Journal of Nonlinear Science (2023) 33:61 011]]'11631‘
https://doi.org/10.1007/500332-023-09920-2 Science

n

Check for
updates

Global Well-Posedness and Asymptotic Behavior of the 3D
MHD-Boussinesq Equations

Zhengguang Guo' - Zunzun Zhang? - Zdenék Skalak3

Received: 8 July 2022 / Accepted: 10 May 2023 / Published online: 27 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

In this paper, we study global well-posedness of the three-dimensional MHD-
Boussinesq equations. The global existence of axisymmetric strong solutions to the
MHD-Boussinesq equations in the presence of magnetic diffusion is shown by pro-
viding some smallness conditions only on the swirl component of velocity. As a
by-product, long-time asymptotic behaviors are also presented.
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1 Introduction and the Main Results

We are concerned with the following three-dimensional viscous incompressible MHD-
Boussinesq equations:

oru+ (u-VYu=vAu —Vp+ (b-V)b+ pes,

ob+ w-VYb=nAb+ (b-V)u,

dp+ w-V)p=kAp, (1.1)
divu =divb =0,

(u, b, p)li=0 = (uo, bo, po),

where v > 0, n > 0, and « > 0 are the kinematic viscosity, magnetic dif-
fusivity, and thermal diffusivity coefficients, respectively. u = (uy, uz, u3)(x,t),
b= (b1,b2,b3)(x,1), p=px,t),p=p(x,t) withx € R3, ¢t > 0 are the unknown
velocity field, magnetic field, pressure and the scalar temperature, respectively, e3 is
the unit vector in the x3 direction. ug(x), bo(x) and pg(x) are the given initial con-
ditions. Physically, the first equation describes the law of conservation of momentum
in the presence of buoyancy, the second equation shows that the electromagnetic field
is governed by the Maxwell’s equations and the third one describes the temperature
fluctuations around a constant state. For more physical background and numerical
simulations, one can refer to Pratt et al. (2013), Schrinner et al. (2005, 2007), and
references therein.

System (1.1) reduces to the Boussinesq equations if we set b = 0. Many efforts
have been made to determine whether the Cauchy problem for the Boussinesq equa-
tions is well-posed. One can refer to Hou and Li (2005), Hmidi et al. (2010, 2011),
Hmidi (2011), Larios et al. (2013), and references therein for the 2D problem. For 3D
axisymmetric Boussinesq equations without swirl, Hmidi and Rousset (2010) proved
the global well-posedness. Under the assumptions that the initial temperature oo does
not intersect the z-axis and the orthogonal projection of the support of pg to the z-
axis is compact, the global well-posedness was established in Abidi et al. (2011).
If one assumes p = 0, then (1.1) reduces to the MHD equations. There have been
lots of important progress on the well-posedness for the MHD equations. Duvaut and
Lions (1972) (see also Sermange and Temam 1983) established the global existence
of weak solutions and local well-posedness of strong solutions for the MHD equa-
tions in the classical Sobolev space H*(R?), s > 3. The global well-posedness for
the MHD system was shown in Cai and Lei (2018) under the assumption that the
initial velocity field and the displacement of the initial magnetic field from a nonzero
constant are sufficiently small in certain weighted Sobolev spaces. In the axisymmet-
ric setting, the global well-posedness of the 3D axisymmetric MHD equations was
studied in Lei (2015) for a family of special axisymmetric initial data (uq, bg) with
ug = by = b = 0. Later, the global well-posedness of the 3D axisymmetric MHD
equations with horizontal dissipation and vertical magnetic diffusion and vertical dis-
sipation and vertical magnetic diffusion was established in Jiu and Liu (2015), Wang
and Guo (2022), respectively. Moreover, strong axisymmetric solutions with only ver-
tical dissipation on the velocity were proved to exist globally in Jiu et al. (2017). For
the case of full dissipation and magnetic diffusion, the global small solutions to the
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3D axisymmetric MHD equations were shown in Liu (2018) for axisymmetric initial
data with by = b§ = 0.

For the full MHD-Boussinesq equations, there are also some works concentrated
on the global well-posedness of weak and strong solutions. Bian and Gui (2016), Bian
and Liu (2017) studied the global existence and uniqueness for the initial boundary
value problem to the 2D stratified MHD-Boussinesq equations without smallness
assumptions on the initial data. For the 3D case, Larios and Pei (2017) showed the local
well-posedness in H 3(R3). Liuetal. (2019) proved a global well-posedness result for
large initial data for the MHD-Boussinesq equations with a nonlinear damping term.
The investigation on global regularity of large axisymmetric solutions without swirl
component u’ was made in Bian and Pu (2020) under the assumption that the support
of the initial thermal fluctuation is away from the z-axis and its projection on to the
z-axis is compact. Later, this result was improved in Pan (2020) by removing the
“support set” assumption on the initial data of the thermal fluctuation. Recently, Li
(2022) established some critical conditions on the vorticity component w? to guarantee
the global regularity of the viscid or inviscid MHD-Boussinesq equations.

In this paper, we are interested in the global existence of axisymmetric strong
solutions with swirl component of velocity and investigate the long-time behaviors

of these solutions. Let x = (x1, x2, x3) € R3and r = ,/xlz + x%. The cylindrical
coordinate system (e,, eg, e;) is defined as:

¢, = (ﬂ, x_270> = (cos 6, sin#, 0),
rlor

ey = <_x_2, ﬂ,o) = (—sin#, cos 6, 0),
r r
e: = (0,0, 1). (12)

A scalar function f or a vector field u = (u”, u’, u?) is said to be axisymmetric if f,
u”, u?, u® do not depend on 6 :

u(x, ) =u"(t,r,2)e, +ul(t,r, 2)eg +u(t, r, 2e;.

