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Abstract
In this paper, we study global well-posedness of the three-dimensional MHD-
Boussinesq equations. The global existence of axisymmetric strong solutions to the
MHD-Boussinesq equations in the presence of magnetic diffusion is shown by pro-
viding some smallness conditions only on the swirl component of velocity. As a
by-product, long-time asymptotic behaviors are also presented.
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1 Introduction and theMain Results

Weare concernedwith the following three-dimensional viscous incompressibleMHD-
Boussinesq equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u + (u · ∇)u = ν�u − ∇ p + (b · ∇)b + ρe3,
∂t b + (u · ∇)b = η�b + (b · ∇)u,

∂tρ + (u · ∇)ρ = κ�ρ,

div u = div b = 0,
(u, b, ρ)|t=0 = (u0, b0, ρ0),

(1.1)

where ν ≥ 0, η ≥ 0, and κ ≥ 0 are the kinematic viscosity, magnetic dif-
fusivity, and thermal diffusivity coefficients, respectively. u = (u1, u2, u3)(x, t),
b = (b1, b2, b3)(x, t), p = p(x, t), ρ = ρ(x, t) with x ∈ R

3, t ≥ 0 are the unknown
velocity field, magnetic field, pressure and the scalar temperature, respectively, e3 is
the unit vector in the x3 direction. u0(x), b0(x) and ρ0(x) are the given initial con-
ditions. Physically, the first equation describes the law of conservation of momentum
in the presence of buoyancy, the second equation shows that the electromagnetic field
is governed by the Maxwell’s equations and the third one describes the temperature
fluctuations around a constant state. For more physical background and numerical
simulations, one can refer to Pratt et al. (2013), Schrinner et al. (2005, 2007), and
references therein.

System (1.1) reduces to the Boussinesq equations if we set b = 0. Many efforts
have been made to determine whether the Cauchy problem for the Boussinesq equa-
tions is well-posed. One can refer to Hou and Li (2005), Hmidi et al. (2010, 2011),
Hmidi (2011), Larios et al. (2013), and references therein for the 2D problem. For 3D
axisymmetric Boussinesq equations without swirl, Hmidi and Rousset (2010) proved
the global well-posedness. Under the assumptions that the initial temperature ρ0 does
not intersect the z-axis and the orthogonal projection of the support of ρ0 to the z-
axis is compact, the global well-posedness was established in Abidi et al. (2011).
If one assumes ρ = 0, then (1.1) reduces to the MHD equations. There have been
lots of important progress on the well-posedness for the MHD equations. Duvaut and
Lions (1972) (see also Sermange and Temam 1983) established the global existence
of weak solutions and local well-posedness of strong solutions for the MHD equa-
tions in the classical Sobolev space Hs(R3), s ≥ 3. The global well-posedness for
the MHD system was shown in Cai and Lei (2018) under the assumption that the
initial velocity field and the displacement of the initial magnetic field from a nonzero
constant are sufficiently small in certain weighted Sobolev spaces. In the axisymmet-
ric setting, the global well-posedness of the 3D axisymmetric MHD equations was
studied in Lei (2015) for a family of special axisymmetric initial data (u0, b0) with
uθ
0 = br0 = bz0 = 0. Later, the global well-posedness of the 3D axisymmetric MHD

equations with horizontal dissipation and vertical magnetic diffusion and vertical dis-
sipation and vertical magnetic diffusion was established in Jiu and Liu (2015), Wang
and Guo (2022), respectively. Moreover, strong axisymmetric solutions with only ver-
tical dissipation on the velocity were proved to exist globally in Jiu et al. (2017). For
the case of full dissipation and magnetic diffusion, the global small solutions to the
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3D axisymmetric MHD equations were shown in Liu (2018) for axisymmetric initial
data with br0 = bz0 = 0.

