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Abstract
In the planar three-body problem under Newtonian potential, it is well known that
any masses, located at the vertices of an equilateral triangle generate a relative equi-
librium, known as the Lagrange relative equilibrium. In fact, the equilateral triangle
is the unique mass-independent shape for a relative equilibrium in this problem. The
two-dimensional positively curved three-body problem is a natural extension of the
Newtonian three-body problem to the sphere S2, where the masses are moving under
the influence of the cotangent potential. Zhu showed that in this problem, an equilateral
triangle on a rotating meridian can form a relative equilibria for any masses. This was
the first report of a mass-independent shape on S

2 which can form a relative equilib-
rium. In this paper, we show that, in addition to the equilateral triangle, there exists one
isosceles triangle on a rotating meridian, with two equal angles seen from the center of
S
2 given by 2−1 arccos((

√
2−1)/2), which always form a relative equilibrium for any

choice of the masses. With this shape, there are three different mass distributions, one
for each mass placed at the vertex of the triangle with a different angle. Additionally
we prove that the equilateral and the above isosceles relative equilibrium are unique
with this characteristic. We also prove that each relative equilibrium generated by a
mass-independent shape is not isolated from the other relative equilibria.
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1 Introduction

The two-dimensional positively curved three-body problem has been studied for
several authors, for instance (Borisov et al. 2016, 2004; Diacu 2012; Diacu et al.
2012a, b; Diacu and Pérez-Chavela 2011; Pérez-Chavela and Reyes-Victoria 2012;
Pérez-Chavela and Sánchez-Cerritos 2018; Martínez and Simó 2013; Tibboel 2013;
Zhu 2014; Diacu and Zhu 2020). In all these papers, the masses are moving under
the influence of the cotangent potential, which is the natural extension of the planar
Newtonian problem to the sphere.

Consider a point q on S2, |q|2 = 1. In the spherical coordinates, q is represented by
q = (sin θ cosφ, sin θ sin φ, cos θ) ∈ R

3. The Lagrangian for the three-body problem
on S2 is given by

L = K − V , (1)

where the kinetic energy K and the cotangent potential V are

K =
∑

k

mk

2

(
θ̇2k + sin2(θk)φ̇

2
k

)
, V = −

∑
i< j

mim j cos σi j√
1 − cos2(σi j )

.

Dot on symbols represents the time derivative, the indexes i, j, k run for 1, 2, 3, and
mk are the masses. The arc angle σi j is the angle between the two points qi and q j as
seen from the center of S2. In order to avoid the singularities (Diacu et al. 2012b), the
range of σi j is restricted to 0 < σi j < π for all i �= j . Then cos σi j is given by the
inner product of qi and q j , namely

cos σi j = cos θi cos θ j + sin θi sin θ j cos(φi − φ j ).

The equations of motion derived from Lagrangian (1) are

d

dt

(
mi θ̇i

) = mi sin θi cos θi φ̇
2
i − ∂V

∂θi
,

d

dt

(
mi sin

2(θi )φ̇i

)
= − ∂V

∂φi
.

(2)

Definition 1 A relative equilibrium (RE in short) on S2 is a solution of the equations
of motion with θ̇i = 0 and φ̇i = ω = constant.

Then, the equations for a relative equilibrium are reduced to

ω2mi sin θi cos θi =
∑

j �=i

mim j

sin3(σi j )

(
sin θi cos θ j − cos θi sin θ j cos(φi − φ j )

)
(3)
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and

m1m2 sin θ1 sin θ2 sin(φ1 − φ2)/ sin
3(σ12)

= m2m3 sin θ2 sin θ3 sin(φ2 − φ3)/ sin
3(σ23)

= m3m1 sin θ3 sin θ1 sin(φ3 − φ1)/ sin
3(σ31).

(4)

We call them as “equations of relative equilibria” in the following.

Definition 2 (Euler and Lagrange RE) An Euler RE (ERE) is an RE where three
bodies are on the same geodesic. If this is not the case, we call it Lagrange RE (LRE).

In Fujiwara and Pérez-Chavela (2023), we showed that there are two cases of ERE :
three bodies are on a rotating meridian, or they are on the equator. Obviously for ERE
the rotation axis is the z-axis.

Definition 3 (Shape and configuration) A shape is the figure on the sphere formed
by the three arc angles, which are, up to permutation, the angles σ12, σ23, and σ31.
A configuration is the placement on the sphere, of the elements θ1, θ2, θ3 and φ1 −
φ2, φ2 − φ3, φ3 − φ1.

In the following, we simply write {σi j } for the representation of a shape, and
{θk, φi − φ j } for a representation of a configuration. Similarly, we write {mk} for
{m1,m2,m3}.

