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Abstract
We describe all metrics geodesically compatible with a gl-regular Nijenhuis operator
L . The set of such metrics is large enough so that a generic local curve γ is a geodesic
for a suitable metric g from this set. Next, we show that a certain evolutionary PDE
system of hydrodynamic type constructed from L preserves the property of γ to be a
g-geodesic. This implies that every metric g geodesically compatible with L gives us a
finite-dimensional reduction of this PDE system. We show that its restriction onto the
set of g-geodesics is naturally equivalent to the Poisson action of Rn on the cotangent
bundle generated by the integrals coming from geodesic compatibility.
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1 Introduction

This work continues the research program started in Bolsinov et al. (2018, 2022a).
The main object of study within this program are (1, 1)-tensor fields with vanish-
ing Nijenhuis torsion known as Nijenhuis operators. They pop up in many, a priori
unrelated, branches of mathematics, so it makes sense to develop a general theory
of Nijenhuis operators and then to apply the results and methods obtained wherever
these operators appear (e.g. in the theory of geodesically equivalent metrics as in the
present paper). This approach treats a Nijenhuis operator as a primary object, even
if it initially appeared as a secondary object in the study of another structure. An
unexpected positive outcome of this change of perspective is that it reveals hidden
relationships between different subjects. A demonstration of this phenomenon is the
paper (Bolsinov et al. 2021b), showing that pencils of compatible Poisson brackets of
hydrodynamic type are closely related to geodesically equivalent metrics of constant
curvature. This allowed us to apply methods and results of a more developed the-
ory of geodesically equivalent metrics to the theory of geometric Poisson structures.
Another example is an unexpected relation between compatible geometric Poisson
structures of type P3 + P1 (see Bolsinov et al. 2023a for details) and orthogonal
separation of variables for spaces of constant curvature, which allowed us to obtain
new results in both subjects by combining the relevant ideas and methods. In the the-
ory of separation of variables, this led us in Bolsinov et al. (2022b) to a description
of all orthogonal separating coordinates for pseudo-Riemannian spaces of constant
curvature, solving a long-standing problem going back to Eisenhart (1934). On the
other hand, in Bolsinov et al. (2023a) we have constructed all non-degenerate compat-
ible Poisson structures of the type P3 + P1 such that P3 is Darboux–Poisson, which,
in turn, led us to a construction of new integrable PDE systems in Bolsinov et al.
(2023b).

In the present paper, the partner structure for a Nijenhuis operator L is a metric
g which is geodesically compatible to it. In Theorem 1.3, we relate such metrics to
the symmetries of the operator L . Combining this relation with results of Bolsinov
et al. (2023d) , we describe all metrics geodesically compatible with a gl-regular
Nijenhuis operator and, in particular, show that every such operator locally admits
a geodesically compatible metric, see Theorem 1.2. Next, we consider an integrable
PDE systemof hydrodynamic type constructed from a gl-regularNijenhuis operator L ,
which was studied (mostly, in the diagonal case) in many papers including (Bolsinov
et al. 2023b; Ferapontov 1990; Lorenzoni and Magri 2005; Marciniak and Blaszak
2010). Theorem 1.4 shows that this system preserves the property of a curve to be a
geodesic of any fixed geodesically compatible metric. In other words, every choice of
a geodesically compatible partner for L on a manifoldM gives us a finite-dimensional
reduction of the system. Finally, Theorem 1.5 states that the corresponding finite-
dimensional reduction is naturally equivalent to the Poisson action on T ∗M generated
by the commuting integrals coming from geodesic compatibility.
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1.1 Definitions and Results

Two (pseudo)-Riemannian metrics g and ḡ (of any, possibly different, signatures) are
called geodesically equivalent if they share the same geodesics viewed as unparame-
terized curves. According to Bolsinov and Matveev (2003), a manifold endowed with
a pair of such metrics carries a natural Nijenhuis structure defined by the operator

L =
∣
∣
∣
∣

det ḡ

det g

∣
∣
∣
∣

1
n+1

ḡ−1g.

Since ḡ is uniquely reconstructed from L as ḡ = 1
| det L|gL

−1, the study of geodesi-
cally equivalent metrics reduces to the study of pairs (g, L) satisfying the following
compatibility condition: a metric g and a Nijenhuis operator L are said to be geodesi-
cally compatible, if L is g-self-adjoint and the metric ḡ = 1

| det L|gL
−1 is geodesically

equivalent to g.
Analytically, the geodesic compatibility condition is given by the PDE equation

(Bolsinov and Matveev 2003; Sinjukov 1979)

∇ηL = 1

2

(

η ⊗ d tr L + (η ⊗ d tr L)∗
)

, (1)

where η is an arbitrary vector field. Notice that this relation is linear in L . Our first
result is an equivalent version of (1), which is linear both in L and in g and contains
no covariant derivative.

Theorem 1.1 An operator L and a metric g are geodesically compatible if and only
if L is g-self-adjoint and the following relation holds

LLξ

(

g(η, ξ)
) − Lξ

(

g(η, Lξ)
) − g

(

η, [Lξ, ξ ]) + g
([η, Lξ ], ξ)

−g
([η, ξ ], Lξ

) = g(η, ξ)Lξ tr L, (2)

for any vector fields ξ and η. In local coordinates, (2) is equivalent to

gkα
∂Lα

j

∂xi
+

(
∂gik
∂xα

− ∂giα
∂xk

)

Lα
j + ( j ↔ k) = gik

∂ tr L

∂x j
+ ( j ↔ k) (3)

where ( j ↔ k) denotes the expression obtained by interchanging indices j and k.