Without loss of generality, one assumes that v = 1, 7 = 1, and k = 1 in (1.1). The
initial data (u, bo, pp) are assumed to be axisymmetric, and the initial magnetic field is
supposed to only have the swirl component, i.e., bo(r, z) = bg (r, z)ep. Since the initial
data are axisymmetric, then the local strong solution to (1.1) is also axisymmetric.
Moreover, by uniqueness of local classical solutions, it is clear that " = b* = 0 for
all later times if they vanish initially. Therefore, the aim of this paper is to establish a
family of unique global solutions to (1.1) with the following structure

ulx,t) =u"(t,r,2)e, + ue(t, r,z)eg +u*(t,r, z)e;,
b(x,t) = bt r, 2)ey. (1.3)

instead of the general magnetic field. Note that the situation becomes much more
difficult for general axisymmetric magnetic field. The main obstacle lies in the strong
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coupling effect between velocity and magnetic fields. Moreover, the general form
will prevent us from obtaining some necessary a priori estimates, which are crucial
in the analysis for the global solutions. Thus, in the axisymmetric setting (1.3), the
MHD-Boussinesq equations (1.1) can be equivalently rewritten in the following form:

il 042 02
o, u” +( .Vr,z) u" +0,p= (Ar!z _ rlz) u + (ur) _ (br) 7

U r, 0
8;149—1-(14 Vr,z)u9 _ (Ar,z—%) Y ot
orut + (ft 'Vr,z) U+ 9. p=Arut+p,

z b 1.4
b+ (19 o = (Are = ) 7+ (1.4)
81,0+(ﬁ VVZ):O_Arz,O—O,

where
~ rooz 2 2 1
u=,u), Vr,z = (0, az)’ Ar,z = ar + az + ;ar.

Then, the vorticity equations in the cylindrical coordinates can be written as:

ga)r — (Ar,z — r%) " = ("0, + w*o)Hu",
gwe — (Ar,z — r%) o’ = ”r—ra)g + 8Z¢ — Bzﬁ —0rp,
Dt — Ay 0 = (08 + 070U, (1.5)
D jr_ (Am - iz) J =0 a0 + o0 b0 — Lob? — Lo ur,
D je A, LjF = 070,60 — 0,100 + 9, (”’r”(’) ,
where
6
o = —8Zu0, P o.u” — dut, ot = a.u’ + u—, (1.6)
b? '
jr=—0a.b%, jF=0.b" + - (1.7)

and D% is the convective derivative

B
E=8,+u Oy + u®o;.

Following the ideas of Majda and Bertozzi (2002), Lei and Zhang (2017), we introduce
the following variables:
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Then, the equations of (I1, 2, T, A) satisfy that

QI+ (it -V, 2) T — (A, + 2T =0,
yQ+ (- V,z) @~ ( 21) Q=3I -2 — ko,

1.8
T+ (&-V, )T — ( @) —0. (1.8)
WA+ (@ V) A— ( %_%)AZ_%L;_’A

We state the main results as following.
Theorem 1.1 Assume axisymmetric initial data (ug, bo, po) € H2(R3), ug and by are

divergence-free. Suppose thate > 0, Ty € LZ(R3)NL®(R3), My € L2(R})NL3(R?)
and Vby € L®(R3), there exists a sufficiently small constant § > 0, such that if

1
(IGol17> + 1 A0l F s + ITTolI3 5 TTo N2 + leoll32) 2 IToll 21Tl Lo < 8, (1.9)
or

Yo - [Tollz2 sup [Tl poor<ey <8, (1.10)
t>0

where

1
Wy = (IIGOII 2+ 1 Aoll}s + = (||uo||§2 + Iboll3, + ||po||iz) ITol13 o
1
2
+IMol2- 1Mol )
Gy = Q L
0 = »4a0 2,00~
Then, there exists a global axisymmetric strong solution (u, b, p) to (1.1) with

(u, b, p) € L]0, 00); H*) N L?([0, 00); H).

Remark 1.1 If (u, b, p, p) solves the system (1.1), then the same is true for the rescaled
functions (u,, b), py, p») defined as

w; (x, 1) = au(hx, A21), by(x, 1) = Ab(hx, A%1),
palx,t) = Azp(Ax, kzt), pn(x, 1) = A3p(kx, Azl).

However, the quantities in conditions (1.9) and (1.10) are not scaling invariant, since
the L2-norm of p; (x, 0) is not conserved by the L2-norm of p(x, 0). It is not difficult
to verify that these conditions are scaling invariant if pg is taken to be zero, i.e., they
are scaling invariant for the standard MHD system.
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The following result gives the long-time asymptotic behaviors of global solutions
established in Theorem 1.1.

Theorem 1.2 Under the same conditions of Theorem 1.1, if py € L'(R®) N L%(R3),
and po satisfies

/ lpo(x)]|x|dx < oo, / po(x)dx =0 and |poll;1 < €o,
R3 R3
where € is a small positive constant independent of the initial data, then
2 _3
lo@l;. = C{t)~ 2.
In addition, if uy € L>(R%), Ty € L'(R3) N L2(R3) and Ty € L' (R3) N L2(R3),

then the following decay estimates hold:

1

)2, < C(72, TR, < Cy~3, )%, < C) 3,
lu® D117, + VWP ea) N7, + t{) (13’ ONI7 2 + 1AWU ea) (D)72) < Cr) 2,
16213, + (O IV BT ea) DII72 + 1) 13:6° (D172 + 1AG e0) (1)]|72) < C(1)2,

[TV NN

(t
{t

_ —

where (t) = /1 + £2.

Remark 1.2 These decay estimates are optimal in the sense of heat semigroup in three
dimensions, since we know that the optimal time decay of L? norm of solutions to
the Cauchy problem of heat equations in 3D is r~!/2 for any L3/ initial data, while it
is in accordance with our decay estimates. Note that the swirl component of velocity
and magnetic fields shares better decay estimates than u” and u?, since the additional
condition on Iy is imposed.

Besides, we would like to introduce the notations and conventions used in the
sequel of this article. X < Y means the existence of some constant C > 0 such that
X < CY.Wedenote Vi, = (0x,, 0x,), Ap = 8%1 + 3%2, H°* denotes the homogeneous
Sobolev space, equipped with the norm || | gs = ( fR3 €13 f (§)|2d$)%, and we also
introduce the Banach space Ll;’q, equipped with the norms

1
(o 1 @IG,d)" it 1= p <o,

ess sup [ f(@)llre, if p=o0,
te(0,7)

A1 =

where

L

. (/RS |f(t,x)|qu>q . if 1<q <oo,
L1 =

ess sup |f(t,x)], if g =o0.
xeR3
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The remaining of this paper is organized as follows: We prove Theorem 1.1 in
Sect. 2 by establishing different levels of a priori estimates. The proof of Theorem 1.2
is given in Sect. 3.

