the Kirchhoff system order by order, we have

order ε1:

L (0) X(1) = 0, (77)

order ε2:

L (0) X(2) = Q(0)
2 [X(1)] − L (1) X(1), (78)

order ε3:

L (0) X(3) = C(0)
3 [X(1)] +Q(0)

3 [X(1), X(2)]

+Q(1)
3 [X(1)] − L (1) X(2) − L (2) X(1), (79)

. . .

whereC(0)
3 is a cubic function of its arguments and contains derivatives with respect to the

short (i.e.,s(0) andt (0)) scales, and theQ(k)
i ’s are quadratic functions of their arguments

and derivatives up to thes(k) andt (k) space and time scales.
The amplitude equations can be obtained by applying theFredholm alternativeto

the third-order system: that is, by requiring that the third-order solution is spatially
bounded. This ensures that the contribution of the third-order solution is one order of
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magnitude smaller than the second-order contribution for alls andt . Therefore, the most
important features of the dynamics are contained in the first- and second-order solutions,
in conjunction with the amplitude equations extracted to third-order. To second order,
the Fredholm alternative is identically satisfied. In view of (78) and of the condition for
boundedness, which is discussed in the following paragraphs, it might appear that the
equations resulting from the second-order system should contain quadratic terms in the
amplitudes. However, due to symmetries of the system, these terms vanish identically.
Therefore, the second-order system can always be solved, and the solution is bounded
and can be expressed in terms of the first-order solution.

The condition for boundedness is imposed by requiring that the right-hand side of
(79) is orthogonal to every vector in the null space of the operator adjoint toL (0). We
first define the inner product〈x | y〉 between two vectorsx andy functions ofs(0) and
t (0) as

〈x | y〉 ≡
∫ +∞
−∞

ds(0)

∫ +∞
−∞

dt(0) x+y, (80)

wherex+ denotes complex conjugate transpose ofx, i.e.,

x+ ≡ (x>)∗. (81)

An appropriate normalization of (80) will be introduced shortly. The adjoint operator(
L (0)

)+
is defined the usual way, namely,〈

x | L (0) y
〉 = 〈(L (0)

)+
x | y

〉
∀ x, y. (82)

The Fredholm alternative consists in imposing the condition

〈Y | Z〉 = 0 ∀ Y :
(
L (0)

)+
Y = 0, (83)

where the column vectorZ stands for the right-hand side of (79). Since the normal modes
in the null space of the adjoint operator

(
L (0)

)+
constitute a basis for that space, it is

sufficient to impose the condition (83) for all vectorsY of the form

Y = v expγ (σ t (0) + ins(0)),

whereσ is imaginary,n is real, and the pairσ, n satisfy the dispersion relation. Inserting
this into (83) yields the simpler condition〈

v expγ (σ t (0) + ins(0)) | Z〉 = 0 ∀ σ, n, v : v+ M = 0, (84)

where the matrixM depends onσ andn as defined in (38). Furthermore, since we include
only neutral modes in (75), the right-hand sideZ of (79) is actually independent oft (0)

and is consequently orthogonal to every normal mode withσ 6= 0. Hence, we can further
simplify (84) by only considering the modes withσ = 0. This yields the final form of
the Fredholm condition (with the proper normalization factor):

lim
L→∞

1

2L

∫ +L

−L
ds(0) v+ Z exp(−i γ ns(0)) = 0 ∀ n, v+ : v+ M |σ=0 = 0. (85)
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4.2. Derivation of the Amplitude Equations

4.2.1. The Complete First-Order Solution. Taking into account the explicit form of
the three retained neutral modes near criticality, the first-order solution (75) reads

X(1) = AT uT + AS uS+ (AC uC expi γ nCs(0) + c.c.). (86)

Hence, the complete first-order solution is

F (1)
1 = −χρCγ 2(i AC expi γ nCs(0) + c.c.), (87.a)

F (1)
2 = ρCγ 2(AC expi γ nCs(0) + c.c.), (87.b)

F (1)
3 = AT, (87.c)

α
(1)
1 = (AC expi γ nCs(0) + c.c.), (87.d)

α
(1)
2 = χ(i AC expi γ nCs(0) + c.c.), (87.e)

α
(1)
3 = AS. (87.f)

The variation in control parameter is handled through the tension amplitudeAT. Since
we consider only states of the rod for which the control parameterρ departs from its
critical value by a term of orderε2, we setAT = 0, postponing a perturbative contribution
of tension to second order. The first-order contributions to the components of the twist
vector are given by (31) and read

κ
(1)
1 = γ (nC− χ)(i AC expi γ s(0) + c.c.), (88.a)

κ
(1)
2 = γ (1− nCχ)(AC expi γ s(0) + c.c.), (88.b)

κ
(1)
3 = 0. (88.c)

That is, to first order, only the C mode affects the curvature, and the twist density is
unchanged. Next, we compute the first-order contributions to the components of the
tangent vectord3 in the fixed basis(eX, eY, eZ). Introducing

r̂ ≡ d3 · (eX + i eY), (89.a)

z≡ d3 · eZ, (89.b)

and expanding

r̂ = ε r̂ (1) + ε2 r̂ (2) + · · · , (90.a)

z= 1+ ε z(1) + ε2 z(2) + · · · , (90.b)

we have

r̂ (1) = −i
[
(1− χ) AC expi γ nCs(0)