Local description of geodesically compatible pairs (g, L) is known at algebraically
generic points, near which the algebraic type of L does not change. For diagonalisable
operators L , it follows from the classical work by Levi-Civita (1896), the general case
was done in Bolsinov and Matveev (2015). However, for singular points, i.e. those at
which the algebraic type of L changes (e.g. the eigenvalues of L collide), the descrip-
tion of Nijenhuis operators L admitting at least one geodesically equivalent partner g
remains an open problem. Certain restrictions definitely exist. For instance, the opera-

tor L =
(

x 0
0 y

)

admits no geodesically compatible metric in the neighbourhood of the
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point (x, y) = (0, 0). The next theorem shows that regular collisions of eigenvalues
are always allowed.

Following (Bolsinov et al. 2023c), we say that an operator L is gl-regular, if its
adjoint orbit OL = {PLP−1 | P is invertible} has maximal dimension. In simpler
terms, this means that each eigenvalue λ of L admits only one linearly independent
eigenvector (equivalently, only one λ-block in the Jordan normal form). If L is an
operator on a manifold M, then its eigenvalues can still collide without violating the
gl-regularity condition. InNijenhuis geometry, scenarios of such collisions can be very
different (see Bolsinov et al. 2023c). However, regardless of any particular scenario,
we have the following general local result.

Theorem 1.2 Let L be a gl-regular real-analytic Nijenhuis operator. Then (locally)
there exists a pseudo-Riemannian metric g geodesically compatible with L. Moreover,
such a metric g can be defined explicitly in terms of the second companion form of L.

The construction of such a metric g is explained in Sect. 3, see Proposition 3.1 and
formula (12). As already noticed, the statement of Theorem 1.2 was known only near
algebraically generic points of L (e.g. Bolsinov and Matveev 2015), so the (local)
existence of a geodesically compatible partner of L is a new result for singular points.
Note that understanding the behaviour of geodesically equivalent metrics near singular
points is fundamentally important for their global analysis on compact manifolds and
also played a decisive role in proving the projective Lichnerowicz–Obata conjecture
(Bolsinov et al. 2021a; Matveev 2007).

Remark 1.1 Let us emphasise that Theorem 1.2 is essentially local in the sense that
a gl-regular Nijenhuis operator defined on a closed manifold M may not admit any
geodesically compatible metric g on the whole of M (although locally such a metric
can be found near each point). One of such examples is a complex structure J on a
closed orientable surfaceM2

g of genus g ≥ 2. In dimension 2, J is gl-regular; however,
it is known that M2

g cannot carry non-proportional geodesically equivalent metrics.

Our third theorem generalises Sinjukov–Topalov hierarchy theorem (Bolsinov and
Matveev 2011; Sinjukov 1979; Topalov 2000, 2003) and gives a complete description
of geodesically compatible partners for gl-regular Nijenhuis operators in terms of their
symmetries (both at algebraically generic and singular points).

Recall that an operator M is called a symmetry of L if these operators commute in
algebraic sense, i.e. LM = ML , and the following relation holds for any vector field
ξ :

M[Lξ, ξ ] + L[ξ, Mξ ] − [Lξ, Mξ ] = 0. (4)

This definition agrees with the concept of a symmetry in the context of evolutionary
PDEs inmathematical physics (see, e.g. Fuchssteiner andFokas1981) and is equivalent
to the fact that the evolutionary flows ut = L(u)ux and us = M(u)ux commute.

If LM = ML and

〈L, M〉(ξ, η)
def= M[Lξ, η] + L[ξ, Mη] − [Lξ, Mη] − LM[ξ, η] = 0 for all ξ, η,

(5)
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then M is called a strong symmetry1 in Bolsinov et al. (2023d).
The definition of 〈L, M〉 in (5) is essentially due to Nijenhuis (1951, formula 3.9);

it defines a (1, 2)-tensor field, provided that L and M commute. The l.h.s. of (4) is just
〈L, M〉(ξ, ξ) so that (5) implies (4). Also notice that the Frölicher–Nijenhuis bracket
of L andM can bewritten as 〈L, M〉+〈M, L〉 and theNijenhuis torsion of L coincides
with 〈L, L〉 (up to sign).

Theorem 1.3 Let L and g be geodesically compatible. Assume that M is g-self-adjoint
and is a strong symmetry of L, then L and gM := (gisMs

j ) are geodesically compat-
ible.

Moreover, if L is gl-regular, then every metric g̃ geodesically compatible with L is
of the form g̃ = gM, where M is a (strong)2 symmetry of L.

