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Abstract
We introduce a nonlinear stochastic model reduction technique for high-dimensional
stochastic dynamical systems that have a low-dimensional invariant effective mani-
fold with slow dynamics and high-dimensional, large fast modes. Given only access
to a black-box simulator from which short bursts of simulation can be obtained, we
design an algorithm that outputs an estimate of the invariant manifold, a process of
the effective stochastic dynamics on it, which has averaged out the fast modes, and a
simulator thereof. This simulator is efficient in that it exploits of the low dimension
of the invariant manifold, and takes time-steps of size dependent on the regularity
of the effective process, and therefore typically much larger than that of the original
simulator, which had to resolve the fast modes. The algorithm and the estimation can
be performed on the fly, leading to efficient exploration of the effective state space,
without losing consistency with the underlying dynamics. This construction enables
fast and efficient simulation of paths of the effective dynamics, together with esti-
mation of crucial features and observables of such dynamics, including the stationary
distribution, identification ofmetastable states, and residence times and transition rates
between them.
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1 Introduction

Many mathematical models of dynamical systems, across the sciences, are based on
ordinary and stochastic differential equations (ODEs and SDEs, respectively), with a
large number of degrees of freedom, often with dynamics at very different timescales.
These systems offer multiple significant challenges to their simulation and under-
standing, which often require collecting a large number of long trajectories to capture
a wide variety of possible behaviors of the system. These challenges include: (1) the
high dimension of the state space and the corresponding large number of equations; (2)
many fast/stiffmodes, corresponding to very rapid fluctuations (e.g., solventmolecules
around a protein); and (3) metastability, with trajectories dwelling for large times in
certain regions of state space (metastable states), with rare transitions between them.

These challenges often compound in a single system, making the large scale (in
state space and in time) phenomena of the system, which are often of interest in
applications, difficult to capture and study. Some of the properties that one often
wishes to capture include the invariant manifold, around which trajectories lie; the
stationary distribution, describing the large-time distribution of the system in state
space; the residence times describing the distribution (or its expectation) of the time
spent in a metastable state M before leaving it, once started in M ; the transition
rates and transition paths, containing information about the expected time and most
likely paths followed by the system when transitioning between metastable states;
the reaction coordinates, representing low-dimensional observables whose dynamics
is approximately Markovian and predictive of transitions between metastable states;
and the leading eigenvalues and eigenvectors of the generator of the process, related
to transition rates and reaction coordinates, respectively (Coifman et al. 2005, 2008;
Husic and Pande 2018; Klus et al. 2018; Rohrdanz et al. 2013; Bittracher et al. 2018;
Kutz et al. 2016; Weinan and Eric 2004; Leimkuhler and Matthews 2015; Legoll and
Lelièvre 2010, 2012; Givon et al. 2004; Alexander and Giannakis 2020).

These objects of interest intertwine geometry and dynamics and are our focus
in this work: we aim at jointly estimating crucial geometric objects, such as a low-
dimensional invariantmanifoldMε , and effective dynamics of the system at and above
a given timescale, via estimated stochastic equations, that average out complex, high-
dimensional aspects of the dynamics below that timescale. This reduced model can be
more amenable to faster simulation, with low-dimensional equations and time-steps
much larger than those needed by a simulator of the original system.

As with any type of model reduction, loss of information is in general unavoidable,
and it has possibly dramatic consequences, among which loss of Markovianity, and
to a loss of accuracy in predictions by the reduced model, especially at large times.
Our approach aims at reducing these problems, at least on a suitable class of systems.
We consider the problem of nonlinear model reduction for stochastic systems that,
while presenting the above challenges, have features that are possibly redeeming, if
appropriately exploited: fast and slow modes of evolution of the system, with a non-
negligible separation of timescales; a low-dimensional invariant manifold, onto which
the dynamics may be projected by averaging the fast modes, while preserving infor-
mation about the large-scale/time phenomena; fast modes that may be linearized, but
may be high-dimensional, and have large magnitude, with varying direction relative
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to the invariant manifold. The objects we need to estimate are nonlinear: the invari-
ant manifold, the corresponding reduction map onto it, and the effective stochastic
equations on it.

The modality in which we have access to ground-truth trajectory data is important
for algorithmic, statistical and computational considerations. We assume to be given
access to the system via a black-box simulator S taking time-steps δt � ε (to resolve
the fast modes, whose derivative has the order 1/ε), that we can call to obtain only
short trajectories, of length-in-time of order τ � ε, where τ is typically of the order
of the relaxation timescale of the fast modes. From a given initial condition, we use
the simulator S to obtain a burst of N short paths, each of time length O(τ ). This
now classical setup (Frewen et al. 2009a) enables trivial parallelization, across initial
conditions and paths from each initial conditions, and is well-suited to applications
(Liu et al. 2015; Kim et al. 2015; Leimkuhler and Matthews 2015; Dietrich et al.
2021). A crucial problem is how initial conditions for these bursts are made available.
When they cannot be chosen by the estimation procedure, they may be modeled as
randomly drawn, ideally from a probability measure on state space that is reasonably
well-distributed over the state space: it is then straightforward to estimate how many
initial conditions needs to be sampled to guarantee, with high probability, coverage
(see, e.g., Crosskey andMaggioni 2017).When the initial conditionsmay be chosen by
the estimation procedure, a natural exploration–exploitation dilemma arises: refining
the estimates in a region of space already populated by initial conditions by sampling
more initial conditions and paths, or generate paths from initial conditions “outside”
from the parts of state space already visited?And how to generate the latter? Especially
when the state space is high-dimensional, and the dynamics of interest is along a low-
dimensional invariant manifold, it is not trivial to sample new initial conditions. Even
more so in applications, where many physical constraints are often extremely complex
and unknown. We develop a simple approach, called “exploration mode”, discussed
below, that addresses both the exploration–exploitation dilemma and the problem of
generating new initial conditions “outside” the already-visited state space; all needed
is a small number (e.g., 1) of initial conditions; our numerical examples will be run in
“exploration mode”.

From the observations of N paths from an initial condition, we estimate locally the
invariant manifoldMε , the effective local directions of the fast modes and an oblique
projection along them onto Mε , and an effective drift and diffusion coefficient to be
used for an effective Itô diffusion onMε . In these steps, it is crucial to avoid the curse of
dimensionality, whichwould demand a number of observations exponential in the high
dimension D of the state space. We achieve this by using simple parametric models
for these local estimators, and prove that the sampling requirement scale favorably
linearly in D. We then piece together these local estimators of the effective dynamics
at timescales τ , to obtain a global estimate ofMε , of a nonlinear projection ontoMε ,
and of a process on Mε called ATLAS.

The ATLAS stochastic process (zAt )t≥0 takes place on the estimatedMε , and aims
at reproducing, at timescale τ and above, the dynamics of the original process onMε ,
after averaging out the fast modes. The ATLAS process may be simulated much more
efficiently than the original process, as it is lower dimensional and amenable to be
simulated with time-steps of size τ � ε, instead of size � ε as in S. We demonstrate
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this construction numerically on several systems that display several different salient
features: nonlinear slow manifolds, lack of a global map to globally linear slow and
fast variables, linear and curvilinear fast modes, with and without a clear separation
of timescales between fast and slow modes.

As we mentioned above, in many applications (e.g., in molecular dynamics) a
“large enough” set of initial conditions, at which to collect bursts of paths, is not
known. A key contribution of this work is to introduce a construction for ATLAS in
“exploration mode”, where we initially construct ATLAS from a very small number
of initial conditions, and update it on the fly by collecting new bursts of simulations
from S, started at automatically well-chosen initial conditions, whenever ATLAS
trajectories leave an ever-increasing “domain of competency” of the current ATLAS.
This yields an increasing family of ATLASes, each consistent with the previous ones
and with the original dynamics, on ever-increasing subsets of the state space, without
over-sampling already explored regions. To efficiently and consistently explore the
effective state space for the system is a crucial ability of ATLAS, achieved with
techniques very different from existing ones, which typically are based on biasing the
dynamics, and trading exploration with fidelity to the original dynamics (Chiavazzo
et al. 2017; Frewen et al. 2009b; Tribello et al. 2014; Zheng et al. 2013; Chen et al.
2015).

All our numerical experiments are run exclusively in exploration mode and demon-
strate that ATLAS accurately reproduces features of the dynamics at medium and large
timescales and enables the efficient construction ofMarkov state models (MSMs), and
of approximations of important observables, such as eigenvalues and eigenvectors of
the generator of the dynamics. These in turn may be used for further reduction of
the dynamics at very large timescales, estimating transition rates, and yielding low-
dimensional embeddings of Mε .

2 Fast–Slow SDEs with Slow Nonlinear Manifolds

A classical model of fast–slow SDEs is

⎧
⎨

⎩

dxt = g(xt , yt )dt + G(xt , yt ) dUt

dyt = 1

ε
f (xt , yt )dt + 1√

ε
F(xt , yt ) dVt

, (2.1)

where ε > 0 is a small parameter, determining the separation of timescales, yt ∈ R
D−d

and xt ∈ R
d are, respectively, the fast and slow variables, and (Ut )t≥0, (Vt )t≥0 are

independentWiener processes inRd andRD−d respectively. The drift coefficients f , g
and the diffusion coefficients F,G are assumed to be regular, e.g., twice-differentiable.
Systems governed by this type of equations have been extensively studied (Pavliotis
and Stuart 2008; Berglund and Gentz 2006; van Kampen 1981; Gardiner 2009). We
are interested in the situation, common in applications, where the ambient dimension
D is much larger than “intrinsic” dimension d of the slow variables. The time-step
δt in the original simulator S of Eq. (2.1) is typically � ε to ensure accuracy and
stability of the numerical scheme, making it computationally onerous. This constraint
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on the time-step is generally applicable only to explicit schemes, motivating continued
research in implicit schemes, which, however, in high dimensions still appear to be
computationally prohibitive. While the techniques we introduce are also applicable
to ODEs with minor changes, including for example substituting bursts of stochastic
paths by bursts of deterministic paths started by stochastically perturbed initial con-
ditions, we focus on SDEs to streamline the presentation. Also, recall that fast–slow
ODEs may be approximated by SDEs, at least in the limit ε → 0 (Pavliotis and Stuart
2008).

2.1 The SlowManifold and Averaged Equations on it

The fast variable y is assumed to relax, at a timescale O(τ ), and stay close to the slow
manifold Mx

0 := {(x, y�(x)) : f (x, y�(x)) = 0} of the corresponding deterministic
system (with F,G ≡ 0), if the slow manifold is asymptotically stable. Geometric
singular perturbation theory implies the existence of an invariant manifoldMx

ε , close
to Mx

0, see Berglund and Gentz (2006), Berglund and Gentz (2003), Kuehn (2015)
and Appendix A.1. Under suitable further conditions, one then obtains a reduced set of
equations onMx

ε , with the drift and diffusion coefficients onMx
ε obtained by locally

averaging, at each x0 ∈ Mx
ε , those in Eq. (2.1) against the conditional invariant

measure ν(y|x = x0) of the fast modes (Pavliotis and Stuart 2008; Berglund and
Gentz 2006). The technical assumptions needed can be far from trivial, e.g., often G
is assumed independent of y (Yu and Veretennikov 1991; Givon et al. 2006; Givon
2007). The reduced equations are

dx̄t = ḡ(x̄t )dt + Ḡ(x̄t )dUt , ȳt = ȳ(x̄t , ε), (2.2)

which define a process on the invariant manifoldMx
ε , for small ε (see Appendix A.3

for details). Having averaged out the fast variables, the reduced dynamics deliberately
lose information about the details of the dynamics of the fast variables and phenomena
below the timescale τ , but it yields a low-dimensional process (in the regime of interest
d � D), that reproduces the effective dynamics of the original system on Mx

ε at
timescale of order O(τ ) and, ideally, beyond.

2.2 Nonlinear Observations and Unknown Slow/Fast Variables

In themodel inEq. (2.1), the slowand fast variables are the given, linear, andorthogonal
coordinates x and y. In applications, however, the slow and fast variables are typically
not known a priori and need to be identified, and in general they are neither linear nor
orthogonal (Wechselberger 2020).

This motivates the following observation model. We view the system in Eq. (2.1)
as a black-box latent local model: Black-box because equations are not available to
us. Latent because we do not have access to x and y, but to observations z, ranging in
� ⊆ R

D , which can be mapped to latent variables (x, y) ∈ R
D , satisfying Eq. (2.1).

Local because such a map is not a global map, but is in fact realized by a collection of
charts {(Uα, ϕα)}α , consisting of open neighborhoods {Uα}α covering � and smooth
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maps ϕα : Uα → R
D , each invertible on its range and such that ϕα ◦ ϕ−1

α′ is smooth
where defined, so that for every point z ∈ � the local latent variables (x, y) =
ϕα(z) satisfy Eq. (2.1), for Uα � z (there exists one such Uα since {Uα}α covers �).
Geometrically, this is of course the natural setup for expressing that the observations
z are on a manifold parametrized by a system of charts (called an atlas, in differential
geometry). This geometric perspective is here merged with the dynamics, through the
condition that the local parametrizations map the dynamics of the observed variables
to a dynamics where the latent variables follow the model equations (2.1). This model
is inspired and generalizes that of Singer et al. (2009) and Wechselberger (2020),
where the aim was to discover an embedding of the underlying slow variables, via the
lowest frequency eigenfunctions of an estimated generator of the whole process, and
not necessarily a parametrization of the invariant manifold, nor effective equations
on it. That approach is broadly applicable to a larger class of processes than ours,
for example when the fast modes are highly nonlinear; however this comes at the
price of falling victim of the curse of dimension, requiring sampling paths from an
exponentially large number of initial conditions (this is not discussed in Singer et al.
2009, but it could be derived). We shall estimate the slow variables and effective
equations directly, without first learning the detailed behavior of the high-dimensional
fast variables, and subsequently reduce the dynamics via eigen-decompositions.

In the observed variables z, the process (xt , yt )t≥0 maps to a process (zt )t≥0, where
slow and fast variables are in general nonlinearly mixed, instead of being linear and
orthogonal as in Eq. (2.1). The slow variables zslw will lie on a nonlinear invariant
manifoldMε of dimension d; trajectories will lie in a domain of concentration around
Mε that we model as a non-self-intersecting tube around Mε .Mε is close to a slow
manifoldM0 (which in general is not the image ofMx

0 under the maps ϕ−1
α ). Locally

around the initial point z0 ∈ Mε , onemay linearize the equations for (zt )0≤t�τ(z0) to a

form similar to Eq. (2.1), with x replaced by slow variables zslw and y replaced by fast
variables zfst. Under the same linearization, zslw is approximated as lying in the tangent
space Tz0Mε := span(col(U slw

d )) to Mε at z0, and zfst is approximated as lying in
V
fst
z0 := span(col(V fst

D−d)). The slow and fast directions U slw
d , V fst

D−d in general vary,
smoothly,with z0. (Mε−z0) is locally a graph of a function zfstε (·; z0) : Tz0Mε → V

fst
z0

over the slow variables zslw. We can then proceed to the reduction to equations in the
slow variables zslw only, in a form similar to Eq. (2.2), by averaging the fast variables
at a prescribed timescale τ , obtaining a reduced process onMε .

2.3 Structure of the Local Reduced Effective Equations

We assumed that the deviation of the fast variable from the invariant manifold
Mε lies, exactly or approximately, in V

fst
z0 ; in this subspace let it be given by

ξ t := zfstt − zfstε (P(zslwt ); z0) with t � τ(z0), where P is the projection onto Tz0Mε

with kernel Vfst
z0 . The idea of averaging in fast–slow systems (Pavliotis and Stuart

2008; Freidlin et al. 2012; Givon et al. 2004; Berglund and Gentz 2006; van Kam-
pen 1981) exploits the timescale separation between slow and fast variables: at the
separation timescale τ(z0), the dynamics of ξ t conditioned at zslwt = z0 reaches its
quasi-equilibrium distribution ν(ξ |zslwt = z0), which we approximate by a (D − d)-
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dimensional Gaussian distributionN (0, 
(z0)). If the trace of 
(z0) is large, the fast
oscillations of ξ t around Mε have large expected amplitude.

We discuss in Sect. 3 how τ(z0) may be estimated from observations of short tra-
jectories. We assume throughout, but only in order to simplify the presentation, that
τ(z0) can be chosen to be the same at all locations z0: we simply denote it as τ , and is
assumed as given. By stochastic averaging, in these coordinates, the reduced stochas-
tic dynamics on the slowvariables is obtained by averaging the drift and diffusion terms
by this quasi-equilibrium distribution, leading to reduced SDEs

dz̄slwt = b(z̄slwt )dt + H(z̄slwt )dUt , (2.3)

similar to those in Eq. (2.2). These SDEs may be viewed in intrinsic coordinates, or in
Cartesian coordinates in the ambient space RD , with zslwt ∈ R

D but on Mε , b ∈ R
D

a vector field on Mε , and H ∈ R
D×d acting on a Wiener process Ut in Rd .

