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Abstract
We consider the incompressible axisymmetric Navier–Stokes equations with swirl as
an idealized model for tornado-like flows. Assuming an infinite vortex line which
interacts with a boundary surface resembles the tornado core, we look for station-
ary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes
equations. We are particularly interested in the connection of the two problems in
the zero-viscosity limit. First, we construct a class of explicit stationary self-similar
solutions for the axisymmetric Euler equations. Second, we consider the possibility of
discontinuous solutions and prove that there do not exist self-similar stationary Euler
solutionswith slip discontinuity. This nonexistence result is extended to a class of flows
where there is mass input or mass loss through the vortex core. Third, we consider
solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes.
Using techniques from the theory of Riemann problems for conservation laws, we
prove that, under certain assumptions, stationary self-similar solutions of the axisym-
metric Navier–Stokes equations converge to stationary self-similar solutions of the
axisymmetric Euler equations as ν → 0. This allows to characterize the type of Euler
solutions that arise via viscosity limits.
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1 Introduction

Tornadoes are among the most extreme and destructive weather phenomena, and due
to the numerous casualties and substantial damage in property, their modelling has
attracted considerable interest. At the core of mathematical models for the description
of tornadoes is the concept of swirling flows. Assuming the tornado structure does not
change significantly in time and that a vortex line resembles the tornado core, Mor-
ton (1966), a common model for tornado-like flows is the stationary incompressible
axisymmetric Navier–Stokes equations. Namely, the following system in cylindrical
coordinates is considered
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where �u = (u, v, w) : R3 × R+ → R
3 is the velocity, p : R3 × R+ → R is the

pressure, and ν ≥ 0 is the coefficient of kinematic viscosity. Modelling tornadoes
necessitates the consideration of certain additional factors, like rotation induced from
the cloud and buoyancy effects. The reader is referred to “‘ B” for a quick presentation
of models and references. Nevertheless, system (1.1) is considered as the base model
for describing their core structure, Rotunno (2013).

Long (1958, 1961) introduced a self-similar ansatz and reduced the stationary
axisymmetric Navier–Stokes equations to a system of ordinary differential equations
focusing on the boundary layer description. Independently,Goldshtik (1960) examined
the existence of self-similar solutions as the Reynolds number varies; he concluded his
system is not solvable for all Reynolds numbers and characterized this loss of existence
as a ’paradox’. Few years later, Serrin (1972) presented another self-similar ansatz
and showed that only three types of solution can be associated with the interaction
of an infinite vortex line with a boundary plane: the flow can be either ascending, or
descending, or a combination of these two profiles, i.e. downwards near the vortex line
and inwards near the r-axis. The latter is usually referred as a double-celled vortex,
and Serrin (1972) presented extensive comparisons of such solutions to tornadoes.

Many authors subsequently studied the system (1.1) on occasion considering more
general families of self-similar solutions, for example (Fernandez-Feria et al. 1995;
Bělík et al. 2014; Goldshtik and Shtern 1990), or more general geometries including
for example conical flows, Goldshtik and Shtern (1990), Goldshtik (1990), Sozou
(1992), Sozou et al. (1994), Fernandez-Feria and Arrese (2000), Shtern (2012).

This work has two objectives: First, to consider the full system (1.1) and provide a
complete study of the stationary self-similar solutions of axisymmetric Navier–Stokes
and of axisymmetric Euler equations. Second, to compare those equations and study
the emergence of Euler solutions from the Navier–Stokes solutions as the viscosity ν

goes to zero. One novel feature for the Euler equations is the consideration of solutions
with a slip discontinuity in the velocities. Regarding the Navier–Stokes equations, we
obtain an alternative derivation of the equations studied by Serrin (1972) and study
the emergence of stationary self-similar solutions of the Euler equations as zero-
viscosity limits from corresponding solutions of the Navier–Stokes equations. The
goal is to check whether the two-celled solutions identified in Serrin (1972) persist
in the zero-viscosity limit. Our analysis indicates that first there are no solutions with
slip-discontinuity for the stationary, self-similar Euler equations, and second that the
solutions of Navier–Stokes approach the single-cell solution of the Euler equations in
the zero-viscosity limit. Numerical calculations indicate the presence of double-celled
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solutions, but this happens for finite (even relatively large viscosities) and does not
persist as the viscosity decreases.

We now provide an outline of the work. We introduce in (1.1) the self-similar
transformation

u(r , z) = 1

r
U (ξ), v(r , z) = 1

r
V (ξ), w(r , z) = 1

r
W (ξ),

p(r , z) = 1

r2
P(ξ), ψ(r , z) = rθ(ξ),

(1.2)

motivated by the scale-invariance properties ofNavier–Stokes equations,where ξ = z
r .

In (1.2) we have used ψ(r , z) the stream function

u = −1

r

∂ψ

∂z
, w = 1

r

∂ψ

∂r

while θ(ξ) is its self-similar form connected to (U , W ) via

U = −θ ′, W = θ − ξθ ′. (1.3)

This leads, for the axisymmetric Euler equations, to a system of ordinary differential
equations for (θ, V , P)

[
θ2

2
+ (1 + ξ2)P

]′
= −ξV 2, (1.4a)

V ′θ = 0, (1.4b)
[
θ2 − ξ

(θ2

2

)′ + P

]′
= 0, (1.4c)

where (U , W ) are calculated via (1.3). The same transformation leads for the axisym-
metric Navier–Stokes equations to the system

[
θ2

2
+ (1 + ξ2)P

]′
= ν

[
ξθ − (1 + ξ2)θ ′

]′
− ξV 2, (1.5a)

V ′θ = ν
[
3ξV ′ + (1 + ξ2)V ′′], (1.5b)

[
θ2 − ξ

(θ2

2

)′ + P

]′
= ν

[
ξθ − ξ2θ ′ − ξ(1 + ξ2)θ ′′]′ , (1.5c)

augmentedwith the physically relevant boundary conditions (see Sect. 2 for the deriva-
tions).

First, we consider (1.4). Imposing no-penetration conditions on the boundary and
the vortex core we derive explicit solutions that correspond to either ascending or
descending flows. To examine whether a double-celled vortex may occur for the Euler
equations, we consider the existence of solutions with slip discontinuity in velocity.
These would emerge from the Rankine-Hugoniot conditions for (1.4),
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�P� = 0, �θV � = 0, �θ θ ′� = 0, (1.6)

where �·� is the jump operator. We prove that there do not exist solutions of the self-
similar Euler equations with discontinuities at a finite number of points that satisfy
the jump conditions (1.6). This nonexistence result is then extended to a class of flows
where there is mass input or loss through the vortex line. For the aforementioned
flows, the explicit continuous solutions are also derived. The nonexistence result leads
to conjecture that the double-celled vortices cannot persist in the limit as the viscosity
goes to zero.

Next, we focus on the stationary self-similar axisymmetric Navier–Stokes system
(1.5) in the context of a vortex core interacting with a boundary. This problem is
reduced to a coupled integrodifferential system for (θ(ξ), V (ξ))

θ2

2
− ν

[
(1 + ξ2)θ ′ + ξθ

]
= G (ξ) , (1.7a)

ν(1 + ξ2)V ′′ +
(
3νξ − θ

)
V ′ = 0, (1.7b)

with boundary conditions

θ = θ ′ = V = 0 at ξ = 0, V → V∞, U → 0, as ξ → ∞. (1.8)

where the functional G depending on V (·) and ξ is defined via

G (ξ) = G (V (·), ξ) = ξ
√
1 + ξ2

∫ ∞

ξ

1

ζ 2(1 + ζ 2)
3
2

(∫ ζ

0
sV 2(s)ds

)
dζ + E0φ(ξ), (1.9)

and φ(ξ) is the function

φ(ξ) := ξ
(√

1 + ξ2 − ξ
)
.

The system is recast into twoequivalent integrodifferential formulations andprovides a
common framework encompassing the pioneering works on this problem of Goldshtik
(1960), Serrin (1972) andGoldshtik and Shtern (1990). Existence of solutions for (1.7)
is provided under the conditions described in Serrin (1972). Moreover the system (1.7)
is solved numerically using an iterative solver and a numerical bifurcation diagram is
presented, see Fig. 11.

We then focus on the zero-viscosity limit from Navier–Stokes to Euler in the
self-similar stationary setting. This leads to study the zero-viscosity limit ν → 0
for the integrodifferential system (1.7). The problem is conveniently recasted as an
autonomous system,

ν
d	ν

dx
= 1

2	
2
ν − F (Vν; x) ,

ν
d2Vν

dx2
= 	ν

dVν

dx
,

(1.10)
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where F (Vν; x) is the analogue of (1.9) (defined in (5.17) see Sect. 5.2). An analysis
of the possible configurations of solutions of (1.10) (based on ideas of Goldstick
1960) leads to a-priori estimates for solutions and classifying the potential shapes of
the stream function to three configurations. To investigate the zero-viscosity limit,
we employ compactness methods and exploit techniques developed in the theory of
zero-viscosity limits for Riemann problems of conservation laws, Tzavaras (1996),
Papadoperakis (1999). The sequence {Vν} consists of monotone, uniformly bounded
functions, and byHelly’s theoremconverges along subsequences to a limit V . The limit
generates aBorelmeasure dV whichmay be viewed as a limit of a family of probability
measures capturing the averaging process as ν → 0. Wepursue two theories: the first is
based on L p estimates for the stream function and variation estimates for the velocity.
It uses weak convergence methods and leads to the convergence Theorem 5.4. The
latter is not fully satisfactory due to the weak bounds available for the stream function.
In a second step, under more restrictive conditions on the data for the problem, we
obtain uniform variation estimates and invoke Helly’s theorem to conclude almost
everywhere convergence (along subsequences) from theNavier–Stokes solutions to the
Euler solutions.The convergence results are stated inTheorem5.8, Proposition5.9, and
Corollary 5.10. They permit to characterize admissibility restrictions for the stationary
Euler solutions emerging from Navier–Stokes in this setting.

Finally, we study the boundary layer in the case of a model problem for (1.10)
that captures the essential behaviour of our system. We use methods of asymptotic
analysis, namely inner and outer solutions and matched asymptotic expansions. We
deduce that the boundary layer is of order ν2/3 and provide an asymptotic description
of the stream function 	ν (see (6.7)) and of Vν (see (6.12)).

Along with previous works (Long 1958; Goldshtik 1960; Serrin 1972; Goldshtik
and Shtern 1990) a complete picture emerges regarding self-similar stationary flows
of the form (1.2) for the equations (1.1). These solutions capture the interaction of a
line vortex with a solid boundary and the effects of secondary flows induced by such
interaction; it provides a good description of the core of a swirling flow. As already
noted in Long (1961), these solutions are singular at the origin. Attempts to resolve
this issue are available in the AppliedMathematics literature, see “Appendix B” for an
outline, but to the best of our knowledge a systematic mathematical understanding is
presently lacking in a setting of axisymmetric flows. In addition, significant problems
remain open: for example, it is well known that tornadoes are moving, while the
self-similar ansatz provides a stationary structure. An important problem would be
to obtain an ansatz for a swirling flow that is moving, or the (related) problem of
determining the stability (or instability) of the self-similar steady flows. Additional
effects like compressibility, buoyancy and variations in temperature are expected to
play a role in tornadoes and are not taken into account in the simplified model of
axisymmetric swirling flows. The reader is referred to the relatively recent excellent
review (Rotunno 2013) for fluid-mechanics models of tornadoes.

The work is organized as follows: In Sect. 2, we introduce the self-similar ansatz
and derive the systems (1.4) and (1.5) that are used in the rest of this work. Sections3
and 4 are devoted to stationary self-similar axisymmetric Euler equations. In Sect. 3,
an explicit continuous solution of (1.4) is derived, while in Sect. 4 we investigate the
existence of discontinuous solutions with finite number of discontinuities. In Sect. 4,
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Euler solutions are also studied for flows with input of mass through the vortex line.
In Sect. 5, we study self-similar stationary solutions for axisymmetric Navier–Stokes.
After presenting some of their properties, we examine their limiting behaviour as ν →
0 using compactness methods and analytical ideas from the theory of Borel measures.
The results are stated in Theorems 5.4, 5.8 and Corollary 5.10. In Sect. 6, there is an
asymptotic analysis of the boundary layer for a model problem, where inner and outer
expansions lead to an explicit form of an asymptotic solution. In Sect. 7, a numerical
scheme is presented for solving the stationary, self-similar system (1.10). We present
indicative profiles of typical flows that appear for various values of the parameters and
calculate a bifurcation of solutions in terms of the dimensionless parameters ( E0

V∞ , ν
V∞ ).

The diagram is computed by solving the system (1.10) numerically and characterizing
solutions according to the zone they belong, see Sects. 5.3 and 7.4.

In “Appendix A” we list Navier–Stokes in cylindrical coordinates. As our study is
motivated from the study of tornadoes, we present for the convenience of the reader in
“Appendix B” a quick review of models used in the literature for tornado modelling.

2 Preliminaries

We consider the equations of motion for an incompressible homogeneous viscous
fluid, with constant density ρ = 1:

�ut + (�u · ∇)�u = −∇ p + ν ��u, (2.1a)

∇ · �u = 0, (2.1b)

where �u : R3 × R+ → R
3 is the velocity vector of the fluid, p : R3 × R+ → R is

the pressure, and ν ≥ 0 is the coefficient of kinematic viscosity. The first equation
represents the conservation of momentum, while the second is the incompressibility
condition and may be interpreted as describing conservation of mass. For ν > 0, the
system (2.1) is the so-called Navier–Stokes equations, while when viscosity effects
are omitted, the corresponding system (2.1) with ν = 0 is the (incompressible) Euler
equations.

2.1 Axisymmetric Navier–Stokes Equations

In three space dimensions, introducing cylindrical coordinates (r , ϑ, z): x1 = r cosϑ ,
x2 = r sin ϑ , x3 = z, and the attached unit vector system

�er = (cosϑ, sin ϑ, 0), �eϑ = (− sin ϑ, cosϑ, 0), �ez = (0, 0, 1),

we express the velocity vector �u in cylindrical coordinates as

�u = u(r , ϑ, z, t)�er + v(r , ϑ, z, t)�eϑ + w(r , ϑ, z, t)�ez .

A flow is called axisymmetric if the velocity �u does not depend on the azimuthal angle
ϑ , i.e.

�u = u(r , z, t)�er + v(r , z, t)�eϑ + w(r , z, t)�ez .
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The velocity component v in the direction of �eϑ is called the swirl velocity. If the swirl
is everywhere equal to zero, i.e. v ≡ 0, we name such flows as flows without swirl.
Otherwise we call them axisymmetric flows with swirl.

Using that the velocity �u does not depend onϑ , we derive the axisymmetric Navier–
Stokes equations which have the following form (see “Appendix A”)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
= ν

[1
r

∂

∂r
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r
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∂r

)
+ ∂2u

∂z2
− u

r2

]
− ∂ p

∂r
, (2.2a)
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+ uv
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[1
r

∂
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r
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)
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, (2.2c)

1

r

∂

∂r
(ru) + ∂w

∂z
= 0. (2.2d)

For general axisymmetric flows, the vorticity vector �ω = ∇ × �u is expressed as

�ω = (
ωr , ωϑ, ωz

) =
(

− ∂v

∂z
,
∂u

∂z
− ∂w

∂r
,
1

r

∂

∂r
(rv)

)
,

where ωϑ := ∂u
∂z − ∂w

∂r is the component of vorticity in the �eϑ -direction. Note that for
flows without swirl only the vorticity in the direction of �eϑ survives: �ω = ωϑ �eϑ .

The continuity equation (2.2d) may be integrated using the axisymmetric stream
function ψ(r , z, t) connected to u and w via

u = −1

r

∂ψ

∂z
and w = 1

r

∂ψ

∂r
.