Remark 1.2 The first part of this theorem in a slightly different setting was proved by
Sinjukov (1979) for M = L and later reproved and applied by Topalov (2000, 2003),
who also generalised the result for M = L−1. The case M = f (L) for a polynomial f
immediately follows from the caseM = L , and both Sinjukov and Topalov considered
the case M = Lk for k ∈ N. For an arbitrary real analytic function, the results were
generalised in Bolsinov and Matveev (2011), see also (Topalov 2008, Theorem 3).
For diagonalisable gl-regular Nijenhuis operators L , every symmetry of L has the
form f (L) for some smooth function f so all metrics geodesically compatible with
such an operator L form generalised Sinjukov–Topalov hierarchy in the terminology
of Bolsinov and Matveev (2011). However, if gl-regular L contains non-trivial Jordan
blocks, then there exist strong symmetries that cannot be presented in the form f (L),
see Bolsinov et al. (2023d).

For a given Nijenhuis operator L , we define the operator fields Ai by the following
recursion relations

A0 = Id, Ai+1 = L Ai − σi Id, i = 0, . . . , n − 1, (6)

where functions σi are coefficients of the characteristic polynomial of L numerated
as below:

χL(λ) = det(λ Id − L) = λn − σ1λ
n−1 − · · · − σn . (7)

Equivalently, the operators Ai can be defined from the matrix relation

det(λ Id − L) · (λ Id − L)−1 = λn−1A0 + λn−2A1 + · · · + λAn−2 + An−1.

In the context of geodesically equivalent metrics, these operators can be charac-
terised as (1, 1)-Killing tensors of any metric g geodesically compatible with L (see
Bolsinov andMatveev 2003; Konyaev et al. 2024). Notice that they are not Nijenhuis.

1 Notice that this notion is different from strong symmetry introduced in Fuchssteiner and Fokas (1981)
which is now commonly known as recursion operator.
2 As proved in Bolsinov et al. (2023d), every symmetry of a gl-regular Nijenhuis operator is strong.
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Consider the following system of quasilinear PDEs defined by these operators

ut1 = A1 ux ,

. . .

utn−1 = An−1 ux ,

(8)

with ui = ui (x, t1, ..., tn−1) being unknown functions in n variables and u =
(u1, . . . , un)
.

The system (8) can be obtained within the framework of the general construc-
tion introduced by Lorenzoni and Magri (2005) and Magri (2003). In particular, it is
consistent (in the real-analytic category) in the sense that for any initial curve γ (x)
there exists a solution u = u(x, t1, . . . , tn−1) such that u(x, 0, . . . , 0) = γ (x). In
the case of a diagonal Nijenhuis operator L , the corresponding system satisfies the
semihamiltonicity condition of Tsarev (1991) and is weakly-nonlinear in the sense
of Rozhdestvenskii and Sidorenko (1967). Such systems were studied and integrated
in quadratures in the diagonal case by E.Ferapontov3 (Ferapontov 1990, 1991; Fer-
apontov and Fordy 1997) and in Marciniak and Blaszak (2010), see also Blaszak and
Sergyeyev (2009) and Blaszak and Ma (2003). The general, not necessarily diagonal-
isable, case was done in Bolsinov et al. (2023d).

The next portion of our results concerns finite-dimensional reductions of system
(8). Various types of finite-dimensional reductions of infinite-dimensional nonlinear
integrable systems have been investigated since themiddle of 70s, see, e.g.Antonowicz
et al. (1987),Bogojavlenskii andNovikov (1976),Hone (1996),Marciniak andBlaszak
(2010), andVeselov (1980). Informally, a finite-dimensional reduction of an integrable
PDE system is a subsystem of it, which is finite-dimensional and still integrable.
The first of the following two theorems states that the set of geodesics of any metric
geodesically compatiblewith a gl-regularNijenhuis operator L is invariantwith respect
to the flow of (8). That is, by fixing a metric g geodesically compatible with L , we
obtain a reduction of our infinite dimensional system to the set of g-geodesics, which
can be naturally endowed with the structure of a smooth manifold of dimension 2n.

Next, we show that the restriction of our system to the set of g-geodesics is equiva-
lent, in the natural sense, to the Poisson action generated by the quadratic integrals of
the geodesic flowwhich are closely related to the operators Ai (Bolsinov andMatveev
2003; Matveev and Topalov 1998). Namely, if g is geodesically compatible with L ,
then its geodesic flow (as a Hamiltonian system on T ∗M) admits n commuting first
integrals F0, . . . , Fn−1 of the form

Fi (u, p) = 1
2 g

−1(A∗
i p, p). (9)

Theorem 1.4 Consider any metric g geodesically compatible with L and take any
geodesic γ (x) of this metric. Let u(x, t1, . . . , tn−1) be the solution of (8) with the

3 Ferapontov’s result is more general, he explicitly integrated all diagonal weakly-nonlinear semihamilto-
nian systems.
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initial condition u(x, 0, . . . , 0) = γ (x). Then for any (sufficiently small) t1, . . . , tn−1,
the curve x �→ u(x, t1, . . . , tn−1) is a geodesic of g.

In other words, the evolutionary system corresponding to any of the equations from
(8) sends geodesics of g to geodesics. Let us consider the space G of all g-geodesics
(viewed as parameterised curves). This set has a natural structure of a 2n-dimensional
manifold. By Theorem 1.4, system (8) defines a local action of Rn on G:


 t0,t1,...,tn−1 : G → G, (t0, t1, . . . , tn−1) ∈ R
n .