2 Proof of Theorem 1.1

We give the outline of the proof for Theorem 1.1. To prove the global regularity, we
introduce a quantity A(T) = Q% ,, + ||vsz||i2 ,» and then prove the bounds
T T

for llll Loo oo and ||Vw||Lz;L|z via the estimates of ||0)||LC;°L4 and ||Va)2||LzTLz. The
second step is to give the estimates for Vu, Vb, and Vp, which are different from
the techniques used in Chen et al. (2017a). Here, the new strategy about the Ll;-Lf{
estimates for parabolic version of singular integrals and potentials is applied. Then,
we establish the higher-order estimates for the solution. Finally, the global regularity
follows under the prescribed smallness conditions by closing the estimates for A(T).
The proof is divided into 4 steps.

2
1. Bound for ||w||L%cL4 + Vo ||L2TL2

Now, we present some basic estimates, which depend on .A(T'), once the bound for
A(T) is obtained, then some uniform bounds for vorticity immediately follow.

The first lemma gives some basic estimates for axisymmetric functions; one can
refer to Chen et al. (2017a) for its detailed proof.

Lemma 2.1 Assume u is the smooth axisymmetric solution to the Navier—Stokes
equations and w = V X u, for some T < 0o, then we have

r 1

u 1 1 1 1
‘7 <cClQl;; 8l <Cll,Ivell,,
LOO
this implies that
T "I 2 2 2 2
/ S dr=c (191, + 1VRI2, ) = CAAD).
0 r o peo T T

There exists a constant C = C(q), such that for¥ t € [0, T]and 1 < q < 00,

- - u”
IVu"lLa + | VusllLe + HT

=C ”“’eim .
La

0
~ u
IVl |l e + HT

< C||VullLs.
L4

Lemma 2.2 Assume (uo, bo, po) € H*(R3). Let (u,b, p) be the corresponding
axisymmetric solution of system (1.4) satisfying (1.3) on [0, T), for some T < oo,
and then, we have
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(L ”Lgom = Ci(M), 2.1)
o 14
Ao ps +3IVA G o +3 < (D), (2.2)
T L4 L4
Az s + IVAYIL: 2 + f f —dxdt < C3(T). (2.3)

where the constants C1(T), Co(T), C3(T) depend on the initial data, T, and A(T).

Proof Multiplying the b equation of (1.4) by |b?|?~2b?,2 < p < 0o and performing
integration in space, one can get
,
= / L pf1rdx <
R3 F

r

1 d 4(p 1) ”V|b9|2 u”

9
L 17, +

0P
167Ny
LOC

Therefore,

(@
16" M r-
Lo©

(7
— 167 lr <
dt

The Gronwall’s inequality implies

T
[0 = 1061 exo | [

Taking p — 400, from Lemma 2.1, one has

“ dt} .
r |l poo
51 < 18] exp {CAZ TR

Multiplying the A equation of (1.8) by A and integrating the resulting equation
over R3, one has

4

d . 3 _ 5,5 3|u 3/ur4 3| .
-—]A —VA -— ==z —A'dx < - |— All74.
et PR (MR ] byl Il o =3 7] 1Al
Using Gronwall’s inequality and Lemma 2.1, we obtain

4 2 4 T u
1A e +31VAI L2+3H— ) <||A0||L46XP{C/ — dr}
L4 0 L

1 3
< Clluol3 g exp {C AR ()T,

where

2

0
u
-0 v2y

182
012 2 2
o Lz) IVuoll7> < Clluol3,e-

1
c (Ivul:

4 02
Aol s < lluglize
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Thus, we get (2.2).
Multiplying the A equation of (1.8) by A7 and integrating the resulting equation
over R3, it follows that

d A8 u”
— A8 VAY? —dx<C|—
dtll 7s + 1l 72+ - r2dx_C .

8
- ALl s -

Using Gronwall’s inequality and Lemma 2.1, one has

T r

u

r

T 8
A
8 42 8
AN s + IVATIL +/O /RS o dxdt < Cl|Aollys exp{C/O . dt}

= Clluolly exp {cA> ()73,

where
4
0
8 o4 | 4o
”AO”LS = ||u()||Loo —
.
L4
1
LN BT ) ug | ug | 8
SQW%MzV% ) 2 v2 < Clluoll%,.
L r r
L2 L2

Therefore, we obtain (2.3).
The following lemma gives the estimates for components of vorticity.

Lemma 2.3 Assume (ug, bo, po) € HZ(R3) and Ty € L®(R3). Let (u, b) be the
corresponding axisymmetric solution of system (1.4) satisfying (1.3) on [0, T), for
some T < oo, then we have

”CL)0 ”400 4 + HV(Q)Q)Z 2 + Hw_e ! < C(T) (24)

Lrt L | rilipape © ’

9112
02 9112 )

R e P 23)
o g+ o [Sp+ V@2, 4 [ver2 ], L+ %] | <em
LEL LFL 212 L2312 Jr e )
(2.6)

where the constants C(T) depend on the initial data, T, and A(T).

Proof Multiplying (1.5) by |o?|>w? and integrating with respect to the space variable,
it follows that
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darlo i+ [y, +
9 2 042
e Bt (22) e
+ /]I;* a0 - 0P’ dx 2.7

= A1+ A+ Az + Ay

For the first term A, it follows that

ur

r

4

S b PR G
Lo Lt

(2.8)

As for the second term A», by integrating by parts, we have

0
A2 = —3 (u ) ( 9)2 3 w d
RS T 2 g3 1

3 u’ 2
- _E/R3 <$> c0? - 3. (0”)dx.