In classical stochastic averaging, it considers ε → 0 and the separation timescale
τ is typically of order ε, see, e.g., Givon et al. (2006); Givon (2007), Liu (2010)
and Zhang et al. (2018). Here, instead, motivated by applications, we consider ε

fixed, unknown and unused, and τ fixed, known or estimated, and larger than ε, and
independent thereof. The dynamics of zslwt is low-dimensional, taking place on Mε ,
and represents the reduced effective dynamics at timescales τ and beyond, having
averaged out the fast transients of the high-dimensional process (ξ t )t≥0 at timescales
� τ . Simulating zslwt requires a time-step independent of ε, often much larger than ε,
and only dependent on the regularity ofMε and of the regularity of the effective drift
b and diffusion coefficient H on Mε .

Our goal is to estimate a process, called ATLAS, that approximates z̄slwt , on an
estimated M̂ε , given observations of bursts of short trajectories; in all our examples
the simulator of ATLAS will take time-steps exactly equal to τ .

2.4 ATLAS: Learning a Reduced Effective Model

Given observations ofmultiple bursts of short trajectories, of time length O(τ ), around
each of a collection of initial points {zl0}l=1,...,L ⊂ R

D , we estimate: the local slow
variables by estimating a point zl on Mε and a local tangent space TzlMε to Mε

at zl ; a subspace V
fst
zl transversal to Mε at zl containing the linearized fast modes

ξ ; effective drift and diffusion coefficients for zslwt in TzlMε as in Eq. (2.3) for the
effective dynamics of the slow variables around zl at the timescale τ . These objects
are completely local, around each zl . Since a global reduction step bringing the equa-
tions to the standard form Eq. (2.1) may not be possible, for example because of
global topological obstructions (e.g., a slow manifold consisting of a circle can-
not be mapped globally to a linear coordinate), in the spirit of the very definition
of manifolds and their atlases, we will “glue” together the estimated local charts
and equations into a set of charts and smoothly coordinated equations, generating
a process, called ATLAS, and a corresponding simulator for obtaining global paths
on the estimated invariant manifold. ATLAS, given enough data and under suitable
assumptions on the dynamics, estimates in a consistent and accurate fashion the local
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Input: S: original simulator of the system; μ0 probability measure for initial conditions; τ : timescale for
reduction; L: number of initial conditions.

Output: A: simulator of the effective process (zAt )t≥0.
- Estimate local parameters of effective dynamics [Sect. 3.3]
- Estimate geometric properties of Mε [Sect. 3.4]
- Construct ATLAS using the above estimators [Sect. 3.5]

Algorithm 1: High-level pseudo-code for ATLAS construction

dynamics and its statistics, we also demonstrate in our numerical experiments that
important long-time observables, including the stationary distribution and mean resi-
dence times in regions, metastable and not, of state space, are accurately estimated by
ATLAS.

3 ATLAS Construction

During construction, ATLAS is assumed to have access to a black-box simulator S,
that takes as input an initial condition z0 and a time t0, typically O(τ ), and returns
a path (zt )t∈[0,t0], driven by the latent equations as in Eq. (2.1). The construction
proceeds in multiple steps, see Algorithm 1.

Before describing the details, we present an example.
Example: Fast/slow system around a pinched sphere. This system is used as a refer-
ence throughout our discussion, construction and testing of ATLAS. The process is an
Itô diffusion on a “smoothly pinched” two-dimensional sphere centered at the origin
(the invariant manifold M̂ε ⊆ R

3, see Fig. 2), perturbed by very rapid fluctuations
in the radial direction. These fast modes are (a) large (equal to a significant fraction
of the reach of Mε); (b) a.e. not orthogonal to Mε , see Figs. 1 (step 3), and 7; and
(c) may be approximated by a radial Ornstein–Uhlenbeck (O-U) process. For these
reasons, a local PCA of an ensemble of short trajectories would fail to estimate the
local tangent plane to Mε . Given τ , at least as large as the timescale of relaxation of
the fast modes, the correct effective equations onMε should be obtained by averaging
along an appropriate oblique (radial, in this case) projection onto Mε .

We remark that neither the original system (in R
3) nor the slow system on Mε is

driven by overdamped Langevin equations: the drift is not the gradient of a potential,
the diffusion coefficient is not constant, and the process is not reversible. Therefore,
methods-based approximations by an overdamped Langevin equations, such as those
in Coifman et al. (2005), Coifman et al. (2008), Singer et al. (2009) and Rohrdanz
et al. (2011), would be biased, and likely inaccurate. The effective dynamics on Mε

has two high probability regions, separated by regions of large volume where drift is
small compared to diffusion (“entropic barriers”), which could make standard approx-
imations of those inaccurate (Bicout and Szabo 2000).

To give some intuition about local geometric and dynamical quantities that play
a fundamental role in this system, and more generally for systems that motivate our
constructions, we show in Fig. 7 a portion of the M̂ε about a point z0, a corresponding
trajectory of the system started at z0, and several key directions in R

3: the normal to
M̂ε at z0, the estimated effective direction of the fast modes at timescale τ , which is
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1. Sample initial conditions

Mε

Mε

zl
0

2. Simulate short bursts

t = 10δt t = 50δt

t = 100δt t = 200δt

Mε Mε

MεMε

zl
0 zl

0

zl
0 zl

0

3. Estimate local geometry+dynamics

Mε

ẑl

b̂l

(T̂ẑlMε)⊥
T̂ẑlMε

Effective drift
Normal

Fast
Landmark

4. Glue into global ATLAS simulator

Fig. 1 High-level overview of the steps in the construction of ATLAS, for a system exhibiting fast large
oscillations around an invariant manifold Mε shaped as a pinched sphere. 1. Sample initial conditions,
according to a given probability measure. Typically initial conditions (ICs) do not lie on Mε (see zoom-
in portion: IC represented by orange dot is not on Mε ), nor are they well-distributed throughout state
space. A sample path of the original system is shown, which oscillates aroundMε with large amplitude. 2.
Simulate short bursts: from each IC, in parallel, a burst of short trajectories, of time length comparable to
the relaxation timescale τ of the fast modes, is obtained from a black-box simulator of the original system
(if τ is not given, it may be estimated from these trajectories; in this example τ = 200δt). In this example
the fast modes have large amplitude, but our technique will correctly determine fast and slow directions.
3. Estimate local geometry and dynamics: from the trajectories in each burst, the local geometry of
Mε (including a landmark ẑl on M̂ε , an affine tangent space T̂ẑlMε , and an oblique projection P̂l (z)
onto it with kernel span(col(V̂ l,fst

D−d ), as well as parameters of the reduced effective dynamics (drift b̂l and
diffusion coefficient �̂l

d ), are estimated. 4. Glue into global ATLAS simulator: the local geometry and
dynamics estimators are glued together into a global ATLAS, with an associated simulator of a reduced
effective ATLAS process (zAt )t≥0. We display estimated local tangent ellipses corresponding to balls in a
diffusion-induced local metric, a sample path from the ATLAS simulator. However, at this stage ATLAS
may still not coverMε : in “exploration mode” it will simulate paths that stop when reaching the boundary
of the current “domain of expertise” (orange point), collect new bursts at those locations (as in step 2),
update ATLASwith the estimators from the new region (as in step 3), and then resume the simulation(Color
figure online)
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Fig. 2 Representation of the estimated pinched sphere M̂ε , together with the landmarks {ẑl }l (blue dots)
and their local connectivity graph, all as constructed by ATLAS during long exploration. The dynamics in
this case is not reversible, and the fast modes have large standard deviation (comparable to the reach of
M̂ε ) and are a.e. not orthogonal to M̂ε (see Fig. 7). The surface color is the norm of the effective drift as
a function on M̂ε . The landmarks are about 10−2-close to M̂ε , see Table 4. The regions around the poles
are very rarely visited, as the drift is unbounded there, creating a repulsion. In this visualization we have
truncated those regions as landmarks become denser and denser. The landmarks marked in red and cyan
represent the regions have high probability (Color figure online)

significantly different from the normal direction. We also depict the direction of the
estimated effective (Itô) drift, which, as expected, is not (and, in fact, far from being)
tangent to M̂ε . These depicted objects are exactly those estimated in the ATLAS
construction, from local bursts of simulations.

Finally, the global geometric approximation of Mε and effective ATLAS process
are assembled. An ATLAS path, used for exploration, is shown in Fig. 1; the accuracy
of ATLAS is demonstrated in various metrics, from the geometric approximation of
Mε to the approximation of effective drift and diffusion coefficients, to the accuracy
of estimation of statistics of the process such as mean residence time in relatively
small regions of state space and in metastable states (see Sect. 7.1).

3.1 Main Steps in the Construction

We are given access to a black-box simulatorS of the process zt , a probability measure
μ0 on the state space of the system, a separation timescale τ , and a dimension d for
the invariant manifoldMε . We will discuss later how to proceed in the very important
case whenμ0 is not, or insufficiently, provided (“exploration mode”, Sect. 4), and how
to estimate τ (in Sect. 3.3) and d (in Appendix C). We output ATLAS, consisting of a
process (zAt )t≥0, and a corresponding simulator, approximating the effective dynamics
of zt on Mε at the timescale τ and beyond.

We sample L initial conditions {zl0}l=1,...,L ∼i.i.d. μ0, and for each l we use S to

obtain a burst Bl of N trajectories {zl,nt }n=1,...,N , each of time length O(τ ), starting
at zl0. The time-step δt of S is typically � ε � τ and we may think of the output of
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S as if it was in continuous time. For each l, we focus now on the local construction
around zl0, given the single burst Bl : at timescale τ , the invariant manifold is locally
approximated by an estimated effective tangent space T̂ẑlMε of dimension d, at a
suitably estimated point ẑl ; the deviation ξ0t fromMε reaches equilibrium before time
τ , and we approximate the dynamics of the slow variable (zslwt )t≥0 on Mε around ẑl

by an Itô diffusion process on T̂ẑlMε as in (2.3), which requires us to estimate an
affine oblique projection P̂l along the fast modes and onto T̂ẑlMε , an effective drift
b̂l in RD (in the Itô formulation, the drift is in general not tangent toMε , see Figs. 1
and 7) and an effective diffusion coefficient �̂l

d in T̂ẑlMε .

3.2 Local Low-Order Moments of the Dynamics

The behavior of the time-dependent mean and covariance of the process started at zl0
reveals crucial local properties of the geometry of the dynamics and of the slow/fast
manifolds: at times t comparable to τ (but, typically, not smaller nor larger), we assume
that these approximations hold:

ml
t := E

[
zlt
∣
∣
∣ zl0] = zl,slw0 + bl t + O(ε),

C(zlt |zl0) := cov(zlt |zl0) = �l + �l t + O(ε),

(3.1)

where �l � 0 has rank D − d, and represents an averaging, at timescale τ , of the
covariance of the fastmodes
(zl,slw0 );�l = Hl(Hl)T � 0 has rank d is the diffusivity
of the effective reduced slow dynamics at zl0. The span of �l and �l approximate,

respectively, the tangent space Tzl,slw0
Mε to Mε at zl,slw0 and, respectively, Vfst

zl,slw0

,

which will be the kernel of a projection (in general not orthogonal) onto Tzl,slw0
Mε .

These expressions result from averaging the fast modes at timescale τ ; in particular,
the memory of the effective reduced slow dynamics is (approximately) forgotten.

The quantities above are unknown, and we estimate them from the observations
from the burst Bl :

m̂l
t :=

1

N

N∑

n=1

zl,nt , Ĉl
t :=

1

N − 1

N∑

n=1

(zl,nt − m̂l
t )(z

l,n
t − m̂l

t )
T. (3.2)

These empirical quantities, estimated from burst data, are consistent estimators of the

true local mean and covariance of the process, with an approximation of order
√

d+d f
N ,

where d is the dimension ofMε , and d f is the number of fast modes of large amplitude
- we discuss this further in Sect. 5.

We are now ready to introduce the ATLAS construction, which proceeds in three
main steps in Algorithm 1, detailed in Sects. 3.3, 3.4, 3.5 respectively; see Appendix
B for details.
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Fig. 3 Estimating τ from a burst
of trajectories: ||m̂l

t || and tr(Ĉl
t )

should both behave as linear
functions of t at the timescale of
interest, as per Eq. (3.1)

3.3 Estimation of Local Parameters of the Effective Dynamics

From each burst Bl , l = 1, . . . , L , of short simulations we compute several key
quantities for constructing an approximation to the invariant manifoldMε and to the
reduced effective stochastic dynamics on it. The relationships in Eq. (3.1) suggest that
the local effective drift and diffusion coefficients for the local slow variables may be
estimated from m̂l

t and Ĉl
t for t ≈ τ . The diffusion coefficient should also yield an

estimate for local tangent plane to the Mε , giving the local slow variables.

Separation Timescale �

When not given, we estimate τ from the behavior of ||m̂l
t || and tr(Ĉl

t ) as a function of t :
for each burst, we obtain the time interval where these two quantities behave linearly,
as per Eq. (3.1) (see fig. 3). We let [τmin , τmax ] be the intersection of such intervals
over all l’s, which is nonempty since we assume there exists a common relaxation time
of the fast modes τ valid throughout invariant manifold (our techniques do extend to
location-dependent τ l ).

Drift Coefficient of the Effective Dynamics

The estimated drift b̂l is obtained as the slope (in t) ofml
t in Eq. (3.1), via a weighted

linear regression: with {tm}Mm=1 equispaced in [τmin, τmax],

b̂l :=
∑M

m=1(m̂
l
tm − m̄l

M )(tm − t̄M )
∑M

m=1(tm − t̄M )2
, (3.3)

where m̄l
M := 1

M

∑M
m=1m̂

l
tm and t M = 1

M

∑M
m=1tm . Figures2 and 7 show norm and

direction of b̂l for the pinched sphere system.

123



Journal of Nonlinear Science (2024) 34 :22 Page 13 of 54 22

Diffusion Coefficient of the Effective Dynamics and Local Slow Variables

Similarly, the local diffusivity �l of the slow effective dynamics is estimated as the
slope (in t) of C(zlt |zl0) in Eq. (3.1):

�̂l :=
∑M

m=1(Ĉ
l
tm − C̄l

M )(tm − t̄M )
∑M

m=1(tm − t̄M )2
, (3.4)

where C̄l
M = 1

M

∑M
i=1 Ĉ

l
tm . While �̂l is typically not low-rank, for N large enough,

with high probability (w.h.p.), its top d singular values may be well-separated from
the others, yielding an estimate of the intrinsic dimension of invariant manifold (a
dynamics-driven analogue of Multiscale SVD Little et al. 2017); this is case in our
examples (see Figs. 7, 8, 9). We project �̂l onto the space of rank d matrices by
truncated SVD:

�̂l
d := Projrk(d)�̂

l = Û l,slw
d 
̂l

d(Û
l,slw
d )T , (3.5)

where Projrk(d) denotes the projection onto rank d matrices (positive semidefinite in
this case), Û l,slw

d ∈ R
D×d orthogonal and
l

d ∈ R
d×d diagonal with the first d singular

values of �̂l
d .
1 Let Ĥ l

d:= (�̂l
d)

1
2 be the (positive) square root of �̂l

d .

Covariance of the Fast Dynamics

While �̂l
d suffices to estimate a local tangent plane to Mε , the affine projection Pl

of the fast dynamics onto that plane, consistent with the dynamics, requires more
information, as it is typically not an orthogonal projection. To estimate the kernel of
Pl , i.e., the set of directions “along which” the dynamics near ẑl should be projected,
we first estimate the covariance matrix �̂l in Eq. (3.1) as

�̂l := C̄l
M − �̂l t̄M , (3.6)

and then let the estimated fast directions to be the span of the D−d eigenvectors of �̂l

with largest eigenvalues, which we group as columns of an orthogonal matrix V̂ l,fst
D−d .

See Figs. 1 and 7 for the case of the pinched sphere system. Since σD−d+1(�) = 0
(see Eq. 3.1), σD−d+1(�̂

l) � σD−d(�̂
l) w.h.p., for N large enough. In practice, not

all D − d dimension may be fast modes, and we may truncate at the first d f ≤ D − d
significant eigenvectors (e.g., in the oscillating half-moon system below).