More precisely, if γ = γ (x) ∈ G is a g-geodesic, then we set
 t0,t1,...,tn−1(γ ) to be the
g-geodesic γ̃ (x) = u(x + t0, t1, . . . , tn−1), where u(x, t1, . . . , tn−1) is the solution of
(8) with the initial condition u(x, 0, . . . , 0) = γ (x).

Theorem 1.5 The action 
 is conjugate to the Hamiltonian action of Rn on T ∗M
generated by the flows of the integrals F0, . . . , Fn−1 defined by (9). The conjugacy is
given by γ ∈ G �→ (γ (0), gi j γ̇ i (0)) ∈ T ∗M.

Remark 1.3 Strictly speaking, the action 
 is local, since the solutions u(x, t1, . . . ,
tn−1) of (8) are, in general, defined only for small values of ti and x from a certain
(perhaps, small) interval. However, if the Hamiltonian flows of F0, . . . , Fn−1 are
complete, then Theorem 1.5 becomes global in the sense that the initial geodesic γ (x)
is defined for all x ∈ R and (t0, t1, . . . , tn−1) ∈ R

n is arbitrary.

Let L be a gl-regular real-analytic Nijenhuis operator, then it follows from Bolsi-
nov et al. (2023d) that for every curve γ with a cyclic velocity vector there exists a
metric g geodesically compatible with L such that γ is a g-geodesic. Thus, the finite-
dimensional reductions of (8) provided by Theorems 1.4 and 1.5 ‘cover’ almost all
(local) solutions of the Cauchy problem. Indeed, every generic initial curve belongs
to a suitable set G of geodesics from Theorem 1.5.

2 Proof of Theorem 1.1

Recall that L is assumed to be g-self-adjoint. We use the geodesic compatibility
condition for g and L in the form (1). The operators in the left-hand side and the
right-hand side of (1) are both g-self-adjoint, so that we can equivalently rewrite this
relation as

g
(

(∇ηL)ξ, ξ
) = g(η, ξ)Lξ tr L for all tangent vectors η and ξ . (10)

Then, we have

g
(

(∇ηL)ξ, ξ
) = g

(∇η(Lξ) − L∇ηξ, ξ
) = g

([η, Lξ ] + ∇Lξ η − L([η, ξ ] + ∇ξ η), ξ
)

= g
(∇Lξ η, ξ

) − g
(∇ξ η, Lξ

) + g
([η, Lξ ], ξ)−g

([η, ξ ], Lξ
)

= ∇Lξ

(

g(η, ξ)
) − g

(

η,∇Lξ ξ
) − ∇ξ

(

g(η, Lξ)
) + g

(

η,∇ξ Lξ
)

+g
([η, Lξ ], ξ)−g

([η, ξ ], Lξ
)
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= ∇Lξ

(

g(η, ξ)
) − ∇ξ

(

g(η, Lξ)
) − g

(

η,∇Lξ ξ − ∇ξ Lξ
)

+g
([η, Lξ ], ξ)−g

([η, ξ ], Lξ
)

= LLξ

(

g(η, ξ)
) − Lξ

(

g(η, Lξ)
) − g

(

η, [Lξ, ξ ]) + g
([η, Lξ ], ξ)−g

([η, ξ ], Lξ
)

,

which leads to (2), as required.
In local coordinates, condition (1) takes the form:

∂Lm
j

∂xi
+ �m

iαL
α
j − �α

i j L
m
α = 1

2
(l jδ

m
i + gαmlαgi j ), where l j = ∂ tr L

∂x j
.

Multiplying by gkm (and summing over m) gives

gkm
∂Lm

j

∂xi
+ �iα,k L

α
j − gkm�α

i j L
m
α = 1

2
(l j gik + lkgi j ).

Using the fact that L is g-self-adjoint (i.e. gkmLm
α = gαmLm

k ), we get (after cosmetic
changes of some summation indices)

gkα
∂Lα

j

∂xi
+ �iα,k L

α
j − �i j,αL

α
k = 1

2
(l j gik + lkgi j ).

In more detail,

gkα
∂Lα

j

∂xi
+ 1

2

(
∂gik
∂xα

+ ∂gkα
∂xi

− ∂giα
∂xk

)

Lα
j − 1

2

(
∂giα
∂x j

+ ∂g jα

∂xi
− ∂gi j

∂xα

)

Lα
k = 1

2
(l j gik + lkgi j ).

Since L is g-self-adjoint, we can rewrite it as follows:

1

2
gkα

∂Lα
j

∂xi
+ 1

2
gα j

∂Lα
k

∂xi
+ 1

2

(
∂gik
∂xα

− ∂giα
∂xk

)

Lα
j

+1

2

(
∂gi j
∂xα

− ∂giα
∂x j

)

Lα
k = 1

2
(l j gik + lkgi j ), (11)

which makes it clear that the left-hand side and right-hand side of this relation are
both symmetric in indices j and k. Up to the factor 1

2 , this relation coincides with (3),
as needed.

3 Proof of Theorem 1.2

Let L be a gl-regular Nijenhuis operator. We start with a purely algebraic construction
leading to a metric h that is geodesically compatible with L . This construction is per-
formed in specific coordinates (and h will depend on the choice of such coordinates).
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First, fix second companion coordinates u1, . . . , un of L so that

L = Lcomp2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 1 . . . 0

. . .