The stream function ψ and the vorticity component ωϑ are independent of the swirl
velocity v; hence, an equivalent formulation of (2.2a)–(2.2d) is given by

∂ωϑ

∂t
+ u

∂ωϑ

∂r
+ w

∂ωϑ

∂z
− ωϑ

u

r
= ν

[
�ωϑ − ωϑ
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r

)
, (2.3a)
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+ v

u

r
= ν

[
�v − v

r2

]
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ωϑ = −1

r
�ψ + 2

r2
∂ψ

∂r
, (2.3c)

(
u, w

)
= 1

r
∇⊥ψ, (2.3d)

in terms of ωθ , v and ψ , where

� f = 1

r

∂

∂r

(
r
∂ f

∂r

)
+ ∂2 f

∂z2
and ∇⊥ f =

(
− ∂ f

∂z
,
∂ f

∂r

)
.

This formulation is equivalent with the three-dimensional Navier–Stokes equations,
Majda and Bertozzi (2001).
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2.2 Self-Similar Formulation

In the analysis of partial differential equations it is often beneficial to seek solutions
that conform with symmetry properties of the problem, for instance invariance under
rotations, dilations, etc. The invariance of the Navier–Stokes equations under the scal-
ing

�u(t, r , z) = λ �u(λ2t, λr , λz) and p(t, r , z) = λ2 p(λ2t, λr , λz), (2.4)

for λ > 0, suggests to look for self-similar solutions of (2.2a)–(2.2d) that follow the
ansatz

u(t, r , z) = 1

r
U (s, ξ), v(t, r , z) = 1

r
V (s, ξ), w(t, r , z) = 1

r
W (s, ξ),

p(t, r , z) = 1

r2
P(s, ξ), ψ(t, r , z) = r�(s, ξ), ωϑ(t, r , z) = 1

r2
�(s, ξ),

(2.5)

in the variables ξ = z
r and s = r√

t
. Such an ansatz induces a singularity at r = 0.

In the literature related to tornadoes the singularity is considered to represent the line
vortex resembling the tornado core, Morton (1966). Using the ansatz (2.5) in (2.2a)–
(2.2d), a tedious but straightforward calculation yields the system of partial differential
equations for (U , V , W ),

s
(

U − s2

2

)
Us +

(
W − ξU

)
Uξ −

(
U 2 + V 2

)
= ν

[
HU − U

]
+ 2P + ξ Pξ − s Ps,

s
(

U − s2

2

)
Vs +

(
W − ξU

)
Vξ = ν

[
HV − V

]
,

s
(

U − s2

2

)
Ws +

(
W − ξU

)
Wξ − U W = ν

[
HW

]
− Pξ ,

sUs + Wξ − ξUξ = 0,

(2.6)

where the operator H is defined as

H f =
[

− ξ f +
(
(1 + ξ2) f

)
ξ

]

ξ

− s fs − 2sξ fsξ + s2 fss . (2.7)

The same ansatz transforms the velocity-vorticity equations (2.3a)–(2.3d) into the
form

s
(

U − s2

2

)
�s + (

W − ξU
)
�ξ − 3U� − 2V Vξ = ν

[D� − �
]
,

s
(

U − s2

2

)
Vs + (

W − ξU
)
Vξ = ν

[HV − V
]
,

� − ξ�ξ − s�s + 2sξ�sξ − s2�ss − (1 + ξ2)�ξξ = �,(
− �ξ ,� − ξ�ξ + s�s

)
= (

U , W
)
,

(2.8)
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where H is defined in (2.7) and D is given by

D f = 4 f + 5ξ fξ − 3s fs − 2sξ fsξ + s2 fss + (1 + ξ2) fξξ . (2.9)

The choice of ansatz is not unique and various self-similar transformations can be used
for the Navier–Stokes equations, for instance, one may consider an ansatz in variables
ξ = z

r and τ = t
r2
.

2.3 Stationary Self-Similar Formulation

The tornadic funnel typically moves slowly compared to the internal swirling veloci-
ties, Rotunno (2013). This motivates to represent the core of the tornado via a vortex
singularity, following (Long 1958; Goldshtik 1960), and to study stationary axisym-
metric self-similar solutions for the Navier–Stokes equations. Letting ξ = z

r , we seek
self-similar stationary solutions of (2.2a)–(2.2d) in the form

u(r , z) = 1

r
U (ξ), v(r , z) = 1

r
V (ξ), w(r , z) = 1

r
W (ξ),

p(r , z) = 1

r2
P(ξ), ψ(r , z) = r�(ξ), ωϑ(r , z) = 1

r2
�(ξ).

(2.10)

Such solutions satisfy the system of ordinary differential equations

−U
(
ξU
)′ + U ′W − V 2 = ν

[
LU − U

]
+ 2P + ξ P ′, (2.11a)

−U
(
ξV
)′ + V ′W + U V = ν

[
LV − V

]
, (2.11b)

−U
(
ξW

)′ + W ′W = νLW − P ′, (2.11c)

W ′ − ξU ′ = 0 (2.11d)

where ξ ∈ R+ and the operator L defined as

L f =
[

− ξ f +
(
(1 + ξ2) f

)′]′
. (2.12)

If we multiply (2.11a) by ξ and subtract it from (2.11c), we can rewrite the system as

[
1

2

(
W − ξU

)2 + (1 + ξ2)P

]′
= ν

{LW − ξLU + ξU
}− ξV 2,

V ′(W − ξU
)

= ν
{LV − V

}
,

[
W
(

W − ξU
)

+ P

]′
= νLW ,

(
W − ξU

)′ = −U .
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For convenience, we introduce θ = W − ξU . One checks from (2.3d) and (2.10)
that θ(ξ) = �(ξ) is the self-similar version of the stream function and

θ = W − ξU , U = −θ ′, W = θ − ξθ ′. (2.13)

A tedious but straightforward computation renders (2.3) to a nonlinear system of
ordinary differential equations for (θ, V , P),

[
θ2

2
+ (1 + ξ2)P

]′
= ν

[
ξθ − (1 + ξ2)θ ′

]′
− ξV 2, (2.14a)

V ′θ = ν
[
3ξV ′ + (1 + ξ2)V ′′], (2.14b)

[
θ2 − ξ

(θ2

2

)′ + P

]′
= ν

[
ξθ − ξ2θ ′ − ξ(1 + ξ2)θ ′′]′, (2.14c)

where the viscosity ν is a parameter and (U , W ) are determined by (2.13). The aim is
to study (2.14) in both the viscous ν > 0 as well as the inviscid ν = 0 cases and to
investigate the limiting relationship. Sections3 and 4 are devoted to the inviscid case
ν = 0: In Sect. 3 an explicit solution for (2.14) (with ν = 0) is obtained. The existence
of solutions with slip discontinuities is examined in Sect. 4. In Sect. 5, we express the
system (2.14) for ν > 0 into an equivalent integrodifferential formulation and study
its limit as ν → 0. Numerical solutions are illustrated in Sect. 7.

3 A Stationary Self-Similar Solution for the Axisymmetric Euler
Equations

Consider first the Euler equations (2.14) with ν = 0:

[
θ2

2
+ (1 + ξ2)P

]′
= −ξV 2 , (3.1a)

V ′θ = 0 , (3.1b)
[
θ2 − ξ

(θ2

2

)′ + P

]′
= 0 , (3.1c)

θ ′ = −U . (3.1d)

Equation (3.1b) implies that if θ(ξ) �= 0 then V (ξ) is a constant function. So, assume
first that θ �= 0 for ξ ∈ (0,∞) and that

V ≡ V0, (3.2)

where V0 is a constant proportional to the circulation around the axis. (The case where
θ vanishes and where V may exhibit discontinuities is examined in the next section.)
Substituting (3.2) yields
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ξ(1 + ξ2)
(θ2

2

)′ − (1 + 2ξ2)
(θ2

2

)
= −ξ2

2
V0

2 − E0(1 + ξ2) + A0 , (3.3a)

P = ξ
(θ2

2

)′ − θ2 + E0 , (3.3b)

where E0 and A0 are integration constants. Dividing equation (3.3a) by ξ2(1 + ξ2)
3
2

gives

[
1

ξ
√
1 + ξ2

θ2

2

]′
= − V0

2

2

[
ξ√

1 + ξ2

]′
+ E0

[√
1 + ξ2

ξ

]′
− A0

[
1 + 2ξ2

ξ
√
1 + ξ2

]′
.

After an integration, we eventually obtain an explicit form for the stream function θ

and an explicit solution for the Euler system (3.1a)–(3.1d)

θ2

2
= −

(V 2
0

2
+ 2A0 − E0

)
ξ2 + k0ξ

√
1 + ξ2 +

(
E0 − A0

)
, (3.4a)

U = 1

θ

[
2
(V 2

0

2
+ 2A0 − E0

)
ξ − k0

1 + 2ξ2√
1 + ξ2

]
, (3.4b)

W = 1

θ

[
k0

ξ√
1 + ξ2

+ 2
(

E0 − A0

)]
, (3.4c)

P = −k0
ξ√

1 + ξ2
+ 2A0 − E0 , (3.4d)

where V (ξ) is given by (3.2) and E0, A0 and k0 are integration constants.
We supplement system (3.1a)–(3.1d) with suitable boundary conditions. Recall

that our objective is to model a vortex line that interacts with a boundary surface. We
impose no-penetration boundary condition at the boundary, namely w = 0 at z = 0.
Moreover, we assume that u = 0 as r → 0 which ensures that no mass is added or
lost through the vortex line. Expressing these conditions in terms of the self-similar
functions (2.10) leads to

W (0) = 0 and U (ξ) → 0 as ξ → ∞, (3.5)

or in terms of θ

θ(0) = 0 and θ ′(ξ) → 0 as ξ → ∞. (3.6)

The boundary conditions applied to (3.4) provide the relations

E0 = A0 , (3.7a)

k0 = V0
2

2
+ E0. (3.7b)
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The derivation of (3.7a) is direct. To derive relation (3.7b), note that (3.4a), (3.4b)
imply

U = 1

θ

[
2
(V 2

0

2
+ E0

)
ξ − k0

1 + 2ξ2√
1 + ξ2

]
=

2
(

V 2
0
2 + E0

)
− k0

1+2ξ2

ξ
√

1+ξ2

±
√

−2
(

V 2
0
2 + E0

)
+ 2k0

√
1+ξ2

ξ

ξ→∞−−−→ ∓
√

−2
(V 2

0

2
+ E0

)
+ 2k0

Thus, as ξ → ∞

U (∞) = 0 = ∓
√

−2
(V 2

0

2
+ E0

)
+ 2k0 ,

which in turn implies (3.7b).
Substituting (3.7a)–(3.7b) into (3.4), we obtain the explicit formula

θ2 = 2k0 φ(ξ), (3.8)

with φ the function

φ(ξ) := ξ
(√

1 + ξ2 − ξ
)
. (3.9)

Lemma 3.1 (Properties of φ(ξ)). The function φ(ξ) in (3.9) is shown in Fig.1 and
has the properties:

1. φ(ξ) is non-negative and bounded, 0 < φ(ξ) < 1
2 for 0 < ξ < ∞.

2. φ(0) = 0 and limξ→∞ φ(ξ) = 1
2 .

3. φ(ξ) is increasing and concave with

φ′(ξ) = 1√
1 + ξ2

(
1 − 2φ(ξ)

)
> 0, φ′′(ξ) = −1 − 2φ(ξ)

(1 + ξ2)
3
2

(
ξ + 2

√
1 + ξ2

)
< 0.

The sign of φ provides a constraint on the existence of θ . From (3.8), θ(ξ) is well-

defined iff k0 = E0 + V 2
0
2 > 0. Under this restriction, we derive an explicit family of

solutions depending on two parameters V0, E0

θ = ±√2k0φ(ξ), U = ∓
√

k0
2φ(ξ)

[
1 − 2φ(ξ)√

1 + ξ2

]
, V = V0,

W = ±
√

k0
2φ(ξ)

ξ√
1 + ξ2

, P =
(

k0 − V 2
0

2

)
− k0

ξ√
1 + ξ2

.

(3.10)
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Fig. 1 Functions φ(ξ) and φ′(ξ)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ξ

φ(ξ)
φ′(ξ)

(a) θ > 0 (b) θ < 0

Fig. 2 Velocity vector field (u, w) in (r , z) plane

Observe that θ(ξ) can be either positive or negative. If θ is positive, then the flow is
directed inwards near the plane z = 0 and upwards near the vortex line. Conversely, if θ
is negative, the flow is directed outwards near the plane z = 0 and downwards near the
vortex line. In Fig. 2, two vector fields of (u, w), see (3.11), are depicted, corresponding
to the updraft and downdraft flows, depending on the sign of the streamfunction θ .

Note that P(ξ = 0) = E0 and P(ξ = ∞) = − V 2
0
2 and, as P(ξ) is decreasing, the

values of P range from − V 2
0
2 to E0. The constraint k0 > 0 may be interpreted as

k0 = E0 + V 2
0

2
= P(ξ = 0) − P(ξ = ∞) > 0.

As p = P
r2

and v = V
r the constraint may be thought as presenting a difference

between pressure-induced forces at the top of the vortex core and the intersection of
the vortex core with the boundary. V0 is a measure of the circulation around the vortex
core.
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Fig. 3 Contour plots of pressure p in (r , z) plane for V0 = 1, 2 and E0 = 1, 2

Returning to the original variables through (2.10) we obtain

u(r , z) = ∓
√

k0
2

(
√

r2 + z2 − z)2

r
√

z(r2 + z2)(
√

r2 + z2 − z)
, v(r , z) = V0

r
,

w(r , z) = ±
√

k0
2

z√
z(r2 + z2)(

√
r2 + z2 − z)

,

p(r , z) = 1

r2

((
k0 − V 2

0

2

)− k0
z√

r2 + z2

)
.

(3.11)

The streamlines of the vector field (u, w) are sketched in Fig. 2, showing the two type
of flows. In Fig. 3 contour plots of the pressure are shown for four different choices
of the parameters E0, V0. The form of pressure field around (r , z) = (0, 0) can be
explained by examining its asymptotic behaviour around the origin. From (3.11) we
have that

p(r , z) = 1

r2

(
E0 − k0

z√
r2 + z2

)
, k0 = E0 + V 2

0

2
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Then, along the bottom(z = 0) and vertical (r = 0) boundaries, p(r , z) has the
following asymptotic behaviour

Bottom boundary: p(r , z) = E0

r2
− k0

r3
z + O(z3), z → 0

Vertical boundary: p(r , z) = k0
2z2

− V 2
0

2r2
− 3k0

8z4
r2 + O(r4), r → 0

Values for the pressure are only presented with the same colour codes for the four
plots in Fig. 3; what is outside the scale appears as white.

4 Do the Axisymmetric Euler Equations Admit Self-Similar
Discontinuous Solutions?

Weconsider the Euler equations (3.1a)–(3.1d) and focus on solutionswhere θ vanishes
and V exhibits discontinuities. We study weak solutions for the system (3.1a)–(3.1d)
and investigate the existence of discontinuous solutions subject to the boundary con-
ditions used before.

4.1 Discontinuous Solutions—Weak Formulation

Let ϕ ∈ C∞
c ((0,∞)). Multiplying the equations (3.1a)–(3.1d) by ϕ and integrating

by parts, we obtain

−
∫ ∞

0

(
θ2

2
+ (1 + ξ2)P

)
ϕ′(ξ)dξ = −

∫ ∞

0
ξV 2(ξ)ϕ(ξ)dξ, (4.1a)

−
∫ ∞

0

(
θ(ξ)V (ξ)

)
ϕ′(ξ)dξ = −

∫ ∞

0
U (ξ)V (ξ)ϕ(ξ)dξ, (4.1b)

−
∫ ∞

0

(
θ2 − ξ

(θ2

2

)′ + P

)
ϕ′(ξ)dξ = 0, (4.1c)

−
∫ ∞

0
θϕ′(ξ)dξ = −

∫ ∞

0
U (ξ)ϕ(ξ)dξ. (4.1d)

Definition 4.1 The function (θ, V , P)of class θ ∈ W 1,1((0,∞)),V , P ∈ BV ((0,∞))

∩ L∞((0,∞)) is a weak solution of the system (3.1a)–(3.1d) if (4.1) holds for any
ϕ ∈ C∞

c ((0,∞)).