+(1+ χ) A∗C exp−i γ nCs(0)
]

expi γ s(0), (91.a)

z(1) = 0. (91.b)

We now compute the first-order contribution to the centerline shapeR(s, t). To do so,
we have to evaluate integrals of type∫

ds A(s(1), s(2), . . .) expi γ ns(0), (92)
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with n 6= 0. Therefore, To leading order, the integral (92) simplifies to∫
ds A(s(1), s(2), . . .) expi γ ns(0) = −i

γ n
A(s(1), s(2), . . .) expi γ ns(0). (93)

Introducing for the centerlineR a set of complex cylindrical coordinates defined as

R̂≡ R · (eX + i eY) =
∫

ds r̂ , (94.a)

Z ≡ R · eZ =
∫

ds z, (94.b)

we obtain from (91) and (93)

R̂(1) = − 1

γ

[
1− χ

1+ nC
AC exp(i γ nCs(0))

+ 1+ χ

1− nC
A∗C exp (−i γ nCs(0))

]
expi γ s(0), (95.a)

Z(1) = 0. (95.b)

4.2.2. The Second-Order Solution.The general second-order solution is obtained by
adding a particular solution to the general solution of the first-order (homogeneous) sys-
tem. Only particular solutions are needed since, by redefining the first-order amplitudes,
we can cancel the homogeneous contribution to the second-order solution. However, this
does not hold for the tension because, having setAT = 0, we must explicitly include a
constant second-order contributionBT to the tension, accounting for the possible vari-
ation of tension away from the boundary condition. We do not state explicitly the full
second-order solution. Instead, we limit ourselves to giving expressions for quantities
of interest describing leading-order perturbative effects, i.e., which do not have a first-
order counterpart. Namely, the tensionF (2)

3 , the twist densityκ(2)
3 , the tangent vector

componentz(2), and the centerline coordinateZ(2) in theeZ direction are given by

F (2)
3 = γ 2

[−9T (A2
C exp 2i γ nCs(0) + c.c.)

]+ BT, (96.a)

κ
(2)
3 = γ

{
[2nC9S− 1

2
(1− χ2)] (A2

C exp 2i γ nCs(0) + c.c.)

− (1− 2nχ + χ2) |AC|2
}
+ ∂ AS

∂s(1)
, (96.b)

z(2) = −(1+ χ2) |AC|2− 1− χ2

2

(
A2

C exp 2i γ nCs(0) + c.c.
)
, (96.c)

Z(2),TL = −2
∫

ds A2
C, (96.d)

Z(2),th = 1− χ2

4γ nC

(
i A2

C exp 2i γ nCs(0) + c.c.
)− (1+ χ2)

∫
ds|AC|2 , (96.e)

where (96.d) and (96.e) hold for the tapelike and thick regimes respectively, and9T and
9S are given functions ofa andb which vanish in the casea = 1 and over the whole
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tapelike regime domain. In the thick regime, these coefficients take the form

9 th
T ≡

1

2
ρC(1− χ2), (97.a)

9 th
S ≡

b(1− χ2)+ (1− a)
[
1+ χ2− χ

nC
(1+ n2

C)
]

4bnC
. (97.b)

The expressions (96.d) and (96.e) forZ(2) account for the contraction of the buckled
ribbon in theeZ direction due to inextensibility of the material.

4.2.3. Left Null Space of the Linearized Kirchhoff Operator. As mentioned in Sec-
tion 4.1.4, we have to determine the left null space of the matrixM defined in (38) for
σ = 0. Solving the equation

v+ M = 0

for the row vectorv+, we find six linearly independent solutions, two vectorsv+R cor-
responding to the R branch which we do not need in our analysis. Forn = 0, we have

v+T ≡
(

0 0 1 0 0 0
)
, (98.a)

v+S ≡
(

0 0 0 0 0 1
)
. (98.b)

For n = nC, we have

v+C ≡
(

i (χ + 2nC+ n2
Cχ)

(1− n2
C)2

1+ 2nCχ + n2
C

(1− n2
C)2

0 −γ 2 i γ 2χ 0

)
, (99)

and finally, forn = −nC, we have the complex conjugate of (99).

4.2.4. The Amplitude Equations. We obtain the amplitude equations from (85), taking
the three vectors (98)–(99) in turn as expressions forv+. The right-hand side of (79) being
real,v+C leads to the same equation as its complex conjugate. The equations corresponding
to v+T , v+S , andv+C are subsequently referred to as theT, S, and C equations, respectively.

A subtle point must be mentioned here: Applying the Fredholm condition to order 3,
we find nontrivial C- and S-equations, although the T-equation is identically satisfied,
leaving the amplitudeBT undetermined. In order to close the system, it is necessary to
find a nontrivial T-equation by computing the Fredholm condition forv+T to order 4. The
computation is rather tedious, and not much could be gained by including it here, so that
only the final results are given.