Thus, it follows that

3 02
3 WD)

I/tg 2
1Az ECH?”LS Jo” ]l s - @7,
ua 8
<C H W” + ”COG ” L4 + (2.9

For the third term Aj3, by integration by parts, Holder’s inequality and Young’s
inequality, one has

b@ 2 3 b@ 2
Az = 3/ u . (a)e)2 . 8Za)9dx = —/ Q ca - 8Z(w6)2dx
RS T 2Jr3 1

3
< STl |6 o o | o |2

<ol 0] + [ + »

(2.10)

For the last term A4, we have

+o00 +o00
Ay = 27 / f 3 p(@?)3rdrdz
—0o0 0

+o00  p+oo
=27 f / 03, ((0?)?r)drdz
—00 0
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400 p+oo (a)9)3
= —27[/ / p(w9)28rw0rdrdz +/ o dx
—o0 JO R3

r

0112

\/7

2
< Clpll= V@)l 2llol 2 + ol \ lleo” 2
L

< Clpliwlle’ 7. + - IIV(wQ) 172 + 2.11)

Inserting (2.8), (2.9), (2.10), and (2.11) into (2.7), one may conclude that

Sl + 2], +

ur

r

<

4 4 4
. || ;4 +C ||A||§8 +C ||w9 |4+ ClITol 7467, + Clipl T 117
Integrating with respect to time, applying the Gronwall’s inequality, we obtain

WWWﬁ+hwW

I,

<cC (||w8 e+ ||A||L%OL8T + 1Mol |5 ||L%0Lw T+ o070 00 ||w"||iwL2T)

T
. exp(C/
0

=CM),

L3r?

r

r

dt + CT)
LDO

where C(T) is a constant depending on the initial data, A(T) and T. Then, this gives
(2.4).

Multiplying (1.5) by @’ and integrating with respect to space variable, it follows
that

9 2
L o2, ot I+ |2

rop2

0 9\2 b@ 2
:/ (“’_urwf’—awﬂ+azw9Q+arpw9>dx
R3 r r r

<

0 4

o7+

0112 2 2 1]’ 2
+ ”b ||L°° ||H||L2+||:0||L2+—

w
r L4
1
zwuwm+wwm»

Thus,
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d 0
AT RS P

|32 + 2 1To12, 6|2 + 21101125
LOO

Integrating with respect to time, applying the Gronwall’s inequality, we have

2 2 o1
0 0
o0 Vv 2
P R o
62 2 SN BRITIE T
< ([l ;2 + 2000702 T +21Toll5, | [6°]; dt ) exp —| ar
r 0 0 T |lpeo
02 2 2 13012 Tu
S <||w() HL2 +2l|p”LOOL2T +2||H0||L2 Hb ”LOOLoo T) exp{/- — dt}
T T 0 r ||l Lo
<C(().
Then, this gives (2.5).
Similarly, using integration by parts, one has
Ld —(lo" 134 + l0®ll}4) + IIV( T+ S IIV( D7, + o
1) 1) — (3 —
4dr L* L* L2 L2 e

= / " ou” |0 [P0 dx +/ 0" | [P0 dx +/ " 3, u¥ | |*widx
R3 R3 R3

—I—/ 0% 0.u% | |*widx
R3
:=B1+ By + B3 + Bs.

For the first term By, it follows that

+oo 4
B :271/ o) | dz—Zn/ / (4u" (@) - 80" " (@")*drdz
—00
<20 Izl 1241V @22 + leo" 17 4
o0
< Ol Rl 14e + [S]  10r 14 + Sivn?2 (2.12)
= Lo® L4 , Lo L4 8 L2. .

For the second term B», one has

+o00 +00
B> :f w*d.u” |0 P dx = —271/ / w9, (Jo" ) @ - @ - r)drdx
R3

oo JO
+00

+oo
—3f (@) wfdx+2nf / u (@) 8, (re)drdz
R3 0o JO
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3 o \?
:_EfRBu’.a,(w’)Z-wr-a)de+/R3u’.(w’)2 (W) dx
1
+ _/ ur . V(w}’)z . (wr)de
R3

2
3 12
< Sl llzelie lizs o' I+ IV @) N2 + Izl 117 4
r L4
+ " el 171V (@) 2
1
< Cllu |17l 74 + l®ll}4) + gnwco’)zniz. (2.13)
For the third term B3, we have
+o0 —+00
B3y = / " 3 ut | P widx —271/ / SO (0 - |0 - wir)drdz
+o0 +o00 3
—271/ / 0, (re) - | * - drdz — 5/ U@ 0f - B (0¥) dx
]R3

3

= -/ U= (09)%0, (") dx——/ U@ 0t (%) dx

2 R 2 ]R3

< Cllullze o 1241V (@)1 2 + Clluf [ o lle || o llof ]l 14 |V (@) 2
1

< Cluf ool |54 + CllutFoo (" 14 + N0fll]4) + guvw)zniz

< Cluf |7l 154 + leo®ll74)

I
+ gIV@)Ig. (2.14)

For the last term By, it follows that

By=— / u*d, (|| Hydx = —2 / ¥ (@9)? - 9 () *dx
R3 R3

1
< Cluf|| 7ol |} 4 + §||V(w1)2||iz. (2.15)
Consequently,
1d 4 z4 1 2)2 1 2)2 Lo |
_ I _ V r _ V Z _ .
a0 1 W+ 00z + SIV@H T + IV @)L + 5| 7]
ur
<C (nurnioo + Ut 7 + ‘ ; ) (Nl 134 + o l170)- (2.16)
LOO

The Gagliardo—Nirenberg’s inequality and Lemma 2.1 give to
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T T 1 1\2
/ ", u?)||3dt < C f (HV(ur,uZ>||zz||v2<u’,uZ>||zz> dt
0 0

T 0
sC/ [ Vull,» <||Vw9||Lz+‘ )dr
0 L2

w
r
0
= ClIVullpz 2 { IVl 212 +
T T LZLZ
T

) < (D). (2.17)

0

r

0
9 a)
< Cluol (nw g+ |2

2
1312

Inserting (2.17) into (2.16), and by Gronwall’s inequality, we conclude that

ro4
oo Wzgo s + 10 e 14+ 20V @Dz 12 + 20V @7 12 +2 H% m
T T r
s(||wr||i4+||w1||i4>exp{f ||<uf,u1>||%oodt+6f — dt}
0 0 r |l pee
< (D),

where C(T) is a constant depending on the initial data, A(7T') and T. Then, this gives
(2.6), and from (2.4) and (2.6), we obtain that

oo o + IVl 5012 < 0.
2. Estimates for Vu, Vb and Vp
In the following, we focus on the estimates for Vu, Vb, and Vp.
Lemma 2.4 Assume (ug, bo, po) € H*(R?), TIg € L®(R?) and Vby € L>®(R>). Let

(u, b) be the corresponding axisymmetric solution of system (1.4) satisfying (1.3) on
[0, T), for some T < oo, then, we have

IVull 4 oo < C(T),
Vbl Lgere = C(T),

IVollLger~ < C(T),

where the constants C(T) depend on the initial data, T and A(T).
Proof Taking “Curl” operator to (1.1)1, we can get

w— Ao =—-VXx(wxu)+Vx({d-Vb)+V x pes.