In the definition 4.1, BV denotes the space of functions of bounded variation. This
property ensures that right and left limits of (θ, V , P) exist at any point ξ . Since θ

belongs to W 1,1((0,∞)), then θ is absolutely continuous and of bounded variation.
The derivative of θ , i.e. θ ′ = −U , exists almost everywhere and is Lebesgue integrable
on (0,∞).

Suppose (θ, V , P) is a weak solution of (3.1a)–(3.1d). Using the theory of Sobolev
spaces, Brezis (2010), Folland (2013), one may explore properties of system (4.1).
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Recalling that θ and as a consequence θ2 are absolutely continuous, we get that

θ2 + ξ
(

θ2

2

)′ ∈ L1
loc((0,∞)). Also, P ∈ L∞((0,∞)) ⊂ L1

loc((0,∞)). Then, using

(Brezis 2010, Lemma 8.1), (4.1c) implies there exists a constant A such that

θ2 − ξ
(θ2

2

)′ + P = A, (4.2)

almost everywhere (a.e). The same lemma applied to (4.1a), (4.1b) and (4.1d) as
follows. Using (Brezis 2010, Lemma 8.2) we rewrite (4.1a), (4.1b) and (4.1d) in the
form

−
∫ ∞

0

(
θ2

2
+ (1 + ξ2)P +

∫ ξ

0
ζ V 2(ζ )dζ

)
ϕ′(ξ)dξ = 0. (4.3a)

−
∫ ∞

0

(
θ(ξ)V (ξ) +

∫ ξ

0
U (ζ )V (ζ )dζ

)
ϕ′(ξ)dξ = 0. (4.3b)

−
∫ ∞

0

(
θ +

∫ ξ

0
U (ζ )dζ

)
ϕ′(ξ)dξ = 0 , (4.3c)

whereϕ ∈ C∞
c

(
(0,∞)

)
. The integrals

∫ ξ

0 ζ V 2(ζ )dζ ,
∫ ξ

0 U (ζ )V (ζ )dζ and
∫ ξ

0 U (ζ )dζ
for U = −θ ′ ∈ L1 are well-defined. Using (Brezis 2010, Lemma 8.1), there are
constants B, C and D such that

θ2

2
+ (1 + ξ2)P +

∫ ξ

0
ζ V 2(ζ )dζ = B a.e., (4.4a)

θ(ξ)V (ξ) +
∫ ξ

0
U (ζ )V (ζ )dζ = C a.e., (4.4b)

θ(ξ) +
∫ ξ

0
U (ζ )dζ = D a.e.. (4.4c)

Letting ξ → a− and ξ → b+ for 0 < a < b < ∞ in (4.2) we obtain

(
θ2 − ξ

(θ2

2

)′ + P
)∣∣∣∣

ξ=b+

ξ=a−
= 0.

This is combined with similar limits in (4.4a)–(4.4c) to conclude that (θ, V , P) a weak
solution of (3.1a)–(3.1c) satisfies for a < b

(
θ2(ξ)

2
+ (1 + ξ2)P(ξ)

)∣∣∣∣
b+

a−
= −

∫ b

a
ζ V 2(ζ )dζ, (4.5a)

(
θ(ξ)V (ξ)

)∣∣∣∣
b+

a−
= −

∫ b

a
U (ξ)V (ξ)dξ, (4.5b)

123



86 Page 18 of 62 Journal of Nonlinear Science (2024) 34 :86

(
θ2 − ξ

(θ2

2

)′ + P(ξ)

)∣∣∣∣
b+

a−
= 0, (4.5c)

θ(ξ)

∣∣∣
b+

a− = −
∫ b

a
U (ξ)dξ, (4.5d)

Jump Discontinuities

Let (θ, V , P) be a weak solution of (3.1a)–(3.1d) defined by Definition 4.1. Utilizing
(4.5), we will compute the Rankine-Hugoniot jump conditions associated with the
system. Suppose there exists a discontinuity at some point ξ = σ , 0 < σ < ∞ as in
Fig. 4. Letting a, b → σ , (4.5) reduces to

1

2

(
θ2+ − θ2−

)
+ (1 + σ 2)

(
P+ − P−

)
= 0, (4.6a)

θ+V+ − θ−V− = 0, (4.6b)
(

θ2+ − σ
(θ2+
2

)′ −
(
θ2− − σ

(θ2−
2

)′))+
(

P+ − P−
)

= 0, (4.6c)

θ+ − θ− = 0, (4.6d)

where θ± = θ(σ±), V± = V (σ±) and P± = P(σ±) denote the one-sided limits
at ξ = σ . Note that all one-sided limits exist and are finite since (θ, V , P) are of
bounded variation.

The last equation in (4.6) implies that θ must be continuous for any ξ ∈ (0,∞),
that is to say

θ− = θ+,

and thus, (4.6a)–(4.6c) provide the Rankine-Hugoniot jump conditions

�P� = 0, (4.7a)

�θV � = 0, (4.7b)

�θ θ ′� = 0, (4.7c)

where �F� = F+ − F− is the jump operator. It is easy to see that P(ξ) must also
be continuous for any ξ ∈ (0,∞). On the other hand, for θ(σ ) = 0 (4.7) implies
that V (ξ) and θ ′(ξ) have a jump discontinuity at ξ = σ . (The case where θ(σ ) �= 0
implies that V is continuous and leads to solutions described in Section 3.)

4.1.1 Nonexistence of Discontinuous Solutions

Consider (θ, V , P) a weak solution of (3.1a)–(3.1c) given by definition (4.1) with a
discontinuity at a fixed point ξ = σ , σ ∈ (0,∞). Recall that θ ′ and V may exhibit
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Fig. 4 Domain of solutions with
discontinuity

z

ξ → ∞

r

ξ = σ

θ−(σ) = 0

θ+(σ) = 0

ξ = 0

discontinuities, it suggests looking for solutions in the form

θ(ξ) =
{

θ−(ξ),

θ+(ξ)
and V (ξ) =

{
V−(ξ), ξ ∈ (0, σ )

V+(ξ), ξ ∈ (σ,∞)

We solve the system (3.1a)–(3.1c) on (0, σ ) and (σ,∞) independently. Similar calcu-
lations to those described in Sect. 3 lead again to a solution θ in form (3.4a) on each
domain. Note that V (ξ) is again a constant function with V− and V+ constants. Since
discontinuous solutions occur when θ(σ ) = 0, the relation for θ becomes

θ2±
2

= k±
(

φ(ξ) − φ(σ)

)
+
(

k± − V 2±
2

− 2A± + E±
)(

ξ2 − σ 2). (4.8)

where k±, A± and E± are integration constants. We next impose the boundary con-
ditions (3.6), that is

θ−(0) = 0 and θ ′+(ξ) → 0 as ξ → ∞,

which imply

k− − V 2−
2

− 2A− + E− = −k−
1

σ 2 φ(σ), (4.9)

k+ − V+2

2
− 2A+ + E+ = 0. (4.10)

The derivation of (4.9) is direct. To derive relation (4.10), observe that (4.8) yields

θ ′+ = 1

θ

[
k+φ′(ξ) + 2

(
k+ − V 2+

2
− 2A+ + E+

)
ξ

]
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=
k+ φ′(ξ)

ξ
+ 2

(
k+ − V 2+

2 − 2A+ + E+
)

±
√
2k+ φ(ξ)−φ(σ)

ξ2
+ 2

(
k+ − V 2+

2 − 2A+ + E+
)

ξ2−σ 2

ξ2

ξ→∞−−−→ ±
√
2

(
k+ − V 2+

2
− 2A+ + E+

)
,

Therefore, as ξ → ∞

θ ′(∞) = 0 = k+ − V+2

2
− 2A+ + E+,

provides (4.10). Substituting now (4.9)–(4.10) into (4.8),we obtain the explicit formula

θ2

2
(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−
[
φ(ξ) − φ(σ) − ξ2 − σ 2

σ 2 φ(σ)

]
, ξ ∈ (0, σ )

k+
[
φ(ξ) − φ(σ)

]
, ξ ∈ (σ,∞)

(4.11)

From (3.4) and (4.11), we then derive an explicit family of discontinuous solutions
depending on parameters V±, E± and σ

U =

⎧⎪⎪⎨
⎪⎪⎩

k−
θ−

[
2φ(σ)

σ 2 ξ − φ′(ξ)

]

− k+
θ+

φ′(ξ)

W =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k−
θ−

ξ√
1 + ξ2

, ξ ∈ (0, σ )

k+
θ+

[
ξ√

1 + ξ2
− 2φ(σ)

]
, ξ ∈ (σ,∞)

(4.12a)

V =
{

V−
V+

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E− − k−
ξ√

1 + ξ2
, ξ ∈ (0, σ )

E+ − k+
(

ξ√
1 + ξ2

− 2φ(σ)

)
, ξ ∈ (σ,∞)

(4.12b)

where E− = k−
(
1+ φ(σ)

σ 2

)− V 2−
2 and E+ = k+(1−2φ(σ))− V 2+

2 . Although solutions
U (ξ) and W (ξ) tend to infinity near the discontinuity at ξ = σ , they achieve the
required regularity in definition (4.1). In particular, examining the denominator yields
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U (ξ) ∼ W (ξ) ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k−
θ−

∼
√√√√ k−(

φ(ξ) − φ(σ)
)

− φ(σ)

σ 2

(
ξ2 − σ 2

) ∼
√

k−√|ξ − σ | , as ξ → σ−

k+
θ+

∼
√√√√ k+(

φ(ξ) − φ(σ)
) ∼

√
k+√|ξ − σ | , as ξ → σ+

and therefore the singularities ξ = σ are integrable, i.e. U , W ∈ L1
loc((0,∞)). Anal-

ysis of these singularities leads to the following theorem.

Theorem 4.2 Let (θ, V , P) be a weak solution of (3.1a)–(3.1c) of class θ ∈
W 1,1((0,∞)), V , P ∈ BV ((0,∞))∩ L∞((0,∞)) which satisfies the boundary con-
ditions

V (0+) = V0, P(0+) = E0, θ(0) = 0, θ ′(∞) = 0.

There does not exist a solution (θ, V , P) with a discontinuity at a single point that
fulfils jump conditions (4.7).

Proof Suppose there exists a weak solution θ given by (4.11) that satisfies jump con-
ditions (4.7). Consider the condition (4.7c) applied to (4.11), namely

θ+(σ )θ ′+(σ ) = θ−(σ )θ ′−(σ ).

It provides a constraint on the constants k+, k−

k+
k−

= 1 − 2
φ(σ)

σ φ′(σ )
< 0, (4.13)

which implies that k+ and k− must have different signs. The derivation of (4.13) is
direct.

Next, we determine the signs of k+, k−. Since θ2(ξ) > 0 for ξ �= σ , relation (4.11)
imposes restrictions on the signs of k+, k−. Recall Lemma (3.1), the relation (4.11)
implies that k+ > 0. To find the sign of k−, set

J (ξ) = φ(ξ) − φ(σ) − φ(σ)

σ 2 (ξ2 − σ 2), (4.14)

for ξ ∈ (0, σ ) and observe that J (0) = J (σ ) = 0 and J ′′ < 0. Hence J (ξ) > 0 for
ξ ∈ (0, σ ) and k− > 0. This contradicts with (4.13), and thus, there does not exist a
discontinuous solution (θ, V , P) that fulfils the jump conditions (4.7). ��

4.1.2 Nonexistence of Multiple Discontinuities

Let (θ, V , P)be aweak solution of (3.1a)–(3.1d)with discontinuities atmultiple points
ξ = σi , 0 < σi < ∞, i > 0. We consider first the case where the solution exhibits
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discontinuities at two points σ1 and σ2, σ1 < σ2. This suggests seeking solutions in
the form

θ(ξ) =

⎧⎪⎨
⎪⎩

θ1(ξ)

θ2(ξ)

θ3(ξ)

and V (ξ) =

⎧⎪⎨
⎪⎩

V1(ξ), ξ ∈ (0, σ1)

V2(ξ), ξ ∈ (σ1, σ2)

V3(ξ), ξ ∈ (σ2,∞)

.

To examine whether such solutions exist, it is sufficient to derive the solution θ by
solving system (3.1a)–(3.1c) on each domain independently. Same calculations as
those described in Sect. 3 lead to functions θ1, θ2 and θ3 of the form (3.4a), that is

θ2j

2
= k jφ(ξ) +

(
k j − V 2

j

2
− 2A j + E j

)
ξ2 +

(
E j − A j

)
, j = 1, 2, 3 (4.15)

where A j , E j , k j are integration constants. Note that V (ξ) is again a constant function
with V1, V2 and V3 constants. Recall that discontinuous solutions occur when θ(σ1) =
θ(σ2) = 0, it implies

θ1(σ1) = θ2(σ1) = θ2(σ2) = θ3(σ2) = 0,

and thus, θ takes the following form

θ2

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ21

2
= k1

[
φ(ξ) − φ(σ1) +

(
k1 − V 2

1

2
− 2A1 + E1

)
(ξ2 − σ 2

1 )

]
, ξ ∈ (0, σ1)

θ22

2
= k2

[
φ(ξ) − φ(σ1) − φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

(ξ2 − σ 2
1 )

]
, ξ ∈ (σ1, σ2)

θ23

2
= k3

[
φ(ξ) − φ(σ2) +

(
k3 − V 2

3

2
− 2A3 + E3

)
(ξ2 − σ 2

2 )

]
, ξ ∈ (σ2, ∞)

(4.16)

Imposing now the boundary conditions (3.6) into (4.16) yields the explicit formula
of discontinuous solution θ

θ2

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1

[
φ(ξ) − φ(σ1) − ξ2 − σ 2

1

σ 2
1

φ(σ1)

]
, ξ ∈ (0, σ1)

k2

[
φ(ξ) − φ(σ1) − φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

(ξ2 − σ 2
1 )

]
, ξ ∈ (σ1, σ2)

k3

[
φ(ξ) − φ(σ2)

]
, ξ ∈ (σ2,∞)

(4.17)

Note that functions θ1 and θ3 have the same form as θ− and θ+ in (4.11) for σ = σ1
and σ = σ2, respectively. Likewise k− and k+, we conclude that k1 > 0 and k3 > 0
using the same reasoning. To define the sign of k2 in the remaining case, we consider
the following lemma.
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Lemma 4.3 Let ξ ∈ (σ1, σ2). Then,

J (ξ) = φ(ξ) − φ(σ1) − φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

(ξ2 − σ 2
1 ) > 0. (4.18)

Proof For ξ ∈ (σ1, σ2), set

J (ξ) = φ(ξ) − φ(σ1) − φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

(ξ2 − σ 2
1 ) = (ξ2 − σ 2

1 )
[

F(ξ) − F(σ2)
]
,

where F(ξ) = φ(ξ)−φ(σ1)

ξ2−σ 2
1

. From the mean value theorem, observe

F ′(ξ) = 1

ξ2 − σ 2
1

[
φ′(ξ) − 2ξ

ξ + σ1

φ(ξ) − φ(σ1)

ξ − σ1

]
= 1

ξ2 − σ 2
1

[
φ′(ξ) − 2ξ

ξ + σ1
φ′(c)

]
,

where c ∈ (σ1, ξ). Recall Lemma (3.1), the concavity of φ implies that F is decreasing

F ′(ξ) ≤ φ′(c)
ξ2 − σ 2

1

[
1 − 2ξ

ξ + σ1

]
< 0.