The C-, S-, and T-equations assume different although similar forms in the tapelike
and thick regime. As stated before, in the tapelike regime, the imaginary part ofAC is
meaningless. We may thus set it arbitrarily to zero, so that the equations read, in both
regimes3

3 The reader accustomed to amplitude equations might wonder about the absence of a linear termAC in the
r.h.s. of the first amplitude equation describing the main instability. This linear term is actually hidden in the
definition of the amplitudeBT which describes, at the extremities of the rod, the variation of tension away
from the critical value.
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P

(
∂2

(∂t (1))2
− c2

C
∂2

(∂s(1))2

)
AC

= γ 2AC

[
Q

(
1

γ

∂ AS

∂s(1)
− BT

2ρCγ 2

)
− M N |AC|2

]
, (100.a)

(1+ a)

(
∂2

(∂t (1))2
− c2

S
∂2

(∂s(1))2

)
AS = −γ QN

∂ |AC|2
∂s(1)

, (100.b)

∂2BT

(∂s(1))2
=
(
−N(1+ χ2)

∂2

(∂t (1))2
− ρCγ 2 ∂2

(∂s(1))2

)
|AC|2, (100.c)

where, as stated before, the T-equation (100.c) is obtained from the Fredholm condition
to fourth order. These equations form a system of nonlinear Klein-Gordon equations
coupling the C, S, and T modes, which are equivalent, provided time dependence is
dropped, to the normal forms obtained by van der Heijden et al. [40]. The advantages
of the amplitude-equation approach is that explicit relations have been obtained (in the
previous section) between physical quantities and the variables involved in the reduced
system. This allows for the investigation of practical problems (see Section 5). The
fundamental role played by the S and T modes in the buckling process is now obvious:
If we set AS = 0 or BT = 0 in (100), we see thatAC is constrained to have a fixed or
traveling-wave-like modulus, restricting drastically the behavior of the solutions.

The constantscS, M , N, and Q and the combinationPc2
C are all functions of the

material parametersa andb, whereas the time-scale constantP is, in addition, an in-
homogeneous function of the twist densityγ . They are defined as follows. The twist
velocity cS is, as before, given by (42). The expressions forcC, P, Q, N, and M are
different in the two regimes. The tapelike regime values are

PTL ≡ 1+ γ−2, (101.a)

QTL ≡ 2(b− a), (101.b)

PTL(cTL
C )2 ≡ 1− (1+ a− b)2

1− a
, (101.c)

NTL ≡ 2, (101.d)

MTL ≡ 2(b− a), (101.e)

whereas the thick regime values are

Pth ≡ 1+ aχ2+ (1+ χ2) (1+ n2
C)+ 4nCχ

γ 2(1− n2
C)2

, (102.a)

Qth ≡ 2ρC(1+ χ2), (102.b)

Pth(cth
C)2 ≡ 4aχ2

1+ aχ2
, (102.c)

N th ≡ 1, (102.d)

M th ≡ ρC(1+ χ2)2− 1

8b

[
b(1− χ2)+ (1− a)

(
1+ χ2− (1+ n2

C)χ

nC

)]
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(a− 1)χ

nC
+ 1− aχ2+ 7[b(1− χ2)+ χ2− a− (1− a)nCχ ]

)
+ 1

2
n2

C(1+ aχ4)+ b(1+ 4n2
C)χ2+

(
3

2
− 4nCχ

)
(b− a)

+
(

3

2
χ − 4nC

)
χ3(b− 1)− (1+ a)

(
1

2
+ 5

2
n2

C

)
χ2. (102.e)

The buckling velocityc2
C is strictly positive everywhere except at the regime boundaries

b = b±, where it vanishes. The time-scale constantP and the coupling constantsQ and
M are strictly positive for all values ofa, b, andγ .

Amplitude equations fora = 1. In the symmetric case, (100) reduces to

[(
1+ 4

γ 2b2

)
∂2

(∂t (1))2
− ∂2

(∂s(1))2

]
AC

= b2

2
AC

(
γ

∂ AS

∂s(1)
− BT

2ρC
− bγ 2 |AC|2

)
, (103.a)(

∂2

(∂t (1))2
− b

2

∂2

(∂s(1))2

)
AS = −γ b2

2

∂ |AC|2
∂s(1)

, (103.b)

∂2BT

(∂s(1))2
= −2

(
∂2

(∂t (1))2
+ b2γ 2

4

∂2

(∂s(1))2

)
|AC|2. (103.c)

In the amplitude equations previously derived by Goriely and Tabor [16], we did not
take into account the second-order variation of tension. The new amplitude equations
derived here, which are the result of a fourth-order expansion, reveal the subtle nonlinear
coupling of tension to the amplitude.