1 We note here that we tried other approaches toward estimating �̂l
d , for example by attempting to solve

a least squares problem in the space of positive definite matrices of rank d directly, ideally with respect
to a natural Riemannian metric on that space. While natural, this was significantly more computationally
expensive, and it did not lead to significantly different results.
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3.4 Construction of a Sketch of the invariant manifoldM�

Wenow utilize the quantities estimated above to construct a sketchM̂ε of the invariant
manifold, consisting of a set of portions of well-distributed affine approximate tangent
planes.

Landmarks

The initial conditions {zl0}Ll=1 of the bursts {Bl}Ll=1 are not assumed to be on the
unknownMε , norwell-distributed on it.We construct a set of points, called landmarks,
on our estimate of Mε . From Eq. (3.1), replacing the quantities involved by their
empirical counterparts estimated above, for each l = 1, . . . , L we define the landmark
ẑl as

ẑl := m̄l
M − b̂l t̄M . (3.7)

Local Tangent Plane toM�

We obtain an approximate tangent space T̂ẑlMε at ẑl :

T̂ẑlMε := span(cols(Û l,slw
d )). (3.8)

Dynamics-Driven Oblique Projections onto a Local Tangent Plane

We obtain the oblique affine projection P̂l onto T̂ẑlMε centered at ẑl :

P̂l(z) := Û l,slw
d (Û l,slw

d )T (Êl(Êl)T )†(z − ẑl) + ẑl , (3.9)

with kernel span(cols(V̂ l,fst
D−d)), where Êl := [Û l,slw

d , V̂ l,fst
D−d ] and † is the Moore–

Penrose inverse.

A Dynamics-Adapted Metric

We introduce a quasi-metric adapted to the dynamics; then we discard “redundant”
landmarks that are too close to others in order to create a well-distributed set of
landmarks, which, together with the approximate tangent planes estimated above,
gives a parsimonious sketch of the estimated invariant manifold M̂ε .

Consider the local Mahalanobis similarity based on the quadratic form associated
with the effective diffusivity �̂l

d

ˆ̃ρ2(z, ẑl) := 1

χ2
d (p)

(P̂l(z) − ẑl)T (�̂l
d)

†(P̂l(z) − ẑl), (3.10)
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for z such that ‖z − ẑl‖ � R
√

τ ; otherwise we set ˆ̃ρ(z, ẑl) = R
√

τ . In practice, R is
set as 10. χ2

d (p) is the quantile function at level p of the χ2 distribution with d degrees
of freedom (we set p = 0.95 throughout).

Unlike Euclidean distance, ˆ̃ρ accounts for the anisotropy of the dynamics on M̂ε ; a
similar distance, without the oblique projection, was used, for example, with different
objectives, in Coifman et al. (2005) for manifold learning, and in Singer et al. (2009)
in the context of dynamical systems. We symmetrize ˆ̃ρ on M̂ε by letting ρ̂(ẑl

′
, ẑl) :=

max{ ˆ̃ρ(ẑl
′
, ẑl), ˆ̃ρ(ẑl , ẑl

′
)}. A √

t-neighborhood of ẑl is defined as B(ẑl ,
√
t) := {z ∈

TẑlMε : ˆ̃ρ(z, ẑl) <
√
t}: it approximates the set of points reachable from ẑl in time

≈ t with probability at least p. This distance disregards the drift term; this choice
reduces the asymmetry in the definition of ˆ̃ρ and in the quasi-metric property and is
reasonable for diffusion-dominated dynamics see Appendix A.1). Figure1 (4th inset)
visualizes the ellipsoids corresponding to the quadratic form induced by �̂l

d , for the
pinched sphere system.

AWell-Distributed Net of Landmarks

We now reduce the number of landmarks to a near-minimal number that still, together
with their corresponding neighborhoods of radius O(

√
τ), cover the estimated invari-

ant manifold M̂ε , by discarding landmarks that are too close to each other. Before this
process, we assume here that the collection of

√
τ/2-neighborhoods, of the landmarks

{ẑl}Ll=1 covers the invariant manifold M̂ε . While this typically cannot be ascertained
in practice, by default ATLAS will be run in “exploration mode”, which augments
M̂ε on the fly (see Sect. 4): in that case our arguments here apply to the current M̂ε

during exploration. For l = 1, . . ., we remove ẑl
′
if ρ̂(ẑl , ẑl

′
) ≤ (1 − 1/

√
2)κ̂

√
τ and

l ′ > l, where κ̂ is the scaling constant. In practice, κ̂ is set as 1. When this procedure
terminates, we are left with L ′ ≤ L landmarks (unused landmarks are discarded). We
assume, without loss of generality, that {ẑl}L ′

l=1 is the reduced collection of landmarks,
and to simplify the notation, we will let L ′ = L in what follows. These landmarks,
under suitable assumptions, (1) are well-separated: for l �= l ′, ρ̂(ẑl

′
, ẑl) � √

τ ; (2)
provide a O(κ̂

√
τ)-cover for Mε , in the sense that for any z ∈ M̂ε there exists l s.t.

ˆ̃ρ(z, ẑl) � √
τ ; (3) are well-distributed, in the sense that for any ẑl ∈ T , where T is

any connected component of the invariant manifoldMε satisfying suitable constraint,
there exists l ′ such that ρ̂(ẑl

′
, ẑl) � √

τ . These constants R, κ̂ used above could be
made explicit, but they depend on quantities typically unknown in practice, such as
the curvature of Mε .

These steps define a collection of charts, each centered at one of the landmarks ẑl ,
with an associated oblique projection P̂l with range T̂ẑlMε , an effective drift b̂l ∈ R

D

and effective diffusivity �̂l
d ∈ T̂ẑlMε . The reader may wish to revisit Figs. 1, 2, 4 and

7, that visualize these objects.
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3.5 The ATLAS Process and Simulator for the Reduced Effective (Slow) Dynamics

The final step is to smoothly connect both the geometric and dynamic objects estimated
so far at the landmarks, in order to obtain a smooth effective invariant manifold M̂ε

and an Itô process constrained on it, with the fast modes averaged at the timescale τ ,
together with a numerical scheme for its simulation. This smoothing is achieved by a
weighted average: for z ∈ R

D , we let wl(z) := exp(−ˆ̃ρ(z, ẑl)/
√

τ) and NA
τ (z) :=

{ẑl : ˆ̃ρ(z, ẑl) ≤ 2κ̂C
√

τ }, Z(z) := ∑
l∈NA

τ (z) wl(z), and then define:

P̂A(z) := 1

Z(z)

∑

l∈NA
τ (z)

P̂l(z)wl(z), (3.11)

b̂A(z) := 1

Z(z)

∑

l∈NA
τ (z)

b̂lwl(z), (3.12)

�̂A(z) := 1

Z(z)

∑

l∈NA
τ (z)

�̂l
dw

l(z), (3.13)

ĤA
d (z) := (Projrk(d)�̂

A(z))
1
2 . (3.14)

This defines the ATLAS stochastic process zAt , on the estimated invariant manifold
M̂ε := P̂A(RD), as the Itô diffusion with drift b̂A and diffusion coefficient ĤA

d . To

simulate this process we use the Euler–Maruyama scheme with re-projection on M̂ε ,
with time-step λτ and �Wλτ ∼ N (0, λτ Id):

zAt+λτ = P̂A(zAt + b̂A(zAt )λτ + ĤA
d (zAt )�Wλτ

)
, (3.15)

In all our experiments, λ = 1, i.e., the time-step of the ATLAS simulator is equal
to the timescale τ ; in particular, it is independent of, and may be much larger than, the
time-step δt of the original black-box simulator, which is typically � ε.

3.6 Refinements to the Estimation Procedure

When the initial conditions for the bursts are far away from the invariant manifold
Mε (e.g., in the oscillating half-moon example below), or the timescale of separation
in the original system is not very large (e.g., in butane example below), it may take a
time longer than τ to relax ontoMε . In these cases we perform multiple rounds of the
estimation phases, starting each round with initial conditions for the bursts given by
the landmarks estimated in the previous round. This refinement process stops when
the relative differences of estimated parameters is within 5% (in our examples, this is
achieved in less than 10 rounds).

One further step of refinement, after the above ones, may be needed when the
linear approximation of the geometry or of the dynamics may not be locally accurate,
becauseMε has large curvature or the effective drift termhas large gradient (e.g., in the
oscillating half-moons and butane examples below). In this case, since the estimated
drift term is computed at the timescale [τmin , τmax ], the landmarks in the final stage
are refined to be ẑl := m̄l

M − b̂l(t̄M − τmin ), instead of Eq. (3.7).
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4 ATLAS in ExplorationMode

In the construction of ATLAS presented above, initial conditions for the bursts of
simulation were sampled from a provided measure μ0 on the state space. Ideally such
measure iswell-distributed onMε , e.g., close to the stationary distribution of the effec-
tive reduced process, or, at least, such that the set of local means m̄l

M of bursts started
i.i.d. from μ0 are well-distributed on Mε . However, this is too much to hope for in
many practical situations, and it is highly desirable to be able handlemore generalμ0’s.

There are at least two, not-mutually-exclusive, ways of proceeding. The first one is
to use any of many existing techniques aimed at efficiently sampling the effective state
space, to obtain a μ0. The literature on this subject is vast, including, among many
(Chiavazzo et al. 2017; Frewen et al. 2009b; Tribello et al. 2014; Zheng et al. 2013;
Chen et al. 2015). These techniques often design a bias of the dynamics to ensure
rapid exploration, yielding samples with coverage of the effective state space. In some
remarkable cases the samples from this biased process allow to recover statistics of
the original dynamics, e.g., the stationary distribution in the case ofMCMC. However,
even when the stationary distribution is recovered, the biased dynamics often does not
preserve other dynamic properties such as mean residence times or transition rates,
important in applications. Yet other techniques in this broad family require a target
statistics to be computed, and then are designed to achieve accuracy in the estimate of
that statistics, but in general no other ones. There is typically a strong tension between
the attempt to speed up exploration, and the ability to correct the biased sampling
to obtain consistent estimates of statistics of interest. We note that, crucially, this
tension does not arise in ATLAS: μ0 needs to have coverage, but has no relationship
with the dynamics; it is only used as a starting point for ATLAS, which will then
estimates consistently the effective dynamics, and from it the stationary distribution
and many other dynamical properties, such as mean residence times and transition
rates, as demonstrated in the numerical experiments in Sect. 7.

The second way is to extend ATLAS to run in exploration mode: upon a first round
of learning starting from a μ0 with poor coverage, ATLAS runs trajectories till they
exit the current, partial estimate of invariant manifold, and updates itself, accurately
but efficiently, by simulating new paths of the original process at those new exit
locations. In detail, suppose we have constructed ATLAS A1, starting from a set of
bursts {Bl}Ll=1, therefore obtaining the process (zA1

t )t≥0 on M̂1
ε , perhaps from a small

number L (even L = 1) of initial conditions, which are poorly distributed in the state
space (e.g., supported in one or a few metastable states). While simulating (zA1

t )t≥0,
ATLAS checks if the distance between zA1

t and its closest landmark, in the ˆ̃ρ “metric”,
is larger than some threshold dthr = O(

√
τ): if this is the case, then zA1

t is beyond the
current “domain of expertise” of the ATLAS A1. We now stop that process, and run
a new burst B∗ of simulations from this “exit point” zA1

t , estimate the local quantities
of the dynamics there, and add a new landmark ẑl+1, with its associated tangent
plane, projection, and estimated effective drift and diffusion coefficients. This local
and efficient update yields a new ATLAS process (zA2

t )t≥0 on an “enlarged” M̂2
ε .

This procedure is repeated, creating ATLAS processes that capture ever-increasing
approximations M̂1

ε ⊂ · · · ⊂ M̂k
ε ⊂ . . . of Mε , discovering rarer and rarer events,
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till a given computational budget (for example expressed in terms of total number of
bursts used, which is the most expensive component in the construction) is exhausted,
or long-enough trajectories are simulated with (zAk

t )t≥0 without leaving M̂k
ε . See

details in Appendix B. All our numerical experiments will be performed with ATLAS
in exploration mode.

We provide a pertinent visualization in step 4 of Fig. 1: at stage k of exploration, we
represent M̂k

ε , and a trajectory of (zAk
t )t≥0 which at some point leaves M̂k

ε (orange
dot in the figure). The current ATLASAk stops there, and then will obtain a new burst
of paths starting at that location, extract local estimates of the geometric and dynamics
quantities needed, obtain M̂k+1

ε , and then continue. In the figure, the path is linearly
interpolated between the points (zA(pλτ))p; note that the ATLAS time-step λτ leads
(here, and in the other examples, λ = 1); as expected, to steps of length comparable to
that of the axes of the diffusion ellipsoids representing the level set τ of the quadratic
form �̂l

d .
Note that these additions happen during ATLAS simulations (with their large λτ

time-steps), taking advantage of the computational speed gains achieved by theATLAS
simulator. Therefore, in real clock time, the regions ofMε that are rarely visited with
the original simulator are more likely to be sampled quickly in ATLAS exploration
mode. Note how this differs from existing techniques based on ideas of importance
sampling: at no point is the dynamics of ATLAS biased, and at any stage the dynamics
is consistent with the underlying effective dynamics, by construction. This procedure
can be very effective, measured in real clock time, in discovering relatively rare events,
such as transitions between metastable states, while updating ATLAS, seamlessly. We
also note that this procedure is parallelizable across multiple paths of the current
ATLAS, provided one checks that the regions being added are far enough from each
other to avoid the simulation of the bursts of simulations at nearby locations: these
“conflicts” are likely rare in high-dimensional state spaces, at least till ATLAS has
explored the vast majority of it.

Finally, it is certainly possible to apply amultitude of techniques and heuristics (e.g.,
see Chiavazzo et al. 2017 and references therein) to bias the ATLAS simulator itself
during exploration, i.e., combine the two approaches described in this section; once
new regions are explored with a biased ATLAS, and charts created (with new local
bursts initialized in those regions) and incorporated into ATLAS, then theATLAS sim-
ulator can be run in unbiased mode and will be consistent with the effective dynamics.
This decoupling of exploration and consistent estimation of the dynamics is a crucial
property of ATLAS, and it is very efficient as the information from the expensive
simulations of bursts of trajectories is fully reused. This strategy together with parallel
learning across multiple paths are particularly helpful when the effective dynamics
have a significant amount of meta-stable states.
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5 Properties of ATLAS

Avoiding the Curse of Dimension

The input to ATLAS is random, so are the L initial conditions and the N paths in each
burst. It is natural to ask how many short trajectories in each burst are needed to make
sure the random error of all the local quantities estimated by ATLAS is small w.h.p. In
particular, it is important to assess how N should scale with the dimensions D of the
state space, d ofMε , d f of the fast modes with large magnitude. Using concentration
inequalities for high-dimensional vectors and matrices that are concentrated near low-
dimensional spaces (Vershynin 2018), it is possible to show that the approximation
error between the empirical estimates of b̂l , �̂l

d and ẑl is smaller than η, with high
probability, as soon as N � d(d + d f )/η

2, where d f is the number of fast modes with
large magnitude.

The approximation error of the direction of the fast modes appears to require larger
sample size, e.g., N � (d + d f )

2 ln D/η2 samples appear needed to obtain, w.h.p.,
‖ sin�(V̂ l,fst

D−d , V
l,fst
D−d)‖F ≤ η. It is worthwhile to note, though, that this still depends

only very weakly on D, and only quadratically on the intrinsic dimension d, and it is
still quite benign as soon as d f � D.

To summarize, there is no curse of dimensionality—i.e., a requirement of a number
of samples exponential in D—when estimating the local quantities above.

Robustness to Model Error and Nonlinearities in the Fast Modes

The type of stochastic systems for which ATLAS is expected to perform well have
been described in Sect. 2. In particular, locallywe assumed the existence of an invariant
manifold in the observed space, on which the slow dynamics (zslwt )t≥0 takes place, and
such that the fast dynamics (zfstt )0≤t≤τ conditioned on zslwt = z0 approximately is an
O-U process on the subspace Vfst

z0 . In the latent space, the SDEs are those in Eq. (2.1),
and one then linearizes locally the observation map ϕ (or, rather, ϕα , as in Sect. 2) to
obtain approximate local equations in the z variables. ATLAS averages the observed
process (zt )t≥0 at timescale τ to obtain the reduced effective dynamics on M̂ε .