Then, it follows that

'
w=e"wy — / TNV x (0 x u) — 8,(TTb%eg) — V x pe3)ds.
0
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Standard estimates Wahl (1982) show that
0
||Va)||Lz}L]2 S llw x ””L‘}L'z +|IT-b ”L‘}le + ”p”L‘}le
9 1
Slellps pellulizgerse + 1ol 216" ILgereT* + Mol 4 12
5 1 1
9 =
Slollps pellullzgere + ITloll 7o ITT0 Nl 22 167 oo e T + ol 12
5

1
2 S 9 l
Slellps pellulligers + ITToll oo 101l fp2 107 | Lo oo T3 + ol 4 12

Since

1 1
2112 2112
loll e = 0?12 < V2|2,

then

1
2,2
Vol 2 S Ve IILzTLQIIMIIL;?Loo + el e
5 1
2 ES 9 l
+ IToll 2 oo 1ol 32 167 M| Lo oo T 5. (2.18)

On the other hand, by the Gagliardo—Nirenberg inequality, we obtain

1 1
L
IVulle < CIVall2,1V%ull o,

then
4 2 2.2 2 2
IVullfy o < CIVulGpal Vulls 1 < Cllolfe il Vol 1o
2 2 1
< CllolfzallVolljy T2 (2.19)

Combining (2.18) and (2.19) together, one has

4
1Vul}s o

5 1
2 2 2 3 3 02 2 1
< ”w”Lt;Oth (IIVw Iz 2 llulpoo oo + IToll 7 lIBoll 7,2 11 oo pee + IIpoIIL;L12> T2.

(2.20)

Using the Gagliardo—Nirenberg inequality, Young’s inequality, and Lemma 2.3, one
obtains that

lullpgeroe < Cllull o2 + lloll 5o p4)
< C(luoll 2+l Nl 5o 4 + o ll o+ + 07 30 10)
< (). (2.21)
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Therefore, it follows from (2.20) that

IVulys < CCT). (2.22)

Then, taking “V” operator to (1.4)4, one has

r

d r
Vbu-VVb— AVD = —Vu-Vb+ Y vb+veni— Y e. (223)
r r

Multiplying the above equation by |Vb|?~2Vb and then integrating the resulting
equation over R3, we have

1d 4(p—1) o2
— LNVbIg, + 5 i
S IV + == | ViblE |

ui"
< IVullz=|IVbI], + | —
2 — L Lp r

VBT,
L>®

Mr
+ (nwum + H—

~1
) I Lo IVBIY,
LOC

applying Gronwall’s inequality and taking p — oo, we have
T
IVDllLsere < {IIVbollLoo +/0 (IIVMIILOO + ) IIHIILocdt}
LOO

T u”
exp IVullpe + | —| )ar
0 |l peo
LOO

T u’
1Vulli + | =
;
3 1 3
< {I9bollz + Mol (I1Vull g TF + AP T)TH) |

r

< {||Vb0||L°° + Mol Lo

S—

T u”
~exp{/ (||Vu||Loo+ — )dl}
0 r |l poc

- exp (IIWIIL;LOCT% +A%(T)T%). (2.24)
Using (2.1) and (2.22), there holds
IVDllLger= < C(T).

Similar techniques used to the third equation of (1.1) yield

1d 4(p—1) 2|2
SalVell+ == [VielE | s valie el @29)

by Gronwall’s inequality, and taking p — oo, one has
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T
190l o1 < I poll 2 exp { /O ||Vu||Loodz}

T ) 10T, i
< IVpollLe exp (/ ||Vu||Loodl> (/ 13dt>
0 0
3
< IV polli exp {IVull g, TH]
It follows from (2.22) that
IVollLgere < C(T).

3. H2(R?) estimates of (u, b, p)

The following lemma shows that the boundedness of A(7) guarantees the
smoothness of axisymmetric solutions to (1.4).

Lemma 2.5 Assume (uo, bo, po) € H>(R3), Ty € L®(R3) and Vby € L>®(R3). If
AT) = 120712 + IV 2 < 00,

forsome(Q < T < oo, then the corresponding solution of system (1.4 ) remains smooth
on [0, T].

Proof In the following, applying “A” operator to (1.1) and then taking the inner
product, we have

d
53 UIAulZs + IABIZ + 1Ap172) + IV iz, + IV2BIZ, + V217,
= —/ Au - A(u - Vu)dx —+—f Au - A(b-Vb)dx +/ Au - Apezdx
R3 R3 R3

—/ Ab-A(u~Vb)dx+/ Ab-A(b-Vu)dx—/ Ap - A(u - Vp)dx
R3 R3 R3

=h+L+L+11+ 15+ 6.

For the first term /1, one has

I = —/ Au~(Au-Vu)dx—/ Au - (u~VAu)dx—2/ Au - (Vu -V2u)dx
R3 R3 R3
<3|\ Vullz | Aull?, + llull oo || Aull 2| AVul| 2

<3|V A2C2A21AV2
< 3| VullL=llAully, + Cllullz |l uIILz+§II ull72-

For the second term I, utilizing the integration by parts and the fact div » = 0 give
12=/ Au-(Ab-Vb)dx—i—/ Au-(b-VAb)dx+2/ Au - (Vb - V?b)dx
R3 R3 R3
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< 3IIVhlL=[|Abll 2l Aull 2 + |l | Ab] 2| AVuU]| 2

1
< C|IVbl L= (| AbII, + [ Aull7,) + ClIbl < | AbIIT, + §||AW||§2.
The third term I3 can be estimated as following
I = / Au - Apesdx < CllAull 21| Apll 2.
R3

The fourth term 14 can be estimated as follows:
I4=—/ Ab-(Au-Vb)dx—/ Ab~(u-AVb)dx—2/ Ab - (Vu - V?b)dx.