In 1772 Lagrange (1772), J.L. Lagrange published an amazing result for the New-
tonian problem of the three bodies: Any three arbitrary masses located at the vertices
of an equilateral triangle, generates a relative equilibria. In other words, if we put
any three different masses, as for instance the Sun, Jupiter and a small stone, at the
vertices of an equilateral triangle, then there exists an angular velocity ω such that the
three masses rotate uniformly around their center of mass, the motion is like a rigid
body. This is that we callmass-independent shape for RE . In a natural way, we extend
this concept to the sphere, and we raise the question: Are there mass-independent RE
shape for the three-body problem on S

2?
For the 2-body problem on the sphere, the RE have been classified in Theorem 4.1

of Borisov et al. (2018) for arbitrary attractive potentials. From this classification it
follows that, independently of the specific form of the potential, all shapes σ12 ∈ (0, π)

except for σ = π/2 are mass-independent shapes for RE. Ahead in this paper we give
a simple proof of this statement for the cotangent potential by considering the limit
m3 → 0 in our setting (see Proposition 3).

In Diacu et al. (2012a), Diacu et al. showed that in order to generate a RE for three
masses located at the vertices of an equilateral triangle parallel to the equator, the
masses should be equal. In Zhu (2014), Zhu proved that for the cotangent potential,
any three masses placed on the equilateral triangle on a rotating meridian generate a
RE . Some years later in Fujiwara and Pérez-Chavela (2023), we extended this result
for general potentials which only depends of mutual distances among the masses.

One might be interested in RE with θ1 = θ2 = θ3. The three bodies move along the
same circle, which is parallel to the equator. This group of RE must be the simplest
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RE . In the corresponding Newtonian problem, RE with r1 = r2 = r3 are realized
only whenm1 = m2 = m3 (and the shape is equilateral), they form a “choreography”.
However, Diacu and Zhu showed that besides the equilateral RE withm1 = m2 = m3
(which form a “choreography”), a non trivial group of isosceles RE exist on S

2: for
m2 = m3 and m1 = νm3 with ν ∈ (0, 2) (Diacu and Zhu 2020). The latter solution
is not “choreography,” because “choreography” requires “equal time spacing on the
orbit” between the bodies. The latter solutions have different time spacing if ν �= 1.
This is an interesting example for motions along a same orbit with different time
spacing between bodies. Examples of non-circular choreographies on S2 were studied
by Montanelli Montanelli and Gushterov (2016).

The goal of this paper is to show that, for the cotangent potential, besides to the
equilateral triangle, we have one additional isosceles triangle shape on a rotating
meridian, which is independent of the choice of the masses. We believe that this work
will open a door for the search of new RE on curved spaces and the stability of them,
as well as its possible applications.

In Definition 3, we emphasized the difference between shape and configuration. In
order to be more accurate, we close this section by giving the precise definitions of
the concepts that we will use in this article.

Definition 4 A RE shape for the two-dimensional constant positively curved three-
body problem, is a shape which can form a RE . In particular we call Lagrange RE
shape (Lagrange shape in short) and Euler RE shape (Euler shape in short) to the
shapes which can form LRE and ERE , respectively.

Definition 5 (Mass-independent shape for RE) A mass-independent RE shape is a
shape {σi j } that can form an RE for any masses {mk}.

After the introduction, where we define the concepts that we will study here, the
paper is organized as follows: in Sect. 2, we state the equations used to generate LRE
and ERE . We prove that there are no mass-independent Lagrange shapes, and there
are no mass-independent Euler shapes on the equator. In Sect. 3, we prove the main
result of this article: the existence of mass-independent Euler shape on a rotating
meridian. Since the rotation axis depends on masses, the configuration made from the
mass-independent shape depends on masses (see (Fujiwara and Pérez-Chavela 2023)
for details). At the end of this section we briefly discuss the case of the restricted -
problem on the sphere.

In Sect. 4, we show the configurations for different choice of the masses. In Sect. 5,
we look for continuations of RE shape frommass-independent Euler shapes.We show
that each one of them can be continued as a RE shape which is mass dependent. We
finish the paper with an Appendix to describe the properties of some special shapes.

2 Preliminaries

In paper (Fujiwara and Pérez-Chavela 2023), we proved that, for the positively curved
three-body problem, the necessary and sufficient condition for a shape to generate a
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LRE is λ1 = λ2 = λ3. Where the λi ’s are

λ1 = (m2 + m3) sin3(σ23) − m2 cos(σ12) sin3(σ31) − m3 cos(σ31) sin3(σ12)

sin3(σ23)
,

λ2 = (m3 + m1) sin3(σ31) − m3 cos(σ23) sin3(σ12) − m1 cos(σ12) sin3(σ23)

sin3(σ31)
,

λ3 = (m1 + m2) sin3(σ12) − m1 cos(σ31) sin3(σ23) − m2 cos(σ23) sin3(σ31)

sin3(σ12)
.

Proposition 1 There are no mass-independent Lagrange shapes.