0 0 0 . . . 1
σn σn−1 σn−2 . . . σ1

⎞

⎟
⎟
⎟
⎟
⎠

.

Recall that for real-analytic gl-regular Nijenhuis operators such coordinates always
exist (Bolsinov et al. 2023c)4.

Let p1, . . . , pn, u1, . . . , un be the corresponding canonical coordinates on the
cotangent bundle and consider the following algebraic identity

h1L
n−1 + · · · + hn Id =

(

pnL
n−1 + · · · + p1 Id

)2
. (12)

The operator in the right-hand side commutes with L and therefore can be uniquely
written as a linear combination of Id, L, . . . , Ln−1 [this is a characteristic proper-
ties of gl-regular operators (Bolsinov et al. 2023d)] so that the functions h1, . . . , hn
are uniquely defined. In fact, they are quadratic in p1, . . . , pn and their coefficients
are polynomials in σi ’s. Using the fact that L = Lcomp2, one can easily check that

hn, . . . , h1 are the elements of the first row of the matrix
(

pnLn−1 + · · · + p1 Id
)2
.

The statement of Theorem 1.2 follows from

Proposition 3.1 The quadratic function h1(u, p) defines a non-degenerate (con-
travariant) metric which is geodesically compatible with L = Lcomp2.

To prove this proposition, we need to verify three conditions:

(i) the quadratic form h1(u, p) = ∑
hαβ
1 (u)pα pβ is non-degenerate,

(ii) L is h1-self-adjoint,
(iii) L and h1 satisfy the geodesic compatibility condition.

Lemma 3.1 The contravariant quadratic form hi is non-degenerate, i.e.

det
(

hαβ
1 (u)

)

= 0.

Proof We write the r.h.s. of (12) as

(

pnL
n−1 + · · · + p1 Id

)2 =
2n−1
∑

i=0

( i+1
∑

k=1

pk pi−k+2

)

Li .

Hence, from (12) we get

∂2h1
∂ pi∂ p j

Ln−1 + · · · + ∂2hn
∂ pi∂ p j

Id = Li+ j−2.

4 It is an open question whether such coordinates exist for any smooth gl-regular Nijenhuis operator L .
By Bolsinov et al. (2023c), it is the case if L is algebraically generic, i.e. its eigenvalues have constant
multiplicities.
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This immediately implies that nonzero terms of
(

hαβ
1

)

are the only ones with α+β ≥
n + 1. Moreover, one can see that hαβ

1 = 1 for α + β = n + 1. In other words, the
matrix of h1 has the form

(

hαβ
1

)

=

⎛

⎜
⎜
⎜
⎜
⎝

0 . . . 0 0 1
0 . . . 0 1 ∗
0 . . . 1 ∗ ∗

. .
.

1 . . . ∗ ∗ ∗

⎞

⎟
⎟
⎟
⎟
⎠

,

and is obviously non-degenerate, as stated. ��

The second condition (ii) is algebraic and can be checked directly by using standard
matrix algebra. We, however, will derive it differently. For our next construction, we
will need an operator field L̂ , which can be understood as a prolongation of L to the
cotangent bundle. In the given second companion coordinates (p, u), we set

L̂ =
(

L
 0
0 L

)

.

The next Lemma provides some differential identities, which are crucial for our con-
struction.

Lemma 3.2 The functions hi from (12) satisfy the following identities

L̂∗dhi = σidh1 + dhi+1, i = 1, . . . , n − 1,

L̂∗dhn = σndh1
(13)

Proof If we consider pi to be (scalar) parameters, then the l.h.s. of (12) is a symmetry
of L . This implies [see Bolsinov et al. (2023d, Lemma 2.3)] that

L∗d̄hi = σi d̄h1 + d̄hi+1, i = 1, . . . , n − 1,

L∗d̄hn = σn d̄h1.
(14)

Here d̄hi = ∂hi
∂u1

du1 + · · · + ∂hi
∂un du

n , that is, one half of the differential dhi on the
cotangent bundle. Differentiating (12) in pi , we get

∂h1
∂ pi

Ln−1 + · · · + ∂hn
∂ pi

Id = 2Li−1
(

pnL
n−1 + · · · + p1 Id

)

, i = 1, . . . , n.
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This implies (using the Cayley–Hamilton theorem)

∂h1
∂ pi+1

Ln−1 + · · · + ∂hn
∂ pi+1

Id = L
(∂h1

∂ pi
Ln−1 + · · · + ∂hn

∂ pi
Id

)

= ∂h1
∂ pi

Ln + · · · + ∂hn
∂ pi

L =
(∂h2

∂ pi
+ σ1

∂h1
∂ pi

)

Ln−1 + · · ·

+
(∂hn

∂ pi
+ σn−1

∂h1
∂ pi

)

L + σn
∂h1
∂ pi

Id .