ATLAS is quite robust to these assumptions. One reason is that ATLAS uses mainly
information at timescale τ : details, such as nonlinearities, or lack of regularity, of
the original process zt below that timescale are averaged out, possibly leading to
effective processes at the timescale that are amenable to approximation by ATLAS.
In a forthcoming work, we prove results in this direction, under technical conditions
on the coefficients f , g, F,G of the SDEs Eq. (2.1), on the regularity of the map ϕ,
and on the stationary measure ν(ξ |zslwt = z0) of the (fast) displacement process ξ

conditioned on z0.
This robustness is reflected in the results for both the second and third examples

we consider in Sect. 7, which are both significant perturbations of the basic model.
In the “oscillating half-moons” example, a high-dimensional analogue of an example
considered in Singer et al. (2009) and Dsilva et al. (2016), the fast displacement
process ξ is nonlinear and not constrained to an affine subspace, but on a curved
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“half-moon”-shaped manifold. In the butane model, the fast mode has both large and
small nonlinear components; its slow manifold is also highly curved, with effective
drift having large gradient. Nevertheless, ATLAS provides accurate estimates of the
behavior of these systems, both at timescale τ and at very large timescales, providing
accurate estimates of the stationary distribution, mean residence time and transition
rates between metastable states.

Computational Complexity and Simulation Speed-Up

The input data to ATLAS are the bursts of trajectories {Bl}Ll=1, of time length ≈ τ .
The cost of obtaining one time-step from the black-box simulator is at least of order
D2. The time-step δt of the simulator needs to be � ε due to having to resolve the fast
modes. The total number of short paths collected is equal to #landmarks×#paths per
landmark= L × N . Therefore the total computational cost of obtaining the bursts is
at least O( τ

ε
D2LN/c), where c is the number of parallel cores. Constructing ATLAS

requires O(D2dN ) calculations to estimate local means, covariances, effective drift,
effective diffusion coefficients, landmarks and tangent planes; O(CdDL log L) for
constructing and organizing the landmarks using, for example, cover trees (Beygelz-
imer et al. 2006). A time-step of the ATLAS simulator as in Eq. (3.15), which has time
length λτ , has cost O(CdDd2) by using iterative SVD combining Eq. (3.13,3.14),
where Cd corresponds to the number of landmarks in NA

τ (z). Therefore, simulating
a path of time length T would have computational cost O(D2T /ε) with the origi-
nal simulator, and O(CdDd2T /τ) with ATLAS. This is a dramatic speed-up when
ε � τ and d � D. This is very useful when many long paths are needed to estimate
dynamical quantities of interest.

6 Applications of ATLAS

Estimation of Large-Time Dynamical Properties

ATLASmaybeused to simulate longpaths efficiently, and therefore estimate important
properties of the system, such as its stationary distribution, residence times from
certain regions of state space (e.g., metastable states), and transition rates between
them. Our numerical experiments in Sect. 7 show that such large-time quantities may
be estimated accurately by ATLAS, even when run in exploration mode. Note that
ATLAS is constructed using only local information, at timescale τ , that may be easily
collected in parallel; yet the effects of themultiple estimation and numerical simulation
errors do not appear to compound in these estimates of large-time quantities (Crosskey
and Maggioni 2017).

ATLAS, Approximate Generators, Eigenfunctions and Eigenvalues

TheATLAS process (zAt )t≥0 may be used to approximate the generator of the effective
slow dynamics and its spectral components, including eigenvalues and eigenvectors,
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especially the low-frequency ones. It may serve as a black-box for matrix–vector
multiplication in iterative eigensolvers. In general, ATLAS may be used to compute
approximations of E[h(zslwt )], for sufficiently regular observables h.

Markov State Models (MSMs) from ATLAS

In MSMs (Husic and Pande 2018) one constructs (1) a partition of state space {Ck}Kk=1
and (2) a Markov transition matrix P ∈ R

K×K with Pkk′ being the probability of
transitioning from Ck to Ck′ in one MSM time-step. MSMs may be “large-timescale
MSMs”, where each Ck corresponds to a metastable state and the MSM models the
rare transitions between them, and “small-timescale MSMs”, where K is large and
the Ck’s are small regions of state space.

Large-timescale MSMs may be constructed if the metastable states are known
and a large number of transitions between them are observed. Since these transitions
are rare, by definition of metastability, this construction is very expensive in general;
however, ATLAS can help identifying metastable states and estimating transition rates
efficiently.

Small-timescaleMSMs are very flexible tools, and as K → ∞ the transitionmatrix
P approximates in a suitable sense the generator of the process, and convergence is
(under suitable assumptions) strong enough to guarantee convergence of the slow
eigenfunctions of P to those of the generator of the process. These eigenfunctions,
and the corresponding eigenvalues, yield important information about the process,
including metastable states. However, the construction of the local clusters Ck is
crucial, and many recipes exist (Pérez-Hernández et al. 2013; Kutz et al. 2016). This
is a challenging task and typically cursed by the ambient dimension D. Many existing
techniques require, in order to be of any practical value, the a priori knowledge of
a suitable small number of slow variables on which the process is projected, and in
which the construction of the Ck’s is performed (Husic and Pande 2018; Klus et al.
2018). In particular, we are not aware of techniques for efficiently constructing the
Ck’s in the situation where there are many fast modes, possibly with large amplitude.
In this context, ATLAS naturally constructs the small-timescale MSMs (at timescale
τ ), in a principled and well-organized fashion, with soft instead of hard partitions,
which may diminish the memory effect. ATLAS also uses dynamics-adapted oblique
projections and the corresponding estimated local invariant manifold to reduce the
dimension, without needing slow variables as inputs. In our experiments, Ck’s in the
MSM correspond to the Voronoi cells, in the ˆ̃ρ “metric”, of the landmarks2, and the
transition matrix is estimated by running ATLAS trajectories of length O(τ ) (see
appendix B). We may use the small-timescale MSMs to compute approximate slow
eigenfunctions and eigenvalues of the system and estimate the number and locations
of metastable states and then construct the large-timescale MSMs.

2 Of course, we do not explicitly construct such cells; we only need a function mapping a state z to the
index of cell it belongs to, and this is achieved by finding the nearest landmark in the ˆ̃ρ “metric”.
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7 Numerical Experiments

We construct ATLAS for three model systems: “pinched sphere”, “oscillating half-
moons” and “butane model”. We evaluate its performance in multiple ways: first of
all, against analytically derived reduced models with analytical approximations to the
slow manifold M0, effective drift and diffusion coefficients (see Appendix C). For
the first two examples, the effective dynamics are calculated in the limit ε → 0; for
butane, the effective dynamics are chosen to be the dihedral angle dynamics. It is
important to remark that these are not the true effective dynamics on the invariant
manifold Mε at timescale τ , which is what ATLAS approximates, and are also not
amenable to analytical calculation for finite ε. Although with this caveat, we regard
them as analytical approximations sufficient as a first check on the quality of the
ATLAS process for the local statistics, and report in Table 4 the estimator errors for
drift, diffusion, invariant manifold and tangent spaces, between ATLAS and these
analytically derived reduced models (details in Appendix D).

We also study the accuracy of ATLAS in estimating key medium- and large-time
statistics of the dynamics, in particular the stationary distribution, mean residence
times (MRTs) and transition rates for metastable states, and MRTs in regions of state
space that are not necessarily metastable. In each example, we repeat the construction
of ATLAS 10 times, to assess the variability over the random observed data.

We visualize the invariant manifold M̂ε for each example, as well as key quantities
including the stationary distribution and eigenfunctions of MSMs; in these plots we
use suitable parametrizations (that of course were not used nor known to ATLAS).
Further details and figures for the models are available in Appendix C.

7.1 Pinched sphere System

We start with the pinched sphere system, introduced in Sect. 3. Its governing equations,
expressed in spherical (latent) coordinates, are

dr = −c1(r − R(θ))

εr
dt + c2√

εr
dW1

dθ = c3 cos(3θ)

r sin(θ)
dt + c4 sin(θ)

r
dW2

dφ = c5 sin(φ + θ)

r
dt + c6

r
dW3.

(7.1)

The fast variable is the radial coordinate r ; the slow variables are the angles φ, θ .
The slow manifold (in the limit ε → 0) is R(θ) = √

a1 + a2 cos2(θ), visualized in
Fig. 2. The observations z are in Cartesian coordinates, each of which contains a mix
of nonlinearly coupled slow and fast components. Note that the drift diverges near the
poles, creating a strong repulsion, and is relatively small in other wide regions of the
state space, creating entropic barriers (Bicout and Szabo 2000).

The dominant local PCA mode only captures the fast direction, due to its large
amplitude, and fails to identify the slow variables, which are also not orthogonal
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Fig. 4 Pinched sphere visualized in the plane of the parametrization (φ, θ) of Mε . Top: landmarks and
their neighborhoods B(ẑl ,

√
τ). We also show two sets Sred and Scyan around the fixed points in the reduced

deterministic system, marked with red crosses in the other insets. Center: eigenfunction ϕ1 of the MSM,
with eigenvalue λ1 = 1. Bottom: eigenfunction ϕ2, with eigenvalue λ2 = 0.9995

to the fast ones. ATLAS successfully estimates that the invariant manifold is two-
dimensional, and identifies the separation timescale τ (see Appendix C.1 and Fig. 7).
ATLAS yields an accurate estimation of the effective drift and diffusion terms, as
well as of Mε (see Table 4). We visualize in Fig. 4 the

√
τ -neighborhoods over Mε

(unwrapped in the (φ, θ) coordinates for clarity), reflecting the ellipsoids associated
with the diffusion coefficient. At the time we terminate exploration, as expected the
only regions that are not covered are those around the south and north poles, which
are very rarely visited.

The TICA method (Molgedey and Schuster 1994; Pérez-Hernández et al. 2013)
is global and indicates that all observed coordinates are important; in particular the
common approach of constructing MSMs in the TICA coordinates would be cursed
by the ambient dimension. Here we construct MSMs using ATLAS. The top two
eigenfunctions of the transition matrix of an MSM constructed from ATLAS on M̂ε

are visualized in Fig. 4. The first eigenfunction ϕ1 is (up to rescaling) the invariant
distribution; the level setϕ2 = 0 partitions the state space into twometastable statesM1
and M2. We also let C1 := {ϕ2 > +0.02} and C2 := {ϕ2 < −0.02}; initial conditions
for paths used in the computation of mean residence times (MRTs) will be from
Scyan := {ϕ2 > 0.05} and Sred := {ϕ2 < −0.05} (see Fig. 2 and 4), where ϕ1 is large.

In Table 1 we report the accuracy of ATLAS in estimating the MRTs in M1,C1
(resp. M2,C2) starting from set Scyan (resp., Sred). ATLAS yields ≤ 2% relative error
for these quantities, with runtime at least 6 times smaller than original simulator

123



22 Page 24 of 54 Journal of Nonlinear Science (2024) 34 :22

Ta
bl
e
1

M
ea
n
re
si
de
nc
e
tim

es
(M

R
T
s)
fo
r
Pi
nc
he
d
sp
he
re

Fi
rs
te
xi
tf
ro
m

C
1
or

C
2

Fi
rs
te
xi
tf
ro
m

M
1
or

M
2

Si
m
.

IC
O
ri
gi
na
lS

A
T
L
A
S

A
T
L
A
S
or
th
.p
ro
j.

O
ri
gi
na
lS

A
T
L
A
S

A
T
L
A
S
or
th
.p

ro
j.

S C
ya
n

30
.6

±0
.4

29
.7

±0
.4

28
.9

±0
.4

90
5.
6

±1
4.
0

90
3.
1

±1
4.
1

71
2.
2

±1
0.
9

S R
ed

30
.6

±0
.5

30
.2

±0
.5

29
.4

±0
.4

10
09

.3
±1

5.
6

10
16

.5
±1

5.
8

79
1.
2

±1
2.
2

R
un

tim
e

0.
39

h
0.
02

h
0.
02

h
4.
15

h
0.
66

h
0.
52

h

S C
ya
n

N
/A

0.
00

2
±0

.0
10

−0
.0
26

±0
.0
08

N
/A

0.
01

0
±0

.0
08

−0
.2
12

±0
.0
08

S R
ed

N
/A

0.
00

3
±0

.0
13

−0
.0
19

±0
.0
10

N
/A

0.
01

1
±0

.0
09

−0
.2
11

±0
.0
07

To
p:

M
R
T
s
fr
om

in
iti
al
co
nd
iti
on
s
in

IC
se
tt
ill

ex
it
fr
om

sp
ec
ifi
ed

se
ts
;b

ot
to
m
:c
or
re
sp
on
di
ng

re
la
tiv

e
er
ro
rs
of

M
R
T
s

123



Journal of Nonlinear Science (2024) 34 :22 Page 25 of 54 22

S; training time is about 21hrs. Of course, the transition rates between metastable
states, which are determined by the mean residence times for double-well systems,
are also very accurate. Using orthogonal projections, instead of the ATLAS oblique
projections, leads to a significant loss of accuracy in long-time observables (e.g., exit
times from M1, M2). The estimated L1-norm of the difference of the density of the
invariant distribution between original and ATLAS simulators is 0.107 ± 0.009.

7.2 Oscillating Half-Moons

This is a multiscale stochastic system in R
2 × R

18 that generalizes the one in Singer
et al. (2009) to high dimensions. Its governing equations in latent coordinates are:

dθ = (a1 + a2 sin(2θ) + a3 cos(θ)) dt + a4dW1,

dr1 = b1
ε

(1 − r1) dt + b2√
ε
dW2,

dui = b3
ε

(−ui )dt + b4√
ε
dWi , i = 3, . . . , 20.

(7.2)

The observables in Cartesian R
20 by

z1 = r1 cos(θ + r1 − 1), z2 = r1 sin(θ + r1 − 1), zi = r1 + ui , (7.3)

for i = 3, . . . , 20. The dynamics of the angle θ is that of an uneven double-well system
with metastable states MLeft and MRight around θ = ±π/2. The radial variable r and
other ui ’s evolve as O–U processes. The fast variables r , u2, . . . , u19 are nonlinearly
coupled in the observed Cartesian coordinates.

A typical trajectory exhibits fast oscillations with a half-moon shape, far from a
radial direction, while evolving slowly along the circular slow manifold driven by the
double-well potential and diffusion along it (see in Appendix C.2).

Local PCA again fails to detect the slowmanifold (see Fig. 8). Notwithstanding the
lack of linearity of the fast modes, ATLAS accurately identifies the invariant manifold
and the effective dynamics on it, see Table 4. While the relative error of estimated
drift and covariance matrix seems large (32% and 11%, resp.), if the error is measured
only in the first two important coordinates—since the error in the other 18 dimensions
does not contribute to effective observations—then these relative errors drop to 19%
and 6% (resp.). The invariant distribution estimated by ATLAS is very close to the
one by original simulator S (see Fig. 5), with the estimated L1-norm of the difference
of their densities is 0.098± 0.006. The main reason for the small translational bias in
the estimate of the stationary distribution is that the fast modes do not fully relax at
the timescale τ , and increasing τ is not an option in this case due to the high curvature
of the Mε . As reported in Table 2, the estimated MRTs in the metastable states are
quite accurate, and so are the transition rates. The training time for ATLAS is about
17hrs; runtime for estimating the large-time quantities above is less than half that of
original simulator S.
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Fig. 5 Oscillating half-moons. The short illustrative trajectory of time 1 × 102 is plotted in (z1, z2) and
colored according to the time t . The landmarks (black dots) and their neighborhood (red lines) and effective
drift direction (gray arrows) in (z1, z2) are plotted in the left. In the right, the smoothed histograms from
the trajectories of time length 8 × 106 generated by S and ATLAS simulator, projected with ATLAS’s
projection, are plotted in the coordinate of angle θ

Table 2 Mean residence time (MRT) for oscillating half-moons

Sim.

IC Original S ATLAS ATLAS orth. proj.