For the full MHD-Boussinesq equations, there are also some works concentrated
on the global well-posedness of weak and strong solutions. Bian and Gui (2016), Bian
and Liu (2017) studied the global existence and uniqueness for the initial boundary
value problem to the 2D stratified MHD-Boussinesq equations without smallness
assumptions on the initial data. For the 3D case, Larios and Pei (2017) showed the local
well-posedness in H3(R3). Liu et al. (2019) proved a global well-posedness result for
large initial data for the MHD-Boussinesq equations with a nonlinear damping term.
The investigation on global regularity of large axisymmetric solutions without swirl
component uθ was made in Bian and Pu (2020) under the assumption that the support
of the initial thermal fluctuation is away from the z-axis and its projection on to the
z-axis is compact. Later, this result was improved in Pan (2020) by removing the
“support set” assumption on the initial data of the thermal fluctuation. Recently, Li
(2022) established some critical conditions on the vorticity componentωθ to guarantee
the global regularity of the viscid or inviscid MHD-Boussinesq equations.

In this paper, we are interested in the global existence of axisymmetric strong
solutions with swirl component of velocity and investigate the long-time behaviors

of these solutions. Let x = (x1, x2, x3) ∈ R
3 and r =

√

x21 + x22 . The cylindrical
coordinate system (er , eθ , ez) is defined as:

er =
( x1
r

,
x2
r

, 0
)

= (cos θ, sin θ, 0),

eθ =
(
− x2

r
,
x1
r

, 0
)

= (− sin θ, cos θ, 0),

ez = (0, 0, 1). (1.2)

A scalar function f or a vector field u = (ur , uθ , uz) is said to be axisymmetric if f ,
ur , uθ , uz do not depend on θ :

u(x, t) = ur (t, r , z)er + uθ (t, r , z)eθ + uz(t, r , z)ez .

Without loss of generality, one assumes that ν = 1, η = 1, and κ = 1 in (1.1). The
initial data (u0, b0, ρ0) are assumed to be axisymmetric, and the initialmagnetic field is
supposed to only have the swirl component, i.e., b0(r , z) = bθ

0(r , z)eθ .Since the initial
data are axisymmetric, then the local strong solution to (1.1) is also axisymmetric.
Moreover, by uniqueness of local classical solutions, it is clear that br = bz = 0 for
all later times if they vanish initially. Therefore, the aim of this paper is to establish a
family of unique global solutions to (1.1) with the following structure

u(x, t) = ur (t, r , z)er + uθ (t, r , z)eθ + uz(t, r , z)ez,

b(x, t) = bθ (t, r , z)eθ , (1.3)

instead of the general magnetic field. Note that the situation becomes much more
difficult for general axisymmetric magnetic field. The main obstacle lies in the strong
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coupling effect between velocity and magnetic fields. Moreover, the general form
will prevent us from obtaining some necessary a priori estimates, which are crucial
in the analysis for the global solutions. Thus, in the axisymmetric setting (1.3), the
MHD-Boussinesq equations (1.1) can be equivalently rewritten in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ur + (
ũ · ∇r ,z

)
ur + ∂r p =

(
�r ,z − 1

r2

)
ur + (uθ )2

r − (bθ )2

r ,

∂t uθ + (
ũ · ∇r ,z

)
uθ =

(
�r ,z − 1

r2

)
uθ − ur uθ

r ,

∂t uz + (
ũ · ∇r ,z

)
uz + ∂z p = �r ,zuz + ρ,

∂t bθ + (
ũ · ∇r ,z

)
bθ =

(
�r ,z − 1

r2

)
bθ + ur bθ

r ,

∂tρ + (
ũ · ∇r ,z

)
ρ − �r ,zρ = 0,

∂r ur + ur
r + ∂zuz = 0,

(ur , uθ , uz, bθ , ρ)
∣
∣
t=0 = (ur0, u

θ
0, u

z
0, b

θ
0 , ρ0).

(1.4)

where

ũ = (ur , uz), ∇r ,z = (∂r , ∂z), �r ,z = ∂2r + ∂2z + 1

r
∂r .

Then, the vorticity equations in the cylindrical coordinates can be written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃
Dt ω

r −
(
�r ,z − 1

r2

)
ωr = (ωr∂r + ωz∂z)ur ,

D̃
Dt ω

θ −
(
�r ,z − 1

r2

)
ωθ = ur

r ωθ + ∂z
(uθ )2

r − ∂z
(bθ )2

r − ∂rρ,

D̃
Dt ω

z − �r ,zω
z = (ωr∂r + ωz∂z)uz,

D̃
Dt j

r −
(
�r ,z − 1

r2

)
jr = ∂zur∂r bθ + ∂zuz∂zbθ − ur

r ∂zbθ − bθ

r ∂zur ,

D̃
Dt j

z − �r ,z j z = −∂r ur∂r bθ − ∂r uz∂zbθ + ∂r

(
ur bθ

r

)
,

(1.5)

where

ωr = −∂zu
θ , ωθ = ∂zu

r − ∂r u
z, ωz = ∂r u

θ + uθ

r
, (1.6)

jr = −∂zb
θ , j z = ∂r b

θ + bθ

r
, (1.7)

and D̃
Dt is the convective derivative

D̃

Dt
= ∂t + ur∂r + uz∂z .