As L is gl-regular, the coefficients in front of the powers of L coincide, and we arrive
to the system of n − 1 matrix equations

∂h

∂ pi+1
= Lcomp1

∂h

∂ pi
, i = 1, . . . , n − 1. (15)

Here ∂h
∂ pi

is the column-vector
(

∂h1
∂ pi

, . . . , ∂hn
∂ pi

)

and Lcomp1 denotes the first compan-

ion form of L (obtained from Lcomp2 by transposition w.r.t. the anti-diagonal). Notice
that (15) can be rewritten in equivalent form ∂h

∂ pi+1
= (Lcomp1)

i ∂h
∂ p1

. In particular,
∂h
∂ pn

= (Lcomp1)
n−1 ∂h

∂ p1
implying

Lcomp1
∂h

∂ pn
= Ln ∂h

∂ p1
= (σ1L

n−1 + · · · + σnId)
∂h

∂ p1
= σ1

∂h

∂ pn
+ · · · + σn

∂h

∂ p1
.

Together with this additional equation, we can write (15) in matrix form:

Lcomp1

(
∂h

∂ p

)

=
(

∂h

∂ p

)

L

comp2,

where
(

∂h
∂ p

)

is the Jacobi matrix of h1, . . . , hn w.r.t. p1, . . . , pn . Introducing d̃hi =
(

∂hi
∂ p1

, . . . ,
∂hi
∂ pn

)

and recalling that in our coordinates L = Lcomp2, we can finally

rewrite this system as

d̃hi L

 = σi d̃h1 + d̃hi+1, i = 1, . . . , n − 1,

d̃hn L

 = σn d̃h1.

(16)

Gathering (16) and (14), we get (13) from the statement of the Lemma. ��
Corollary 3.1 L is h1-self-adjoint.

Proof By saying that L is self-adjoint w.r.t. the contravariant metric h1, we mean that
h1(L∗α, β) = h1(α, L∗β) for any 1-forms (co-vectors) α and β. In local coordinates,
this condition means that the tensor hks1 L j

s is symmetric in indices k and j . This is, of
course, equivalent to the fact L is self-adjoint w.r.t. the covariant metric h−1

1 .
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For i = 1, relations (16) give d̃h1 L
 = σ1d̃h1 + d̃h2. In coordinates,

hks1 L j
s = σ1h

kj
1 + hkj2 (17)

and we see that the l.h.s. is indeed symmetric in k and j , since h1 and h2 in the r.h.s.
are both symmetric by construction. This completes the proof. ��

The standard geodesic compatibility condition (1) is not very convenient in our
current setting as we deal with a contravariant metric h1. However, there is another
elegant Benenti condition which is quite suitable for our purposes, see Bolsinov and
Matveev (2003, Definition 1 and Theorem 1). Namely, h1 and L will be geodesically
compatible if the quadratic functions

H = 1

2
h1(p, u) = 1

2
hi j1 (u)pi p j and F = hks1 L j

s pk p j (18)

satisfy the following commutation relation w.r.t. the standard Poisson structure on
T ∗M

{H , F} = 2H · (
∂ tr L
∂uq hαq

1 pα

)

. (19)

To verify this relation, we need the following algebraic lemma.

Lemma 3.3 Let P be a skew-symmetric form on a vector space V n and L be an P-
symmetric operator, that is, P(Lξ, η) = P(ξ, Lη) for all vectors ξ, η. Then for all
integer p, q ≥ 0 and arbitrary ξ , one has

P(L pξ, Lqξ) = 0.

Proof The above symmetry condition implies that the form PL(ξ, η) = P(Lξ, η)

is skew-symmetric. Now, if p + q = 2k, then due to L being P-symmetric, we
get P(L pξ, Lqξ) = P(Lkξ, Lkξ) = 0. Similarly for p + q = 2k + 1, we get
P(L pξ, Lqξ) = P(Lk+1ξ, Lkξ) = PL(Lkξ, Lkξ) = 0 as PL is skew-symmetric.
Lemma is proved. ��

Now notice that by construction L̂∗ is P-symmetric with respect to the Poisson
structure P = �−1. On the other hand, relations (13) imply that dh1, . . . , dhn belong
to the subspace spanned by

(

L̂∗)kdh1 (k = 0, 1, . . . ). By Lemma 3.3, this subspace
is isotropic w.r.t. P , which means that

{hi , h j } = 0,

where { , } in the standard Poisson bracket on the cotangent bundle.
To finish the proof, it remains to notice that relation (17) means that the second

function F from (18) can be written as F = h2 + σ1h1, where σ1 = tr L . Due to
Poisson commutativity of h1 and h2, we have

{H , F} = { 12h1, h2 + σ1h1} = 1
2h1 · {h1, σ1} = H · {h1, tr L} = 2H ·

(∂ tr L

∂uq
hαq
1 pα

)

,
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which coincides with (19). This completes the verification of conditions (i), (ii), and
(iii) and hence the proof of Theorem 1.2.

4 Proof of Theorem 1.3

Let L and g be geodesically compatible. We start with the first statement of Theo-
rem 1.3 and consider a g-self-adjoint operator M which is a strong symmetry of L .
We need to show that the geodesic compatibility condition still holds if we replace g
with g̃ = gM (i.e. g̃(η, ξ) = g(Mη, ξ)).