5. Buckling of Strips near Threshold

In this section, we proceed to an extensive analysis of the amplitude equations (100)
in the static case (that is, we drop dependence in time). Since the notation is valid for
both regimes (with the restriction that the imaginary part ofAC must be set to zero
in the tapelike case), we discuss them in parallel. Indeed, unless explicitly mentioned,
all subsequent results pertain to both regimes. In Section 5.1, we investigate briefly
some particular infinite-length solutions, recovering and complementing Champneys,
Thompson, and van der Heijden’s results. In Section 5.2, we discuss in a general way an
important class of finite-length, static solutions (i.e., clamped solutions). This allows us
to introduce the necessary background for the treatment of three practical problems of
interest, corresponding to different types of end loading, which we complete in Section
5.3. Since, in the previous section, we computed explicit forms for physical quantities in
terms of the amplitudes, imposition of the boundary conditions becomes a transparent
and easy task.
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5.1. Infinite-Length Solutions of Interest

5.1.1. Spatially Uniform Strips. An important class of static, infinite solutions consists
in the spatially uniform strips. We look for a solution to the system (100) of the form

AC(s(1), t (1)) = |AC|expi ks(1), (104.a)

AS(s
(1), t (1)) = AS, (104.b)

BT(s(1), t (1)) = BT, (104.c)

wherek is a constant spatial frequency. In the tapelike regime, we must setk to zero
becauseAC is real. We find two distinct solutions, given by

(1) |AC| = 0, (105.a)

(2) |AC| =
√
−QBT + 2Pc2

Ck
2
ρC

2M NρCγ 2
. (105.b)

The first one is, of course, the straight rod, which is unstable forBT < 0, and the second
one is a supercritical, homogeneous buckling state which develops as the tension drops
from its critical value.4 As already mentioned and illustrated in Figure 8, in the thick
regime, the buckling state is not helical fora < 1. In the tapelike regime, the bifurcating
solution is an exact binormal helix, and (105.b) reduces to

|AC| = 1

2

√
− BT

(b− a)γ 2
, (106)

where we have used (58), (101), and the fact thatk = 0 in the tapelike regime. Combining
(106) with the second-order expressions (96.a) and (96.b), the binormal-helix relations
(24) may be recovered, confirming this helical solution matches an exact feature of the
Kirchhoff system.

5.1.2. Homoclinic Strips. Another important class of infinite solutions is the spatially
homoclinic strips. Such buckling modes correspond to bounded, aperiodic solutions of
the static amplitude equations. The time-independent form of the system (100) can be
written in a more compact form. Indeed, we see that the static form of the S-equation
(100.b) can be integrated once with respect tos(1), yielding

d AS

ds(1)
= γ QN |AC|2

b
+ KS, (107)

4 At first sight, it might seem that the supercritical behavior of the homogeneous solution with tension taken
as control parameter contradicts the results of Thompson and Champneys in [38], where it is demonstrated
that helices are subcritical under dead loading. Actually, there is no contradiction, because our definition of
the tension is different from that of Thompson and Champneys. They define the tension as the force exerted
in the fixedeZ direction, whereas we define it as the tangential component of the force, which is not the same
for helices.
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whereKS is an integration constant. Similarly, the static form of the T-equation (100.c)
may be integrated twice with respect tos(1),

BT = −ρCγ 2(1+ χ2)N |AC|2+ KT, (108)

where we have introduced only one nonzero integration constant,KT, in order to avoid
unphysical terms linear ins(1). Substitution of (107) and (108) into the time-independent
form of the C-equation (100.a) gives

2Pc2
C

γ 2Q

d2AC

(ds(1))2
+
[(

2Q

b
+ 1+ χ2− 2M

Q

)
N |AC|2+ 2KS

γ
− KT

ρCγ 2

]
AC = 0, (109)

which is closed inAC. Equations (107)–(109) may be further simplified by introducing
the following definitions:

ν ≡ 2Pc2
C

Q
, (110.a)

KS ≡ νγ γ , (110.b)

KT ≡ νρCγ 2T, (110.c)

µ ≡ 3

2

[
1+ (1+ χ2)b

2Q
− Mb

Q2

]
, (110.d)

AC ≡
√

3bν

4QNµ
A. (110.e)

Note that the definition (110.e) is valid only ifµ > 0. We have found that it is always
the case except in a small, unphysical region of the(a, b) space corresponding tob > 2
and extremely lowa. Therefore, from now on, we only consider the caseµ > 0. The
final forms of the amplitude equations are, respectively,

γ−2 d2A

(ds(1))2
− (T − 2γ )A+ ∣∣A∣∣2 A = 0, (111.a)

d AS

ds(1)
= γ ν

(
γ + 3

∣∣A∣∣2
4µ

)
, (111.b)

BT = ρCγ 2ν

[
T − 3(1+ χ2)b

∣∣A∣∣2
4Qµ

]
. (111.c)

The new C-equation (111.a) is closed in the variableA, while the new S-equation (111.b)
and T-equation (111.c) show that the twist and tension amplitudesAS andBT are driven
passively by the buckling amplitudeA.