Hence, we get

[
F(ξ) − F(σ2)

]
> 0, ξ ∈ (σ1, σ2),

which completes the proof. ��
Lemma (4.3) implies that k2 > 0. Considering the signs of constants k1, k2 and k3,

we proceed to the main theorem about the nonexistence of solutions with discontinu-
ities at two points.

Theorem 4.4 Let (θ, V , P) be a weak solution of (3.1a)–(3.1c) of class θ ∈
W 1,1((0,∞)), V ∈ BV ((0,∞))∩ L∞((0,∞)) and P ∈ BV ((0,∞))∩ L∞((0,∞))

which satisfies the boundary conditions

V (0+) = V0, P(0+) = E0, θ(0) = 0, θ ′(∞) = 0.

There does not exist a solution (θ, V , P) with discontinuities at two points that satisfies
jump conditions (4.7).

Proof Suppose there exists a weak solution θ given by (4.17) that satisfies jump con-
ditions (4.7) on both discontinuity points σ1 and σ2. Consider first the condition (4.7c)
applied to (4.17) at ξ = σ1. That is,

θ1(σ1)θ
′
1(σ1) = θ2(σ1)θ

′
2(σ1).
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This yields a constrain on constants k1, k2

k1
k2

= −
√
1 + σ 2

1

(
1 − 2

φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

σ1

φ′(σ1)

)
φ′(σ1). (4.19)

Note that φ′(σ1) − 2φ(σ1)
σ1

= − 1√
1+σ 2

1

.

Since k1 > 0 and k2 > 0, the relation (4.19) holds if and only if

1 − 2
φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

σ1

φ′(σ1)
< 0. (4.20)

Using the mean value theorem, one may rewrite (4.20) as

0 > 1 − 2
φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

σ1

φ′(σ1)
= 1 − 2σ1

σ2 + σ1

φ(σ2) − φ(σ1)

σ2 − σ1

1

φ′(σ1)

= 1 − 2σ1
σ2 + σ1

φ′(c)
φ′(σ1)

(4.21)

for c ∈ (σ1, σ2). Recall φ(ξ) is concave, it implies that φ′(σ1) > φ′(c) and

1 − 2σ1
σ2 + σ1

φ′(c)
φ′(σ1)

>
σ2 − σ1

σ2 + σ1
> 0,

which contradicts (4.21). Hence, the jump condition (4.7c) is not satisfied at ξ = σ1.
Next, we consider the condition (4.7c) applied to (4.17) at ξ = σ2. That is,

θ3(σ2)θ
′
3(σ2) = θ2(σ2)θ

′
2(σ2).

This provides a restriction on constants k2, k3

k3
k2

= 1 − 2
φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

σ2

φ′(σ2)
. (4.22)

Since k2 > 0 and k3 > 0, the relation (4.22) holds if and only if

1 − 2
φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

σ2

φ′(σ2)
> 0.

From the mean value theorem, we obtain

0 < 1 − 2
φ(σ2) − φ(σ1)

σ 2
2 − σ 2

1

σ2

φ′(σ2)
= 1 − 2σ2

σ2 + σ1

φ′(c)
φ′(σ2)

,

for some c ∈ (σ1, σ2). The concavity of φ leads again to a contradiction. Therefore,
there does not exist a discontinuous solution (θ, V , P) with discontinuities at two
points that satisfies the jump conditions (4.7). ��
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Recall Theorems 4.2 and 4.4, we observe that jump condition (4.7c) is not satisfied
neither near the boundary nor across the vortex line, despite the existence of an inter-
mediate region. Therefore, a similar outcome will also be obtained if a finite number
of intermediate layers are considered. This leads to the following corollary.

Corollary 4.5 Let (θ, V , P) be a weak solution of (3.1a)–(3.1c) of class θ ∈
W 1,1((0,∞)), V ∈ BV ((0,∞))∩ L∞((0,∞)) and P ∈ BV ((0,∞))∩ L∞((0,∞))

which satisfies the boundary conditions

V (0+) = V0, P(0+) = E0, θ(0) = 0, θ ′(∞) = 0.

There does not exist a solution (θ, V , P) with discontinuities at a finite number of
points that fulfils the jump conditions (4.7).

4.2 Interaction of Vortex with Boundary

Motivated by the study of Euler equations presented in the previous sections, we are
interested in extending it to a class of flows where there is mass input or loss through
the vortex line. In other words, we assume that the vortex line can be either a source
or a sink of the fluid motion. Since that the vortex line resembles the tornado core,
this assumption is not unnatural for a tornado-like flow. In terms of the self-similar
functions (2.10), the assumption leads to

U (ξ) → U∞ as ξ → ∞,

or in terms of θ

θ ′(ξ) → −U∞ as ξ → ∞, (4.23)

where U∞ is a nonzero constant.

4.2.1 Continuous Solutions

Consider first the case where solutions are continuous. Same calculations as those
described in Sect. 3 lead again to solutions in form (3.4). The boundary condition
(4.23) on the vortex line applied to (3.4a) yields

1

2
U 2∞ = k0 − V 2

0

2
− 2A0 + E0. (4.24)

To derive this, note that (3.4a) implies

θ ′ = 1

θ

[
k0φ

′(ξ) + 2

(
k0 − V 2

0

2
− 2A0 + E0

)
ξ

]
ξ→∞−−−→ ±

√
2

(
k0 − V 2

0

2
− 2A0 + E0

)
.
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Thus, as ξ → ∞

θ ′(∞) = −U∞ = ±
√
2

(
k0 − V 2

0

2
− 2A0 + E0

)
.

In addition, we impose a no-penetration boundary condition at ξ = 0, i.e. θ(0) = 0.
Applying this to (3.4a) provides

A0 = E0. (4.25)

As a result the relation (4.24) reduces to

1

2
U 2∞ = k0 − V 2

0

2
− E0. (4.26)

Substituting (4.25) and (4.26) into (3.4), we obtain an explicit family solutions of
(3.1a-(3.1c)) depending on parameters U∞, V0 and E0

θ2

2
= k0φ(ξ) + 1

2
U 2∞ξ2, U = −1

θ

[
k0√
1 + ξ2

(
1 − 2φ(ξ)

)+ U 2∞ξ

]
, (4.27a)

V = V0, W = k0
θ

ξ√
1 + ξ2

, P = E0 − k0
ξ√

1 + ξ2
, (4.27b)

where

k0 = 1

2
U 2∞ + V 2

0

2
+ E0.

We next investigate the existence of discontinuous solutions in this framework.

4.2.2 Nonexistence of Discontinuous Solutions

Let (θ, V , P) be a weak solution of (3.1a)–(3.1d) with a discontinuity at a fixed point
ξ = σ , σ ∈ (0,∞), which satisfies the boundary condition (4.23). This suggests
seeking solutions in the form

θ(ξ) =
{

θ−(ξ),

θ+(ξ)
and V (ξ) =

{
V−(ξ), ξ ∈ (0, σ )

V+(ξ), ξ ∈ (σ,∞)

Repeating calculations described in Sect. 3, we obtain again solutions in form (3.4a)
on (0, σ ) and (σ,∞), respectively. The system (3.1a)–(3.1c) is solved on each domain
independently. Note that V (ξ) is again a constant function with V− and V+ constants.
Recall that discontinuous solutions occur when θ(σ ) = 0, the relation for θ becomes

θ2±
2

= k±
(

φ(ξ) − φ(σ)

)
+
(

k± − V 2±
2

− 2A± + E±
)(

ξ2 − σ 2). (4.28)
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where k±, A± and E± are integration constants.
We impose a no-penetration boundary condition at the boundary and the condition

(4.23) at the vortex line, namely

θ−(0) = 0, and θ ′+(ξ) → −U∞ as ξ → ∞,

which imply

k− − V 2−
2

− 2A− + E− = −k−
1

σ 2 , (4.29)

k+ − V 2+
2

− 2A+ + E+ = 1

2
U 2∞. (4.30)

To derive (4.30), note that (4.28) provides

θ ′+
ξ→∞−−−→ ±

√
2

(
k+ − V 2+

2
− 2A+ + E+

)
,

and thus,

θ ′+(∞) = −U∞ = ±
√
2

(
k+ − V 2+

2
− 2A+ + E+

)
.

Substituting (4.29) and (4.30) into (4.28), we obtain the explicit formula

θ2

2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

k−
[
φ(ξ) − φ(σ) − ξ2 − σ 2

σ 2 φ(σ)

]
, ξ ∈ (0, σ )

k+
[
φ(ξ) − φ(σ)

]
+ 1

2
U 2∞(ξ2 − σ 2), ξ ∈ (σ,∞)

(4.31)

where k+, k− are constants. From (3.4) and (4.31), onemayderive the explicit formulas
of discontinuous solutions U , W and P .

Examining now whether discontinuous solutions in the form (4.31) are feasible
leads to the following theorem.

Theorem 4.6 Let (θ, V , P) be a weak solution of (3.1a)–(3.1c) of class θ ∈
W 1,1((0,∞)), V ∈ BV ((0,∞))∩ L∞((0,∞)) and P ∈ BV ((0,∞))∩ L∞((0,∞))

which satisfies the boundary conditions

V (0+) = V0, P(0+) = E0, θ(0) = 0, θ ′(∞) = U∞.

There does not exist a solution (θ, V , P) with a discontinuity at a single point that
fulfils jump conditions (4.7).
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Proof Suppose θ is a weak solution given by (4.31) that satisfies jump conditions (4.7).
Then (4.7c) applied to (4.31) provides a constraint between the constants k+, k− and
the parameter U 2∞,

−k+φ′(σ ) = k−
(
2
φ(σ)

σ
− φ′(σ )

)
+ U 2∞σ. (4.32)

Using (3.9) we compute 2φ(σ)
σ

− φ′(σ ) = 1√
1+σ 2 > 0.

Since θ2(ξ) > 0 for ξ �= σ , relation (4.31) imposes restrictions on the signs of

k+, k−. First, observe that
θ2−
2 (ξ) = k− J (ξ) where J (ξ) is given by (4.14). Since

J (ξ) > 0 for ξ ∈ (0, σ ), it implies that k− > 0.
If it were k+ > 0 this would contradict (4.32). Consider now the possibility that

the constants are k− > 0, k+ < 0. Then (4.31) dictates that

k+
φ(ξ) − φ(σ)

ξ − σ
+ 1

2
U 2∞(ξ + σ) > 0 for ξ > σ.

The latter implies, as ξ → σ+,

k+φ′(σ ) + U 2∞σ ≥ 0

and contradicts via (4.32) that k− > 0. Hence, there does not exist a discontinuous
solution (θ, V , P) that fulfils the jump conditions (4.7). ��

5 Stationary Self-Similar Axisymmetric Navier–Stokes Equations

In this section we study self-similar solutions for the stationary axisymmetric Navier–
Stokes equations (1.1). The ansatz (2.10) leads to the system (2.14) in the variables
(θ, V , P), where the velocities (U , W ) are determined from the stream function θ

via (2.13). We first provide a convenient reformulation of (2.14) as a coupled inte-
grodifferential system and then study the limiting behaviour as the viscosity ν → 0,
the form of the boundary layer, and identify conditions on admissible solutions of the
Euler equations.

5.1 Formulation via an Integrodifferential System

The system (2.14) for ν > 0 gives after an integration

θ2

2
+ (1 + ξ2)P = ν

[
ξθ − (1 + ξ2)θ ′]−

∫ ξ

0
sV 2 ds + A0 , (5.1a)

θ2 − ξ
(θ2

2

)′ + P = ν
[
ξθ − ξ2θ ′ − ξ(1 + ξ2)θ ′′]+ E0, (5.1b)

where A0, E0 are integration constants.
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We impose a no-slip boundary condition �u = 0 at the boundary z = 0, which
implies u = v = w = 0 at z = 0. Expressed in terms of self-similar functions it
yields

U (0) = V (0) = W (0) = 0, and thus θ(0) = θ ′(0) = 0. (5.2)

We also require that nomass is added or lost through the vortex line, that is at the height
z the mass flux per unit height

∫ 2π
0 u(r , θ, z) rdθ → 0 as r → 0. In the self-similar,

stationary setting (2.10) the condition at the vortex core becomes

U = −θ ′ → 0 as ξ → ∞. (5.3)

Since (2.14b) is second order, an additional condition is required for V (ξ). We request
the vortex line to have constant swirl:

V → V∞, as ξ → ∞. (5.4)

Then (5.2) togetherwith (5.1a) and (5.1b) imply that E0 = A0 = P(0). Eliminating
P from (5.1a) and (5.1b) gives

ξ(1 + ξ2)
(θ2

2

)′ − (1 + 2ξ2)
θ2

2
+ ν

[
ξ3θ + (1 − ξ4)θ ′ − ξ(1 + ξ2)2θ ′′

]

= −
∫ ξ

0
sV 2 ds − E0ξ

2.

Upon dividing by ξ2(1 + ξ2)
3
2 and using the calculus identities

d

dξ

1

ξ(1 + ξ2)
1
2

= − 1 + 2ξ2

ξ2(1 + ξ2)
3
2

d

dξ

(1 + ξ2)
1
2

ξ
= − 1

ξ2(1 + ξ2)
1
2

(5.5)

d

dξ

1

(1 + ξ2)
1
2

= − ξ

(1 + ξ2)
3
2

d

dξ

( 1

ξ
√
1 + ξ2

(
ξ +√

1 + ξ2
)2
)

= − 1

ξ2(1 + ξ2)
3
2

(5.6)

we obtain after some rearrangements the equation

d

dξ

(
1

ξ
√
1 + ξ2

θ2

2
− ν

[ 1√
1 + ξ2

θ +
√
1 + ξ2

ξ
θ ′]
)

= − 1

ξ2(1 + ξ2)
3
2

∫ ξ

0
sV 2 ds

− d

dξ

( E0ξ

(1 + ξ2)
1
2

)
. (5.7)

123



86 Page 30 of 62 Journal of Nonlinear Science (2024) 34 :86

Using the boundary condition (5.3), θ ′(∞) = 0, which also implies that
limξ→∞ θ(ξ)

ξ
= 0, we integrate (5.7) over the interval (ξ,∞) to obtain

θ2

2
− ν

(
1 + ξ2)θ ′ + ξθ

)
= ξ(1 + ξ2)

1
2

∫ ∞

ξ

1

ζ 2(1 + ζ 2)
3
2

(∫ ζ

0
sV 2(s)ds

)
dζ

+ E0

(
ξ(1 + ξ2)

1
2 − ξ2

)
.

The latter is an integrodifferential equation depending on G(V ; ξ) a functional on V ,

G (V ; ξ) := ξ
√
1 + ξ2

∫ ∞

ξ

1

ζ 2(1 + ζ 2)
3
2

(∫ ζ

0
sV 2(s)ds

)
dζ

= ξ
√
1 + ξ2

∫ ∞

ξ

1

s
√
1 + s2

(
s + √

1 + s2
)2 sV 2ds

+ 1

(ξ +√
1 + ξ2)2

∫ ξ

0
sV 2ds,

(5.8)

where the last equality follows via integration by parts using (5.6).
In summary, the system (2.14) with boundary conditions (5.2)–(5.4) is transformed

to a coupled integrodifferential system for (θ, V ),

θ2

2
− ν

[
(1 + ξ2)θ ′ + ξθ

]
= G (V ; ξ) + E0φ(ξ) (5.9a)

ν(1 + ξ2)V ′′ +
(
3νξ − θ

)
V ′ = 0 , (5.9b)

where G(V ; ξ) is the functional in (5.8) and φ(ξ) the function in (3.9) that played a
prominent role in the Euler equations. The system is supplemented with the boundary
conditions

θ(0) = V (0) = 0, at ξ = 0 , (5.10a)

V → V∞, as ξ → ∞. (5.10b)

and satisfies θ ′(0) = θ ′(∞) = 0. The parameter E0 = P(0) reflects on the pressure
p = 1

r2
P(ξ) and P may be computed by (5.1b).