MLeft 918 ± 11 902 ± 11 897 ± 11

MRight 12552 ± 142 11221 ± 128 10855 ± 123

Runtime 2.49h 1.05h 1.05h

MLeft N/A −0.02 ± 0.01 −0.02 ± 0.01

MRight N/A −0.13 ± 0.01 −0.13 ± 0.01

Top: MRTs from initial conditions in IC set till exit from specified sets; bottom: corresponding relative
errors of MRTs

7.3 ButaneModel

This is a model for the butane molecule, inspired by molecular dynamics (Legoll and
Lelièvre 2012; Schappals et al. 2017), in the form of overdamped Langevin equations
inR6 (see Appendix C.3). The dihedral angle φ, which determines the distance of two
outer carbons groups, is usually considered to be the slow variable. TICA however
flags two coordinates, x4 and z4, as important coordinates; in the plane that they span
threemetastable statesMtrans,Mbot-cis andMtop-cis, concentrated around a circularMε ,
are apparent (see Fig. 6). ATLAS identifies that the slow variable is one-dimensional,
accurately estimates the tangent line direction and Mε . The relative error of the esti-
mated drift in the (x4, z4) plane are on average 9%, vs. 20% in all 6 dimensions
reported in Table 4. The 5 fast variables are almost orthogonal to the slow variable
(as suggested in Legoll and Lelièvre 2012): we therefore expect the local orthogonal
projections to work as well as the oblique ones. The top three eigenfunctions of an
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Fig. 6 Butane. The points in the sample trajectory with time length 20 simulated by the original simulator
are scattered in blue dots in (x4, z4). Three data clusters corresponds toMtop-cis (upper left),Mbot-cis (lower
left) and Mtrans (right) metastable states. The landmarks (black dots) and their neighborhood (red lines) and
effective drift direction (gray arrows) in (x4, z4) are plotted. In the upper right, the top three eigenfunctions
of the transition matrices are plotted in the coordinate of φ with λ1 = 1, λ2 = 0.9999 and λ3 = 0.9999.
In the bottom right, the kernel-fitted invariant distribution from the trajectory of time length 500 generated
by the original simulator and ATLAS simulator are plotted in the coordinate of φ

MSM estimated by ATLAS simulator identify these three metastable regions on the
slow manifold, see Fig. 6 and Appendix C.3. The invariant distribution of the ATLAS
process has density very close, on M̂ε , to the one generated by the original simulator,
with the estimated L1-norm of the difference of the density 0.060±0.013. The results
reported in Table 3 show that the mean residence times in the three metastable states,
estimated with ATLAS, are within 4% relative error, with a runtime is about 68%
of the original simulator. All estimated reaction rate constants are within 5% relative
error. The training time of ATLAS is about 13hrs.

8 Conclusion

We have introduced a nonlinear nonparametric technique for reduction of fast-slow
stochastic systems, that given a timescale τ and access to short trajectories from
a black-box simulator, estimates an invariant manifold and an effective stochastic
process, called ATLAS, on it, that averages the original system below the timescale
τ . The simulator for ATLAS has time-step of order τ , typically much larger than the
time-step of the original simulator δt (which depends on the fastest timescale), and
is intrinsically low-dimensional, making it possible to compute efficiently many long
paths of the effective dynamics, and compute approximations to important quantities,
such as stationary distributions, mean residence times, and transition rates. We have
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Table 3 Mean residence time (MRT) and reaction rates for butane

Left: the metastable states are given in φ variable: Mtrans = (−π
3 , π

3 ), Mtop-cis = ( π
3 , π) and cis

Mbot-cis = (−π, −π
3 ).Right:mean transition rate constants betweenmetastable states, with corresponding

confidence intervals (estimated over multiple ATLASes)

Table 4 Summary of error analysis

Errors
Models AbsErr(M̂ε) AbsErr(T̂ẑl ) relErr(b̂) relErr(�̂)

Pinched sphere 7(3) × 10−3 0.02(0.03) 0.11(0.10) 0.04(0.03)

3(1) × 10−2 0.03(0.01) 0.10(0.08) 0.05(0.03)

Oscillating half-moons 9.63(0.04) × 10−3 0.10(0.06) 0.33(0.23) 0.12(0.07)

5(2) × 10−3 0.09(0.05) 0.32(0.18) 0.11(0.05)

Butane 6(2) × 10−3 0.014(0.007) 0.17(0.12) 0.06(0.02)

5(2) × 10−3 0.011(0.007) 0.21(0.13) 0.08(0.01)

In each example, we report themean and standard derivation (in parentheses) of error terms for the quantities
evaluated at landmarks (white rows), and at points along ATLAS trajectories (gray rows); see Appendix D

shown that, under suitable conditions, the estimation of ATLAS is not cursed by the
dimension of the state space, and that ATLAS is robust to certain model errors.

This technique significantly extends the one introduced in Crosskey and Maggioni
(2017) by correctly handling (1) large fast modes, instead of only very small fast oscil-
lations around a slowmanifold, which could be estimated by local PCA, (2) fast modes
that are not orthogonal to the slow manifolds, (3) smoothly interpolating all estimated
geometric and dynamics quantities, increasing the accuracy of the estimation. Last but
not least, it is designed to efficiently run in exploration mode, without loss of accuracy.

The literature on model reduction, averaging and homogenization is vast, see, e.g.,
Pavliotis and Stuart (2008), Hartmann et al. (2020), Husic and Pande (2018), Maria
Bruna et al. (2014) and Givon et al. (2004). Unlike existing techniques, here we do not
require: previous knowledge of reaction coordinates or of the slow variables, which
we estimate directly; linearity of the slow variables (as in PCA/PODs Holmes et al.
2012); that the fast modes are small (as in local PCA/PODs Holmes et al. 2012 or
DMD Rowley et al. 2009; Kutz et al. 2016 or TICA Molgedey and Schuster 1994;
Pérez-Hernández et al. 2013), nor that they are orthogonal to the slow manifold, nor
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that they can be globally defined (as in manifold learning techniques such as Coifman
et al. (2008), Rohrdanz et al. (2011), and Singer et al. (2009) and many others),
which either requires the absence of even simple topological obstructions (loops) or
require a possibly arbitrarily large number of additional coordinates. We also do not
require to sample long trajectories, and in exploration mode we do not require a set
of sufficiently well-behaved initial conditions; unlike exploration techniques such as
Chiavazzo et al. (2017) (and references therein). These techniques can fail (and they
do in our examples) to correctly parametrize the invariant manifold, or (not exclusive)
the effective dynamics, or would be cursed by the dimension of the state space. Our
ATLAS algorithm estimates consistently and accurately the effective dynamics and its
invariant manifold in an exploration scheme, which by itself is useful in many cases.
Our reduction onto the estimated invariant manifold is nonlinear, and the estimation
of both the invariant manifold and of the Itô diffusion is locally parametric, in order to
reduce the local sample size required for a given accuracy, but globally nonparametric.

The setting of our work, where a latent slow–fast system in a natural linear coor-
dinate system is observed through a nonlinear observation map, is inspired by the
works (Singer et al. 2009; Dsilva et al. 2016). These works start with a latent model
significantly simpler than that in Eq. (2.1), and their objective is to learn the map back
to the latent space, or at least to the slow variables in the latent space, from bursts
of trajectories in observed space. That problem is tackled under significantly stronger
assumptions on the latent system, and the approach is typically cursed by the ambi-
ent dimension, mainly because it seeks the reduction to slow variables after having
constructed an approximation to the full system in the state space. In our work we
first locally estimate a reduced system, and do so parsimoniously, by using a rather
minimal set of parametric tools, and avoiding the curse of dimensionality.

Extensions to higher order equations, such as Langevin equations, more general
local models and nonlinear open neighborhood, incorporating symmetries and con-
served quantities, considering non-Gaussian noise and combinationwith rare sampling
techniques are currently being explored.

Acknowledgements We thank Y. Kevrekidis and F. Lu for helpful discussions related to this work. MM
is grateful for partial support from DOE-255223, FA9550-20-1-0288, NSF-1837991, NSF-1913243, and
the Simons Fellowship. FY is grateful for partial support from AMS-Simons travel grant, Travel Support
for Mathematicians from Simons Foundation. Prisma Analytics, Inc. provided computing equipment and
support.

Data Availability Data deposition: The software package implementing the proposed algorithms can be
found on https://github.com/yexf308/ATLAS.

A: Assumption, Linear Approximation, and Averaging

We briefly review here the definitions of slow and invariant manifolds, some of the
very basic expansions in geometric singular perturbation theory that motivate our key
linearized model in Eq. (3.1), and the assumptions underlying them.

As a matter of notation, Ei · denotes the i-th row of a matrix E , and E· j denotes the
j-th column of a matrix E .
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A.1: Assumption

The following assumptions 1-4 ensure that for the original latent stochastic sys-
tem Eq. (2.1) there exists a uniformly asymptotically stable invariant manifold Mx

ε

(Berglund and Gentz 2006, 2003; Kuehn 2015).

Assumption 1 Domain and differentiability: f ∈ C2(D,RD−d), g ∈ C2(D,Rd) and
F ∈ C1(D,R(D−d)×(D−d)),G ∈ C1(D,Rd×d), where D is an open subset of Rd ×
R

D−d . We further assume that f , g, F,G are bounded in sup-norm by a constant M
within D.

Assumption 2 Slow manifold: there is a connected open subset D0 ⊂ R
d and a con-

tinuous function y� : D0 → R
D−d such that

Mx
0 = {(x, y) ∈ D : y = y�(x), x ∈ D0}

is a slow manifold of the deterministic system, that is, (x, y�(x)) ∈ D and
f (x, y�(x)) = 0 for all x ∈ D0.

Assumption 3 Stability: the slow manifold is uniformly asymptotically stable, that is,
all eigenvalues of the Jacobian matrix

A�(x) = ∂y f (x, y�(x))

have negative real parts, uniformly bounded away from 0 for all x ∈ D0.

Assumption 4 Non-degeneracy: the diffusivity matrix F(x, y)F(x, y)T is positive
definite.

Under these assumptions, Fenichel’s theorem guarantees the existence of an invari-
ant manifold (also called adiabatic manifold) (Berglund and Gentz 2006, 2003; Jones
1995)

Mx
ε = {(x, y) ∈ D : y = ȳ(x, ε), x ∈ D0},

in a neighborhood of which trajectories concentrate for an extended time w.h.p. Also,
Mx

ε is close to the slow manifold Mx
0 in the sense that ȳ(x, ε) = y�(x) + O(ε).

The next assumption 5 imposes that the effect of the drift term is small relative to
the effect of the diffusion term.

Assumption 5 Diffusion-dominated dynamics: for any 1 ≤ l ≤ L ,
√

σd(�l) �
‖bl‖√τ .

This assumption allows us to simplify the construction of the diffusion-adapted,
Mahalanobis-like metric. Indeed, the

√
τ -neighborhood of the landmark B(zl ,

√
τ)

that we use is not exactly the same as the estimated p% confidence region of finding
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the effective reduced stochastic system at time
√

τ , started at zl : that would be better
approximated by

B̃(zl ,
√

τ) := {v : 1

X 2
d (p)

(v − zl,slw0 − blτ)T (�l)†(v − zl,slw0 − blτ) < τ }.

However, with the assumption of diffusion-dominated dynamics, the approximation
we use is satisfactory. Indeed, the boundary of B(zl ,

√
τ) is a hyperellipsoid of dimen-

sion d embedded in RD . Columns of Ul,slw
d , which are the eigenvectors of �l , define

the principle axes of the hyperellipsoid. σ1(�l), σ2(�
l), · · · , σd(�

l) are proportional
to squares of the lengths of the semi-axes. The vertices of the hyperellipsoid at time

t are zl,slw0 ±
√

χ2
d (p)σi (�l)t

(
Ul,slw
d

)

·i for i = 1, 2, · · · , d, so the minimum length

of semi-axes at t = τ for the hyperellipsoid is
√

χ2
d (p)σd(�l)τ . In the mean time,

the center of the hyperellipsoid is moved by ‖bl‖τ if we use B̃(zl ,
√

τ) instead of
B(zl ,

√
τ). Assumption 5 guarantees that the movement of the center is negligible

relative to the length of the semi-axes of the hyperellipsoid.

A.2: Linear Approximation

In Eq. (3.1) we assumed linear approximations of the time-dependent expectationml
t

and covariance C(zlt |zl0). The slopes of these quantities, as a function of time, are
bl and �l , and the intercepts of these quantities are zl0 and �l . In this section, we
provide some mathematical intuitions for this assumption, following the exposition
of Berglund and Gentz (2006), to which we refer the reader for further details. We
start by considering the system in the latent space, and its linear approximation (2.1)
near the invariant manifold. First, we define the deviation of sample paths from the
invariant manifold: ζt := yt − ȳ(xt , ε). An application of Itô’s formula implies that
the fast dynamics part ζt satisfies

dζt = 1

ε

(
f (xt , ȳ(xt , ε) + ζt ) − ε∂xȳ(xt , ε)g(xt , ȳ(xt , ε) + ζt ) − εcItô(xt , ζt )

)
dt

+ 1√
ε

[−√
ε∂xȳ(xt , ε)G(xt , ȳ(xt , ε) + ζt ) F(xt , ȳ(xt , ε) + ζt )

]
dWt ,

(A.1)

where cItô(x, ζ ) := 1
2

∑d
j,k=1

∂2ȳ(x,ε)
∂x j ∂xk

G j ·(x, ȳ(x, ε) + ζ )GT
k·(x, ȳ(x, ε) + ζ ), and

Wt = [Ut ; Vt ], (Here “;” denotes concatenation of column vectors). Always fol-
lowing Berglund and Gentz (2006), if we ignore the Itô-term and use the fact that the
drift term vanishes when ζ = 0, we derive that the invariant manifold ȳ(xt , ε) should
satisfy the following PDE:

f (xt , ȳ(xt , ε)) = ε∂xȳ(xt , ε)g(xt , ȳ(xt , ε)). (A.2)
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Therefore, by Taylor expansion and Eq. (A.2), we have the following linear approxi-
mation ζ̃t of the fast dynamics ζt in Eq. (A.1):

dζ̃t = 1

ε
A(xt , ε)ζ̃tdt + 1√

ε
F0(xt , ε)dWt , (A.3)

where

A(x, ε) := ∂y f (x, ȳ(x, ε)) − ε∂xȳ(x, ε)∂yg(x, ȳ(x, ε)) ,

F0(x, ε) := 1√
ε

[−√
ε∂xȳ(x, ε)G(x, ȳ(x, ε)) F(x, ȳ(x, ε))

]
.

As for the slow dynamics [xt ; ȳ(xt , ε)], we have

d

[
xt

ȳ(xt , ε)

]

= gslw(xt )dt + Gslw(xt )dUt , (A.4)

where gslw(x) := B(x)g(x, ȳ(x, ε)) + c̃Itô(x), Gslw(x) := B(x)G(x, ȳ(x, ε)), and

here B(x) :=
[

Id×d

∂xȳ(x, ε)

]

∈ R
D×d , the Itô term c̃Itô(x) =

[
Od×(D−d)

I(D−d)×(D−d)

]

cItô(x, 0).

Here of course ȳ(xt , ε) is slaved to xt , and we call the dynamics of xt only the slow
reduced dynamics happening in Rd .

The dynamics of ζ̃t shown in Eq. (A.3) is a high dimensional Ornstein–Uhlenbeck

process, and thus its expectation E

[
ζ̃ lt

∣
∣
∣ zl0] and covariance cov(ζ̃ lt |zl0) at landmark l

stabilize exponentially fast to 0 and some matrix �(xl0). In particular, the error is
of order O(ε) once t reaches the timescale of separation τ � ε, where here we
have utilized assumption 3. At the same time, at the timescale of separation τ , the
slow dynamics does not change significantly. In particular, in a neighborhood of a
landmark zl , the drift and diffusion coefficients gslw(xlt ),G

slw(xlt ) in Eq. (A.4) do not
change too much, and we may treat the slow dynamics as having nearly constant drift
and diffusion coefficients. These equations and reasoning justify the form of reduced
equations obtain by averaging, in the limit ε → 0, of the form of Eq. (2.2).

Now, notice that we have the following decomposition of the latent coordinate wl
t

into coordinates for fast dynamics ζ lt and coordinates for slow dynamics [xlt ; ȳ(xlt , ε)]:

wl
t =

[
Od×(D−d)

I(D−d)×(D−d)

]

ζ lt +
[

xlt
ȳ(xlt , ε)

]

. (A.5)

Then, according to previous analysis regarding timescale of separation as well as
Eq. (A.5), we have the following linear approximations of the latent coordinate at
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times t comparable to τ :

E

[
wl
t

∣
∣
∣wl

0] =
[

xl0
ȳ(xl0, ε)

]

+ gslw(xl0)t + O(ε),

cov(wl
t |wl

0) =
[

Od×(D−d)

I(D−d)×(D−d)

]

�(xl0)
[

Od×(D−d)

I(D−d)×(D−d)

]T

+ Gslw(xl0)
[
Gslw(xl0)

]T
t + O(ε).

(A.6)

These equations motivate Eq. (3.1), but in the latent space.
We now proceed to consider the situation in the observed variables, locally around a

fixed point zlt ; in particular we consider the behavior of the time-dependent expectation
ml

t and covariance C(zlt |zl0). Assume the local dynamics around landmark zl is within
the chart (Uα(l), ϕα(l)), and let ϕα(l)(zlt ) = wl

t = [xlt ; ylt ]. We assume that the 1-st
order Taylor approximation of ϕ−1

α(l) is accurate enough, which corresponds to the map
ϕ having sufficiently small Hessian, or restricting the size of the neighborhood under
consideration to be small enough. We can then assume that for t comparable to τ , we
have:

ϕ−1
α(l)(x

l
t , y

l
t ) = ϕ−1

α(l)(x
l
0, ȳ(x

l
0, ε))

+ J T (ϕ−1
α(l)) |(xl0,ȳ(xl0,ε))

([
xlt
ylt

]

−
[

xl0
ȳ(xl0, ε)

])

+ O(ε) .