Proof The equation λ1 − λ2 = λ2 − λ3 = 0 has the form

(
S11 S12 S13
S21 S22 S23

) ⎛

⎝
m1
m2
m3

⎞

⎠ =
(
0
0

)
.

Where, each Si j is a function of {σi j }. To satisfy the above equation for any {mk}, all
the elements Si j must be 0. But, S11 = S12 = 0 yields

cos σ12
sin3(σ23)

sin3(σ31)
= cos σ12

sin3(σ31)

sin3(σ23)
= 1.

Which does not have solution for σi j ∈ (0, π).
Therefore, there are no mass-independent shapes for LRE . ��

2.1 ERE on the Equator

When three bodies are on the equator, θi = π/2, and sin σi j = | sin(φi − φ j )|.
Therefore the equations for relative equilibria (3) are automatically satisfied, and (4)
takes the form

m1m2 sin(φ1 − φ2)

| sin(φ1 − φ2)|3 = m2m3 sin(φ2 − φ3)

| sin(φ2 − φ3)|3 = m3m1 sin(φ3 − φ1)

| sin(φ3 − φ1)|3 .

Proposition 2 There are no mass-independent Euler shapes on the equator.

Proof Obviously, there are no mass-independent solution of {φi − φ j }. ��

2.2 ERE on a RotatingMeridian

For ERE on a rotating meridian, it is convenient to extend the range of θi to −π ≤
θi ≤ π and φi = 0. Then sin σi j = | sin(θi − θ j )|, and the equations of relative
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equilibria (3) are

ω2mi sin θi cos θi =
∑

j �=i

mim j sin(θi − θ j )

| sin(θi − θ j )|3 , i = 1, 2, 3. (5)

The equations of relative equilibria (4) are automatically satisfied.
We have proved in Fujiwara and Pérez-Chavela (2023) that if A defined by

A =
⎛

⎝
∑




m2

 + 2

∑

i< j

mim j cos(2(θi − θ j ))

⎞

⎠
1/2

(6)

is not zero, then the necessary and sufficient condition for the shape {θi − θ j } to be an
Euler shape on a rotating meridian is

m1m2

(
sω2

2A
sin

(
2(θ1 − θ2)

)
− sin(θ1 − θ2)

| sin(θ1 − θ2)|3
)

= m2m3

(
sω2

2A
sin

(
2(θ2 − θ3)

)
− sin(θ2 − θ3)

| sin(θ2 − θ3)|3
)

= m3m1

(
sω2

2A
sin

(
2(θ3 − θ1)

)
− sin(θ3 − θ1)

| sin(θ3 − θ1)|3
)

,

(7)

for s = 1 or −1.

Remark 1 The parameter s = ±1 comes from the fact that, when we study RE on a
rotating meridian, it is convenient to enlarge the range angle θk to−π < θk < π , with
φk = 0. When we study a particular configuration, the equations of relative equilibria
(3) and (4) determine the sign of s (see (Fujiwara and Pérez-Chavela 2023) for more
details).

The configuration {θk} is given by

cos(2θ1) = s A−1
(
m1 + m2 cos

(
2(θ1 − θ2)

)
+ m3 cos

(
2(θ1 − θ3)

))
,

sin(2θ1) = s A−1
(
m2 sin

(
2(θ1 − θ2)

)
+ m3 sin

(
2(θ1 − θ3)

))
.

(8)

The other angles θk are determined by θk = θ1 + (θk − θ1).
For the special shapes with A = 0, the map from the shape to configuration,

{θi − θ j } → {θk}, is not determined uniquely. Therefore, we have to check whether
each of such shapes can satisfy the equations for relative equilibria (3) or not. See
Appendix.

In the next section, we will show the existence of a non-equilateral mass-
independent Euler shape on a rotating meridian.
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3 Mass-Independent Shapes for ERE on a RotatingMeridian

To get a mass-independent shape, any term in the parentheses of Eq. (7) must be zero,
namely,

sω2

2A
sin

(
2(θi − θ j )

)
= sin(θi − θ j )

| sin(θi − θ j )|3 (9)

for (i, j) = (1, 2), (2, 3), (3, 1).
From now on, in order to facilitate the reading of the manuscript we introduce the

new variables τk = θi − θ j for (i, j, k) = (1, 2, 3), (2, 3, 1), and (3, 1, 2). The range
of τk is (−π, π). The relation between σi j and τk is σi j = |τk | and sin σi j = | sin τk |.
Equation (9) in τk variables is,

sω2

2A
sin(2τk) = sin τk

| sin τk |3 , k = 1, 2, 3. (10)

Since τ3 = θ1 − θ2 = −(τ1 + τ2), we can take τ1 and τ2 as the independent
variable to give a shape. To avoid the singularity, sin τk �= 0. We can restrict the
range of τ2 ∈ (0, π), because we can rotate the system by π around the north pole
if τ2 < 0. Therefore, the non-singular shapes {σi j } and the ordered set (τ1, τ2) are in
correspondence one to one in the set

Uphys = {(τ1, τ2)|τ1 ∈ (−π, π), τ2 ∈ (0, π), sin(τ1) sin(τ2) sin(τ1 + τ2) �= 0}.