5.2 Alternative Equivalent Formulations

Next, we derive two more equivalent formulations of the system (5.9) with simpler
structure. This will benefit the analysis and provides a different perspective on the
problem.

First we set

θ̂ (ξ ) =
√
1 + ξ2 θ(ξ) and V̂ (ξ) = V (ξ), ξ ∈ [0,∞), (5.11)
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Fig. 5 Coordinate System

z0

z

r

A = (r0, z0)

ϕ

r0

x

1

and obtain

θ̂2

2
− ν(1 + ξ2)

3
2 θ̂ ′ = (1 + ξ2)

(
G(V̂ (ξ); ξ

)+ E0φ(ξ)
)
, (5.12a)

ν
(
(1 + ξ2)

3
2 V̂ ′)′ = θ̂ V̂ ′, (5.12b)

with boundary conditions (5.10).
An alternative form of (5.9) is derived by introducing a change of variable ξ → x

such that d
dx = (1 + ξ2)

3
2 d
dξ . This is achieved by defining x by

x = ξ√
1 + ξ2

with inverse transformation ξ = x√
1 − x2

. (5.13)

The change of variables ξ → x is a surjective map T : [0,∞) → [0, 1) and has an
interpretation as a change from cylindrical (r , ϑ, z) to spherical (ρ, ϑ, ϕ) coordinates,
see Fig. 5. Since ξ = z

r , it follows ξ = cosϕ
sin ϕ

= cot ϕ and setting x = cosϕ yields

ξ = cosϕ

sin ϕ
= x√

1 − x2
. (5.14)

The functions θ̂ (ξ ) and V̂ (ξ) are expressed in terms of the variable x as follows

	(x) = θ̂ (ξ ) and V (x) = V̂ (ξ), (5.15)

where ξ, x are related via (5.13).
Using the transformation (5.13), (5.15), the system (5.9) reduces to the equivalent

form

ν
d	

dx
= 	2(x)

2
− F (V ; x) , (5.16a)

ν
d2V

d2x
= 	(x)

dV

dx
, (5.16b)
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	(0) = V (0) = 0, (5.16c)

V → V∞, as x → 1, (5.16d)

where F is

F (V ; x) := (1 + ξ2)
(
G(V̂ (ξ); ξ

)+ E0φ(ξ)
)∣∣∣∣

ξ= x√
1−x2

= x

(1 − x2)2

∫ 1

x

1 − t2

t2

(∫ t√
1−t2

0
sV̂ 2(s)ds

)
dt + E0

x − x2

(1 − x2)2

= x

(1 − x2)2

[ ∫ 1

x

1 − t2

t2

(∫ t

0

σ

(1 − σ 2)2
V 2(σ )dσ

)
dt + E0 (1 − x)

]

= 1

(1 − x2)2

[
x
∫ 1

x

1

(t + 1)2
V 2(t)dt

+ (1 − x)2
∫ x

0

t

(1 − t2)2
V 2(t)dt + E0 x(1 − x)

]
(5.17)

The first expression in (5.17) is the definition ofF (V ; x), and the remaining equalities
are obtained using (3.9), (5.8), the change of variables ξ = x√

1−x2
and the formula

V (x) = V̂
(

x√
1−x2

)
connecting V (x) defined on [0, 1) with V̂ (ξ) defined on [0,∞).

Variants of (5.16) appear in Goldshtik (1960), Serrin (1972), Shtern and Hussain
(1999), Fernandez-Feria and Arrese (2000), Bělík et al. (2014) originating from dif-
ferent authors who initiate their studies by considering either spherical or cylindrical
coordinates. Serrin (1972) provided a detailed analysis of existence of solutions for
(5.16) and a (indicative) bifurcation diagram for solutions. We refer to Sect. 7 for
numerical computations leading to a computational bifurcation diagram, see Fig. 11.
As 	 satisfies a Riccati-type equation, there are regions of ν for which 	(x) blows
up for x ∈ [0, 1) leading to nonexistence of solutions for such ν. This is explained in
the following section.

5.3 Properties and A Priori Estimates

In the sequel we are interested in the limit ν → 0 and the convergence of (5.16) to
solutions of the Euler equations. To fix ideas we restrict to the case V∞ > 0. Then
(5.16b), (5.16d) imply that V (x) is strictly increasing and yields the representation
formula

V (x) = V∞
∫ x
0 e

1
ν

∫ t
0 	(s)dsdt

∫ 1
0 e

1
ν

∫ t
0 	(s)dsdt

(5.18)

leading to the following lemma.
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Lemma 5.1 When V∞ > 0 the function V (x) is strictly increasing and satisfies 0 <

V (x) < V∞ independently of ν > 0.

We turn next to the equation (5.16a),

ν
d	

dx
= 	2(x)

2
− x

(1 − x2)2

(
H(x) + E0 (1 − x)

)
(5.19)

and proceed to establish properties for 	. The functional H(x) in (5.17) is given by

H(x) =
∫ 1

x

1 − t2

t2

(∫ t√
1−t2

0
sV̂ 2(s)ds

)
dt, (5.20)

here expressed in terms of the velocity V̂ (ξ) defined on (0,∞). The derivatives of
H(x) are

dH

dx
(x) = −1 − x2

x2

∫ x√
1−x2

0
sV̂ 2(s)ds < 0, x ∈ [0, 1), (5.21)

d2H

dx2
(x) = − 2

x3

∫ x√
1−x2

0
sV̂ (s)

dV̂

ds
(s)ds < 0, x ∈ [0, 1), (5.22)

and H(x) satisfies

0 < H(0) =
∫ 1

0

1 − t2

t2

(∫ t√
1−t2

0
sV̂ 2(s)ds

)
dt <

V 2∞
2

, (5.23)

H(1) = 0, limx→0
dH
dx = 0 and limx→0

d2 H
dx2

= 0. Hence, H(x) is decreasing and
concave. A sketch of H(x) is presented in Fig. 6. If we define

dH

dx
(1) = − lim

ξ→∞
1

ξ2

∫ ξ

0
sV̂ 2(s)ds =: −β < 0 (5.24)

we observe that due to the concavity of H(x) we have the bounds

H(0)(1 − x) ≤ H(x) ≤ β(1 − x) x ∈ [0, 1] (5.25)

with H(0), β defined in (5.23), (5.24) and satisfying H(0) < β.
As a consequence, the function F = H + E0(1 − x) in the Riccati-type equation

(5.19) obeys the bounds

(H(0) + E0)(1 − x) ≤ F(x) = H(x) + E0(1 − x) ≤ (β + E0)(1 − x) (5.26)

and resembles one of the following configurations, see Fig. 7:

(a) F in negative on [0, 1], which occurs when β + E0 < 0.
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Fig. 6 H(x) H(x)

x

H(0)

1

β

F

x

F (0) = H(0) + E0 < 0

1

(a)

F

x

F (0) < 0

1x1

(b)

F

x

F (0) > 0

1

(c)

Fig. 7 Possible configuration of function F

(b) F is first negative, it becomes zero at a point 0 < x1 < 1 and then F is positive.
This occurs when H(0) + E0 < 0 < β + E0.

(c) F in positive for [0, 1), occurring when 0 < H(0) + E0.

This restricts considerably the possible shapes of 	. A computation using (5.19)
gives

ν
d2	

dx2
(0) = −(H(0) + E0) = −F(0).

Since 	(0) = d	
dx (0) = 0 the value of F(0) determines in which half-plane 	(x)

initially starts. Consider first the case where F(0) = H(0)+ E0 > 0. Then F(x) > 0
for all x ∈ (0, 1), that is the setting of case (c), illustrated in Fig. 7c. 	(x) starts in the
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lower half-plane. If it crosses the x-axis at some point x1 < 1, then

0 ≤ ν
d	

dx
(x1) = − x1

(1 − x21 )
2

F(x1)

contradicting F(x) > 0. Therefore, when H(0)+ E0 > 0, the function	(x) remains
negative for all x ∈ (0, 1).

Next, consider the case H(0) + E0 < 0 which corresponds to the cases (a) or (b).
We now have

ν
d2	

dx2
(0) = −

(
H(0) + E0

)
> 0

and 	(x) starts at the upper half-plane. If 	 crosses the x-axis at some point x1 < 1
then

0 ≥ ν
d	

dx
(x1) = − x1

(1 − x21 )
2

F(x1). (5.27)

It is possible to cross going downwards, but it is not possible to cross a second time
going upwards again.We conclude that when case (b) happens, then	(x) can possibly
cross the axis, but it cannot cross a second time. By contrast when case (a) happens,
(5.27) contradicts F(x) < 0, x ∈ (0, 1), i.e.	(x) cannot cross the axis. In this regime,
the differential inequality

ν
d2	

dx2
>

1

2
	2, x ∈ [0, 1)

implies that the solution 	(x) blows up in finite time, and if ν is sufficiently small,
this will happen within the interval [0, 1].

Summarizing there are the following possibilities: When F(x) > 0 as in Fig. 7c
then 	(x) < 0; when F(x) < 0 as in Fig. 7a then 	(x) > 0. When F(x) changes
sign as in Fig. 7b, then 	 starts at the upper half-plane, and either 	 stays there
afterwards or itmight cross to the lower half-plane.Accordingly, there are the following
configurations: Either 	(x) < 0 which is called Zone A; or it starts with 	(x) > 0
but crosses to the negative half-plane and stays there thereafter, called Zone B, or it
starts and stays 	(x) > 0, called Zone C. In Zone C, the solution 	 lies in the upper
half-plane, and if ν is sufficiently small, it will blow up before reaching x = 1.

A-priori estimates for 	(x) are derived below.

Lemma 5.2 (i) If E0 > 0, then

	(x) < 0, 0 < x < 1

(ii) If β + E0 > 0, with β defined in (5.24), then

	(x) > −√2(β + E0)

√
x − x2

1 − x2
, 0 < x < 1.
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Proof Note that	(0) = d	
dx (0) = 0 and d2	

dx2
(0) = − H(0)+E0

ν
< 0 since H(0)+E0 >

0. If the solution crosses to the upper half-plane, there exists x1 ∈ (0, 1) such that
	(x1) = 0, d	

dx (x1) > 0 and

ν
d	

dx
(x1) = 	2(x1)

2
− x1

(1 − x21 )
2

[
H(x1) + E0 (1 − x1)

]

This contradicts H(x1) > 0 and E0 > 0. Hence,	 remains negative for all x ∈ (0, 1).

Let now E0 + β > 0 and set K = 2( E0 + β), α(x) =
√

x−x2

1−x2
. Then (5.19) and

(5.26) imply

ν
d	

dx
= 	2(x)

2
− x

(1 − x2)2

[
H (x) + E0 (1 − x)

]
,

≥ 	2(x)

2
− 1

2
K

x(1 − x)

(1 − x2)2

= 1

2

(
	2(x) − K α2(x)

)
(5.28)

Consider now the quantity Z(x):=	(x)+√
K α(x) and note that α(x) > 0,

dα

dx
> 0.

Using (5.28), we obtain

ν
dZ

dx
>

1

2

(
	 − √

K α(x)
)

Z(x).

Since Z(0) = 	(0) + √
K α(0) = 0, we conclude that Z(x) > 0. ��

When the bounds of Lemma 5.2 hold, the solution 	 of (5.19) cannot blow up in
(0, 1). The hypothesis β + E0 > 0, and thus, item (ii) of Lemma 5.2 is of theoretical
interest, as the parameter β cannot be a-priori determined. Nevertheless, using the
bound H(x) < 1

2V 2∞, we can prove a variant of (ii) providing a bound from below.

Corollary 5.3 If E0 + 1
2V 2∞ > 0 then

	(x) > −
√
2E0 + V 2∞

√
x − x2

1 − x2
, 0 < x < 1.

independently of ν > 0.
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5.4 Convergence as � → 0

Let
{
(	ν, Vν)

}
ν>0 be a family of solutions of (5.16),

ν
d	ν

dx
= 1

2	
2
ν − F (Vν; x) ,

ν
d2Vν

d2x
= 	ν

dVν

dx
,

(5.29)

with ν > 0 and we are interested in the limit ν → 0. Recall that, by (5.17)3,

F(V ; x) = x

(1 − x2)2

(
H(V ; x) + E0(1 − x)

)
(5.30)

where H(V ; x) =
∫ 1

x

1 − t2

t2

∫ t

0

σ

(1 − σ 2)2
V 2(σ )dσ. (5.31)

We assume that κ := 2E0 + V 2∞ > 0 and that the family (	ν, Vν) satisfies the
uniform bound

−√
κ

√
x(1 − x)

1 − x2
< 	ν(x) < 0, for x ∈ (0, 1). (B)

The assumption κ > 0 is natural since only then solutions of stationary self-similar
axisymmetric Euler equations exist, see Sects. 3 and 4.

Regarding the uniform bounds (B): The left-hand inequality is guaranteed byCorol-
lary 5.3,while the right-hand inequality follows fromLemma5.2 in themore restrictive
range E0 > 0. The reader should note, that, as expected from numerical computations
in the parameter range κ > 0, the solution of (5.29) enters Zone A—the region that
	(x) < 0—as ν decreases and stays there. This is corroborated by the bifurcation
diagram sketched in Fig. 11.

Without loss of generality, we will examine the case V∞ > 0. Then (5.16b) implies

dVν

dx
= V∞

e
1
ν

∫ x
0 	ν(s)ds

∫ 1
0 e

1
ν

∫ t
0 	ν(s)dsdt

> 0 (5.32)

0 < Vν(x) < V∞ , x ∈ (0, 1). (5.33)

The sequence {Vν} is of bounded variation, and by Helly’s theorem it admits a con-
vergent subsequence (which will be still denoted by Vν) such that

Vν(x) → V (x) a.e x ∈ (0, 1). (5.34)

For the sequence {	ν} the uniform bound implies that for p ∈ [1, 2)
∫ 1

0
|	ν(x)|pdx ≤ C

∫ 1

0
(1 − x)−

p
2 dx =: K < ∞.
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Using weak convergence techniques (Brezis 2010), there exist a subsequence (still
denoted by 	ν) and a function 	 ∈ L p(0, 1) such that

	ν⇀	 weakly in L p(0, 1)

that is
∫

	νψdx →
∫

	ψdx for ψ ∈ L p′
(0, 1)

(5.35)

with p′ the dual exponent of p. Setting ψ(y) = χ[0,x](y), the characteristic function
of [0, x], we deduce

Gν(x) =
∫ x

0
	ν(s)ds → G(x) :=

∫ x

0
	(s) ds (5.36)

Next,we employ ideas developed in the context of zero-viscosity limits forRiemann
problems of conservation laws (Tzavaras 1994, 1996; Papadoperakis 1999). We set

πν :=d Vν

dx
= V∞

e
1
ν

Gν(x)

∫ 1
0 e

1
ν

Gν(t)dt
, (5.37)

where Gν(x) =
∫ x

0
	ν(s) ds and view {πν} as a sequence of probability measures.

By (5.37), the sequence {πν} is uniformly bounded in measures and there exists a
subsequence πν and a probability measure π such that

πν

∗
⇀ π, in measures M[0, 1]. (5.38)

Due to the correspondence between functions of bounded variations and Borel mea-
sures (Folland 2013, Sec 3.5, Sec 7.3) one sees that the distribution function of the
measure π is precisely the function V (x+) and (5.38) reflects (5.34).

We are now ready to state the first convergence theorem.