R3 R3 R?
Integrating by parts and taking the divergence-free of u into account, we see that

/ Ab - (u-AVb)dx = 0.
R3

Thus,

I < ||Vbllze | Aull 2| Abll 2 < Vbl (| Aull7, + | AB]7,).
The term I5 is similar to /;; one obtains that
Is =/ Ab-(Ab~Vu)dx+/ Ab-(b-VAu)dx—i—Z/ Ab - (Vb - Au)dx
R3 ]R3 ]R3
< IVull | ABI7 5 + 1Bl | Ab 2 |V Aull g2 + | VD] oo | Ab| 2 || Aul| 12

1
< | VullL= || AB|17, + ClIblI7~ 1 AB]7, + gV aullL

+ I Vbl (1 AbIIT, + |Au]7,).
The last term I is similar to I4; we have
Is < C|IVpllre | Aull 2| Apll2 < C||VP||L°°(||A“||iz + ||A,0||iz)- (2.26)

Combining the above estimates, it follows that

d
a(llAulliz +1AbIT, + 1Ap172) + I AVU[Z, + [AVD]Z, + [|AV I3,

< C(IVulle + Vbl + [IVpllieo) (I Aul3 5 + | AbIIZ,) + Cl Vul| 7ol Aull?
+ ClIVB = IAbIZ, 4+ ClIV ol Aol -
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Thus, it follows from Lemmas 2.2 and 2.4, (2.21), Gronwall’s inequality, and thanks
to A(T) < oo, one has

2

| AulZo0 g2 + IABN 202 + 1AL 2 + IVl 1o+ IVDIT: 2 + 1Vl o

T
< exp {fo Ul + 15170 + 101300 + I Vullzoe + VD]l 1o + ||Vp||Loo>dt}

< ().

Moreover, together with the basic energy estimates for (1.1), we conclude that

lell oo g2 + llll 2 g3 = 00,
121l Lge 2 + 1Bl 12 g3 = 0,
< oQ.

||:0||L%°H2 + ”p||L2TH3

Therefore, the proof of Lemma 2.5 is complete.
4. Contradiction argument

Let (u, b, p) be the axisymmetric local strong solution to the MHD-Boussinesq
equations on [0, 7*) with the axisymmetric initial data (ug, by, pg), where T* is the
lifespan. Next, we will prove T* = oo by contradiction. Note that (€2, p) satisfies

: - 200 = —a, 2 — 24 — %o
024+ (u-V)Q— (A +2r 0,)2 2311_1 25-0 . (2.27)
0hp+W-V)p—(A+28)p=—20p

LetG =Q — %p; one has

2 b\l
G+ W -V)G—(A+-0,)G = —0; (—) —2—9.
r r r
Using energy estimates and integration by parts, note that the boundary term should
be dealt with by applying the methods introduced in Leonardi et al. (1999); Neustupa

and Pokorny (2001), which can help to avoid the singularity coming from the change
of variables on the z-axis. Thus, one has for any ¢ € [0, T*) that

1d 2 2 oo 2
EEIIGIILerIIVGIILer |G(t,r =0,2)|"dz
—00
Lte 2 I/tg 2
= —f 3ZH2de+/ 2, (—) Gdx < ||n||§4||azG||Lz+H— 19:Gll 2
R3 R3 r r L4
u’ 4 1
< 4|, +4 HT Lt SIVGI7. (2.28)
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It follows that

d u?
3 I1GIL: + IVGIL: < 8ITIIG. + 8‘ ; (229)
In the following, we estimate ”r—o ‘L‘V Firstly, the equation for A reads
9 3 1 3u”
IA+u-VA— A+ ———- = =———A. (2.30)
ro 4 r2 2r

Multiplying both sides of (2.30) by A3 and integrating the resulting equation over R3
yield

4
1d 3 u9 3
A VA2 == —A4dx <> A
AR A b Y 5] it
Hence,
d 4 22 u’ u’ 4
4d—||A||L4+12||VA 72+ 12 <24 ANl 4 (2.31)
t r 4 L>®
Combining (2.29) and (2.31) leads to
d £t
SIGIZ +41AIL) +2IVGIZ, + 12IVA[, + 4 ‘ “
L
ur
<24 ‘ AN + 8ITT] 4. (2.32)
r Loo

We estimate the right-hand-side term [|“- Yl |A]4,; then, one will see that with the

L+
smallness condition (1.9) in hand, ||"r || .o ||A||‘z4 can be absorbed by the left-hand
side of (2.32). By virtue of Lemma 2.1, it follows that

we 2
d; —
r

1
r w@z

r

r

<C
L

1 1
< ClQll;, 1921 7. (2.33)

L? L?

Using the Holder’s inequality, it is obvious to see

0\4
||A||i4= 3(u)dx /( )(ru )dx

0

l

=< ITll; 2||F||Loo
L4

TN =<

L4
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0

3 1 1
IToll; 2 1IT0ll 7o (2.34)
L4

=<

Inserting (2.33) and (2.34) into (2.32), we can obtain that

d 2 4 2 2,2 u’ | *
o (1G22 + 4IAIL ) + IVGIT: + 120VA2G +4) =)
L

(7)

1
< ClIQI% Tl (nazszniz +

3
2|2

1 1
< clel’,le.Ql?, 1Tl + SITTIE (2.35)

L4

014

u
r

4
) + 8T,

L

> > > S
= ClIS2l 2 IToll 2 1 Toll oo | VG2 + | ==

4
+ ||Vp||iz> + 8Tl

L4

We now define a finite time T as

sup {r > O‘HG(r, Mz +IVGIZ . + 414G s < 250} i=Tj < oo,

(2.36)
where
80 := Goll72 + 4l Aoll}« + ClITIoll3 5 ITTolI7 2 + llpoll? .
Indeed, for any 0 <t < T, we can obtain
- 1 2 2 4 2
1€2() = G(1) + 2p(t)IILz < 4UGollz + lIAollza) + lloll72-
Considering the equation for IT gives
d oy
—O+u-VII-{A+2—)IT=0.
dr r
It is not difficult to get for 2 < p < oo that

ITX(z, HIer < [Tollze-

On the other hand, one has the following uniform estimate

T T 1 1\4 s (T
/0 ||1_I||L4dl5/O <||n||z3”n”zﬁ> dr < ||1_10||L3/0 [ITT]I7 6 dr
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T
< Tol75 /0 IVIT||?,dt < C|[Tol|75[IToll3 . (2.37)

Integrating (2.35) with respect to time variable over [0, Tp), one has:

014

2 4 2 202
IIGIIL%;Lz +4||AI|L;3L4 + 2”VG”L%OL2 +12]VA IILzTOLz 4

4 14
LjL
1

<|Gol, +C (||Go||iz + 1 Aoll§4 + ClITIoll7 5 ITTo I3 + ||po||iz)“

4
1 1 u?
X IToll 2, IToll 7o | IVGIZ2,2 + ’ — + 4l Aoll7s + ClIToll75 Mol .