This is the shape space for RE on a rotating meridian.
Since sin τk �= 0, the Eq. (10) are equivalent to

sω2

A
cos τk = 1

| sin τk |3 .

Given that cos τk = 0 cannot satisfy this equation, we assume cos τk �= 0. So, the
above conditions are

sω2

A
= 1

cos(τk)| sin τk |3 . (11)

The equations for τk are

cos(τ1)| sin τ1|3 = cos(τ2)| sin τ2|3 = cos(τ3)| sin τ3|3, (12)

or in variables τ1, τ2

cos(τ1)| sin(τ1)|3 = cos(τ2)| sin(τ2)|3 = cos(τ1 + τ2)| sin(τ1 + τ2)|3. (13)
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Fig. 1 The solid curves and the dashed curves represent f1(τ1, τ2) = 0 and f2(τ1, τ2) = 0, respectively,
the intersection points of these curves give us the possible mass-independent shapes for ERE

In order to graphically illustrate the content of our main theorem, we consider the
functions f1 and f2 of (τ1, τ2) given below and illustrate the curves f1(τ1, τ2) =
0, f2(τ1, τ2) = 0 in the domain (0, π) × (0, π) (see Fig. 1).

f1(τ1, τ2) = cos(τ1)| sin(τ1)|3 − cos(τ2)| sin(τ2)|3,
f2(τ1, τ2) = cos(τ1)| sin(τ1)|3 − cos(τ1 + τ2)| sin(τ1 + τ2)|3.

Now, we are in conditions to state and prove the main result of this article.

Theorem 1 In the two-dimensional constant positively curved three-body problem,
there are exactly two RE shapes which are independent of the masses, both of them
are on a rotating meridian (Euler shapes), one isosceles triangle with equal arc τ0 =
2−1 arccos((

√
2 − 1)/2) and one equilateral triangle with the same arc τe = 2π/3.

Proof In the previous section we showed the no existence of mass-independent
Lagrange shapes nor Euler shapes on the equator. Then, it is only necessary to analyze
the Euler shapes on a rotating meridian.

For an isosceles triangle on a rotating meridian, we consider the case τ = τ1 =
τ2 ∈ (0, π) \ {π/2}. Then, Eq. (13) takes the form

cos(τ )| sin τ |3 = cos(2τ)| sin(2τ)|3. (14)
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Therefore, cos τ and cos(2τ) must have the same sign. Namely, 0 < τ < π/4 (both
are positive) or π/2 < τ < 3π/4 (both are negative).

We divide the proof in three steps depending of the different shape of the triangle,
isosceles, equilateral or scalene.

h f ill��

Step 1: For 0 < � < �/4We Obtain an Isosceles Euler Shape

Proof For the case 0 < τ < π/4, sin τ and sin(2τ) are positive. Then, the equation
for 2τ is

4 cos(2τ)(cos(2τ) + 1) = 1,

a second order polynomial in cos(2τ) whose solution is cos(2τ0) = (
√
2 − 1)/2

corresponding to τ0 = 2−1 arccos((
√
2 − 1)/2) = 0.6810... < π/4.

For this solution,

A2 = (m1 − m2)
2 +

(
3 − 2

√
2
)
m1m2 + m2

3 +
(√

2 − 1
)

(m2m3 + m3m1) > 0.

Therefore, we get one isosceles solution. ��
Observe that we didn’t use any special properties for {mk} in this calculation. Any

mass mk can be located in middle of the other two masses mi and m j .
In variables (τ1, τ2), the three shapes for the isosceles RE (which we are counting

just as one) are (τ0, τ0), (−2τ0, τ0), and (−τ0, 2τ0).

Step 2: For�/2 < � < 3�/4 We Obtain a Unique Equilateral Euler Shape

Proof In this case, the sign of sin τ and sin(2τ) are opposite. Therefore the equation
for cos(2τ) is reduced to

4 cos(2τ)(cos(2τ) + 1) = −1.

The solution in π/2 < τ < 3π/4 is cos(2τ) = −1/2 corresponding to τ = 2π/3.
Therefore, τ = θ2 − θ3 = θ3 − θ1 = 2π/3, and θ1 − θ2 = −2τ = −4π/3 ≡ 2π/3
mod 2π . Namely, this is an equilateral triangle.

For this solution,

A2 =
∑

i< j

(mi − m j )
2.