Following the ideas ofMajda andBertozzi (2002), Lei and Zhang (2017), we introduce
the following variables:


 := bθ

r
, � := ωθ

r
, � := ωr

r
,  := ruθ , � := uθ

√
r
.

123



Journal of Nonlinear Science (2023) 33 :61 Page 5 of 31 61

Then, the equations of (
,�,,�) satisfy that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t
 + (
ũ · ∇r ,z

)

 − (�r ,z + 2∂r

r )
 = 0,

∂t� + (
ũ · ∇r ,z

)
� −

(
�r ,z + 2∂r

r

)
� = −∂z


2 − 2 uθ

r � − ∂rρ
r ,

∂t + (
ũ · ∇r ,z

)
 −

(
�r ,z − 2∂r

r

)
 = 0,

∂t� + (
ũ · ∇r ,z

)
� −

(
�r ,z + ∂r

r − 3
4r2

)
� = − 3

2
ur
r �.

(1.8)

We state the main results as following.

Theorem 1.1 Assume axisymmetric initial data (u0, b0, ρ0) ∈ H2(R3), u0 and b0 are
divergence-free. Suppose that ε > 0,0 ∈ L2(R3)∩L∞(R3),
0 ∈ L2(R3)∩L3(R3)

and ∇b0 ∈ L∞(R3), there exists a sufficiently small constant δ > 0, such that if

(‖G0‖2L2 + ‖�0‖4L4 + ‖
0‖2L3‖
0‖2L2 + ‖ρ0‖2L2)
1
2 ‖0‖L2‖0‖L∞ ≤ δ, (1.9)

or

�0 · ‖0‖L2 sup
t>0

‖‖L∞(r≤ε) ≤ δ, (1.10)

where

�0 :=
(

‖G0‖2L2 + ‖�0‖4L4 + 1

ε4

(
‖u0‖2L2 + ‖b0‖2L2 + ‖ρ0‖2L2

)
‖0‖3L∞

+‖
0‖2L2‖
0‖2L3

) 1
2
,

G0 = �0 − 1

2
ρ0.

Then, there exists a global axisymmetric strong solution (u, b, ρ) to (1.1) with

(u, b, ρ) ∈ L∞([0,∞); H2) ∩ L2([0,∞); H3).

Remark 1.1 If (u, b, p, ρ) solves the system (1.1), then the same is true for the rescaled
functions (uλ, bλ, pλ, ρλ) defined as

uλ(x, t) = λu(λx, λ2t), bλ(x, t) = λb(λx, λ2t),

pλ(x, t) = λ2 p(λx, λ2t), ρλ(x, t) = λ3ρ(λx, λ2t).

However, the quantities in conditions (1.9) and (1.10) are not scaling invariant, since
the L2-norm of ρλ(x, 0) is not conserved by the L2-norm of ρ(x, 0). It is not difficult
to verify that these conditions are scaling invariant if ρ0 is taken to be zero, i.e., they
are scaling invariant for the standard MHD system.
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The following result gives the long-time asymptotic behaviors of global solutions
established in Theorem 1.1.

Theorem 1.2 Under the same conditions of Theorem 1.1, if ρ0 ∈ L1(R3) ∩ L2(R3),
and ρ0 satisfies

∫

R3
|ρ0(x)||x |dx ≤ ∞,

∫

R3
ρ0(x)dx = 0 and ‖ρ0‖L1 ≤ ε0,

where ε0 is a small positive constant independent of the initial data, then

‖ρ(t)‖2L2 ≤ C〈t〉− 5
2 .