The equation forA (111.a) admits a family of spatially localized solutions of the form

A =
√

2(T − 2γ ) expi ϕ sechγ
√

T − 2γ s(1), (112)

whereϕ is a constant phase that is arbitrary in the thick regime and takes the value 0 or
π in the tapelike regime. Note that these solutions are defined only ifT −2γ > 0. From
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(111) in conjunction with the first- and second-order solutions computed in Section 4, it
can be shown that this condition impliesF3/κ2

3 > ρC at infinity. Therefore, all solutions of
the form (112) are subcritical. This is in accordance with results of van der Heijden et al.
[7], [39], [40], which demonstrate numerically (and confirm analytically in [40] through
a normal-form analysis) the existence of subcritical, spatially homoclinic solutions. Ad-
ditionally, in the case of a noncircular cross section, they show numerical evidence of
multimodal homoclinic orbits. Such solutions lie beyond the scope of dominant-order
amplitude equations. Their investigation might be considered by pursuing the nonlinear
analysis of Section 4 to obtain higher-order coupling terms in the system.

5.2. Clamped, Finite-Length Solutions

We now focus on the more practical case of finite-length strips subject to given boundary
conditions. Two classes of end-constraints may be considered:

Supported strip: the positions in space of both strip extremities are imposed (i.e., either
fixed in place or moved during the course of an experiment), but the directions in space
of the tangents to the strip at the ends are free, unconstrained parameters.

Clamped strip: the positions in space of both strip ends are imposed and, additionally,
the tangents to the strip are constrained to face each other, that is, to, be lined up.

We consider only the clamped case, which is especially easy to implement at the level
of the amplitude equations. Furthermore, we make the assumption that the strip length
is much greater than the characteristic twist lengthγ−1. One elegant way to formalize
this is to define the so-far unspecified order parameterε as

ε ≡ (γ L)−1, (113)

whereL is the length of the strip. We refer to this limit as to thelarge-twist-angle limit,
since the quantity in the right-hand side of (113) is the inverse of the angle between the
unperturbed local bases at strip extremities, that is, 2π times the number of twist turns.
We specify the arclength parameter origin so that

s≡ s(0) ≡ ε−1s(1) = ± L

2
≡ ±(2γ ε)−1 (114)

at strip ends. We need to impose that the tangent vectors at the boundaries,d3(±L/2),
are parallel to each other and, additionally, that they are parallel to the vectorR(L/2)−
R(−L/2) joining the strip extremities. Using expressions (91) and (95) giving the first
nontrivial contributions tod3 andR, we find that the condition for a clamped strip is
equivalent to

AC
(±(2γ )−1

) = 0⇐⇒ A
(±(2γ )−1

) = 0, (115)

which, in addition, implies that the tangent vectors lie in theeZ direction. It can be
shown that solutions to the static C-equation (111.a) vanishing at given points have a
constant phase. An important consequence of this is that, under the condition of clamped
ends, there is no distinction to be made, at least to leading order, between the tapelike
and thick regime problems. Indeed, the boundary conditions freeze the value of the
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phase of the Hamiltonian Hopf bifurcation to a constant value, and this phase is the
only extra degree of freedom of the thick regime with respect to the tapelike regime.
Furthermore, the constant value of the phase cannot be determined from amplitude
equations or boundary conditions, so that there is no distinction to be made between
regimes in subsequent results. Nevertheless, the value of the phase is needed in order
to reconstruct the geometry of the strip in the thick regime. Surprisingly, the phase
cannot be obtained from the leading order amplitude equations (111). The proper thing
to do would be to introduce second-order contributions to the normal mode amplitudes
and apply higher-order Fredholm conditions. This would yield small corrections to the
amplitude equations, eventually allowing the determination of the phase.

We now need to find nontrivial solutions of the C-equation (111.a) vanishing at at
least two distinct and opposite values of the arclength parameter. They are found to form
a one-parameter family of periodic solutions which may be written in terms of Jacobi’s
elliptic function cn,

∣∣A∣∣ = k

√
2(T − 2γ )

2k2− 1

∣∣∣∣∣∣cn

√T − 2γ

2k2− 1
γ s(1) | k

∣∣∣∣∣∣ , (116)

where the elliptic modulusk is a constant ranging in the interval]0, 1[. We assume
that the stable bifurcating solution is the fundamental one, that is, the solution whose
amplitude vanishes only at the strip ends and does not create additional nodes along the
strip. Taking into account (114) and introducing thecomplete elliptic integral of the first
kind K(k), which gives the zeroes of the function cn as(1+ 2l )K(k), l ∈ Z, we may
relate the modulusk to the constantsT andγ :

T − 2γ = 4K(k)2(2k2− 1). (117)

Substituting (117) into (116) yields∣∣A∣∣ = ∣∣A∣∣max

∣∣cn
(
2K(k)γ s(1) | k)∣∣ , (118)

with ∣∣A∣∣max≡ 2
√

2kK(k). (119)

From the last equation, we see that the elliptic modulusk is a growing function of the
maximum value of the buckling amplitude,