Therefore, A = 0 for equal masses case. But, obviously θ1−θ2 = θ2−θ3 = θ3−θ1 =
2π/3 and ω2 = 0 satisfies (5) for equal masses case. For not equal masses we have
A �= 0. ��

To finish the proof of Theorem 1 we only have to prove the non-existence of
mass-independent scalene Euler shape. We will do it in the next step.
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Step 3: There Are NoMass-Independent Scalene Euler Shape on a Rotating Meridian

Proof The Eq. (13) in terms of a = τ1, b = τ2 is

cos(a)| sin(a)|3 = cos(b)| sin(b)|3 = cos(a + b)| sin(a + b)|3. (15)

The use of a and b is for later convenience. Obviously, cos(a), cos(b), and cos(a + b)
must have the same sign. Therefore, there are four possible regions.

I: π/2 < a < π,π/2 < b < π , and π < a + b < 3π/2
II: a, b and 0 < a + b < π/2
III: −π/2 < a < 0, 0 < b < π/2 and 0 < a + b < π/2
IV: −π/2 < a < 0, 0 < b < π/2 and −π/2 < a + b < 0

Region I:�/2 < a < �,�/2 < b < �,� < a + b < 3�/2

For this region, the Eq. (15) are equivalent to

cos(a) sin3(a) = cos(b) sin3(b), (16)

2−1( cos(a) sin3(a) + cos(b) sin3(b)
) = − cos(a + b) sin3(a + b). (17)

Equation (16) yields

0 = cos(a) sin3(a) − cos(b) sin3(b)

=2−1 sin(a − b)
(
cos(a + b) − cos(2(a + b)) cos(a − b)

)
.

(18)

Obviously, a = b is a solution, and this yields a = b = 2π/3 as above. Here we
assume a �= b to look for other solutions.

Then Eq. (18) reduces to

cos(a + b) = cos(2(a + b)) cos(a − b).

If cos(2(a+b)) = 0, then a+b = 5π/4. But cos(a+b) = cos(5π/4) �= 0. Therefore
cos(2(a + b)) �= 0. Then

cos(a − b) = cos(a + b)

cos(2(a + b))
�= 1. (19)

(= 1 is excluded, because we are assuming a �= b). The region for the absolute value
of the right-hand side is smaller than 1, if 4π/3 < a + b < 3π/2.

On the other hand, using

cos(a) sin3(a) + cos(b) sin3(b)

= 2−1 sin(a + b)
(
cos(a − b) − cos(2(a − b)) cos(a + b)

)
,

123



Journal of Nonlinear Science (2024) 34 :87 Page 11 of 20 87

the Eq. (17) yields

cos(a − b) − cos(2(a − b)) cos(a + b) = −4 cos(a + b) sin2(a + b). (20)

Substituting (19) in this equation, we get the equation for a + b,

cos(a + b) sin4(a + b)

cos2(2(a + b))

(
2 cos(2(a + b)) + 1

)
= 0. (21)

But there are no solutions for a + b ∈ (4π/3, 3π/2).
Thus, in this region the unique solution is the equilateral triangle shape a = b =

2π/3.

Region II: a, b, a + b ∈ (0,�/2)

For this region, the equations are

cos(a) sin3(a) = cos(b) sin3(b), (22)

2−1( cos(a) sin3(a) + cos(b) sin3(b)
) = cos(a + b) sin3(a + b). (23)

By the same procedure, Eq. (22) yields, a = b or the same relation in (19).
For a = b, we get a = b = 2−1 arccos((

√
2− 1)/2) as in the previous subsection.

For a �= b, we use the relation (19). In the region a + b ∈ (0, π/2), the range of
the solution is a + b ∈ (π/3, π/2).

Now, the Eq. (23) yields

cos(a − b) − cos(2(a − b)) cos(a + b) = 4 cos(a + b) sin2(a + b).

Substituting cos(a − b) in (19) in this equation, we get

cos(a + b) sin2(a + b)

cos2(2(a + b))

(
2 cos2(2(a + b)) + cos(2(a + b)) + 1

)
= 0.

But this equation has no solution.
Thus, in this region, the solution is only the isosceles triangle shape θ2 − θ3 =

θ3 − θ1 = 2−1 arccos((
√
2− 1)/2). Here the mass m3 is placed in middle of the other

two masses.

Region III:−�/2 < a < 0, 0 < b < �/2 and 0 < a + b < �/2

By the definition of a and b, the region in terms of the coordinates θi is given by
θ3 − θ2, θ2 − θ1, θ3 − θ1 ∈ (0, π/2). Now, we redefine a = θ3 − θ2, b = θ2 − θ1, then
a + b = θ3 − θ1 with a, b, a + b ∈ (0, π/2).

By this redefinition, Eq. (15) are invariant, and the region for the variables a, b is
the same as for the Region II. Therefore, the solution is only the isosceles triangle
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shape θ3 − θ2 = θ2 − θ1 = 2−1 arccos((
√
2 − 1)/2). Here the mass m2 is placed in

middle of the other two masses.