Theorem 5.4 Assume that E0 + 1
2V 2∞ > 0 and let {(	ν, Vν)}ν>0 be a family of solu-

tions satisfying the uniform bound (B). There exists a subsequence and a function
(	, V ) such that

Vν → V , a.e. x ∈ (0, 1), 	ν⇀	 wk-L p(0, 1) with 1 ≤ p < 2,

and (	, V ) satisfies

(i) either supp π = [0, a], a > 0, in which case 	 = 0 on [0, a], while V = Y (x) for
x ∈ [0, a], V = V∞ for x ∈ [a, 1] where Y (x) is some nondecreasing function;

(ii) or supp π = {0} and V = 0 for x = 0, while V = V∞ for x ∈ (0, 1].
In either case (V ,	) satisfy the differential inequality

1

2
	2(x) ≤ x

(1 − x2)2

(
H(V ; x) + E0 (1 − x)

)
(5.39)
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in the sense of distributions where H(V ; x) is given by (5.31).

Proof For any subset [0, α] ⊂ [0, 1), the Ascoli–Arzela theorem with hypothesis
(B) implies that along a subsequence Gν converges uniformly on [0, α] ⊂ [0, 1). In
particular,

Gν(x) → G(x) =
∫ x

0
	(s) ds (5.40)

uniformly on any compact [0, α] ⊂ [0, 1) and pointwise on (0, 1) as indicated in
(5.36). The limit G is continuous on [0, 1).

We proceed to study the suppπ . To this end, define

S = {x ∈ [0, 1) : G(x) = max
y∈[0,1) G(y) = 0}, (5.41)

The function G is nonincreasing, G(0) = 0, and S the set of point where G attains its
maximum.

Lemma 5.5 Let π be the weak-∗ limit of πν defined in (5.37). Then, supp π ⊂ S.

Proof Let x0 ∈ S be fixed and suppose there exists x1 ∈ [0, 1) such that x1 /∈ S. Then,

G(x1) < G(x0) = max
y∈[0,1) G(y).

Since G is nonincreasing and continuous, there exists δ > 0 such that for x ∈ [x0 −
δ, x0 + δ] and y ∈ [x1 − δ, x1 + δ]

G(y) ≤ max
z∈[x1−δ,x1+δ] G(z) < min

z∈[x0−δ,x0+δ] G(z) ≤ G(x). (5.42)

Setting dM :=maxz∈[x1−δ,x1+δ] G(z), Dm :=minz∈[x0−δ,x0+δ] G(z), we have by (5.42)
that dM < Dm and we fix η such that

0 < η <
Dm − dM

4
.

Define J = [x0 − δ, x0 + δ] ∪ [x1 − δ, x1 + δ] ⊂ [0, 1) and select δ small so that
J ⊂ [0, 1). Since Gν → G uniformly on J there exist ν0 > 0 such that for any
ν < ν0

Gν(y) ≤ G(y) + η ≤ dM + η < Dm − η ≤ G(x) − η ≤ Gν(x), (5.43)

for x ∈ [x0 − δ, x0 + δ] and y ∈ [x1 − δ, x1 + δ]. Now,

πν([x1 − δ, x1 + δ]) =
∫

[x1−δ,x1+δ]
πν(dx) = V∞

∫
[x1−δ,x1+δ] e

1
ν

Gν(t)dt
∫ 1
0 e

1
ν

Gν(t)dt
,
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≤ V∞

∫
[x1−δ,x1+δ] e

1
ν

Gν(t)dt
∫
[x0−δ,x0+δ] e

1
ν

Gν(t)dt
.

From (5.43), it follows

πν([x1 − δ, x1 + δ]) ≤ V∞ e− 1
ν
(Dm−dM−2η) → 0, as ν → 0.

Hence, π([x1 − δ, x1 + δ]) = 0 and x1 /∈ suppπ . ��
The special structure of our problem induces a structural property on the support

of π .

Lemma 5.6 Let supp π �= ∅. If x̄ > 0 satisfies x̄ ∈ supp π , then for any 0 < x0 < x̄
we have x0 ∈ supp π .

Proof Let x̄ ∈ supp π , x̄ > 0. Then, for any δ > 0 we have π
([x̄ − δ, x̄ + δ]) > 0.

We will prove that if 0 < x0 < x̄ and δ as above then

π
([x0 − δ, x0 + δ]) > 0. (5.44)

In turn, that implies x0 ∈ suppπ .
Using (5.37), we have

0 < πν([x̄ − δ, x̄ + δ]) = V∞

∫
[x̄−δ,x̄+δ] e

1
ν

Gν(t)dt
∫ 1
0 e

1
ν

Gν(t)dt
.

Recall that Gν is nonincreasing. Using the change of variables t = y + τ with τ =
x̄ − x0 > 0, in the top integral implies

∫

[x̄−δ,x̄+δ]
e
1
ν

Gν (t)dt =
∫

[x0−δ,x0+δ]
e
1
ν

Gν (τ+y)dy ≤
∫

[x0−δ,x0+δ]
e
1
ν

Gν (y)dy

Therefore,

πν([x̄ − δ, x̄ + δ]) ≤ πν([x0 − δ, x0 + δ]).

Letting ν → 0, we conclude

0 < π([x̄ − δ, x̄ + δ]) ≤ π([x0 − δ, x0 + δ]).

which shows (5.44). ��
Since 0 = V (0) < V (1) = V∞ we have that suppπ �= ∅. Moreover, the form of

G(x) leads to the following lemma.
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Lemma 5.7 Suppose there exists x̄ > 0 such that x̄ ∈ supp π . Then,

	(x) = 0 for a.e. x ∈ supp π. (5.45)

Proof Since 	 ∈ L1(0, 1), the Lebesgue differentiation theorem implies

lim|I |→0
x̄∈I

1

|I |
∫

I
	(s) ds = 	(x) a.e.,

where I is any interval containing x . If x̄ ∈ suppπ ⊂ S then

lim
h→0
h>0

1

h

∫ x̄+h

x̄
	(s) ds = lim

h→0
h>0

1

h

(
G(x̄ + h) − G(x̄)

)
≤ 0,

lim
h→0
h<0

1

h

∫ x̄

x̄−h
	(s) ds = lim

h→0
h>0

1

h

(
G(x̄) − G(x̄ − h)

)
≥ 0.

Hence it follows that 	(x̄) = 0 a.e. ��

By virtue of Lemma 5.6 and the fact that suppπ �= ∅ there are two possibilities:
either (i) suppπ = [0, a] for some a > 0, or (ii) suppπ = {0}. In either case

suppπ ⊂ S = {x ∈ [0, 1) : G(x) = 0}, 	(x) = 0 for a.e. x ∈ suppπ.

We conclude:
Case 1: suppπ = [0, a] with a > 0. Then 	(x) = 0 on [0, a] and

V (x) =
{

Y (x) x ∈ [0, a]
V∞, x ∈ [a, 1)

(5.46)

for some nondecreasing function Y (x).
Case 2: suppπ = {0} and

V (x) =
{
0 x = 0

V∞, x ∈ (0, 1)
(5.47)

This provides some information on (V ,	), but it is incomplete. Some further
information is obtained by passing to the limit ν → 0 in (5.19). First, the convergence
(5.34) implies

H(Vν; x) → H(V ; x) =
[ ∫ 1

x

1 − t2

t2

(∫ t

0

σ

(1 − σ 2)2
V 2(σ )dσ

)
dt

]
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Then (5.19) together with the property that 	(x)2 ≤ wk-lim(	n(x)2) imply that
(	, V ) satisfy the differential inequality

1

2
	2(x) ≤ x

(1 − x2)2

(
H(V ; x) + E0 (1 − x)

)
(5.48)

in the sense of distributions. ��
The inequality (5.39) is due to the fact that onlyweak convergence for	 is available

under (B). It can be improved if we have pointwise convergence for 	, namely if

	ν → 	 a.e., as ν → 0. (A)

We will later justify (A) under the hypothesis E0 > 0. Using (A), one may pass to the
limit in (5.19) in the sense of distributions and deduce

	2(x)

2
= F(V , x). (5.49)

Let us compute 	(x) for Case 2. Since V (x) is given by (5.47), (5.49) yields

	2(x)

2
= F(V∞, x) = (1

2
V 2∞ + E0

) x(1 − x)

(1 − x2)2

and thus, since 	(x) < 0,

	(x) = −√V∞ + 2E0

√
x(1 − x)

(1 − x2)
.

For Case 1, we recall that V (x) is given by (5.46) and 	(x) = 0 a.e. for x ∈ [0, a],
a > 0. Then (5.49) with (5.17) implies

E0 (1 − x) = −
∫ 1

x

1 − t2

t2

(∫ t

0

σ

(1 − σ 2)2
V 2(σ )dσ

)
dt , for x ∈ [0, a].

If we differentiate this, we get

E0
x2

1 − x2
= −

∫ x

0

σ

(1 − σ 2)2
V 2(σ )dσ.

Differentiating once more yields

V 2(x) = −2 E0 f or x ∈ (0, a) ,

which contradicts the assumption suppπ = [0, a] with a > 0. We conclude that
only Case 2 can happen and (	ν, Vν) converges almost everywhere as ν → 0 to a
solution (	, V ) of the Euler equations. This provides a criterion to select the type of
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Euler solution that occurs and clearly only solutions with solutions with 	 < 0 are
admissible.

In conclusion, we have the following theorem

Theorem 5.8 Assume that E0 + 1
2V 2∞ > 0 and {(	ν, Vν)}ν>0 is a family of solutions

satisfying the uniform bound (B) and the convergence (A). Then (	, V ) is a smooth
solution of (2.14)with the form described in Sect. 3, but under the restriction 	(x) < 0.

If the solution takes values in the range where 	(x) < 0 then it lies in Zone A.
The analysis of Sect. 5.3 shows that F in (5.26) then takes values F(x) > 0 on (0, 1).
The reader should note that numerical computations suggest that as ν decreases the
solution of (5.16) enters Zone A, that is the region that 	(x) < 0, and stays there. No
oscillations in 	 are observed numerically.

We next restrict in the range E0 > 0 and justify (A).

Proposition 5.9 If E0 > 0 then the family of function {Aν(x)} defined by

Aν(x) = (1 − x2)	ν(x) (5.50)

is of bounded variation on [0, 1] and along a subsequence {	ν} satisfies (A).

Proof Using (5.19) we see that the functions {Aν} in (5.50) satisfy the differential
equation

ν(1 − x2)
dAν

dx
= 1

2 A2
ν − 2xν Aν − R(x) (5.51)

where

R(x) := x F(x) = x
(

H(x) + E0(1 − x)
)

(5.52)

Observe that A(0) = 0 and using (5.13), (5.15), (5.11) and the L’Hopital rule we
compute

A(1) = lim
x→1

(1 − x2)	(x) = lim
ξ→∞

θ̂ (ξ )

1 + ξ2
= lim

ξ→∞
θ(ξ)√
1 + ξ2

= θ ′(∞) = 0

The uniform bounds (B) imply

− √
κ
√

x(1 − x) ≤ Aν(x) < 0 (5.53)

Next, turn to (5.52) and use the hypothesis E0 > 0 together with (5.21), (5.22) to
conclude that

R(x) > 0,
d2R

dx2
= x

d2H

dx2
+ 2x

(dH

dx
− E0

)
< 0 x ∈ (0, 1) (5.54)
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dR
dx (0) = H(0)+ E0 > 0, dR

dx (1) = dH
dx (1)− E0 < 0. We see that R(x) has a concave

graph, vanishing at the endpoints, facing downwards.
Since A(0) = A(1) = 0 the function A(x) must have at least one minimum,

that is by the nature of the boundary condition the function A(x) oscillates once.
Again due to the boundary conditions it must have an odd number of oscillations. By
Sard’s theorem the set of critical values of A has measure zero. If the graph of A has
three oscillations, then there will be a level c < 0—which can be selected so as not
to be a critical value—and four consecutive points x1 < x2 < x2 < x4 such that
A(x1) = A(x2) = A(x3) = A(x4) = c, while dA

dx (x1) < 0, dA
dx (x2) > 0, dA

dx (x3) < 0
and dA

dx (x4) > 0.
The function f (x) := 1

2c2 − 2νxc − R(x) satisfies

f (x1) > 0, f (x2) < 0, f (x3) > 0, f (x4) < 0.

Then, there are three consecutive points y1 < y2 < y3 in (0, 1) where the function f
vanishes. This contradicts the fact that by (5.54) the function f is strictly convex.

We conclude that A(x) is initially decreasing, reaches a minimum and is afterwards
increasing. It also satisfies (5.53). Hence {Aν}ν>0 has uniformly bounded total varia-
tion and along a subsequence Aν(x) → A(x) for almost every x ∈ (0, 1). Obviously
Aν⇀A weakly and we conclude using (5.35) that A = (1 − x2)	 and (A) holds. ��

Combining Proposition 5.9 with Theorem 5.8 gives

Corollary 5.10 If E0 > 0 then the family of solutions {(	ν, Vν)}ν>0 is of bounded
variation and along a subsequence converges, 	ν → 	 and Vν → V a.e. in (0, 1).
The function (	, V ) is a smooth solution of (2.14) of the form described in Sect. 3,
and satisfies the restriction 	(x) < 0.

Note that when V∞ > 0 among the two solutions of the Euler equations (3.10) the
one selected at the zero-viscosity limit corresponds to the negative sign, see Fig. 2b.
One easily checks that when V∞ < 0 again the negative sign is selected.

6 Boundary Layer Analysis for a Model Problem

In this section, we investigate the asymptotic behaviour of solutions of system (5.16)
as ν → 0. We consider a model problem which is a simplification of the initial
equations, with the objective to understand the boundary layer. For small viscosities,
V (x) is approximated by setting V (x) ≡ V∞, leading to

F(V , x) = F(V∞, x) = (V 2∞
2

+ E0
) x − x2

(1 − x2)2
.

This reduces system (5.16) to a simpler form which will be referred to as the model
problem, namely,

	̄2(x)

2
− ν

d	̄

dx
(x) = K

x − x2

(1 − x2)2
, (6.1a)
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ν
d2V̄

d2x
= 	̄

dV̄

dx
, (6.1b)

	̄(0) = 0, V̄ (0) = 0, V̄ (1) = V∞, (6.1c)

where K = V 2∞
2 + E0 > 0. Note that equation (6.1a) for 	̄ is now independent of V̄ ,

while (6.1b) is still coupled.
We use the method of matched asymptotic expansions from singular perturbation

theory. The method aims to construct an asymptotic approximation of the solution
inside the boundary layer and a solution valid away from the boundary layer, and then
combine them through a matching process. We refer to solutions within the boundary
layer as inner solutions and to solutions away of the layer as the outer solutions,
Lagerstrom (1988), Holmes (2013).

We consider first the equation (6.1a) for 	̄

	̄2(x)

2
− ν

d	̄

dx
(x) = K

x − x2

(1 − x2)2
, (6.2a)

	̄(0) = 0, (6.2b)

and apply the method of matched asymptotic expansions. To construct the outer solu-
tion, assume that 	̄ can be written as a power series with powers of ν,

	̄(x) ≈ 	̄0(x) + ν	̄1(x) + O(ν2),

and substitute it back to (6.2a). If we focus on the leading terms, i.e. terms of order
ν0, we obtain the equation

	̄0(x) = ±
√
2 K

x − x2

(1 − x2)2
. (6.3)

The choice for the sign 	̄0 will depend on 	̄. Recall that 	̄ solve the equation (6.2a),
we have

	̄(0) = 0,
d	̄

dx
(0) = 0, and

d2	̄

dx2
(0) < 0,

which implies 	̄ should be negative for all 0 < x < 1. Hence, we choose 	̄0 to be
negative. Note that the boundary condition at x = 0 is automatically satisfied.