In addition, if u0 ∈ L
3
2 (R3), 0 ∈ L1(R3) ∩ L2(R3) and 
0 ∈ L1(R3) ∩ L2(R3),

then the following decay estimates hold:

‖u(t)‖2L2 ≤ C〈t〉− 1
2 , ‖‖2L2 ≤ C〈t〉− 3

2 , ‖
‖2L2 ≤ C〈t〉− 3
2 ,

‖uθ (t)‖2L2 + 〈t〉‖∇(uθeθ )(t)‖2L2 + t〈t〉(‖∂t uθ (t)‖2L2 + ‖�(uθeθ )(t)‖2L2) ≤ C〈t〉− 5
2 ,

‖bθ (t)‖2L2 + 〈t〉‖∇(bθeθ )(t)‖2L2 + t〈t〉(‖∂t bθ (t)‖2L2 + ‖�(bθeθ )(t)‖2L2) ≤ C〈t〉− 5
2 ,

where 〈t〉 = √
1 + t2.

Remark 1.2 These decay estimates are optimal in the sense of heat semigroup in three
dimensions, since we know that the optimal time decay of L2 norm of solutions to
the Cauchy problem of heat equations in 3D is t−1/2 for any L3/2 initial data, while it
is in accordance with our decay estimates. Note that the swirl component of velocity
and magnetic fields shares better decay estimates than ur and uz, since the additional
condition on 0 is imposed.

Besides, we would like to introduce the notations and conventions used in the
sequel of this article. X � Y means the existence of some constant C > 0 such that
X ≤ CY . We denote ∇h = (∂x1 , ∂x2),�h = ∂2x1 + ∂2x2 , Ḣ

s denotes the homogeneous

Sobolev space, equipped with the norm ‖ f ‖Ḣ s = (
∫

R3 |ξ |2s | f̂ (ξ)|2dξ)
1
2 , and we also

introduce the Banach space L p,q
T , equipped with the norms

‖ f ‖p,q
LT

=

⎧
⎪⎨

⎪⎩

(∫ T
0 ‖ f (t)‖p

Lqdt
) 1

p
, if 1 ≤ p < ∞,

ess sup
t∈(0,T )

‖ f (t)‖Lq , if p = ∞,

where

‖ f ‖Lq =

⎧
⎪⎪⎨

⎪⎪⎩

(∫

R3
| f (t, x)|qdx

) 1
q

, if 1 ≤ q < ∞,

ess sup
x∈R3

| f (t, x)|, if q = ∞.
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The remaining of this paper is organized as follows: We prove Theorem 1.1 in
Sect. 2 by establishing different levels of a priori estimates. The proof of Theorem 1.2
is given in Sect. 3.

2 Proof of Theorem 1.1

We give the outline of the proof for Theorem 1.1. To prove the global regularity, we
introduce a quantity A(T ) = ‖�‖2

L∞
T L2 + ‖∇�‖2

L2
T L

2 and then prove the bounds

for ‖u‖L∞
T L∞ and ‖∇ω‖L4

T L
12 via the estimates of ‖ω‖L∞

T L4 and ‖∇ω2‖L2
T L

2 . The
second step is to give the estimates for ∇u, ∇b, and ∇ρ, which are different from
the techniques used in Chen et al. (2017a). Here, the new strategy about the L p

T -L
q
x

estimates for parabolic version of singular integrals and potentials is applied. Then,
we establish the higher-order estimates for the solution. Finally, the global regularity
follows under the prescribed smallness conditions by closing the estimates for A(T ).
The proof is divided into 4 steps.

1. Bound for ‖ω‖L∞
T L4 + ‖∇ω2‖L2

T L
2

Now, we present some basic estimates, which depend onA(T ), once the bound for
A(T ) is obtained, then some uniform bounds for vorticity immediately follow.

The first lemma gives some basic estimates for axisymmetric functions; one can
refer to Chen et al. (2017a) for its detailed proof.

Lemma 2.1 Assume u is the smooth axisymmetric solution to the Navier–Stokes
equations and ω = ∇ × u, for some T < ∞, then we have

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

≤ C ‖�‖
1
2
L2 ‖∂z�‖

1
2
L2 ≤ C ‖�‖

1
2
L2 ‖∇�‖

1
2
L2 ,

this implies that

∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥

4

L∞
dt ≤ C

(
‖�‖2L∞

T L2 + ‖∇�‖2
L2
T L

2

)2 = CA2(T ).