∣∣A∣∣max, taking the limits 0 for
∣∣A∣∣max→ 0

and 1 for
∣∣A∣∣max→ ∞. This means that the buckling mode becomes more and more

localized as it develops. Indeed, the function cn deforms continuously from a cosine
function fork = 0 into a fully localized sech function ask approaches unity, so that the
spatially homoclinic solution of Section 5.1.2 is recovered. This result sheds new light
onto a problem addressed by Thompson and Champneys in [38], in the case of rods with
circular cross sections. They raise the question: which, of the helical solution of Love
[26] and the localized solution of Coyne [9], is the preferred buckling mode under given
boundary conditions? Their approach consists in comparing energetically the localized
solution with the infinite, unmodulated helix, which is argued to be a valid approximation
away from the rod boundaries. Their conclusions, confirmed by experiments, support
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the idea of an initial helical mode which is quickly replaced by a localized mode along
the bifurcation path. Here, we take into account the finiteness of the rod in a rigorous
manner and find, in the clamped case, a smooth and quick deformation from an initial
sinusoidally modulated helix into a localized configuration (see Figure 13). Hence, we
recover previous results, but with the additional information that the process of mode-
switching is continuous rather than involving a secondary bifurcation.

We now compute several quantities of interest for the purpose of solving the practical
problems described below. Taking into account the boundary conditions (115), we obtain,
from (96), (101.d), and (102.d), the twist densityκends

3 and the tensionFends
3 at the strip

extremities, as well as the distanceZends= Z(L/2)− Z(−L/2) between end points:

κends
3 = γ + ε2

(
d AS

ds(1)

)ends

+ o(ε2), (120.a)

Fends
3 = ρCγ 2+ ε2Bends

T + o(ε2), (120.b)

Zends= L − εN(1+ χ2)

∫ (2γ )−1

−(2γ )−1
ds(1) |AC|2+ o(ε). (120.c)

In addition, the total twist angleϑendsbetween strip ends may be shown, using (113), to
admit the expansion,

ϑends= ε−1+ ε

[
AS

(
1

2γ

)
− AS

(
− 1

2γ

)]
+ o(ε). (121)

We now introduce the definition,

Z = −γ

∫ (2γ )−1

−(2γ )−1
ds(1)

∣∣A∣∣2 , (122)

which, from (118) and (119), may be evaluated in terms ofk, taking into account ele-
mentary properties of elliptic functions,

Z = 8K(k)2

(
1− k2− E(k)

K(k)

)
, (123)

where E(k) is thecomplete elliptic integral of the second kind. Using (122) together with
the definition (110.e), the static amplitude equations (111), and the boundary conditions
(115), we may express (120)–(121) in terms of the constantsT , γ , andZ:

κends
3 = γ (1+ ε2νγ )+ o(ε2), (124.a)

Fends
3 = ρCγ 2(1+ ε2νT)+ o(ε2), (124.b)

Zends= L

[
1+ ε2 3(1+ χ2)bνZ

4Qµ
+ o(ε2)

]
, (124.c)

ϑends= ε−1

[
1+ ε2ν

(
γ − 3Z

4µ

)
+ o(ε2)

]
. (124.d)
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The quantitiesγ , T , andZ have now a clear physical meaning: They are proportional to
dominant-order nontrivial contributions to, respectively, the end torqueMends

3 = bκends
3 ,

the end tension, and the distance between strip extremities. They have been defined in
such a way that the formulation of the results of the Section 5.3, where we consider
practical problems, is as simple and universal as possible.

5.3. Three Practical Problems of Interest

In order to describe a real experiment, we must specify, in addition to the strip-clamping
condition (115), the type ofloading that we impose at strip ends, that is, whether the
values of the parametersT , γ , Z, andϑends are determined by stress or geometrical
constraints. Indeed, the type of loading determines crucially the bifurcation scenario
beyond the criticality [38]. This is confirmed by our finite-length results. We investigate
three cases corresponding to different types of loading and find that the buckled strip
presents very dissimilar behaviors.

5.3.1. Dead Loading.The first problem that we consider is the case of dead loading at
the strip extremities. That is, we impose the values of the torqueγ and the tensionT at
the ends, one of which is held fixed and the other one is controlled in the course of the
experiment, and we allow the distanceZ and the twist angleϑends to vary passively in
response to changes in the control parameters.

It is straightforward to obtain a bifurcation diagram for the system under this set of
boundary conditions: We simply plot the maximum of the buckling amplitude,

∣∣A∣∣max,
against 2γ − T , which we take as a control parameter. Parametric expressions for both
quantities as functions ofk are provided by (117) and (119). Figure 9 shows the result-
ing diagram. One of its most remarkable features is its universal character: Indeed, it
only depends on the assumption that the strip is clamped and in the large-twist-angle
limit. Another noticeable point is the fact that the bifurcation is subcritical. As a conse-
quence, there exists no stable bifurcating branch connecting continuously to the reference
(straight) state. The lack of a stable static solution beyond the bifurcation point implies
that the system must perform a dynamical jump right after the bifurcation in order to
reach a distant equilibrium state.

5.3.2. Rigid Loading. The second problem considered is the case of rigid loading:
Here, the twist angleϑendsis held fixed to its initial value, while the distanceZ between
strip ends is controlled during the experiment. The dynamical quantitiesγ andT are
passive parameters.