Region IV:−�/2 < a < 0, 0 < b < �/2 and−�/2 < a + b < 0

Using a similar argument for a = θ3 − θ1, b = θ1 − θ2 we obtain that the solution is
only the isosceles solution θ3 − θ1 = θ1 − θ2 = 2−1 arccos((

√
2 − 1)/2). Here the

mass m1 is placed in middle of the other two masses.
This finishes the proof of the step 3. ��
With all the above, we have proved Theorem 1. ��

3.1 Mass-Independent Shapes for Relative Equilibria in the Two-Body Problem
and the Restricted Three-Body Problem on the Sphere

The arguments given in the previous section are correct, even for the case when one of
the massesmk > 0 is really small. The next question is: What happen in the limit case
when one of themass, let’s saym3 → 0.There are two physically interesting problems
to consider in this limit. One is the two-body problem, just considering the twomasses
m1 andm2 and neglecting the existence of the thirdmass. Another one is “the restricted
three-body problem on the sphere.” where the position of m3 is concerned. This last
case has been examined in Kilin (1999); Martínez and Simó (2017). We will show
that our results are still true in the two- and the three-body problem.

We start from the equations in (7). For m3 → 0, we obtain two equations

m1m2

(
sω2

2A
sin

(
2(θ1 − θ2)

)
− sin(θ1 − θ2)

| sin(θ1 − θ2)|3
)

= 0, (24)

and

m2

(
sω2

2A
sin

(
2(θ2 − θ3)

)
− sin(θ2 − θ3)

| sin(θ2 − θ3)|3
)

=m1

(
sω2

2A
sin

(
2(θ3 − θ1)

)
− sin(θ3 − θ1)

| sin(θ3 − θ1)|3
)

.

(25)

Note that the last equation does not contain the term m3.
We have the following propositions.

Proposition 3 For the two-body problem on a rotating meridian, any shape |θ1−θ2| ∈
(0, π) except π/2 is a mass-independent shape.

Proof For the two-body problem, the condition of ERE on a rotating meridian is
only the Eq. (24). Obviously, |θ1 − θ2| ∈ (0, π) except π/2 satisfies this condition by
choosing sω2 properly. ��
Proposition 4 The mass-independent shapes in the restricted three-body problem on
a rotating meridian are the same as in the three-body problem on the sphere with finite
masses.
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Proof The conditions for this problem are (24) and (25). The last one determines the
position ofm3. Therefore, a mass-independent shape must make all terms inside of the
parentheses zero. That is, the conditions are the same as for the three-body problem
with finite masses. ��

4 Configuration of Mass-Independent Shape for Several Masses

Even for a mass-independent shape {σi j }, the configuration {θk, φi − φ j } depends on
the masses {mk}, because of the mass dependence of the rotation axis (z-axis) given
by the inertia tensor (Fujiwara and Pérez-Chavela 2023).

4.1 Configurations of Equilateral Solution

If at least two masses are distinct, the equilateral solution has A > 0. Then, by Eq.
(11), s = −1 and ω2 = 8A/(3

√
3). The configuration is given by Eq. (8),

cos(2θ1) = 1

A

(
m2 + m3

2
− m1

)
,

sin(2θ1) =
√
3

2A
(m2 − m3).

(26)

In Fig. 2, we show the configurations for several masses. The configuration is uniquely
determined by Eq. (26).

On the other hand, for equalmasses case, the configuration is indefinite.Namely, any
configurations with θi − θ j = 2π/3, (i, j) = (1, 2), (2, 3), (3, 1) satisfy the equation
for relative equilibria (3) with ω = 0. (See Step 2, in the proof of Theorem 1.)

4.2 Configurations of Isosceles Solution

For the isosceles shape, A > 0, s = 1 and ω2 = 16A/
√
16

√
2 − 12. Let τ0 =

2−1 arccos((
√
2 − 1)/2) be the arc angle of equal arcs.

For θ2 − θ3 = θ3 − θ1 = τ0,

A2 =
∑




m2

 − m1m2

(
2
√
2 − 1

)
+ (m1 + m2)m3

(√
2 − 1

)
,

for θ3 − θ1 = θ1 − θ2 = τ0,

A2 =
∑




m2

 − m2m3

(
2
√
2 − 1

)
+ (m2 + m3)m1

(√
2 − 1

)
,
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Fig. 2 Configurations for several masses, from top to bottom, (m1,m2,m3) = (0.1, 0.5, 1), (0.4, 0.5, 1),
(0.8, 0.9, 1), and (1, 1, 1). The vertical and horizontal axes represent the axis of rotation (z-axis) and the
equator, respectively. The masses m1, m2, and m3 are indicated by the ball, square, and star, respectively.
Columns from left to right, the equilateral configuration (left column), the isosceles whose center is m3
(the second column), m1 (the third column), and m2 (the right). The configuration for equilateral of equal
masses (the bottom left corner) is indefinite, any configuration for equilateral shape is RE . See Sect. 4.1
for detail

and for θ3 − θ2 = θ2 − θ1 = τ0,

A2 =
∑




m2

 − m3m1

(
2
√
2 − 1

)
+ (m3 + m1)m2

(√
2 − 1

)
.