There exists a constant C = C(q), such that for ∀ t ∈ [0, T ] and 1 < q < ∞,

‖∇̃ur‖Lq + ‖∇̃uz‖Lq +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
Lq

≤ C
∥
∥ωθ

∥
∥
Lq ,

‖∇̃uθ‖Lq +
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥
Lq

≤ C‖∇u‖Lq .

Lemma 2.2 Assume (u0, b0, ρ0) ∈ H2(R3). Let (u, b, ρ) be the corresponding
axisymmetric solution of system (1.4) satisfying (1.3) on [0, T ), for some T < ∞,
and then, we have
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∥
∥bθ

∥
∥
L∞
T L∞ ≤ C1(T ), (2.1)

‖�‖4L∞
T L4 + 3‖∇�2‖2

L2
T L

2 + 3

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
T L

4
≤ C2(T ), (2.2)

‖�‖8L∞
T L8 + ‖∇�4‖2

L2
T L

2 +
∫ T

0

∫

R3

�8

r2
dxdt ≤ C3(T ), (2.3)

where the constants C1(T ), C2(T ), C3(T ) depend on the initial data, T , and A(T ).

Proof Multiplying the bθ equation of (1.4) by |bθ |p−2bθ , 2 ≤ p < ∞ and performing
integration in space, one can get

1

p

d

dt
‖bθ‖p

L p + 4(p − 1)

p2

∥
∥
∥∇|bθ | p

2

∥
∥
∥
2

L2
=

∫

R3

ur

r
|bθ |pdx ≤

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖bθ‖p
L p .

Therefore,

d

dt
‖bθ‖L p ≤

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖bθ‖L p .

The Gronwall’s inequality implies

∥
∥bθ

∥
∥
L∞
T L p ≤ ∥

∥bθ
0

∥
∥
L p exp

{∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

dt

}

.

Taking p → +∞, from Lemma 2.1, one has

∥
∥bθ

∥
∥
L∞
T L∞ ≤ ∥

∥bθ
0

∥
∥
L p exp

{
CA 1

2 (T )T
3
4

}
.

Multiplying the � equation of (1.8) by �3 and integrating the resulting equation
over R3, one has

1

4

d

dt
‖�‖4L4 + 3

4
‖∇�2‖2L2 + 3

4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
= 3

2

∫

R3

ur

r
�4dx ≤ 3

2

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖�‖4L4 .

Using Gronwall’s inequality and Lemma 2.1, we obtain

‖�‖4L∞
T L4 + 3‖∇�2‖2

L2
T L

2 + 3

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
T L

4
≤ ‖�0‖4L4 exp

{

C
∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

dt

}

≤ C‖u0‖2H2(R3)
exp

{
CA 1

2 (T )T
3
4

}
,

where

‖�0‖4L4 ≤ ‖uθ
0‖2L∞

∥
∥
∥
∥
∥

uθ
0

r

∥
∥
∥
∥
∥

2

L2

≤ C

(
∥
∥∇uθ

0

∥
∥

1
2
L2

∥
∥
∥∇2uθ

0

∥
∥
∥

1
2

L2

)2

‖∇u0‖2L2 ≤ C‖u0‖2H2 .
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Thus, we get (2.2).
Multiplying the � equation of (1.8) by �7 and integrating the resulting equation

over R3, it follows that

d

dt
‖�‖8L8 + ‖∇�4‖2L2 +

∫

R3

�8

r2
dx ≤ C

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖�‖8L8 .

Using Gronwall’s inequality and Lemma 2.1, one has

‖�‖8L∞
T L8 + ‖∇�4‖2

L2
T L

2 +
∫ T

0

∫

R3

�8

r2
dxdt ≤ C‖�0‖8L8 exp

{

C
∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

dt

}

≤ C‖u0‖8H2 exp
{
CA 1

2 (T )T
3
4

}
,

where

‖�0‖8L8 ≤ ∥
∥uθ

0

∥
∥4
L∞

∥
∥
∥
∥
∥

uθ
0

r

∥
∥
∥
∥
∥

4

L4

≤
(
∥
∥∇uθ

0

∥
∥

1
4
L2

∥
∥
∥∇2uθ

0

∥
∥
∥

3
4

L2

)4
⎛

⎝

∥
∥
∥
∥
∥

uθ
0

r

∥
∥
∥
∥
∥

1
4

L2

∥
∥
∥
∥
∥
∇ uθ

0

r

∥
∥
∥
∥
∥

3
4

L2

⎞

⎠

4

≤ C‖u0‖8H2 .