A bifurcation diagram is obtained by plotting the maximum buckling amplitude
∣∣A∣∣max

against the end shortening,−Z, for which a parametric expression is provided by (123).
The diagram is shown in Figure 10, which is, once again, universal. Here, the straight strip
adopts quasistatically a stable buckled state which develops as the strip ends are brought
closer to each other. Figure 13 represents the bifurcating solution for several values of
the distance between strip ends. The crucial role played by the boundary conditions is
now obvious: This behavior is completely different from the dynamical jump predicted
in the case of dead loading.
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Fig. 9. Bifurcation diagram for a clamped strip with dead loading:
maximum of the buckling amplitude as a function of end torque and
tension.

5.3.3. Mixed Loading. The last case that we investigate is also the richest one. Here,
we consider a mixed set of boundary conditions constituted of one geometrical constraint
and one stress constraint. Namely, we keep the twist angleϑends fixed to its reference
value,ε−1, and control the tensionT . The parametersγ andZ are passive.

Fig. 10. Bifurcation diagram for a clamped strip with rigid loading:
maximum of the buckling amplitude as a function of end shortening
for fixed twist angle.
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Keeping the twist angle fixed to the valueε−1 implies, from (124.d), that

γ = 3Z

4µ
. (125)

Substituting this into (117) yields an expression for the control parameterT as a function
of k:

T = −4K(k)2

[
1− 2k2+ 3

µ

(
k2− 1+ E(k)

K(k)

)]
, (126)

which, together with (119), is used to build a bifurcation diagram. We point out that,
unlike in the previous cases, the bifurcation diagram is not universal, but depends on the
material parametersa andb through the constantµ. Consequently, we have to discuss the
set of possible behaviors depending on the value ofµ. To this end, we first determine the
subcritical or supercritical character of the bifurcation as a function ofµ. The bifurcation
is subcritical if (126) defines a growing function ofk at the origink = 0. On the other
hand, the bifurcation is supercritical if (126) defines a decreasing function ofk at the
origin. Computing the Taylor series of (126) aboutk = 0 to order 2 reveals that the
bifurcation is supercritical if

0 < µ < 1, (127)

and, subcritical if

µ ≥ 1. (128)

Hence, forµ ≥ 1, there is no stable static solution beyond the bifurcation point, so that
the system must perform a dynamical jump, such as in the case of dead loading. On
the other hand, forµ < 1, there exists a stable, supercritical buckled state emerging
from the straight solution at the bifurcation point. The boundaryµ = 1 in (a, b) space
is represented in Figure 1 as the common edge of the white and light gray regions. A
simple analytical expression for this boundary is obtained as a small-a expansion,

b = 66

49
a+ 60288

420175
a2+O(a3), (129)

which remains a good approximation throughout the physical parameter range. The su-
percritical caseµ < 1 presents an additional striking feature, which is illustrated in
Figure 11, representing the bifurcation diagram in the particular caseµ = 2/3. We see
here that the bifurcating branch possesses a second critical point at a finite value of the
control parameterT , beyond which it folds back subcritically. We give an interpretation
of this fact in the next paragraph. For now, we establish a proof of the existence and
uniqueness of this folding point in the intervalµ ∈ ]0, 1[. The existence of the folding
point is established by the observation that (126) defines a function ofk which is decreas-
ing atk = 0, but which goes to positive infinity in the limitk→ 1. In order to prove the
uniqueness of the folding point, we first derive a relation betweenµ and the value ofk
at the folding point. This is achieved by differentiating the right-hand side of (126) with
respect tok, equating the result to zero, and solving forµ. This relation, together with
(119), provides parametric expressions of the buckling amplitude at the folding (limit)
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Fig. 11. Bifurcation diagram for a clamped strip with mixed loading
(µ = 2/3): maximum of the buckling amplitude as a function of tension
for fixed twist angle.

point,
∣∣A∣∣LP

max, as a function ofµ. Graphical inspection of this relation (see Figure 12)
reveals the uniqueness of the value of the amplitude at the folding point for givenµ.

We now discuss the implications of the existence of a folding point in the bifurcation
diagram. As mentioned before, forµ < 1, a stable buckling state emerges from the
straight state after it has lost its stability, and develops as the tensionT is lowered. At

Fig. 12. Maximum of the buckling amplitude at the mixed-loading
limit point as a function ofµ.



Dynamics of Strips 41

D
e
c
r
e
a
s
i
n
g

D
e
c
r
e
a
s
i
n
g

D
e
c
r
e
a
s
i
n
g

Fig. 13. Coiling of a clamped strip with fixed twist angle as tension or end shortening is varied.
The parameter values area = 1/10, b = 2/11⇒ µ = 2/3, and belong to the tapelike regime.
The diagrams are obtained using the explicit expressions for the strip shape derived in Section 5.
The two arrows on the right-hand side of the diagram corresponds to the two different buckling
paths of Figure 11. The dash line corresponds to the upper branch of the bifurcation diagram when
a decrease of the amplitude is obtained by decreasing the tension, and the solid line follows the
lower part of the bifurcation curve and corresponds to the buckling to a modulated helical strips
form a straight rod.

the folding point, provided that the buckling state remains stable up to there, a minimal
value of the tension is reached below which there exists no stable static state, and the
system is forced to perform a dynamical jump. Consequently, the folding point marks
a secondary bifurcation, a so-calledlimit-point bifurcation. This implies that the upper
part of the bifurcating branch (above the limit point) is unstable. Figure 13 shows the
buckled strip forµ = 2/3 and several values of the tension. The third picture downwards
in the figure corresponds to the limit-point value of the tension.