In Fig. 2, we show the configurations for several masses.
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5 Continuation of RE Shape fromMass-Independent Euler Shape

In the previous sections, wewere concentrated on themass-independent shapes. In this
section, we search the continuations of RE shape near the mass-independent Euler
shapes. We will show that every one of them can be continued to mass-dependent
Euler shapes.

5.1 Condition for Euler Shapes on a RotatingMeridian

In this subsection, we review the condition for Euler shapes on a rotating meridian.
We have seen that Eq. (7) is a necessary and sufficient condition for Euler shape.

Let Fi j and Gi j be

Fi j = mim j
sin τk

| sin τk |3 = mim j

f (τk)
,

Gi j = mim j sin(2τk),

for (i, j, k) = (1, 2, 3), (2, 3, 1), and (3, 1, 2), where f (x) = sin(x)| sin(x)|. Then,
the condition (7) for the shape {τk} is equivalent to (see (Fujiwara and Pérez-Chavela
2023) for details)

d =
∣∣∣∣
G12 − G23 G31 − G12
F12 − F23 F31 − F12

∣∣∣∣ = 0

for A �= 0. The explicit expression for d is

d = −m1m2m3 g

f (τ1) f (τ2) f (τ3)
,

where

g = m1 f (τ1)
(
f (τ2) sin(2τ2) − f (τ3) sin(2τ3)

)

+ m2 f (τ2)
(
f (τ3) sin(2τ3) − f (τ1) sin(2τ1)

)

+ m3 f (τ3)
(
f (τ1) sin(2τ1) − f (τ2) sin(2τ2)

)
.

Any solution of g = 0 in (τ1, τ2) ∈ Uphys with A �= 0 is an Euler shape. Therefore,
the condition g = 0 defines one-dimensional continuation of Euler shape in the shape
space Uphys.

5.2 Euler Shapes Near the Equilateral Euler Shape

For Euler shapes near the equilateral solution pI = (2π/3, 2π/3), it is sufficient to
consider the regionU = {(τ1, τ2)| sin(τ1) > 0, sin(τ2) > 0, sin(τ1+τ2) < 0}∩Uphys.

It is easy to verify that A2 = ∑
i< j (mi − m j )

2 at pI.
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Proposition 5 For not equalmasses, two continuations ofmass-dependent Euler shape
pass through the equilateral Euler shape.

Proof For not equal masses case, since at least one mass is different from the other,
A2 > 0 at pI. Since A is a continuous function of p, we can take a region inU around
pI, where A �= 0, and thus any solution of g = 0 in this region gives Euler shape.

At pI, g = ∂g/∂τ1 = ∂g/∂τ2 = 0. And the Hessian at this point is

H =
(

∂2g/∂τ 21 ∂2g/(∂τ1∂τ2)

∂2g/(∂τ2∂τ1) ∂2g/∂τ 22

)
= 9

√
3

4

(
m3 − m1 m2 − m1
m2 − m1 m2 − m3

)
.

The determinant is given by

det H = −243

32

∑

i< j

(mi − m j )
2.

By the assumption that at least two masses are different, det H < 0. Therefore the
point pI is a saddle point. So, two g = 0 contours will pass through this point. ��
Proposition 6 For equal masses case, three continuations of Euler shape pass through
the equilateral Euler shape.

Proof For equal masses case mk = m, A = 0 has just one solution in U , given by
pI. See Corollary 2 in Appendix 6 for a proof. As shown above, pI gives Euler shape.
Therefore, any solution of g = 0 in U gives Euler shape. Fortunately for equal mass
in U , the function g has the following simple form

g = m

2

(
3 − cos τ1 − cos τ2 − cos(τ1 + τ2)

)

sin(τ1 − τ2) sin(2τ1 + τ2) sin(τ1 + 2τ2).

Since the first term is positive inU , the solution of g = 0 inU are τ1 = τ2, 2τ1+τ2 =
2π , or τ1 + 2τ2 = 2π . Thus, on the (τ1, τ2) plane, the three above straight lines pass
through the point pI = (2π/3, 2π/3), that is, the equilateral triangle Euler shape is
not isolated. ��

5.3 Euler Shape Near the Isosceles Mass-Independent Euler Shape

In this subsection we will show that the isosceles mass-independent Euler shapes is
not isolated, it has a continuation of mass-dependent Euler shapes.

Proposition 7 The mass-independent isosceles Euler shape has one continuation of
mass-dependent Euler shape.