We use this condition in the form (2). We have

LLξ

(

g̃(η, ξ)
) − Lξ

(

g̃(η, Lξ)
) + g̃

(

η, [ξ, Lξ ]) + g̃
([η, Lξ ], ξ) − g̃

(

L[η, ξ ], ξ)

= LLξ

(

g(Mη, ξ)
) − Lξ

(

g(Mη, Lξ)
) + g

(

Mη, [ξ, Lξ ]) + g
(

M[η, Lξ ] − ML[η, ξ ], ξ)

= LLξ

(

g(Mη, ξ)
) − Lξ

(

g(Mη, Lξ)
) + g

(

Mη, [ξ, Lξ ]) + g
([Mη, Lξ ] − L[Mη, ξ ], ξ)

+ g
(

M[η, Lξ ] − ML[η, ξ ]−[Mη, Lξ ] + L[Mη, ξ ], ξ)

= g
(

(∇MηL)ξ, ξ
) + g

(〈M, L〉(η, ξ), ξ
) = g

(

(∇MηL)ξ, ξ
) + 0

= g(Mη, ξ)Lξ tr L = g̃(η, ξ)Lξ tr L,

as required. This proves the first statement of Theorem 1.3.

Remark 4.1 This computation also leads to the following conclusion. Let g and L be
geodesically compatible. Then a metric g̃ = gM is geodesically compatible with L if
and only if g

(〈M, L〉(η, ξ), ξ
)

vanishes for all η, ξ .

Now assume that L is gl-regular. To prove the second statement of Theorem 1.3,
we need the following algebraic fact.

Lemma 4.1 Let operators L and M be g-self-adjoint. Then L is self-adjoint with
respect to the metric g̃ = gM if and only if L and M commute (i.e. ML − LM = 0).

Proof The statement immediately follows from the identity

g̃(Lξ, η) − g̃(ξ, Lη) = g(MLξ, η) − g(Mξ, Lη) = g
(

(ML − LM)ξ, η
)

.

Since g is non-degenerate, the vanishing of the l.h.s. is equivalent to ML − LM = 0,
as stated. ��

Now let L be a gl-regular Nijenhuis operator which is geodesically compatible with
a metric g (notice that such a metric always exists by Theorem 1.2).

Let g̃ be another metric geodesically compatible with L . Recall that L is g̃-self-
adjoint by definition. Define M to be the operator field that relates these two metrics,
that is, g̃ = gM so thatM is automatically g-self-adjoint. ByLemma4.1,ML−LM =
0 and, thus, M = f1Ln−1 + · · · + fn Id for some smooth functions f1, . . . , fn . We
introduce the following tensor of type (1, 2)which we treat as a vector-valued bilinear
form:

TM = d fn ⊗ Ln−1 + · · · + d fn ⊗ Id
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By definition,
LTM (ξ, η) = TM (ξ, Lη). (20)

As L is g-self-adjoint, we have

g
(

TM (ξ, η), ζ
) = g

(

η, TM (ξ, ζ )
)

(21)

for all vectors ξ, η, ζ . By straightforward computation, using the fact that 〈Li , L〉 = 0,
we get

〈M, L〉(η, ξ) = L[Mη, ξ ] + M[η, Lξ ] − LM[η, ξ ] − [Mη, Lξ ]
= TM (ξ, Lη) − TM (Lξ, η).

(22)

From (20), (21) and (22) we obtain

g
(〈M, L〉(η, ξ), ξ

)

= g
(

TM (ξ, Lη), ξ
) − g

(

TM (Lξ, η), ξ
) = g

(

Lη, TM (ξ, ξ)
) − g

(

η, TM (Lξ, ξ)
)

= g
(

η, LTM (ξ, ξ)
) − g

(

η, TM (Lξ, ξ)
) = g

(

η, TM (ξ, Lξ) − TM (Lξ, ξ)
)

= −g
(

η, 〈M, L〉(ξ, ξ)
)

(23)
By Remark 4.1, g̃ = gM is geodesically compatible with L if and only if

g
(〈M, L〉(η, ξ), ξ

) = 0,

for all ξ, η. In view of (23), this implies that 〈M, L〉(ξ, ξ) = 0, i.e. M is a symmetry
of L . Since L is gl-regular, the symmetry M is strong (Bolsinov et al. 2023d, Theorem
1.2), as required.

5 Proof of Theorems 1.4 and 1.5

Recall that a symmetric (0, 2)-tensor A = Ai j is called a Killing tensor for a (pseudo)-
Riemannian metric g if it satisfies the following condition:

∇k Ai j + ∇i A jk + ∇ j Aki = 0,

where ∇ denote the Levi-Civita connection of g. We will also refer to the operator
Ai
j = gis As j obtained from A = Ai j by raising index as Killing (1, 1)-tensor. Recall

that the equivalent definition for Killing (1, 1)-tensors is as follows: A = Ai
j is Killing

(1, 1)-tensor for a metric g if A is g-self-adjoint and the Hamiltonians

H(u, p) = 1

2
gi j (u)pi p j and F(u, p) = 1

2
Ai

αg
α j (u)pi p j (24)

commute on T ∗M w.r.t. the canonical Poisson structure.
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Theorems 1.4 and 1.5 are based on the following general statement that establishes
a natural relation between quadratic Killing tensors of (pseudo)-Riemannian metrics
and solutions of some quasilinear systems. Its special case is Marciniak and Blaszak
(2010, Remark 2 and Proposition 3), see also Blaszak and Sergyeyev (2009) and
Blaszak and Ma (2003).