We assumed that the buckling mode remained stable up to the limit point. Now we
give arguments in favor of this. To this end, we need to linearize the full, dynamical
amplitude equations (100) about the equilibrium solution, and look for normal modes of
the form

x(s(1), t (1)) = x(s(1))expσ t (1), (130)

wherex is a compact notation for the set of dynamical variables involved in the linearized
amplitude equations. As usual, the stability of the equilibrium solution is determined by
the analysis of the allowed eigenvaluesσ . The existence of a solution to the linearized
system satisfying the boundary conditions and corresponding to an eigenvalue with
positive real part is a necessary and sufficient condition for the equilibrium solution
to be unstable. Hence, the onset of instability is determined by the investigation of
eigenvalues with zero real part. Two cases are considered:

Quasistatic bifurcation (Reσ = 0, Imσ = 0). This occurs at points of the bifurcation
diagram where either two branches of static solutions meet, or one branch folds back. The
only points matching this criterion are the two bifurcations identified above (buckling
and limit points). There exists no other quasistatic bifurcation.
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Temporal Hamiltonian Hopf bifurcation (degenerateσ with Reσ = 0, Imσ 6= 0). This
corresponds to the onset of sustained temporal oscillations. We argue here that this type
of bifurcation is unlikely to happen. Indeed, such a bifurcation involves the coalescence
of two purely imaginary eigenvalues, one of them acquiring a positive real part as the
control parameter bypasses a critical value. The main idea behind our argument is to
consider the effect of a very small dissipation in the system. Independently of the way the
dissipation term is introduced in the amplitude equations, if it is sufficiently small, we
expect the eigenvalues to be nearly unchanged with respect to the conservative case. In
particular, we expect the imaginary part of the eigenvalue which loses stability to remain
nonzero. This, in turn, implies the existence of periodic solutions in a neighborhood of
the bifurcation, even in the damped case. This would mean that a damped strip with
static boundary conditions could sustain oscillations without energy input. Hence, we
conjecture that the weak-amplitude buckling branch remains stable up to the limit point.

6. Conclusions

In this paper, we derived amplitude equations governing the dynamics of strips near
the onset of twist instability. In Section 3, we performed a dynamical linear analysis
of the Kirchhoff equations for strips around the straight solution. We identified several
modes of wave propagation, namely, flexural and torsional waves (called respectivelyR
andS modes). The R mode is found to be responsible for the pop-out of rods subject
to longitudinal compression. Furthermore, below a critical tension-to-squared-twist, the
straight strip becomes dynamically unstable. This result generalizes Love’s criterion for
the stability of twisted rods. Two distinct regimes of bifurcation are identified. In the
case of very asymmetric cross sections with a high torsional stiffness, we found a regime
of pitchfork bifurcation, inducing what van der Heijden et al. termedtapelike behavior.
This corresponds to a bifurcating solution (C mode) assuming the shape of a binormal
helix, as defined in the beginning of Section 3. In the other cases, the bifurcation is a
Hamiltonian Hopf bifurcation, and the postinstability solution is not helical (except in
the case of circular cross sections, as discovered by Love).

In Section 4, we performed a nonlinear analysis of the dynamical Kirchhoff equations
for twisted straight strips in a state close to bifurcation. The resulting amplitude equations
are a set of three nonlinear Klein-Gordon equations coupling the twist density and the
longitudinal tension to the writhing C mode responsible for the buckling of twisted strips.
The flexural, twist-independent, R mode decouples completely from the C and S modes.
These equations provide the starting point for the analysis of a large variety of problems,
such as the investigation of traveling waves or the determination of the equilibrium
shape assumed by the strip under given boundary constraints. As an important example,
we examined in detail the buckling of a finite-length strip clamped at the ends, in the
large-twist-angle limit, for three different types of loading at the strip extremities. We
found that, in the case of dead loading, the strip performs a dynamical jump at the
bifurcation point, whereas under rigid loading, a stable buckling mode sets up beyond
the criticality. The new equilibrium solution is found to deform continuously from a
sinusoidally modulated helix into a localized solution along the bifurcation path. The
third type of loading considered involves a geometrical constraint (fixed twist angle)
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and a dynamical constraint (controlled tension). In this particular setting, the bifurcation
path may be either subcritical or supercritical depending on material parameters and, in
the latter case, presents a secondary bifurcation (a limit point) beyond which the system
is forced to perform a dynamical jump. Arguments are given in favor of the stability of
the buckling solution up to the limit point.

Future plans involve the analysis of time-dependent features of the amplitude equa-
tions for the twisted strip derived here. We hope that it will reveal new dynamical behavior
such as breathers and traveling wave solutions. The bulk of the analysis performed here
can then be directly used in this more general setting.
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