Ly L4
By condition (1.9) in Theorem 1.1, one has

1
2 —
ITollze < 8 (IGol2: + Aol + Cll ol 2 IToll3s + leoll32) ~ IToll 2,

when the positive constant § is small enough, such that

N =

1 1 1

F 3 2 1
o (||Go||iz + Aol f4 + ClITIolI7 2 Mo 125 + ||po||iz) ITolI2,ITol 7o < C87 <
Therefore, we conclude that

1G 1700 12 + 41AI 0 14 + 21 VG
0 0

L2 12
Ty
< 1Goll3> + 4l Aoll3> + ClITolI 7, ITToll3 5 + lleoll3 -,

This contradicts the definition of (2.36). In the following, multiplying the p equation
of (2.27) by p (2 < p < 00) and integrating over R>, one has

_ 2
4p—D [vielf], =o.
p2 L2

d P
g 1Pl +
taking p = 2 and integrating the above inequality in time variable over [0, Tp) yields
1017 12 +21V017: 12 < lleoll7.
0 To

Therefore, the global existence of axisymmetric strong solutions follows by Lemma
2.5 (see also Theorem 2.5.5 in Zheng 2004), so we completed the proof of the first
case of Theorem 1.1.

Next, we deal with (2.32) as follows:

o4

u
r

d 2 4 2 212
(IG5 +41A13:) +20VG 1 + 120V A% 1}, + 4

L4
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r

u u”
524‘— 1Al <0 +24 / — A dx + 8|14
r Lo - r>e
1 1 o3 1 1
< CIRA 1020 | T I IT e
1 ||u” u? 3 4
a |7 | 7] T ze + 8ITIIG
LT > e 2
< CIQILITN L IT I oo ey | IVGI 2+ | — | +1IVell}2
2y (r<e) P
L
1 |u” u® 3 4
=l i S e S IT 700 r>e) + 8ITTI 4 (2.38)
Let’s define
sup {t > 0[1G ()2, +4IAG, L, < 2\1/5} =T (2.39)

Integrating (2.38) with respect to time variable over [0, T7) yields

o114
u
G2, 2 +4IAI o, s + IVGIZ, . + 12IVA2)?, , +4|—
G gz13 + Mo IV G 1o+ 120VAPK, a4 5]
1
1 1 1 014
< ClI«ll} %, Toll?, sup [IT]I; VG2 + Hu— + Vol
= 00 2 o] 2 2
LTlL2 L te(0,Ty) L®r=e LT| L rolp4 4 L

G
1
+ =5 (Hmoll32 + 6ol + lleoll32 ) ITo
+ ClTol13:1ITToll3 2 + 1Goll72 + 4 1Al s -
By condition (1.10) and (2.39), we obtain

2 4 2
1G5 2+ 4IAN s 1o < 9.

similar as the first case, one can conclude that the axisymmetric strong solutions exists
globally. Therefore, the proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

In this section, we are devoted to the proof of Theorem 1.2. To this end, we first give
an estimate of the global decay of ||u(x, t)|| ;2 (see 3.1), then establish decay estimates
for the swirl components of velocity and magnetic fields, and find out that the swirl
components decay faster for a class of initial data. Following the ideas of Brandolese
and Schonbek (2012), Chen et al. (2017b), Liu and Han (2020) and using the Fourier
splitting method in Schonbek (1985), one can obtain the following estimates for the
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MHD-Boussinesq equations with slight modifications of those for the Boussinesq
equations in Fang et al. (2018), and we are not going to repeat it here.
If po € L' N LP forany p € [1, c0), then

ol < cty~2(175).

Furthermore, if pg satisfies

[ tmolirias < oo, [ codr =0 and s < o,

R3 R3

where € is a small positive constant independent of the initial data, then
lo@Il7, < C{r)~ 2.

Moreover, for ug € L% and by € L2, one can deduce the following decay estimates,
whose proof is very similar to the one in Fang et al. (2018), and we also skip the details
here.

@172 + 16O + 1pOl72 + O IVu@®72 + O IVE@I7
+(OIVPOIT2 + )@, Au) ||, + 1 (2)[1 (3D, Ab)I7,
+ 1)1 @ro, A2, < Cl1)7 2. 3.1)

Next, we focus on the decay estimates for the components which don’t appear in
the Boussinesq equations.

e Decay estimates for ||F||i2 and ||1'I||i2

For I'g € L'(R3) N LP(R3), where p € [1, o0), one has
IC@ILr < ITollze. (3.2)

Moreover, multiplying the I equation of (1.8) by I' and integrating the resulting
equation over R3, one has

1d
5 1Tz + IVTIZ, =0. 3.3)
By the Sobolev embedding theorem, we obtain

2 3 2 3 3
T2 < CITI; VI, < ClIToll VIS, < CIVEL,. (3.4)

Fr()m (3.3) and (34), 1t f()ll()WS that
2 2
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and
3
IT|2, < C{n~2.