Therefore, we obtain (2.3).

The following lemma gives the estimates for components of vorticity.

Lemma 2.3 Assume (u0, b0, ρ0) ∈ H2(R3) and 
0 ∈ L∞(R3). Let (u, b) be the
corresponding axisymmetric solution of system (1.4) satisfying (1.3) on [0, T ), for
some T < ∞, then we have

∥
∥ωθ

∥
∥4
L∞
T L4 +

∥
∥
∥∇(ωθ )2

∥
∥
∥
2

L2
T L

2
+

∥
∥
∥
∥

ωθ

√
r

∥
∥
∥
∥

4

L4
T L

4
≤ C(T ), (2.4)

∥
∥ωθ

∥
∥2
L∞
T L2 + ∥

∥∇ωθ
∥
∥2
L2
T L

2 + 2

∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥

2

L2
T L

2
≤ C(T ), (2.5)

∥
∥ωr

∥
∥4
L∞
T L4 + ∥

∥ωz
∥
∥4
L∞
T L4 +

∥
∥
∥∇(ωr )2

∥
∥
∥
2

L2
T L

2
+

∥
∥
∥∇(ωz)2

∥
∥
∥
2

L2
T L

2
+

∥
∥
∥
∥

ωr

√
r

∥
∥
∥
∥

4

L4
T L

4
≤ C(T ),

(2.6)

where the constants C(T ) depend on the initial data, T , and A(T ).

Proof Multiplying (1.5) by |ωθ |2ωθ and integrating with respect to the space variable,
it follows that
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1

4

d

dt

∥
∥ωθ

∥
∥4
L4 + 3

4

∥
∥
∥∇(ωθ )2

∥
∥
∥
2

L2
+

∥
∥
∥
∥

ωθ

√
r

∥
∥
∥
∥

4

L4

=
∫

R3

ur

r
(ωθ )4dx +

∫

R3
∂z

(
(uθ )2

r

)

· |ωθ |2ωθdx −
∫

R3
∂z

(
(bθ )2

r

)

· |ωθ |2ωθdx

+
∫

R3
∂rρ · |ωθ |2ωθdx (2.7)

:= A1 + A2 + A3 + A4.

For the first term A1, it follows that

A1 ≤
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

∥
∥
∥ωθ

∥
∥
∥
4

L4
. (2.8)

As for the second term A2, by integrating by parts, we have

A2 = −3
∫

R3

(uθ )2

r
· (ωθ )2 · ∂zω

θdx = −3

2

∫

R3

(uθ )2

r
· ωθ · ∂z(ω

θ )2dx

= −3

2

∫

R3

(
uθ

√
r

)2

· ωθ · ∂z(ω
θ )2dx .

Thus, it follows that

|A2| ≤ C

∥
∥
∥
∥
uθ

√
r

∥
∥
∥
∥

2

L8

∥
∥ωθ

∥
∥
L4

∥
∥
∥∂z(ω

θ )2
∥
∥
∥
L2

≤ C

∥
∥
∥
∥
uθ

√
r

∥
∥
∥
∥

8

L8
+ ∥

∥ωθ
∥
∥4
L4 + 1

8

∥
∥
∥∂z(ω

θ )2
∥
∥
∥
2

L2
. (2.9)

For the third term A3, by integration by parts, Hölder’s inequality and Young’s
inequality, one has

A3 = 3
∫

R3

(bθ )2

r
· (ωθ )2 · ∂zω

θdx = 3

2

∫

R3

(bθ )2

r
· ωθ · ∂z(ω

θ )2dx

≤ 3

2
‖
‖L4

∥
∥bθ

∥
∥
L∞

∥
∥ωθ

∥
∥
L4

∥
∥
∥∂z(ω

θ )2
∥
∥
∥
L2

≤ C‖
0‖4L4

∥
∥bθ

∥
∥4
L∞ + ∥

∥ωθ
∥
∥4
L4 + 1

8

∥
∥
∥∂z(ω

θ )2
∥
∥
∥
2

L2
. (2.10)