We proceed now with the inner solution. Expecting the boundary layer to locate at

x = 0, we introduce the stretched variable η = ν− 2
3 x . Setting �(η) = ν− 1

3 	̄(x), the
problem (6.2a)–(6.2b) takes the form

�2

2
− d�

dη
= K

η

(1 − ν
2
3 η)(1 + ν

2
3 η)2

(6.4a)

�(0) = 0, (6.4b)
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If the approximation of � in powers of ν is given by

�(η) ≈ �0(η) + ν�1(η) + O(ν2),

and using the Taylor expansion of the right-hand side of (6.4a),

η

(1 − ν
2
3 η)(1 + ν

2
3 η)2

≈ η + O(ν
2
3 ),

we obtain for the leading term

�2
0

2
− d�0

dη
= K η, (6.5a)

�0(0) = 0. (6.5b)

Inspired by Holmes and Stein (1976), equation (6.5a) can be transformed into the
well-known Airy equation

y′′(t) − t y(t) = 0.

Using the transformation

�0(η) = − 2

U(η)

dU
dη

, (6.6)

equation (6.5a) reduces to

d2U
dη2

= K

2
ηU(η).

and its solutions are given as a linear combination of special functions Ai , the Airy
function of the first kind, and Bi , the Airy function of the second kind, see (Holmes
2013, Appendix B.1). Namely,

U(η) = Ai

((K

2

)1/3
η

)
c1 + Bi

((K

2

)1/3
η

)
c2,

where c1, c2 are integration constants. Using (6.6), we express �0 as a linear com-
bination of Airy functions Ai, Bi and their derivatives Ai ′, Bi ′. Hence, �0 takes the
form

�0(η) = −2

(
K

2

)1/3 Ai′
(( K

2

)1/3
η
)

c1 + Bi′
(( K

2

)1/3
η
)

c2

Ai
(( K

2

)1/3
η
)

c1 + Bi
(( K

2

)1/3
η
)

c2
,
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or equivalently,

�0(η) = −2

(
K

2

)1/3 Ai′
(( K

2

)1/3
η
)

C + Bi′
(( K

2

)1/3
η
)

Ai
(( K

2

)1/3
η
)

C + Bi
(( K

2

)1/3
η
) ,

where C = c1
c2

is a constant. Imposing now the boundary condition (6.5b), we get

0 = Ai′ (0) C + Bi′ (0)
Ai (0) C + Bi (0)

=
− C

31/3 �
(
1
3

) + 31/6

�
(
1
3

)

C

32/3�
(
2
3

) + 1

31/6�
(
2
3

) = 31/3 �( 23 )(−C + √
3)

�( 13 )(C + √
3)

,

where � denotes the Gamma function. Thus, the constant C is determined as

C = √
3.

Consequently, the leading term �0 of the inner solution becomes

�0(η) = −2

(
K

2

)1/3
√
3Ai′

(( K
2

)1/3
η
)

+ Bi′
(( K

2

)1/3
η
)

√
3Ai

(( K
2

)1/3
η
)

+ Bi
(( K

2

)1/3
η
) .

The last step of themethod of matched asymptotic expansions is to derive a uniform
expansion of the solution of (6.2a) over the whole domain [0, 1). Combining the
approximations of inner and outer solution, we conclude that the asymptotic expansion
of 	̄ as ν → 0 is

	̄(x) ≈

⎧⎪⎪⎨
⎪⎪⎩

−
√
2 K

x − x2

(1 − x2)2
, Aν

2
3 < x < 1

�0(ν
− 2

3 x), 0 ≤ x ≤ Aν
2
3

(6.7)

where A is a positive constant and

�0(ν
− 2

3 x) = −2ν1/3
(

K

2

)1/3
√
3Ai′

(( K
2

)1/3
ν− 2

3 x
)

+ Bi′
(( K

2

)1/3
ν− 2

3 x
)

√
3Ai

(( K
2

)1/3
ν− 2

3 x
)

+ Bi
(( K

2

)1/3
ν− 2

3 x
) .

Moreover, the boundary layer is formed at x = 0 and its size is of order ν
2
3 .

Let us consider now the equation (6.1b) for V̄ . Motivated by the asymptotic expan-
sion of 	̄, we introduce the following simplified problem

ν
d2V̄

v2x
(x) = −

√
2 K

x − x2

(1 − x2)2
dV̄

dx
(x), (6.8a)
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V̄ (0) = 0, V̄ (1) = V∞, (6.8b)

and apply the method of matched asymptotic expansions. As before, we expect the
boundary layer to be located at x = 0.

First, we derive the approximation of the outer solution. Assuming that V̄ can be
expressed as a power series with powers of ν, i.e.

V̄ (x) ≈ V̄0(x) + νV̄1(x) + O(ν2),

the equation (6.8a) yields the following differential equation for the lead term V̄0

−
√
2 K

x − x2

(1 − x2)2
dV̄0

dx
= 0 which implies V̄0(x) ≡ c, (6.9)

where c is a constant. To determine this constant, we consider the boundary condition
away from the boundary layer, i.e. at x = 1 and thus, (6.8b) implies

V̄0(x) ≡ V∞. (6.10)

For the inner solution we introduce the variable η = ν−2/3 x and set V̄ (x) = Y (η).
The problem (6.8) reduces to

d2Y

d2η
+ √

2 K

√
η

(1 − ν
2
3 η)(1 + ν

2
3 η)2

dY

dη
= 0 with Y (0) = 0. (6.11)

If the approximation of Y in powers of ν is expressed as

Y (η) ≈ Y0(η) + νY1(η) + O(ν2),

and the Taylor expansion of the right-hand side of (6.11) is

√
η

(1 − ν
2
3 η)(1 + ν

2
3 η)2

≈ √
η + O(ν

2
3 ),

then we have to solve the following problem for leading-order term Y0

d2Y0

d2η
+√

2 K η
dY0

dη
= 0,

Y0(0) = 0.

Its solution is

Y0(η) = C
∫ η

0
e−2

√
2 K
3 s3/2

ds,
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where C is an integration constant. Since both boundary conditions (6.8b) have been
taken into consideration, the unknown C is determined by matching the outer and the
inner expansions. Considering that both the inner and outer solutions approximate the
same function in different regions, we impose that the two solutions are equal in a
transition area close to the boundary layer, Holmes (2013). Therefore, we require

lim
x→0

V̄0(x) = lim
η→∞ Y0(η),

that implies

C = V∞
∫∞
0 e− 2

√
2 K
3 s3/2ds

,

and completes the derivation of the inner solution.
As the last step of the method of matched asymptotic expansions, we derive a

uniform expansion of the solution of (6.8) over the whole domain [0, 1). Therefore,
as ν → 0 the asymptotic expansion of V̄ (x) takes the form

V̄ (x) ≈ V∞

∫
ν−2/3 x

0
e− 2

√
2 K
3 s3/2ds∫ ∞

0
e− 2

√
2 K
3 s3/2ds

+ O(ν). (6.12)

and the boundary layer at x = 0 is of the same size as for 	̄(x).

7 Stationary Navier–Stokes—Numerical Results

In this sectionwe construct a numerical scheme to solve the coupled systemof ordinary
differential equations (5.9) using an iterative algorithm. Moreover, we illustrate some
numerical experiments for different values of the parameters ν, E0 and V∞.

Let us recall the system (5.9). For convenience we use the equivalent formulation
of the problem, system (5.16a)–(5.16d) in variable x , where 0 < x < 1

	2(x)

2
− ν

d	

dx
(x) = F(V , x), (7.1a)

ν
d2V

d2x
(x) = 	(x)

dV

dx
(x), (7.1b)

equipped with the boundary conditions

	 = V = 0, at x = 0, (7.2a)

V → V∞, as x → 1, (7.2b)
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where the functional F (V , x) is defined by

F (x) = F (V , x; E0)

= x

(1 − x2)2

[ ∫ 1

x

1 − t2

t2

(∫ t

0

σ

(1 − σ 2)2
V 2(σ )dσ

)
dt + E0 (1 − x)

]
. (7.3)

7.1 Discretization

To obtain numerical approximations to system (7.1a)–(7.2b) we use an iterative algo-
rithm:Given V we solve numerically the initial value problem (7.1a) by aRunge–Kutta
method and update 	 which is then used to solve the two-point boundary value prob-
lem (7.1b) using finite differences. This process is repeated until convergence. The
algorithm is described in detail in Sect. 7.2.

The discretization of (7.1b) is based on finite differences. On [0, 1] we introduce a
uniform mesh of fixed width �x . Given N ∈ N, set �x = 1

N and define the discrete
points x j = j�x , j = 0, 1, 2, . . . , N . We denote by 	 j ≈ 	(x j ) and V j ≈ V (x j )

and use central finite differences to discretize (7.1b) and obtain

ν
V j+1 − 2V j + V j−1

�x2
= 	 j V j+1 − V j−1

2�x
, j = 1, . . . , N − 1,

V 0 = 0, V N = V∞,

(7.4)

or equivalently

V j−1
(
2ν + �x 	 j

)
− 4ν V j + V j+1

(
2ν − �x 	 j

)
= 0, j = 1, . . . , N − 1,

V 0 = 0, V N = V∞,

(7.5)

which forms a tri-diagonal linear system solved by a direct method.
To discretize the nonlinear initial value problem (7.1a) we use a Runge–Kutta

method. The Runge–Kutta methods are multistage methods that compute approxima-
tions to the solution at intermediate points which are later combined to advance the
solution at the next discretization point. Equation (7.1a) can be rewritten as

ν
d	

dx
(x) = 	2(x)

2
− F(x). (7.6)

For simplification of the presentation, we denote the right-hand side of the above
relation as follows f (x, V ,	) = 1

2	
2 − F(x). The Runge–Kutta method for (7.1a)

is obtained by discretizing the derivative using the following method:

1. Set 	 j,1 = 	 j , where 	 j is the approximate solution at grid point x j .

123



Journal of Nonlinear Science (2024) 34 :86 Page 51 of 62 86

2. Compute the K intermediate stages for m = 1, . . . ,K

ν	 j,m = ν	 j + �x
K∑

s=1

αm,s f
(

x j + cs�x, V j,s,	 j,s
)

, (7.7)

where V j,s ≈ V (x j + cs�x) and 	 j,s ≈ 	(x j + cs�x). The coefficients αm,s

are constants with sum for every row equals to cm , i.e.

K∑
s=1

αm,s = cm, m = 1, . . . ,K.

3. Set

ν	 j+1 = ν	 j + �x
K∑

s=1

βs f
(

x j + cs�x, V j,s,	 j,s
)

(7.8)

the solution at the next point. Here the coefficients βs are constants with total sum
equal to 1, and values of V j,s are computed using interpolation.

The coefficients αs, βs and cs of the associated with the Runge–Kutta method are
usually presented in a matrix form referred as Butcher tableau. That is,

c1 α1,1 α1,2 · · · α1,K
c2 α2,1 α2,2 · · · α2,K
...

...
...

...

cK αK,1 αK,2 · · · αK,K
β1 β2 · · · βK

In our numerical experiments we use the well-known Runge–Kutta–Fehlberg
(RKF4(5)) method which allows adaptive stepsize control. For small values of ν

the solution 	 of the i.v.p (7.1a) might blow up, see the discussion in Section 5.3.
Furthermore, as x → 1 we expect the system to be singular since the point x = 1
corresponds to the vortex line. In that respect, choosing the stepsize adaptively allows
us to capture the correct behaviour of the solution close to the singularity.

7.2 Implementation Details

To compute the numerical approximation of the solution for the coupled system (7.1a)–
(7.1b), we construct an iterative algorithm and each equation is solved separately
using information from the previous iterations. In particular, we follow the following
algorithm:

1. Set V j
0 ≡ V∞, for all j

2. For every iterative step i = 1, . . . :

123



86 Page 52 of 62 Journal of Nonlinear Science (2024) 34 :86

Fig. 8 (u,w) vector field for
ν = 0.2, E0 = −0.5

i. Given Vi−1, compute 	
j
i , ∀ j , using the RKF method in [0, 1]

ii. Given 	i , compute V j
i , ∀ j , by solving the linear system (7.5)

iii. Solution (	, V ) is obtained when the error between two consecutive iterations
is small, i.e.

{
�x

∑
j

|V j
i+1 − V j

i |2
} 1

2

< ε and

{
�x

∑
j

|	 j
i+1 − 	

j
i |2
} 1

2

< ε

for some ε > 0 small.

Note that for the approximation of the integrals in F we use the composite Simpson’s
rule.

7.3 Numerical Tests

In this section we exhibit numerical approximation of the solution for (7.1a)–(7.1b).
We illustrate the results for a different combinations of parameters ν and E0, while
the parameter V∞ is fixed. For the following examples we take V∞ = 1.

Consider first the case for ν = 0.2 and E0 = −0.5. Then 	(x) is positive, and the
flow is directed inwards near the plane z = 0 and upwards near the vortex line, see
Fig. 8.

The converse behaviour, i.e. 	 is negative, occurs for ν = 0.05 and E0 = 0.15.
The flow now has the reverse direction; it is directed outwards near the plane z = 0
and downwards near the vortex line, see Fig. 9.

For the parameters ν = 0.1 and E0 = −0.2, the stream function 	 is first positive
and then becomes negative; the flow is directed inwards near the plane z = 0 and
downwards near the vortex line, see Fig. 10.

The solid lines in Figs. 9, 8 and 10 are the contour lines of the streamfunction 	.
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Fig. 9 (u,w) vector field
ν = 0.05, E0 = 0.15

Fig. 10 (u,w) vector field
ν = 0.1, E0 = −0.2

7.4 Bifurcation Diagram

We present now a E0 − ν bifurcation diagram for (5.16). This diagram is computed
using the methodology detailed in Sect. 7.2. To take into account the effect of the
parameter V∞ we consider the following scaled variables:

φ = V

V∞
ϑ = 	

V∞
, μ = ν

V∞
, p0 = E0

V 2∞

Then system (7.1a)–(7.2b) becomes

μ
dϑ

dx
= 1

2
ϑ2 − F(x, φ, p0),

μ
d2φ

dx2
= ϑ

dφ

dx
,

φ = ϑ = 0 at x = 0,

φ → 1, as x → 1,

(7.9)
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where F is given by (7.3). The new scaled system exhibits the same behaviour as the
original one, so we proceed in identifying numerically the four different zones, see
Sect. 5.3:

• Zone A: ϑ is negative
• Zone B: ϑ starts positive and then changes sign
• Zone C: ϑ is positive
• No Solution: ϑ is positive and for small μ blows up

We take V∞ = 1 and we consider values of (E0, ν) ↔ (p0, μ) in B = [−2, 2] ×
[4× 10−5, 0.6]. The set B is covered initially by 256 = 16× 16 patches Bk,� each of
size δ p0 × δμ. Along the horizontal axis, we take a uniform size δ p0 = 0.25, while
δμ is nonuniform, with a finer grid around μ = 4 × 10−5 and gradually increasing
towardsμ = 0.6, with an average δμ ∼ 3.75×10−2. In each Bk,� we consider further
a 51 × 51 uniform grid of values {p0

k,�
i, j , μ

k,�
i, j }, i, j = 1, . . . , 51. For all patches and

for all values in the patch we identify in which zone the solution belongs to, by solving
numerically the scaled system (7.9). The total computational cost of such process is
rather small since the work in each patch can be computed independently.

The results of this process are depicted in Fig. 11. On the left graph, the four zones
are clearly marked by their boundaries. To distinguish further each zone we “separate”
them by shifting slightly each zone along the horizontal axis and Zone C along the
vertical axis. On the right graph, the full structure of each zone is now revealed. The
boundaries of all zones meet at the point (p0, μ) = (E0, ν) = (− 1

2 , 4 × 10−5) =
(−β, 4 × 10−5), where β = dH

dx (1) is the constant appearing in (5.24). For any
E0 < −β on the line μ = ν = 4× 10−5 the solution ceases to exist. For larger values
of ν, where the solution does exist, the line E0 = −β defines the border between Zone
C and Zone B as predicted theoretically, see Sect. 5.3.