Proposition 5.1 Let A = Ai
j be a Killing (1, 1)-tensor for a Riemannian metric g.

Consider the Hamiltonian R
2-action on T ∗M generated by the Poisson commuting

Hamiltonians (24):

�x,t = �x
H ◦ �t

F : T ∗M → T ∗M.

Then for any initial condition (u0, p0), the function u(t, x) defined from the relation
�x,t (u0, p0) = (

u(x, t), p(x, t)
)

is a solution of the quasilinear system

ut = A(u)ux . (25)

Proof By definition, the functions
(

u(x, t), p(x, t)
)

define the natural parametrisation
of the�-orbit of the point (u0, p0). In particular,

(

u(x, tc), p(x, tc)
)

for a fixed t = tc is
a solution of theHamiltonian systemgenerated by H and, similarly,

(

u(xc, t), p(xc, t)
)

for a fixed x = xc is a solution of the Hamiltonian system generated by F . Hence at
each point (x, t), we have

∂ui

∂x
= ∂H

∂ pi
= gi j p j and similarly

∂ui

∂t
= ∂F

∂ pi
= Ai

αg
α j p j ,

which immediately implies ∂ui
∂t = Ai

α
∂uα

∂x or, shortly, ut = A(u)ux , as required. ��

This proposition can be naturally generalised to the case when g admits several
commuting Killing tensors. Indeed, consider a (pseudo)-Riemannian metric g and
g-self-adjoint operators A0 = Id, A1, . . . , An−1 such that the quadratic functions
Fi (x, p) = 1

2g
−1(A∗

i p, p), i = 0, 1, . . . , n − 1, pairwise commute on T ∗M w.r.t. the
canonical Poisson structure (in particular, each of Ai is a Killing (1, 1)-tensor for g).
These functions generate a Hamiltonian R

n-action on T ∗M:

�(x,t1,...,tk ) : T ∗M → T ∗M, �(x,t1,...,tk ) = �x
F0 ◦ �

t1
F1

◦ · · · ◦ �
tk
Fk

,

where �t
Fi
denotes the Hamiltonian flow generated by Fi .

Corollary 5.1 In the above setting, let

(

u(x, t1, . . . , tn−1), p(x, t1, . . . , tn−1)
) = �(x,t1,...,tn−1)(u0, p0)
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be an orbit of this action. Then, u(x, t1, . . . , tn−1) is a solution of the system of quasi-
linear equations

ut1 = A1(u)ux ,

ut2 = A2(u)ux ,

. . .

utn−1 = An−1(u)ux .

(26)

The statement of Theorem 1.4 follows from this Corollary and the fact that the
operators Ai from system (8) are commuting Killing (1, 1)-tensors for any metric g
that is geodesically compatible with L (Bolsinov and Matveev 2003, Corollary 1).
Indeed, if γ (x) = (u1(x), . . . , un(x)) is a geodesic of g, then the curve (u(x), p(x))
with pi (x) = gi j (u)u̇ j (x) is an orbit of the Hamiltonian flow �x

F0
on T ∗M generated

by F0 = H = 1
2g

i j (u)pi p j . This R1-orbit can be naturally included into an Rn-orbit
of the action �(x,t1,...,tn−1) so that

(

u(x, 0, . . . , 0), p(x, 0, . . . , 0)
) = (u(x), p(x)).

Now for any fixed t1, . . . , tn−1, the curve
(

u(x, t1, . . . , tn−1), p(x, t1, . . . , tn−1)
)

parametrised by x is still an orbit of the Hamiltonian flow �x
F0
. Since F0 = H is the

Hamiltonian of the geodesic flow of g, the curve u(x, t1, . . . , tn−1) is a g-geodesic
(for fixed t1, . . . , tn−1). On the other hand, by Corollary 5.1, u(x, t1, . . . , tn−1) is the
solution of 1.4 with the initial condition u(x, 0, . . . , 0) = γ (x). This completes the
proof of Theorem 1.4.

Thus, the evolutionary flows uti = Ai (u)ux naturally act on the space of
g-geodesics. Since every geodesic is uniquely defined by its initial condition
(u(0), p(0)) ∈ T ∗M, we can naturally identify the space G of all (parametrised)
geodesics with the cotangent bundle T ∗M by setting

γ ∈ G �→ (u(0), p(0)) ∈ T ∗M, (27)

where u(0) = γ (0) and pi (0) = gi j (u(0))u̇ j .
To prove Theorem 1.5, it remains to compare the action 
 t0,...,tn−1 on G and the

Hamiltonian action �t0,...,tn−1 on T ∗M. We have


 t0,...,tn−1(γ (x)) = u(x + t0, t1, . . . , tn−1) and �t0,...,tn−1(u(0), p(0))

= (u(t0, . . . , tn−1), p(t0, . . . , tn−1)).

Taking into account that pi (t0, . . . , tn−1) = gi j
d
dx |x=0u j (t0 + x, t1, . . . , tn−1), we

see that the map (27) indeed conjugates the actions
 and�. This completes the proof
of Theorem 1.5.
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