Similarly, for [Ty € L'(R3) N L2(R3) with p € [1, 00), we can obtain the following
decay estimate

qa

T2, < C()~2.

e Decay estimates for ||u€||i2 and ||b(9||i2

Multiplying (1.4), and (1.4)4 by u?, b?, respectively, and applying Lemma 2.1 and
the decay estimates in (3.1), one has

d 0,2 0,2 0 ? ¢ 92 4 0,2
3 1152+ 1veIZ + .= 7 HHMIQZSCWVMQAWIQZ
<c@) T < Cil (3.5)
Similarly,
r 4
—M% + IVE 112, + 1T 21wt <ot (3.6)
L? L? 2 = 2 2 = . .
L
Set S(t) = {x | r <g®) '}, g(t) = Ja(l +1)" %, a > 3. It follows from (3.5) that
0 2 0 2
——nu 2, + 20l |2, < |ntan+-/“ i 0 |’”2|dx
dr NO) se@ry T
<C) T+ Olrul 13, < ).
Then,
t 1 T
eho gz(f)df||u9(t)||%z < ||u(9)||iz + Cf elo gz(S)dS<T>_%d‘[_
0
Since e/o 84T ~ (t)* and o > %, one has
5
lu? )12, < C(e)~2. (3.7)
Similarly,
9 2 -3
15° )13, < Cl)~2. (3.8)

o Decay estimates for |V (u?ep)||7, and [V (B¥e0) |7,
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Indeed, one has

0
0 2 ) u
IV(uZeo)ll;. = IVu’ll;2 +‘ "

2 112
= lo™lI72 + llw®ll72,
L

IV®Pep)l|7, = VB 17, + 11117, = 1171132 + 15%1135.

and

1 1
Awley) = (A - —2> ulep, (A - —2> u? = 8,0° — 3,0,
r r

0 1 1 6 ) .
A ey) = A—— bey, A——|b =0,j°—0,j".
r

Using (1.7) and the equation for 57, one has
1
A——)b°
(9

Integrating (3.6) over time interval [% t], using Gronwall’s inequality and (3.8), we

obtain
2
dr
L2

||W<r>||iz> dr

= 18:67 M1 2 + 1" j" — u®j") I 2
L

< 2019:b 12 + CIVullZ 2 (1" 2 + 1751 2)- (3.9)

b (1)
,

t
1Ol + | {1V @17 +
%
£\ | !
° <—> exp C /
2) |2 L
2
b (L
2
Multiplying (1.4)4 by 9,b? and integrating by parts lead to:

) f (" j* —u®j )b dx

1 1 1 1
< Cl13:6° | 21 Vull 2 (nwzn L+ I 120 ;)

<C

<cC <ci)3. (3.10)

L2

1d
1867117, + oo (uwﬂan + ‘

1 . .
= ¢ (180713 + 1957132 + 1957132

+Clvulfs (1571 + 15122) (3.11)
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and we also have

1d /. . : . i
~— (||f||iz + ||f||§2) FIVI2, + IVE12, + ‘ ;

2 dt

L2
_ / G R T T A
R\

1 . i
< - (nvu’,f)niz + ‘ -

) +CIvuliy, (1712 + 17°1%:) - G.12)
L

Set fi(1) = [j" ()12, + 11/ (®)]12,. from (3.10), it satisfies that
! 5
/ fi(r)dr < C(r)2. (3.13)
%
Combining (3.9), (3.11), and (3.12), one has

d 1 2
GO+ H (A —~ 72) b (1) Lt 18,6%1172 < CIVu®|l2 f1(0).

Multiplying the above inequality by (¢ — s) leads to

d
7 —90N0) = H() + ClIVull}. @ = 5) i), (3.14)

and applying Gronwall’s inequality gives

t t t
(t =) fi(1) < / fi(o)dr exp (c / ||W<r>||izr> <c / fi(o)dr,

Choosing s = % from (3.13) we have

t t
A =ct! / fi(r)dT exp (c / ||Vu(r)||izdr> <cr'@n 3.
2 2
Therefore, there holds

IV ea) D)2 = fi(1) < Cr) 3.

Similarly, we can obtain

IVl ee))]12, < Cle) 2.
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e Decay estimates for ||8,u9||i2 + H(A—r—z>u9H

(-2

Applying Gronwall’s inequality to (3.14) over [% t], we have

fi+ /t <H (A - %) Fc — ||8tb9||iz> dr
5 r L?
<cf (%) exp (C f l ||W||‘zzdr) <ch (%) <ciy”

Taking the time derivative to (1.4)4, one has

and ||9,b%)17, +
2
L2

2

(SIS

(3.15)

0
ab® +u-vor® —(a— LYo = o v —a (“2
tt t }"2 t - t t r .

Taking L? inner product of the above equation with 3,5%, and using incompressibility
condition, we have

9,b° |

1d
5 3 100" 12 + IV b7 I, + ‘

L2

,
fg <—8,u’jZ8tb9 + 0,u®j 9,07 — ”7(atb9)2) dx
R.

< 9ull3, (||jZ||2;3 + ||j’||ig) + Cla:b? 17,1 Vull}
3,00 ||*

r

1
2

1
—IVa,b?|2,.
L, TR IVaRi:

(3.16)
Next, it follows that

012

d
3 106" 12 + IV b7 I, +

t
r

02 4
X = ClI9: 7172 Vull; 2
L

+ Cllal?s (IVBI1 21867 12 + 1 Vul)
Multiplying the above inequality by (¢ — s) and using Gronwall’s inequality on [s, 7],
we obtain

t — )b’ O3,

t
<C ( / 1867117, + (r —5) (||Vu||‘;z + ||Vb||Lz||atb9||Lz) ||a,b||izdr)
N

t
- exp (C/ ||Vu||izdr>.
N

(3.17)
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Taking s = % and applying (3.15), one has
t
tlob? ()7, < € (/ 19:b° (D)1 2 + (x = )b I3 2 (1VDI L2117 2 + ||Vu||‘;z>dr>
N

_1 !
§C<<t) 241 sup <||Vu||iz+||Vb||Lz||afb9||Lz)/ (rs)natbnizdr)
T€[s,1] s
1

_1 _s _5 1 5 3 _
sc( 2+ +m i T HinT) scin7,

[SIEN}

and from (3.9), there holds

0 2 1 0 : 1 7
N:6° D5, + Il A — =)' @) <Ct ' (t)"2, Vt>DO0.
L 2 )
L
Similarly, we can also obtain
0 \112 1 0 2 1 1
o’ O+ || A— = Ju @) =<Ct”(r)"2, Vi>0.
L 72 5
L

Therefore, we complete the proof of Theorem 1.2.
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