Then, according to Eq. (A.6), we have the linear approximations in the observation
space of the form

zl,slw0 = ϕ−1
α(l)(x

l
0, ȳ(x

l
0, ε)) ,

bl = J T (ϕ−1
α(l)) |(xl0,ȳ(xl0,ε)) g

slw(xl0) ,

�l = J T (ϕ−1
α(l)) |(xl0,ȳ(xl0,ε))

[
I(D−d)×(D−d)

Od×(D−d)

]

�(xl0)
[
I(D−d)×(D−d)

Od×(D−d)

]T

J (ϕ−1
α(l)) |(xl0,ȳ(xl0,ε)) ,

�l = J T (ϕ−1
α(l)) |(xl0,ȳ(xl0,ε)) G

slw(xl0)
[
Gslw(xl0)

]T
J (ϕ−1

α(l)) |(xl0,ȳ(xl0,ε)) ,

which justify the crucial approximation in Eq. (3.1), which motivates all our local
estimators.

A.3: Averaging

In this section, we briefly review the idea of stochastic averaging, which is a classical
method to analyze fast/slow systems, see for example Freidlin et al. (2012) and Pavli-
otis and Stuart (2008) for a comprehensive review of this subject. See in particular,
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theorem 2.1 in chapter 7 of Freidlin et al. (2012), known as the averaging principle,
Givon et al. (2004) for a survey of several approaches to the problem of extracting
effective dynamics including averaging, where similarities and differences between
these approaches are highlighted.

From the theory perspective, there exists huge body of literature on stochastic
averaging, where strong and weak convergence results are provided under different
regularity assumptions on slow–fast SDE coefficients, see, e.g., Givon et al. (2006),
Khas’minskii (1966), Bakhtin and Kifer (2004), Kifer (2005), Li (2008) and Yu and
Veretennikov (1991). Besides these, many works also study the rate of convergence
of the original process to the reduced one (e.g., as a function of ε); see for example
Pavliotis and Stuart (2008), Givon (2007), Khasminskii and Yin (2004), Liu (2010),
Vanden-Eijnden (2003), Zhang et al. (2018), Röckner et al. (2019), Abourashchi and
Veretennikov (2010), Has’minskii (1966) and Weinan et al. (2005). In particular, the
recent work (Röckner et al. 2019) provides a very general, robust and unified method
for establishing the averaging principle, involving both strong and weak convergence,
for slow–fast SDEs with irregular coefficients and under the fully coupled case (i.e.,
the diffusion coefficient in the slow equation can depend on the fast term) forweak con-
vergence (but not for strong convergence). This leads to simplifications and extensions
of previously established results. It also shows that the strong and weak convergence
rates depend only on the regularity of all the coefficients with respect to the slow
variable.

In addition, a very recent work (Hartmann et al. 2020) provides quantitative results
on the connection of averaging to coarse-graining and effective dynamics inmultiscale
studies. It also presents a detailed comparison of the averaging and the conditional
expectation approach in the case of (non-reversible) Ornstein–Uhlenbeck (O-U) pro-
cesses and isolate sufficient conditions under which the two approaches agree.

Now, we briefly review the formulation of averaging, and we start from considering
in the latent space. From Eq. (2.1), we define the averaged approximation around the
invariant manifold, as in Eq. (2.2), with the averaged coefficients given by Röckner
et al. (2019):

ḡ(x) :=
∫

RD−d
g(x, y)ν(dy|x) , Ḡ(x) :=

√∫

RD−d
G(x, y)GT (x, y)ν(dy|x) .

(A.7)

Here the conditional invariant measure ν(y|x), as mentioned in Eq. (2.2), is the unique
invariant measure of the process Yx

t (Röckner et al. 2019), governed by the equations
“frozen” at x:

{
dYx

t = f (x,Yx
t )dt + F(x,Yx

t )dVt
Yx
0 = y

.

Nowwemove to the observation space. In the local coordinates discussed in Sect. 2,
split between the local tangent plane to the invariant manifold and the affine subspace
containing the fast variables, we can decouple slow and fast variables. We then have
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the following local SDEs written in the variables zslw and ξ , derived from Eq. (2.1)
by applying Itô’s formula:

⎧
⎪⎨

⎪⎩

dzslwt = g̃(zslwt , ξ t )dt + G̃(zslwt , ξ t )dUt

dξ t = 1

ε
f̃ (zslwt , ξ t )dt + 1√

ε
F̃(zslwt , ξ t )dVt

.

From these SDEs in local coordinates, we can define the reduced SDEs, as in Eq. (2.3),
with the averaged coefficients given by

b(zslw) =
∫

RD
g̃(zslw, ξ)ν(dξ |zslw) ,

H(zslw) =
√∫

RD
G̃(zslw, ξ)G̃T (zslw, ξ)ν(dξ |zslw). (A.8)

Here again, the conditioned invariant measure ν(ξ |zslw), as mentioned in Eq. (2.3), is

the unique invariant measure of the process ξ z
slw

t , governed by the equations “frozen”
at zslw:

{
dξ z

slw

t = f̃ (zslw, ξ z
slw

t )dt + F̃(zslw, ξ z
slw

t )dVt

ξ z
slw

0 = ξ
.

Asmentioned in Sect. 2, these reduced SDEs as in Eq. (2.3) may be viewed in intrinsic
coordinates, or in Cartesian coordinates in the ambient space RD , with zslwt ∈ R

D but
onMε , b ∈ R

D a vector field onMε , and H ∈ R
D×d acting on a Wiener processUt

in Rd .

B: Algorithms

We provide here detailed pseudo-code for the construction of ATLAS, see Algo-
rithms 2, 3, 4, 5, 6, 7. The algorithm follows closely the theory, with minor caveats,
having to do with constants that are assumed known, while in practice they would
either need to be estimated, or set by the user using external information.

We also discuss several minor modifications to the algorithms.

1. In algorithm 6, the neighbor landmarks of the current point zt ,NA
τ (zt ) are approx-

imated by the nearest landmark and its neighbors, {kt ,N (kt )}. Then we need an
efficient method to search the nearest landmark kt+1 for the next point zt+1 in the
“metric” ˆ̃ρ. we update the nearest landmark by only calculating the distance of
zt+1 to the current nearest landmark and its neighbors, and repeat this procedure
until the nearest landmark remains the same. This procedure avoids the global
search which could be very expensive. Then when simulating ATLAS process,
there is no need to check whether ‖z − ẑl‖ ≤ R̂max when calculating ˆ̃ρ(zt , ẑl),
since the current point zt is always close enough to the neighbor landmarks.
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2. In algorithm 5 and algorithm 7 we say that when ρ̂(ẑl , ẑk) < dcon, we
add k to N (l) and add l to N (k): in practice, we relax this condition to
min( ˆ̃ρ(ẑl , ẑk), ˆ̃ρ(ẑk, ẑl)) < dcon, in order to include more landmarks. This slight
modification is particularly useful when the condition that the process is diffusion-
dominated (see assumption 5 in Appendix A) does not hold.

3. In algorithm 3 and algorithm 6, there is no need to explicitly calculate �̂A(z) since
we can use the iterative algorithm to output top d singular values and correspond-
ing singular vectors to estimate the diffusion coefficient ĤA

d (z) with the cost of
O(CdDd2) where Cd is the number of landmarks in NA

τ (z). In the d = 1 sce-
narios (i.e., oscillating half-moons and butane), the average number of landmarks
in NA

τ (z) is approximated 4 and for the d = 2 example (Pinched Spheres), this
average increases to about 8. However, if d is not relatively small, the number
of landmarks in NA

τ (z) may grow exponentially as d, so it might be challenging
to simulate trajectories with ATLAS simulator. When the ambient dimension D
is very large, one could use randomized SVD in Eqs. (3.5, 3.13, 3.14) to further
significantly lower the computational complexity in projection to rank d (Liberty
et al. 2007). In all three models, we didn’t use this approach since the biggest D
that we tested is 20 and the most time consuming part is not this projection step.

4. When refinement of the landmark is necessary in algorithm 4, we perform this
only in the last round of refinement. The reason that we don’t use this correction at
each round of refinement is it will consistently move the landmark position toward
the direction of the effective drift and the region like around the saddle point will
be not covered by the neighborhoods of landmarks.

Input: S(z0, N , t0): original simulator generates N trajectories starting from z0 of time length t0; μ0:
probability measure for initial conditions; L: number of initial conditions; [τmin, τmax]: interval for
regression; τ : timescale for reduction; d: intrinsic dimension; dcon: connection threshold.

Output: ATLAS A: structure containing data to evaluate P̂A, b̂A, �̂A, ĤA
d at any z, and simulate zAt

on M̂ε .
1: Sample L initial conditions {zl0}l=1,...,L ∼i.i.d. μ0
2: for l = 1, . . . , L do
3: Bl ← S(zl0, N , τmax).

4: [{b̂l , �̂l
d , Ĥ l

d , m̄l
M , t̄M , V̂ l,fst

D−d , Û l,slw
d }l ] ← LearningDynamics(Bl , τmin, τmax, d): estimation of

local parameters of effective dynamics.

5: [{ẑl , T̂ẑlMε , P̂l (z)}l ] ← LearningGeometry(b̂l , m̄l
M , t̄M , V̂ l,fst

D−d , Û l,slw
d ): estimation of local

parameters of Mε .
6: end for
7: {ẑl }L ′

l=1 ← ConstructIM({ẑl }Ll=1, τ, dcon): construct sketch of the invariant manifoldMε .

8: P̂A, b̂A, �̂A, ĤA
d ← assemble interpolated quantities using the estimated quantities above and

Eqs. (3.11–3.14).

Algorithm 2: Pseudo-code for ATLAS construction
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[{b̂l , �̂l
d , Ĥ l

d , m̄l
M , t̄M , V̂ l,fst

D−d , Û l,slw
d }l ] ← LearningDynamics(Bl , τmin, τmax, d)

Input: Bl , the local burst; [τmin, τmax], interval for regression; d, intrinsic dimension.
Output: Estimated drift, diffusivity matrix and diffusion coefficient b̂l , �̂l

d , Ĥ l
d of landmarks.

1: t1, . . . , tM : M equispace points in [τmin, τmax].
2: m̂l

t ← 1
N
∑N

n=1 z
l,n
t , Ĉl

t ← 1
N−1

∑N
n=1(z

l,n
t − m̂l

t ) ⊗ (zl,nt − m̂l
t ): empirical means and covariances,

Eq. (3.2).

3: m̄l
M ← 1

M
∑M

m=1 m̂
l,N
tm , C̄l

M ← 1
M
∑M

i=1 Ĉ
l
tm , tM ← 1

M
∑M

m=1 tm .

4: b̂l ← ∑M
m=1(m̂

l,N
tm − m̄l

M )(tm − t̄M )/
∑M

m=1(tm − t̄M )2: estimated drift term, Eq. (3.3).

5: �̂l ← ∑M
m=1(Ĉ

l
tm − C̄l

M )(tm − t̄M )/
∑M

m=1(tm − t̄M )2

6: �̂l
d ← Projrk(d)(�̂

l ) = Û l,slw
d 
̂d (Û l,slw

d )T : estimated diffusivity matrix, Eq. (3.4).

7: Ĥ l
d ← (�̂l

d )
1
2 = Û l,slw

d

√


̂d : estimated diffusion coefficient, Eq. (3.5)

8: �̂l
D−d ← Projrk(D−d)(C̄

l
M −�̂l t̄M ) = V̂ l,fst

D−d 
̃D−d (V̂ l,fst
D−d )T : estimated covariance matrix of the fast

modes, Eq. (3.6).

Algorithm 3: Estimation of local parameters of effective dynamics [Sect.3.3]

[{ẑl , T̂ẑlMε , P̂l (z)}l ] ← LearningGeometry(b̂l , m̄l
M , t̄M , V̂ l,fst

D−d , Û l,slw
d )

Input: Estimated quantities in algorithm 3;
Output: ẑl : landmarks; T̂ẑlMε : estimated tangent planes; P̂l (z): oblique projection along the fast mode.

1: ẑl ← m̄l
M − b̂l t̄M : estimated landmarks, Eq. (3.7).

2: P̂l (z) ← Û l,slw
d (Û l,slw

d )T (EET )†(z − ẑl ) + ẑl , where E = [Û l,slw
d , V̂ l,fst

D−d ]: estimated oblique affine
projections along the fast modes, Eq. (3.9).

3: T̂ẑlMε ← span(cols(Û l,slw
d )): estimated local tangent plane, Eq. (3.8).

Algorithm 4: Estimation of local geometric parameters of invariant manifold Mε

[Sect.3.4]

Input: landmarks {ẑl }Ll=1 and their estimated quantities; τ , timescale for reduction;dcon: connection thresh-
old.

Output: updated landmarks {ẑl }L ′
l=1 and their neighborsN (l).

1: for l = 1, . . . , L do
2: for k = l + 1, . . . , L do

3: if ρ̂(ẑl , ẑk ) <

(

1 −
√

1
2

)√
τ then

4: Remove ẑk .
5: else if ρ̂(ẑl , ẑk ) < dcon then
6: Add k to N (l), add l to N (k).
7: end if
8: end for
9: end for

Algorithm 5: Construct sketch of the invariant manifold Mε , {ẑl}L ′
l=1 ←

ConstructIM({ẑl}Ll=1, τ, dcon) [Sect.3.4]
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Input: landmarks {ẑl }L ′
l=1 and their estimated quantities; λ: time-step in ATLAS simulator in the unit of τ ;

zt : current point; kt : the nearest landmark of current point
Output: zt+1, next point; kt+1, the nearest landmark of current point in the “metric” ˆ̃ρ.
1: ωl (zt ) ← exp(−ˆ̃ρ(zt , ẑl )/

√
τ) for l ∈ {kt ,N (kt )}, Z(zt ) ← ∑

l∈{kt ,N (kt )} ωl (zt ).

2: zAt ← 1
Z(zt )

∑
l∈{kt ,N (kt )} P̂l (z)wl (zt ), b̂A(zt ) ← 1

Z(zt )
∑

l∈{kt ,N (kt )} b̂lwl (zt ) in Eqs. (3.11,
3.12).

3: �̂A(zt ) ← 1
Z(zt )

∑
l∈{kt ,N (kt )} �̂lwl (zt ), ĤA

d (zt ) ← (Projrk(d)�̂
A(zt ))

1
2 in Eqs. (3.13, 3.14).

4: zt+1 ← zA + b̂A(zt )λτ + ĤA
d (zt )�Wλτ , where �Wλτ ∼ N (0, λτ Id ).

5: Update the nearest landmark kt+1 for the next point zt+1.

Algorithm 6: Simulate one time-step with ATLAS simulator, [zt+1, kt+1] ←
ATLAStime-step(zt , kt , {ẑl}L ′

l=1, λ) [Sect. 3.5]

Input: S(z0, N , t0): original simulator generates N trajectories starting from z0 of time length t0; μ0,
probability measure for initial conditions; Tmax: the maximum time-steps; L int: number of initial con-
ditions; [τmin, τmax]: interval for regression; τ : timescale for reduction; d: intrinsic dimension; dcon:
connection threshold; dthr: exploration threshold; λ: time-step in ATLAS simulator in the unit of τ ; z:
current point; k: the nearest landmark of the current point.

Output: z: next point; k: the nearest landmark of next point; updated landmarks {ẑl } and their estimated
quantities; ATLAS A.

1: Construct ATLASA with L int initial conditions by performing algorithm 2 and construct L landmarks
and their estimators.

2: Start the initial condition from the first landmark: k0 ← 1, z0 ← ẑ1.
3: while t ≤ Tmax do
4: if min j∈{kt ,N (kt )} ˆ̃ρ(zt , ẑ j ) > dthr then

5: l ← L + 1, zl0 ← zt , Bl ← S(zl0, N , τmax),

6: [{b̂l , �̂l
d , Ĥ l

d , m̄l
M , t̄M , V̂ l,fst

D−d , Û l,slw
d }l ] ← LearningDynamics(Bl , τmin, τmax, d),

7: [{ẑl , T̂ẑlMε , P̂l (z)}l ] ← LearningGeometry(b̂l , m̄l
M , t̄M , V̂ l,fst

D−d , Û l,slw
d ).