Proof It is enough to show a proof for the mass-independent isosceles Euler shape
given by pII = (τ0, τ0), with τ0 = 2−1 arccos((

√
2 − 1)/2). The proof for the

isosceles Euler shapes when the middle mass is different, that is for the shapes
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Fig. 3 Continuations of g(τ1, τ2) = 0 in the shape space Uphys for (m1,m2,m3) = (0.1, 0.5, 1) (upper
left), (0.4, 0.5, 1) (upper right), (0.8, 0.9, 1) (lower left), and (1, 1, 1) (lower right). The horizontal and
vertical axes are τ1 = θ2 − θ3 and τ2 = θ3 − θ1, respectively. In each picture, the four black circles
represent the mass-independent shapes, and three hollow circles represent the excluded shapes (singular
points)

pIII = (−2τ0, τ0) and pIV = (−τ0, 2τ0) follows in a similar way using the same
redefinition of coordinates as in Region III and Region IV, in the previous section.

We consider the region U = {(τ1, τ2)| sin(τ1) > 0, sin(τ2) > 0, sin(τ1 + τ2) >

0} ∩Uphys near the point pII = (τ0, τ0).
Since at this point A > 0, we can find a small region in U where A > 0 and

therefore any solution of g = 0 gives an Euler shape.
Now, at pII, g = 0 and

g1 = ∂g

∂τ1
= 1

8

((
22 − 12

√
2
)
m1 −

(
10 − √

2
)

(m2 + m3)
)

,

g2 = ∂g

∂τ2
= 1

8

((
10 − √

2
)

(m1 + m3) −
(
22 − 12

√
2
)
m2

)
.

So, g1 = g2 = 0 is impossible, because, the unique solution for g1 = g2 = 0 is
m1 = m2 = −(1 + √

2)m3 < 0. Therefore, at least one of g1 or g2 is different from
zero; and by the implicit function theorem, there is a continuation of g = 0 that passes
through pII. ��

5.4 Numerical Calculations for Continuation of Euler Shapes

In Fig. 3, we show continuations of Euler shapes for severalmasses that are represented
by g = 0. As you can see, the continuation curve changes as the masses are changed.
However, as we proved in Sect. 4 and shown in Fig. 3, the continuation curve passes
through the (not moved) mass-independent Euler shape.
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6 Appendix A: Solutions for the Equation A = 0

In this section, the solutions of A = 0 in Uphys are described, where A and Uphys are
defined by (6) and (3), the τk are unknowns and the masses mk are parameters.

In the following result,we assume that themassesmust satisfy the triangle inequality
mi + m j > mk for all choices of (i, j, k), otherwise there are no solutions.

Proposition 8 The solutions of A = 0 in Uphys are given by,

cos(2τk) = m2
k − m2

i − m2
j

2mim j
,

sin(2τ3)

m3
= sin(2τ1)

m1
= sin(2τ2)

m2
,

(27)

where τk = θi − θ j , (i, j, k) = (1, 2, 3), (2, 3, 1), and (3, 1, 2).

Proof Since, A2 = ∣∣∑

 m
e


∣∣2 with e
 = (cos(2θ
), sin(2θ
)) ∈ R
2, A = 0 is

equivalent to
∑


 m
e
 = 0. This means that the three vectors m
e
 form a triangle
with sides of length m
. That is the masses {mk} satisfy the triangle inequality. The
equality is excluded, because otherwise at least one of the equations should satisfy
2τk ≡ 0 mod 2π (namely τk ≡ 0 mod π ) which is excluded in Uphys.

Usingmkek = −(miei+m je j ),m2
k = ∣∣miei + m je j

∣∣2 and 0 = (miei+m je j )×ek
we obtain the equations in (27). ��

Corollary 1 The number of solutions for the equation A = 0 in Uphys for given masses
{mk} could be 0 or 4.

Proof If the masses do not satisfy the triangle inequality, the number of solutions is
zero.

For the masses that satisfy the triangle inequality, by the first equation of (27),

cos τk = ±
√
m2

k − (mi − m j )2

4mim j
�= 0. (28)

Now, let

αk = arccos

√
m2

k − (mi − m j )2

4mim j
∈ (0, π/2) for k = 1, 2,

be one of the solution of (28). Then the solutions of this equation are

τ1 = −π + α1, −α1, α1, π − α1 ∈ (−π, π),

τ2 = α2, π − α2 ∈ (0, π).
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By the second line of (27), sin(2τ1) and sin(2τ2) must have the same sign, therefore,
the solutions of (27) are the following four,

(τ1, τ2) = (−π + α1, α2), (−α1, π − α2), (α1, α2), (π − α1, π − α2).

��
Corollary 2 For the equal masses case, the four solutions of A = 0 in Uphys are
(τ1, τ2) = (−2π/3, π/3), (−π/3, 2π/3), (π/3, π/3), (2π/3, 2π/3).

Proof For the equal masses case, cos τk = ±1/2, therefore α1 = α2 = π/3. Then,
the solutions are obviously the four given above. ��
Corollary 3 The shape corresponding to the solution of the equation A = 0 when
τi = τ j in Uphys is realized only when mi = m j .

Proof It is obvious from the Eq. (27). ��
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