A similar diagram appears in Serrin (1972). It uses a slightly different (but equiv-
alent) formulation of the problem, but it is derived through a completely different
process. Our bifurcation diagram in Fig. 11 is based on computation of the numerical
solution of (5.16) as detailed in the previous paragraph. The diagram of Serrin is a
consequence of a series of theoretical estimates and bounds that provide necessary
and/or sufficient conditions on the underlying parameters, so that the solutions to the
corresponding initial and boundary value problem belong to one of the desired zones;
see (Serrin 1972, pp. 349–351). Qualitatively the two diagrams are quite similar, in
terms of the overall structure and shape of the borders between the various zones.
However, quantitatively there are some differences, due to the different sets of vari-
ables and constants used in the two approaches. In our case solutions can exist when
the pressure constant E0 is positive, a region which is not addressed in Serrin’s work,
where solutions are obtained only for negative values of E0. The value P = 1 in
Serrin (1972, Fig. 1) is the point where all zones converge and beyond this point along
the axis ν = 0, solution ceases to exist. In the present work this value corresponds
to E0 = − 1

2 and the whole diagram is mirrored along this line when compared to
that in Serrin (1972, Fig. 1). In both diagrams the two vertical lines define the border
between zones B and C. However, it is worth noticing that, apart from having different
(opposite) orientations, the curved boundary that separates the NoSolution zone from
the other zones is very similar in both works.
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Fig. 11 E0 − ν Bifurcation Diagram

It should be noted that in the diagram in Fig. 11 to the right the borders of the
regions have been shifted so that the reader can better visualize the boundaries among
the different regions. The actual boundaries in fact overlap as in the diagram to the
left.

8 Conclusions

This work considers the relation between axisymmetric solutions of theNavier–Stokes
and Euler equations. We study stationary self-similar solutions in a setting intended to
model tornado-like flows. It is influenced by previous works on this problem by Long
(1958, 1961), Goldshtik (1960); Goldshtik and Shtern (1989); Goldshtik (1990) and
mainly Serrin (1972) on the interaction of a vortex filament and a plane.

Along with the aforementioned works, it provides a systematic study of stationary
self-similar flows focussing on the relation as the viscosity goes to zero. The main
findings are: (i) A systematic analysis of exact solutions for the Euler equations which
provides an explicit formula for the solution. (ii) Testing the existence of two-cell
(or multiple-cell) solutions for the Euler equations and showing that this is not pos-
sible. (iii) Providing a rigorous passage from Navier–Stokes to Euler for self-similar
solutions (under various hypotheses) in the limit as the viscosity goes to zero. (iv) Pre-
senting a boundary layer analysis via matched asymptotic expansions. (v) Providing
a bifurcation diagram via computational methods.

In Serrin (1972), Serrin shows that there are three types of stationary self-similar
solutions to the Navier–Stokes equations: (i) a first kind where the radial velocity
is directed inwards along the boundary and upwards along the axis of the vortex
(corresponds to Fig. 8 and in zone A of the bifurcation diagram of Fig. 11); (ii) a
second kind where the radial velocity is directed downwards along the vortex axis and
outwards along the boundary (see Fig. 9 corresponding to zone C); (iii) finally, a third
kind where the flow is directed downwards on the axis and inwards along the boundary
with a compensating outflow in an intermediate angle (see Fig. 10 corresponding to
zone B). The last is a flow with two cells. Serrin (1972) posits that solutions of the
third kind are important for explaining the central downflow and the cascade effect

123



86 Page 56 of 62 Journal of Nonlinear Science (2024) 34 :86

frequently observed in tornadoes and provided extensive comparisons with various
observational data available at the time.

One motivation of ours was to study how these solutions depend on the viscosity
and their persistence in the zero-viscosity limit.We first considered the Euler equations
and showed that smooth solutions fall either into the first or the second kind of flows.
We then asked if it is possible to have solutions with a slip discontinuity across an
interface, this might conceivably correspond to a two-cell solution, but the result was
negative. Performing systematic computations that lead to the bifurcation diagram
made clear that given the values of E0 and V∞ solutions in the zone B only appear
above a viscosity threshold. They degenerate as the viscosity decreases either because
one enters in the region of nonexistence of solutions, or by transitioning from zone B
to zone A and in the limit to an exact solution of the Euler system. It may be that the
solutions in zone B are indeed related to tornadoes; in that case one should understand
how they lose their stability as the viscosity is decreasing.

The stability of the steady self-similar solutions is an open and difficult problem.
Another interesting direction of research would be to provide an ansatz that could
conceivably produce a moving vortex solution.

A Navier–Stokes Equations in Cylindrical Coordinates

Cylindrical coordinates (r , ϑ, z) are connected with rectangular coordinates through
the transformation x1 = r cosϑ , x2 = r sin ϑ , x3 = z, see Fig. 12, while the associ-
ated orthonormal system attached to P is

�er = (cosϑ, sin ϑ, 0), �eϑ = (− sin ϑ, cosϑ, 0), �ez = (0, 0, 1).

The velocity vector �u is expressed in cylindrical coordinates as

�u = u(r , ϑ, z, t)�er + v(r , ϑ, z, t)�eϑ + w(r , ϑ, z, t)�ez,

Fig. 12 Cylindrical coordinate
system

x

y

z

P

z

rϑ

	er

	ez

	eϑ
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while the vorticity �ω takes the form

�ω =
(
1

r

∂u

∂ϑ
− ∂v

∂z

)
�er +

(
∂u

∂z
− ∂w

∂r

)
�eϑ +

(
1

r

∂

∂r
(rv) − 1

r

∂w

∂ϑ

)
�ez .

A change of variables for the Navier–Stokes equations (2.1) yields the following
representation in cylindrical coordinates, see Bird et al. (1987, Table B.2),

∂u

∂t
+ (�u · ∇)u − v2

r
= −∂ p

∂r
+ ν

[
�u − u

r2
− 2

r2
∂v

∂ϑ

]
, (A.1a)

∂v

∂t
+ (�u · ∇)v + uv

r
= −1

r

∂ p

∂ϑ
+ ν

[
�v − v

r2
+ 2

r2
∂u

∂ϑ

]
, (A.1b)

∂w

∂t
+ (�u · ∇)w = −∂ p

∂z
+ ν�w, (A.1c)

1

r

∂

∂r
(ru) + 1

r

∂v

∂ϑ
+ ∂w

∂z
= 0. (A.1d)

where the operators �u · ∇ and � are

(�u · ∇) = u
∂

∂r
+ 1

r
v

∂

∂ϑ
+ w

∂

∂z
and � = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2
∂2

∂ϑ2 + ∂2

∂z2

B Tornadoes

Tornadoes are considered among the most extreme and violent weather phenomena
on Earth. They can occur under appropriate circumstances in all continents expect
Antarctica, at various seasonal times, and can be hazardous causing loss of human
lives and extensive property damage. According tometeorologists, a tornado is defined
as a rapidly rotating mass of air that extends downwards from a cumuliform cloud,
that is a cloud formed due to vertical motion of air parcels, to the ground. There exist
several types of tornadoes, such as landspouts and waterspouts, but the majority of the
most destructive tornadoes are known as supercells since their generation takes place
within supercell thunderstorms.

Although there is a high interest in forecasting such hazardous tornadoes, it remains
a challenging task for researchers to predict when a supercell thunderstorm will lead
to a tornado. It is observed that not all supercells are tornadic since a combination
of atmospheric instability (caused by the storm) with a wind shear, i.e. a variation
of wind speed and direction with altitude, is required for tornado formation. These
two ingredients are important for tornado formation; however, the process by which
tornadoes are formed is still not fully understood and, thus, difficult to predict. For a
detailed presentation on the subject of tornadoes and tornado formation, we refer to
Markowski and Richardson (2010, 2014).
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B.1 Modelling Tornadoes

Due to the complexity of tornadoes, the current knowledge about them comes mainly
from laboratory experiments and numerical models of idealized supercell thunder-
storms, Rotunno (2013). In Ward Ward (1972) conducted a pioneering laboratory
experiment reproducing a tornado-like flow considering a fluid with constant density.
The idea was to create a flow using a fan that passes through a hole of radius r0 and
is placed above a rotating plate in some distance h, under the assumption that the
ratio of h/r is small. Based on this work, several experimental and numerical sim-
ulations have taken place, referred to as Ward-type simulations, Rotunno (2013). It
was shown that the vortex form changes as the rotation increases, from single-celled
(centerline updraft) to single-celled below to double-celled above, to double-celled
(central downdraft surrounded by updraft) to multiple vortices, Rotunno (2013). Also,
this structural change is largely independent of the Reynolds number.

Fiedler (1995) proposed an idealization of a tornado-like flow that is defined on
a closed domain and is for theoretical analysis. Here, the buoyancy force is taken
into consideration. The behaviour of such flows can be analysed numerically using
the axisymmetric, incompressible Navier–Stokes equations in cylindrical coordinates.
Hence, the model takes the form

Du

Dt
= v2

r
+ 2�v + 1

Re

[1
r

∂

∂r

(
r
∂u

∂r

)
+ ∂2u

∂z2
− u

r2

]
− ∂ p

∂r
, (B.1a)

Dv

Dt
= −uv

r
− 2�u + 1

Re

[1
r

∂

∂r

(
r
∂v

∂r

)
+ ∂2v

∂z2
− v

r2

]
, (B.1b)

Dw

Dt
= b + 1

Re

[1
r

∂

∂r

(
r
∂w

∂r

)
+ ∂2w

∂z2

]
− ∂ p

∂z
, (B.1c)

0 = 1

r

∂

∂r
(ru) + ∂w

∂z
, (B.1d)

where D
Dt = ∂

∂t + u ∂
∂r +w ∂

∂z stands for the material derivative, b is the buoyancy and
� is the nondimensional swirl ratio which depends on both the angular momentum
and the buoyancy. Numerical experiments of this model produce results analogous to
Ward-type experiments for different values of � and Re, Rotunno (2013).

In addition, various analytical models have been introduced to describe a tornado-
like flow behaviour. Assuming that a vortex line resembles the tornado core, we
consider again the incompressible axisymmetric Euler and Navier–Stokes equations.

Let us review some widely used vortex models. A detailed presentation can be
found in Gillmeier et al. (2018) and Kim and Matsui (2017) and in references therein.

The Rankine vortex model is considered as the simplest one. Here the flow is
assumed to be one-dimensional, steady, inviscid and all body forces are omitted.
Hence, the model takes the form

dp(r)

dr
= ρ

v2

r
,
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where ρ is the density. Also, it is assumed that the velocity component is discontinuous
and is written as

v̄(r̄) =
⎧⎨
⎩

r̄ f or r̄ < 1,

1

r̄
f or r̄ > 1.

where v̄ = v
vmax

is the normalized velocity and r̄ = r
R is the normalized distance for

R the radius of the core vortex. Sometimes, a modified version of velocity is used that
is

v̄ = 2r̄

(1 + r̄2)
.

If the discontinuous velocity is considered, solving the differential equation yields the
normalized pressure p̄(r̄) = p(r)

ρv2max
that is

p̄(r̄) =

⎧⎪⎨
⎪⎩

p̄(0) + 1

2
r̄2 f or r̄ < 1,

p̄|r→∞ − 1

r̄2
f or r̄ > 1.

Another vortex model is the Burgers–Rott, where the flow is assumed to be steady,
with constant viscosity and zero body forces. Moreover, it is assumed that u = u(r),
v = v(r), w = w(z) and p = p(r , z). The model then has the following form

u
∂u

∂r
− v2

r
= μ

[1
r

∂

∂r

(
r
∂u

∂r

)
− u

r2

]
− 1

ρ

∂ p

∂r
, (B.2a)

u
∂v

∂r
+ uv

r
= μ

[1
r

∂

∂r

(
r
∂v

∂r

)
− v

r2

]
, (B.2b)

w
∂w

∂z
= − 1

ρ

∂ p

∂z
, (B.2c)

1

r

∂

∂r
(ru) + ∂w

∂z
= 0, (B.2d)

where ρ is the density and μ the dynamic viscosity. It is also assumed that

w̄(z̄) = 2 α z̄,

ū(r̄) = −α r̄ ,

where z̄ = z
R is the normalized vertical height, ū = u

vmax
and w̄ = w

vmax
are the

normalized velocities and α = 2μ
vmax

. Under these assumptions, solving the system
(B.2) implies the following

v̄(r̄) = 1

r̄
(1 − exp(−r̄2)), and
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p̄(r̄ , z̄) = p̄(0, 0) +
∫ r̄

0

v̄2(s)

s
ds − ᾱ

2
(r̄2 + 4z̄2)

The Sullivan vortex model has also been used widely to model tornado-like flows.
As in the case of the Burgers–Rott model, we consider a flow that is stationary, with
constant viscosity and zero body forces. In addition, it is considered that velocity
components are given in the form u = u(r), v = v(r), w = w(r , z), while pressure
is of the form p = p(r , z). One may conclude to the following

ū(r̄) = −ᾱr̄ + 2bv̄

r̄
(1 − e−r̄2),

v̄(r̄) = 1

r̄

H(x)

H(∞)
,

w̄(r̄ , z̄) = 2ᾱz̄(1 − b e−r̄2),

where H(x) = ∫ x
0 e−s+3

∫ s
0

1
σ

(1−e−σ2 )dσds for x = r̄2. It is worth mentioning that
although the Sullivan and theBurgers–Rottmodels have some similarities, the Sullivan
model allows the generation of a double-celled vortex, while Burgers–Rott model does
not.

B.2 Mathematical Approach

A theoretically sound approach towards study of tornadoes was introduced by Long
(1958, 1961). Assuming the tornado core is modelled by a semi-infinite vortex line in
a fluid interacting with a plane boundary surface, he presented the reduction of incom-
pressible Navier–Stokes equations to a system of differential equations motivated by
boundary layer theory. Several subsequent studies (Hall 1972; Burggraf and Foster
1977; Shtern and Hussain 1999; Shtern 2012) took a similar direction and studied the
formation of a boundary layer considering the near-axis boundary layer approximation
to the incompressible axisymmetric Navier–Stokes equations. This is usually referred
as quasi-cylindrical approximation and leads to the system

v2

r
= ∂ p

∂r
,

u
∂v

∂r
+ w

∂v

∂z
+ uv

r
= ν

[1
r

∂

∂r

(
r
∂v

∂r

)
− v

r2

]
,

u
∂w

∂r
+ w

∂w

∂z
= ν

[1
r

∂

∂r

(
r
∂w

∂r

)]
− ∂ p

∂z
,

1

r

∂

∂r
(ru) + ∂w

∂z
= 0,

The boundary layer is associated in the literature with the vortex breakdown that is
the change of direction of the flow near the boundary as ν → 0.

Independently, Goldshtik (1960) showed that a similar reduction of incompress-
ible axisymmetric Navier–Stokes equations to a system of differential equations leads
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to a ’paradoxical’ exact solution that vanishes for some values of Reynolds num-
ber, Goldshtik (1960). Serrin (1972) broadened this class of solutions and described
the existence of three different solution profiles depending on an arbitrary parameter
and the kinematic viscosity, Serrin (1972). Following this work, several authors have
extended the study to the generalized case of conical flows, Shtern andHussain (1999),
Fernandez-Feria and Arrese (2000), Shtern (2012). The ideas of Long and Goldshtik
have been applied to investigate the formation of a boundary layer and the loss of exis-
tence of such solutions using different boundary conditions or a modified self-similar
ansatz, Hall (1972), Burggraf and Foster (1977), Goldshtik (1990), Goldshtik and
Shtern (1989, 1990). This line of research is systematized in the present manuscript
by studying stationary solutions of the axisymmetric Navier–Stokes equations.

The above References concern the interaction of a vortex with a boundary when
the flow is assumed stationary. Models have been devised concerning the motion of
the vortex core structure and its coupling with environmental flows, and the reader
is referred to Paeschke et al. (2012), Lunasin et al. (2016) and references therein
regarding that subject.
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