8: for k = 1, . . . , L do
9: if ρ̂(ẑl , ẑk ) < dcon then
10: Add k toN (l), add l toN (k).
11: end if
12: end for
13: Update ATLAS A and L ← L + 1.
14: zt ← ẑl , kt ← l.
15: end if
16: Simulate one time-stepwithATLAS simulator: [zt+1, kt+1] = ATLAStime-step(zt , kt , {ẑl }Ll=1, λ).
17: t ← t + 1.
18: end while

Algorithm 7: Construct ATLAS simulator in exploration mode [Sect. 4]

Input: landmarks {ẑl }Ll=1 and their estimated quantities; Nmsm: number of initial points to constructMSM,
dtmsm: time of the short paths to construct MSM, τ : timescale for reduction.

Output: M: transition matrix for the Markov State Model constructed from ATLAS
1: for i = 1, . . . , L do
2: for j = 1, . . . , Nmsm do
3: [z, k( j)] ← ATLAStime-step(ẑi , i, {ẑl }Ll=1, dtmsm/τ)

4: end for
5: Mil ← #(k==l)

Nmsm
6: end for

Algorithm 8: Construct Markov state models from ATLAS [Sect. 6]
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C: Examples

In this section we discuss in depth details and results of ATLAS in the numerical
examples in Sect. 7. In Table 5 we report the parameters of the models and for the
construction of ATLAS.

In our numerical tests on the accuracy of ATLAS for the approximation of invariant
distribution, we proceed as follows. We will generate two sufficiently long trajectories
with both the original and ATLAS simulator, and we take samples from each of the
two trajectories. Then, we apply the projection P̂l to the samples obtained from the
original simulator. Herewe only use the oblique projectionwhich is consistent with the
ATLAS simulationmethod, and does not require any knowledge of the latent space. For
plotting purposes only, we visualize the smoothed histograms by binning the projected
samples according to latent slow variables, or other specified coordinates, for both
the original and ATLAS simulator. The L1- and L2-norm of the difference of their
approximate probability densities are calculated directly from the histograms. The bin
widths should be of order

√
τ , consistently with the spirit of ATLAS simulator, which

averages information below timescale τ , with a constant coefficient depending on the
scaling of the diffusion coefficient for the slow variable. If the latent slow variable is
unknown, we could automatically cluster the samples by its nearest landmark.

In our numerical tests on the accuracy of ATLAS for the local statistics, we proceed
as follows. We will generate a long trajectory with the ATLAS simulator and compare
the estimated invariant manifold, estimated tangent space, estimated effective drift and
diffusion terms at each point with the analytically derived reduced dynamics on the
slow manifold.

In our numerical tests on the accuracy of ATLAS for the approximation of medium-
and large-time observables, we proceed as follows. We will sample initial conditions
with respect to the invariant measure restricted to the specified initial regions of state
space, and obtain an estimate of the residence time in the target regions, with both
simulators. To be specific, first, we generate a single sufficiently long trajectory with
either the original or ATLAS simulator and uniformly sample NIC initial conditions
that are restricted to the corresponding initial regions (e.g., specifiedmetastable states).
Second, we run in parallel the dynamics with both simulators giving to each the same
initial conditions, sampled above.We check whether a trajectory reaches the boundary
of region at each ATLAS time-step for both simulators and record the residence time
once they leave. This is to ensure the consistency of time-steps for both simulators in
recording residence times. At last, we compute the mean residence time and its confi-
dence interval for both simulators. To ensure the robustness of the ATLAS algorithm,
we repeat the construction of ATLAS (which is random with its input, the observed
bursts) and sampling of residence time ten times, and calculate the confidence interval
of the relative error of the mean resident time.

It is nontrivial to identify the metastable regions in fast-slow stochastic systems
when D is very large. With ATLAS one can easily build up Markov state mod-
els(MSMs) and construct the transition matrix for the effective reduced process. First,
the number of landmarks naturally become associated to the states of MSMs; more
precisely state l of the MSMs is the set of points on the invariant manifold whose
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nearest landmark, in the ˆ̃ρ, is ẑl . Starting from the node of the same i-th landmark we
useATLAS simulator to simulate in parallel Nmsm short trajectories of time τ , which is
one ATLAS time-step. Let Ni j be the number of trajectories whose end positions land
in the same state of the j-th landmark. The probability transition from i-th landmark
to j-th landmark is estimated as Mi j := Ni j/N , see algorithm 8. The eigenvalues and
eigenvectors are approximations to the spectrum and eigenfunctions of the transfer
operator of the reduced stochastic system, exp(τL), where L is the generator of the
reduced effective process. Since we don’t assume the reversibility, the spectrum and
eigenvectors could be imaginary. The top left eigenvector of the transition matrix is
proportional to the invariant distribution of reduced stochastic process and is always
real. The spectral gap, which is the distance between the next dominant eigenvalue
and the eigenvalue 1, indicates the decay rate of correlations and the reciprocal of
the spectrum gap shows the order of ATLAS time-steps to reach the equilibrium. The
number of the dominant eigenvalues are the number of metastable states. Performing
some clustering or connectivity detection algorithms on landmarks with high equilib-
rium density can yield metastable regions. At least in the setting of real eigenvectors,
the positive or negative regions of successive dominant eigenvectors can be used to
identify metastable regions.

C. 1: Pinched spheremodel

The governing slow–fast SDE in Cartesian coordinates becomes

dz =
(

J (z) · b1(z) + 1

2
A(z) · b2(z)

)

dt + J (z) · σ(z)

⎡

⎣
dW1
dW2
dW3

⎤

⎦ (C.1)

where

J =

⎡

⎢
⎢
⎢
⎢
⎣

z1‖z‖
z3z1√

z21+z22
−z2

z2‖z‖
z3z2√

z21+z22
z1

z3‖z‖ −
√

z21 + z22 0

⎤

⎥
⎥
⎥
⎥
⎦

,

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− c1
ε

1−
√

a1+a2z23/‖z‖2
‖z‖

c3
4z33/‖z‖3−3z3/‖z‖√

z21+z22

c5

(

z2z3√

z21+z22‖z‖2
+ z1

‖z‖2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A =
⎡

⎣
−z1 −z1
−z2 −z2
−z3 0

⎤

⎦ ,

b2 =
[

c24(z
2
1+z22)

‖z‖4
c26/‖z‖2

]

, σ = diag

⎡

⎢
⎢
⎣

c2/(
√

ε‖z‖)
c4
√

z21+z22
‖z‖2

c6/‖z‖

⎤

⎥
⎥
⎦

(C.2)
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Without the noise term, the deterministic counterpart of this system has two sta-
ble fixed points, (θ∗, φ∗) = (π/6, 5π/6), (5π/6, π/6), which are marked in Fig. 4.
Note under the current parameter settings, c6 � c5 and c4 � c3, the assumption of
diffusion-dominated dynamics is satisfied. We claimed in the main text that this sys-
tem is not reversible, and we demonstrate it here. The corresponding Fokker Planck
equation of the governing equation in Cartesian coordinates is

∂t p(t, z) = −∇ ·
[

(J (z)b1(z) + 1

2
A(z)b2(z))p(t, z)

]

+ ∇2 [D(z)p(t, z)] . (C.3)

where D(z) = 1
2 (J (z)σ 2(z)J T (z)). We transform the equation into the symmetric

form

∂t p(t, z) = −∇ ·
[

(J (z)b1(z) + 1

2
A(z)b2(z) − ∇D(z))p(t, z)

]

+ ∇ · [D(z)∇ p(t, z)] . (C.4)

where ∇D(z) =
[∑3

j=1
∂

∂z j
D1 j (z),

∑3
j=1

∂
∂z j

D2 j (z),
∑3

j=1
∂

∂z j
D3 j (z)

]T
.

The theorem 3.3.7 in Jiang et al. (2004) indicates that the system is reversible if and
only if the force b3(z) = D−1(z)(J (z)b1(z)+ 1

2 A(z)b2(z)−∇D(z)) is a conservative
vector field. We calculate the curl of b3(z) is

∇ × b3(z)

=
[
z1 f1(z1, z2) + z2 f2(z1, z2, z3), z2 f1(z1, z2) − z1 f2(z1, z2, z3),

2c5z1
c26(z

2
1+z22)

]T

(C.5)

where

f1(z1, z2) = − 2c5z2
c26(z

2
1 + z22)

3/2
, f2(z1, z2, z3) = 2c3z3(3(z21 + z22) − z23)

c24(z
2
1 + z22)

2‖z‖
− 2a2c1z3

c22‖z‖2
√

a1 + a2z23
‖z‖2

(C.6)

The curl is not zero if all coefficients are positive. So this system is not reversible.
Identifying the slow manifold and the effective stochastic dynamics. The slow
manifold Mx

0 in spherical coordinate is r�(θ) = R(θ) in the limit of ε → 0. Since
Cartesian coordinates z1, z2, z3 are linear with the radius r , the slow manifold M0
in Cartesian coordinates is [R(θ) sin(θ) cos(φ), R(θ) sin(θ) sin(φ), R(θ) cos(θ)]T in
the limit of ε → 0. In this example, M0 is the image of Mx

0 under the coordinate
transformation. It is uniformly asymptotically stable and it has negative and positive
curvature at different points (with the chosen set of parameter a1, a2). The reduced
dynamics (in the limit ε → 0) on the slow manifoldM0, in Cartesian coordinates, is
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given as

dz = beffdt + H eff
[
dW2
dW3

]

(C.7)

where

beff =
⎡

⎣

d
dθ (R(θ) sin(θ)) cos(φ) −R(θ) sin(θ) sin(φ)
d
dθ (R(θ) sin(θ)) sin(φ) R(θ) sin(θ) cos(φ)

d
dθ (R(θ) cos(θ)) 0

⎤

⎦ ·
[

c3 cos(3θ)
R(θ) sin(θ)
c5 sin(φ+θ)

R(θ)

]

+ 1

2

⎡

⎢
⎢
⎢
⎣

d2

dθ2
(R(θ) sin(θ))

c24 sin
2(θ) cos(φ)

R2(θ)
− c26 sin(θ) cos(φ)

R(θ)

d2

dθ2
(R(θ) sin(θ))

c24 sin
2(θ) sin(φ)

R2(θ)
− c26 sin(θ) sin(φ)

R(θ)

d2

dθ2
(R(θ) cos(θ))

c24 sin
2(θ)

R2(θ)

⎤

⎥
⎥
⎥
⎦

,

H eff =
⎡

⎣

d
dθ (R(θ) sin(θ)) cos(φ) −R(θ) sin(θ) sin(φ)
d
dθ (R(θ) sin(θ)) sin(φ) R(θ) sin(θ) cos(φ)

d
dθ (R(θ) cos(θ)) 0

⎤

⎦ ·
[

c4 sin(θ)
R(θ)

0
0 c6

R(θ)

]

(C.8)

and θ = arctan2(
√

z21 + z22, z3), φ = mod(arctan2(z2, z1), 2π). This result is not
exactly the effective dynamics (averaged at the finite timescale τ ) on the invariant
manifoldMε , but it provides us some good reference. Here, and in the other numerical
experiments, wewill in fact consider this as ground truth, formeasuring the accuracy of
the ATLAS estimators of geometric objects (e.g.,Mε) and dynamics quantities (e.g.,
b and �). Note that when we measure the accuracy of other quantities such as mean
residence times and accuracy of the stationary distributions, these approximations are
not used, and the ATLAS estimates are compared directly with those obtained from
the original simulator.
Estimating the relevant timescale τ . In Fig. 7 we visualize the behavior of tr(Ĉl

t )

and ‖m̂l
t‖ as a function of time: we observe that they initially behave nonlinearly, but

then transit to a linear regime, at time about 0.025, consistent with the approximations
in Eq. (3.1). In this example, we choose (τmin, τmax) = (0.05, 0.10) and the timescale
of separation τ = 0.10.
Estimating dimension and tangent spaces of M0, and direction of the fast modes.
We all report in Fig. 7 the behavior of the singular values of Ĉl

τ , �̂
l
D−d and �̂l

d at one
landmark in descending order. The dominant singular values are visualized with cross
markers. Local Principal Component Analysis (PCA) corresponds to the analysis of
ĈN (τ ): it exhibits 1 dominant singular value, with the corresponding singular vector
close to the direction of fast variables, because the large fluctuations of the fast modes
dominates. The other two singular vectors of ĈN (τ ), which are necessarily, in PCA,
orthogonal to the leadingmode, are not the directions of slow variables atmost regions.
Thenumber of the dominant singular values of �̂l

D−d is 1 and its corresponding singular
vector correctly estimates the direction of the fast variable. Finally, the number of
the dominant singular values of �̂l

d is 2, equal to the correct dimension of the slow
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Fig. 7 Pinched sphere: Top right: plot of trace of empirical covariance and norm of empirical mean, tr(Ĉl
t )

and ‖m̂l
t‖ verse time at one landmark.Top center: singular values of Ĉl

τ , �̂l
D−d and �̂l

d at one landmark, the
dominant singular values are marked as cross labels. Top left: top six eigenvalues of the Markov transition
matrix. Bottom left: the contour plot of kernel-fitted invariant distribution in the coordinate (φ, θ) from the
trajectory of time length 106 generated by the original simulator.Bottom center: the contour plot of kernel-
fitted invariant distribution in the coordinate (φ, θ) from the trajectory of time length 106 generated by the
ATLAS simulator. Bottom right: A trajectory of time length 2.5τ starting from the marked landmark is
simulatedwith the original simulator is shown.We depict a portion of the key estimated objects: the invariant
manifold Mε , drift at z0, fast direction, and normal direction. Note that the fast direction is far from the
normal one, and the (Itô) drift is far from being tangent to Mε , and also that Mε is locally a graph over
the tangent plane at z0

manifold, and the span of their corresponding singular vectors correctly estimates
the tangent space of the slow manifold. On average, it requires 1585 charts to fully
describe the invariant manifold.
Identifying metastable states, and estimation of large-time properties of the pro-
cess. We assume we do not know the metastable states, nor the number of such states.
The top six eigenvalues of the Markov transition matrix (see Fig. 7) are real and they
exhibit a clear spectral gap after the top two eigenvalues, which indicates, correctly,
that this system has two metastable states. We simulate trajectories of time length 106

with the original simulator and with the ATLAS simulator, and from those we esti-
mate the invariant distribution by using smoothed histograms with bins constructed in
the latent coordinates (φ, θ), which parametrize the invariant manifold. We visualize
them in Fig. 7: from the contour plot of both distributions they appear very close,
and indeed in the L1-norm of the difference of two densities (i.e., the total variation
distance between the distributions) is 0.107±0.009, and the L2-norm of the difference
of densities (a more robust but less stringent distance) is 0.0034 ± 0.0004.
Estimation of residence times. In the stage of estimating residence times, we gen-
erate a single long trajectory of time length 5 × 105 with the ATLAS simulator (this
time length is much larger than the residence times to be estimated), from which
we uniformly sample NIC initial conditions that are in Scyan = {ϕ2 > 0.05} and
Sred = {ϕ2 < −0.05}. Here one can use either original simulator or ATLAS simula-
tor, however, the ATLAS simulator is much faster. In this example, we test the medium
and large residence time by defining the boundary of the residence set as {ϕ2 > 0.02}
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and {ϕ2 < −0.02} in the first experiments, and, the metastable states M1 andM2 in the
second experiment. We say that a point on invariant manifold is in a set if the closest
landmark of the point is in the corresponding set (with this definition, the set is slightly
different from the corresponding sublevel set or superlevel set of an eigenfunction).

C.2: Oscillating Half-Moons

Identifying the slow manifold and the effective stochastic dynamics. With the
setting of parameter, our model is reversible since a1 = 0 (Ge and Qian 2012). In the
latent variable space, the fast variables are r1 and ui and the slow variable is θ . In the
limit ε → 0, the fast variables relax to the equilibrium at r1 = 1 and ui = 0 so the
slow manifoldMx

0 in the latent variable is r1 = 1, which is the unit circle. The "local"
invariant distribution of the fast variable r1 and ui are

ν(r1|θ) =
√

b1
b22π

exp

[

−b1
b22

(r1 − 1)2
]

, ν(ui |θ) =
√

b3
b24π

exp

[

−b3
b24

(ui )
2

]

.

(C.9)

With the current parameter setup, there is very small probability that r1 can go to the
negative side but we will ignore the possibility in our analytical calculations.

In the example, the fast variables are nonlinearly coupled in the observed Cartesian
coordinates, so the slow manifold M0 in Cartesian coordinates is not the image of
Mx

0 under the coordinate transformation. In the limit ε → 0, the landmark position
in Cartesian coordinate for given θ is

z̄1(θ) := E(z1|θ) =
∫ +∞

−∞
r1 cos(r1 + θ − 1)ν(r1|θ)dr1

= exp

(

− b22
4b1

)
√
√
√
√1 +

(
b22
2b1

)2

cos(θ + θs), (C.10)

z̄2(θ) := E(z2|θ) =
∫ +∞

−∞
r1 sin(r1 + θ − 1)ν(r1|θ)dr1

= exp

(

− b22
4b1

)
√
√
√
√1 +

(
b22
2b1

)2

sin(θ + θs), (C.11)

z̄i (θ) := E(zi |θ) =
∫ +∞

−∞

(∫ +∞

−∞
(r1 + ui ) ν(r1|θ)dr1

)

ν(ui |θ)dui = 1. (C.12)

where the angle shift θs is θs = arctan

(
b22
2b1

)

. Then the slowmanifoldM0 is the circle

embedded in (z̄1, z̄2, 1, . . . , 1)with the radius r̄ = exp

(

− b22
4b1

)
√

1 +
(

b22
2b1

)2

and the

angle is shifted by θs compared to the standard angle inCartesian coordinates. This shift
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is due to the nonlinearity of the fast modes, in particularly their curvature.With current
parameter setup, the radius is approximately r̄ = 0.9925 and θs is approximately
0.0153.

The distance of the point from the slow manifold M0, dist(z,M0)

=
√

(

√

z21 + z22 − r̄)2 +∑20
i=3(zi − 1)2. In Cartesian coordinate, the effective dynam-

ics of the first and second coordinate, z̄1, z̄2 are

d

[
z̄1(θ)

z̄2(θ)

]

=
(

(a1 + a2 sin(2θ) + a3 cos(θ))

[−z̄2(θ)

z̄1(θ)

]

− a24
2

[
z̄1(θ)

z̄2(θ)

])

dt

+ a4

[−z̄2(θ)

z̄1(θ)

]

dWt (C.13)

The effective dynamics on the other 18 coordinates has zero drift term and zero diffu-
sion term.
Estimating the relevant timescale τ . In Fig. 8, tr(Ĉl

t ) reaches the linear regime at
t = 0.5, however, the norm of the empirical mean ‖m̂l

t‖ behaves linearly only after
t = 1.0 (this is true also of the first and the second coordinates which are also TICA
coordinates, m̂l

1, m̂
l
2). This is consistent with the large fast modes, and high curvature

of the slowmanifold; the training interval that we choose is [τmin, τmax] = [1.0, 1.25],
and τ = 1.0.
Estimating dimension and tangent spaces of M0, and direction of the fast modes.
We report in Fig. 8 the behavior of the singular values of Ĉl

τ , �̂l
D−d and �̂l

d at one
landmark in descending order. The dominant singular values are visualized with cross
markers. Although the number of the dominant singular value of covariance matrix Ĉl

τ

and the diffusivity matrix �̂l are 1, the corresponding singular vector of Ĉl
τ is not the

slow direction, but close to fast direction, dooming a naïve approach based on local
PCA. On the other hand, the dominant singular vector of �̂l

d correctly estimates the
tangent direction of the slowmanifold. The number of the dominant singular values of
covariance matrix �̂l

D−d is 1, which is the correct number of fast variables. The scatter
plot of the samples from paths of a burst, at t = 0.5, 1.0, 1.25 in the global TICA
coordinates (z1, z2), visualizes how the data cloud is stretched out nonlinearly away
from the slow manifold. Due to the relatively big curvature, the part of slow manifold
that these data clouds covers at different time clearly show the nonlinear effects.A local
linear approximation on dynamics and geometry might not be accurate at these scales,
making the refinement of the landmark positions necessary, for one roundof refinement
as discussed in Sect. 3. This procedure significantly reduces the bias introduced by
the local linear approximation. To further reduce the effect of the nonlinearity, we
choose the effective timescale τ as lower bound of the training interval. Here the scale
of separation is large enough, multiple rounds of refinement are not necessary. On
average, it requires 65 charts to fully describe the invariant manifold.
Identifying metastable states, and estimation of large-time properties of the
process. From the top six eigenvalues of the transition matrix of a Markov state
model constructed from ATLAS, we note the significant gap between the second
and third eigenvalues, which correctly indicates the system has two metastable
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Fig. 8 Oscillating half-moons: Top left: plot of trace of empirical covariance and norm of empirical mean,
tr(Ĉl

t ), ‖m̂l
t‖ verse time at one landmark. Top center: plot the first and second coordinates of the empirical

mean m̂l
t verse time at one landmark. Top right: singular values in log scale of Ĉl

τ , �̂l
D−d and �̂l

d at one
landmark, the dominant singular values are marked as cross labels. Bottom left: scatter of the burst in the
(z1, z2) coordinate at t = 0.5, 1.0, 1.25, together with the slow manifold,

√
τ -neighborhood and dominant

singular vectors of Ĉl
τ , �̂l

D−d . Bottom right: top six eigenvalues of the Markov transition matrix

states. In this example, we explicitly provide the regions of the two metastable

states, MLeft = {θ ∈
(
−2 tan−1(4 + √

15),−2 tan−1(4 − √
15)
)
} and MRight =

{θ ∈
(
−2 tan−1(4 − √

15),−2 tan−1(4 + √
15) + 2π

)
} in the latent variable θ , that

parametrizes the slow manifold.
We simulate trajectories of time 8 × 106 with the original simulator and with the

ATLAS simulator, and from those we plot the invariant distributions in the latent
variable θ . The standard bin width is a4

√
τ = 0.06 and we use it for the plot and

calculation of the difference of the two distributions, which are very close (see Fig. 5).
The L1-norm of the difference of two approximated densities is 0.098 ± 0.006 and
L2-norm of the difference is 0.015±0.001. Another observation is that albeit ATLAS
is only expected to be accurate for the standard bin width, we also attempted other
smaller bin widths, all the way down to 0.0019, which is much smaller than a4

√
τ ,

and observed no increase in the estimation error, thanks to the regularity of such
distributions.
Estimation of residence times. In the stage of simulating residence time, we generate
a single long trajectory of time2.4×106 by the original simulator anduniformly sample
NIC initial conditions in each metastable state. The boundary of the residence set is
the same as the region of the metastable state. In this example, we say the point is in
the residence set if its latent variable θ is in the corresponding metastable state.

C.3: Butane

Governing equations for butane dynamics. We consider the overdamped Langevin
dynamics of the butane molecule. The positions are denoted as qi ∈ R

3 for 1 ≤ i ≤ 4.
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To remove the rigid body motion invariant, we set

q1 =
⎡

⎣
x1
y1
0

⎤

⎦ , q2 =
⎡

⎣
0
0
0

⎤

⎦ , q3 =
⎡

⎣
0
y3
0

⎤

⎦ , q4 =
⎡

⎣
x4
y4
z4

⎤

⎦ .

The potential energy is given as

V =
3∑

i=1

Vbond
(
‖qi+1 − qi‖

)
+

2∑

i=1

Vangle (θi ) + Vtorsion(φ).

where θ1, θ2 are the angles formed by the three first atoms and the three last atoms
respectively. φ is the dihedral angle, i.e, the angle between the plane on which the
first three atoms lay and the plane on which the three last atoms lay. These potential
functions are Vbond(l) = k2

2

(
l − leq

)2
, Vangle(θ) = k3

2

(
θ − θeq

)2 and Vtorsion(φ) =
c1 cosφ + c2 cos2 φ + c3 cos3 φ. The numerical values for the constants are those in
Schappals et al. (2017). The overdamped Langevin dynamics on the state space R6 is

dz = −∇V (z)dt + σdWt (C.14)

where z = [
x1 y1 y3 x4 y4 z4

]T and the diffusion coefficient is σ = √
2β−1. The

dihedral angle φ has the explicit form when x1 < 0,

cos(φ) = (�v43 × �v32) · (�v12 × �v23)
|�v43 × �v32| · |�v12 × �v23| = x4

√

x24 + z24

, (C.15)

where �vi j = q j − qi . If we define the counterclockwise rotation as positive, then
x4 = l sin(θeq) cos(φ) and z4 = l sin(θeq) sin(φ). If x1 < 0, y3 > 0, the explicit form
of the potential is

V (x1, y1, y3, x4, y4, z4) = c1
x4

(x24 + z24)
1/2

+ c2
x24

x24 + z24
+ c3

x34
(
x24 + z24

)3/2

+ 1

2
k2

((√

x21 + y21 − l

)2

+
(√

y23 − l

)2

+
(√

x24 + z24 + (y3 − y4)2 − l

)2
)

+ 1

2
k3

⎛

⎜
⎝

⎛

⎝θeq − arccos

⎛

⎝
y1

√

x21 + y21

⎞

⎠

⎞

⎠

2

+
⎛

⎝θeq − arccos

⎛

⎝
(y3 − y4)

√

x24 + (y3 − y4)2 + z24

⎞

⎠

⎞

⎠

2
⎞

⎟
⎠ . (C.16)
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Identifying the slow manifold and the effective stochastic dynamics. The dihedral
angle φ is usually chosen as the slow variable of the butane dynamics and we will
have the slow manifold M0, which is a circle embedded in R6, if x1 > 0, y3 < 0,

M0 =
{[−l sin(θeq ), l cos(θeq ), l, x4, l − l cos(θeq ), z4

]T with x24 + z24 = l2 sin2(θeq )
}

The potential energy for the dihedral angle has three local minima at φ = −2π/3
(bot-cis), φ = 0(trans) and φ = 2π/3 (top-cis). Butane dynamics is well known for
its conformation isomerism and can be treated as the unimolecular reaction of three
states. The trans conformer has lower energy than the cis conformer, so the trans state
is more stable than the cis state. The distance of the point from the slow manifoldM0
is calculated as follows,

dist(z,M0)

=
√
(
x1 + l sin(θeq )

)2 + (
y1 − l cos(θeq )

)2 + (y3 − l)2 + (
y4 + l cos(θeq ) − l

)2 +
(√

x24 + z24 − l sin(θeq )

)2

(C.17)

The proposed effective stochastic dynamics of the dihedral angle φ is

dφt = −∇Vtorsion(φt )dt +
√

2β−1σ(φt )dWt (C.18)

As suggested inLegoll andLelièvre (2012), theσ(φt ) isσ 2(φt ) = E
(|∇φ|2(y)|φ(y) = φt

)
.

In this case, σ(φt ) can be explicitly calculated here, σ(φt ) = 1
l sin(θeq )

. Then inR6, the
explicit form of the effective stochastic dynamics of the fourth and sixth coordinates,
x4, z4 are

∂t x4 =
⎛

⎜
⎝−z24

c1
(
x24 + z24

)
+ 2c2x4

√

x24 + z24 + 3c3x
2
4

(x24 + z24)
5/2

− x4
βl2 sin2(θeq )

⎞

⎟
⎠ dt − z4

√
2β−1

l sin(θeq )
dWt ,

∂t z4 =
⎛

⎜
⎝x4z4

c1
(
x24 + z24

)
+ 2c2x4

√

x24 + z24 + 3c3x
2
4

(x24 + z24)
5/2

− z4
βl2 sin2(θeq )

⎞

⎟
⎠ dt + x4

√
2β−1

l sin(θeq )
dWt .

(C.19)

Other variables, x1, y1, y3, y4 have no drift and no diffusion in the effective stochastic
dynamics.
Estimating the relevant timescale τ . Based on the strength of the bond angle and
the largest parameter in the torsion potential, the contribution from the bond and bond
angle part will be quickly relaxed and the scale of separation is approximately a factor
of 20, which is not very large, both in absolute terms and when compared to the
other examples we considered. It is therefore necessary to perform multiple rounds
of refinement to ensure the initial condition is close enough to invariant manifold.
Initially, we use the time window [τmin , τmax ] = [4 × 10−5, 5 × 10−5] to learn
the parameters in each landmark and proceeds with rounds of refinement until the
relative differences of estimated parameters within 5% (this resulted in no more than
10 rounds), as discussed in Sect. 3. In Fig. 9, both tr(Ĉl

t ) and ‖m̂l
t‖ reach the linear
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regime at t = 5 × 10−6, as well as the fourth and sixth coordinates of m̂l
t , which

are TICA coordinates. We thus ran a last round of refinement with the true training
interval [1 × 10−5, 1.5 × 10−5] and τ = 1 × 10−5.
Estimating dimension and tangent spaces of M0, and direction of the fast modes.
We report in Fig. 9 the behavior of the singular values of Ĉl

τ , �̂
l
D−d and �̂l

d at one land-
mark in descending order. In this example, the dominant singular vector of covariance
matrix Ĉl

t matches with the one of the diffusivity matrix �̂l
d and the first dominant sin-

gular vector of covariance matrix �̂l
D−d is almost orthogonal with the slow direction.

There are 5 dominant singular values for the covariance matrix �̂l
D−d , then it shows

the fast variable has 5 dimensions. Similar to the oscillating half-moon example, the
part of slow manifold that these data cloud covers clearly shows the nonlinear effect.
Therefore, τ is chosen from the lower bound of the training interval and the special
procedure to modify the landmark during the last round of refinement is necessary.
On average, it requires 77 charts to fully describe the invariant manifold.
Identifying metastable states, and estimation of large-time properties of the pro-
cess. From the top six eigenvalues of the transition matrix of a Markov state model
constructed from ATLAS, we observe a significant gap between the third and fourth
eigenvalues, correctly indicating that the system has three metastable states. As in the
half-moonexample,we express themetastable states in the latent (dihedral, in this case)
angleφ: trans:={φ ∈ (−π

3 , π
3 )}, top-cis:={φ ∈ (π

3 , π)} and bot-cis:={φ ∈ (−π,−π
3 )}.

We simulate trajectories of time5×102 with the original simulator andwith theATLAS
simulator, and from those we plot both invariant distributions in the dihedral angle φ.
The standard bin width is σ

√
τ = 0.07 and we use it for the plot and calculation of the

difference of two distributions. The L1-norm of the difference of two approximated
densities is 0.060 ± 0.013 and L2-norm of the difference is 0.013 ± 0.003.
Estimation of residence times. In the stage of simulating residence time, we generate
a single long trajectory of time 5×102 by the original simulator and uniformly sample
NIC initial conditions in each metastable state. The boundary of the residence set is
the same as the region of the metastable states. In this example, we say the point is in
the residence set if its dihedral angle φ is in the corresponding metastable state.

D: Error Analysis

The equations of the relative error of Euclidean norm of the estimated drift term b̂A(z),
estimated diffusivity matrix �̂A(z), and between the estimated and theoretical tangent
space, are defined, respectively, as

relErr(b̂) = ‖b̂A(z) − b(z)‖
‖b(z)‖ , relErr(�̂) = ‖�̂A

d (z) − �(z)‖
‖�(z)‖ , AbsErr(T̂ẑl )

= arccos
(∥
∥
∥(Û l,slw

d )TUl,slw
d

∥
∥
∥

)
. (D.1)

For the estimation error of the invariant manifold, as discussed above we compared
points generated by long ATLAS trajectories, which lie on M̂ε by definition (of M̂ε)
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Fig. 9 butane: Top left: plot of trace of empirical covariance and norm of empirical mean, tr(Ĉl
t ) and ‖m̂l

t‖
verse time at one landmark. Top center: plot the fourth and sixth coordinates of the empirical mean m̂l

t
verse time at one landmark.Top right: singular values of Ĉl

τ , �̂l
D−d and �̂l

d at one landmark, the dominant
singular values are marked as cross labels. Bottom left: scatter of the burst in the (x4, z4) coordinate at
t = 0.5× 10−5, 1× 10−5, 1.5× 10−5, together with the slow manifold,

√
τ -neighborhood and dominant

singular vectors of Ĉl
τ , �̂l

D−d . Bottom right: top six eigenvalues of the Markov transition matrix

with points on the slow manifold obtained by averaging the equations in the limit as
ε → 0; this corresponds to the following:

• in the Pinched sphere example, from the calculations above we let AbsErr(M̂ε) =
|r − r�(θ)|.

• In the oscillating half-moon example, we use the distance of the point to the slow
manifold,

AbsErr(M̂ε) =
√
√
√
√(

√

z21 + z22 − r̄)2 +
20∑

i=3

(zi − 1)2

• In the butane example, we use the distance of the point to the slow manifold,

AbsErr(M̂ε )

=
√
(
x1 + l sin(θeq )

)2 + (
y1 − l cos(θeq )

)2 + (y3 − l)2 + (
y4 + l cos(θeq ) − l

)2 +
(√

x24 + z24 − l sin(θeq )

)2
.
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