For the last term A4, we have

A4 = −2π
∫ +∞

−∞

∫ +∞

0
∂rρ(ωθ )3rdrdz

= −2π
∫ +∞

−∞

∫ +∞

0
ρ∂r ((ω

θ )3r)drdz
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= −2π
∫ +∞

−∞

∫ +∞

0
ρ(ωθ )2∂rω

θrdrdz +
∫

R3
ρ

(ωθ )3

r
dx

≤ C‖ρ‖L∞‖∇(ωθ )2‖L2‖ω‖L2 + ‖ρ‖L∞
∥
∥
∥
∥

ωθ

√
r

∥
∥
∥
∥

2

L4
‖ωθ‖L2

≤ C‖ρ‖2L∞‖ωθ‖2L2 + 1

4
‖∇(ωθ )2‖2L2 + 1

4

∥
∥
∥
∥

ωθ

√
r

∥
∥
∥
∥

4

L4
. (2.11)

Inserting (2.8), (2.9), (2.10), and (2.11) into (2.7), one may conclude that

d

dt

∥
∥ωθ

∥
∥4
L4 +

∥
∥
∥∇(ωθ )2

∥
∥
∥
2

L2
+

∥
∥
∥
∥

ωθ

√
r

∥
∥
∥
∥

4

L4

≤
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

∥
∥ωθ

∥
∥4
L4 + C ‖�‖8L8 + C

∥
∥ωθ

∥
∥4
L4 + C‖
0‖4L4

∥
∥bθ

∥
∥4
L∞ + C‖ρ‖2L∞‖ωθ‖2L2 .

Integrating with respect to time, applying the Gronwall’s inequality, we obtain

∥
∥ωθ

∥
∥4
L∞
T L4 +

∥
∥
∥∇(ωθ )2

∥
∥
∥
2

L2
T L

2
+ 4

∥
∥
∥
∥

ωθ

√
r

∥
∥
∥
∥

4

L4
T L

4

≤ C
(∥
∥ωθ

0

∥
∥4
L4 + ‖�‖8L∞

T L8T + ‖
0‖4L4

∥
∥bθ

∥
∥4
L∞
T L∞ T + ‖ρ‖2L∞

T L∞‖ωθ‖2L∞
T L2T

)

· exp
(

C
∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

dt + CT

)

≤ C(T ),

where C(T ) is a constant depending on the initial data,A(T ) and T . Then, this gives
(2.4).

Multiplying (1.5) by ωθ and integrating with respect to space variable, it follows
that

1

2

d

dt

∥
∥ωθ

∥
∥2
L2 + ∥

∥∇ωθ
∥
∥2
L2 +

∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥

2

L2

=
∫

R3

(
ωθ

r
urωθ − ∂zω

θ

(
uθ

)2

r
+ ∂zω

θ

(
bθ

)2

r
+ ∂rρωθ

)

dx

≤
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

∥
∥ωθ

∥
∥2
L2 + C

∥
∥
∥
∥
uθ

√
r

∥
∥
∥
∥

4

L4
+ ∥

∥bθ
∥
∥2
L∞ ‖
‖2L2 + ‖ρ‖2L2 + 1

2

∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥

2

L2

+ 1

2

(∥
∥∂rω

θ
∥
∥2
L2 + ∥

∥∂zω
θ
∥
∥2
L2

)
.

Thus,
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d

dt

∥
∥ωθ

∥
∥2
L2 + ∥

∥∇ωθ
∥
∥2
L2 +

∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥

2

L2

≤ C

∥
∥
∥
∥
uθ

√
r

∥
∥
∥
∥

4

L4
+ 2

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

∥
∥ωθ

∥
∥2
L2 + 2 ‖
0‖2L2

∥
∥bθ

∥
∥2
L∞ + 2‖ρ‖2L2 .

Integrating with respect to time, applying the Gronwall’s inequality, we have

∥
∥ωθ

∥
∥2
L∞
T L2 + ∥

∥∇ωθ
∥
∥2
L2
T L

2 + 2

∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥

2

L2
T L

2

≤
(
∥
∥ωθ

0

∥
∥2
L2 + 2‖ρ‖2L∞

T L2T + 2 ‖
0‖2L2

∫ T

0

∥
∥bθ

∥
∥2
L∞ dt

)

exp

{∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

dt

}

≤
(∥
∥ωθ

0

∥
∥2
L2 + 2‖ρ‖2L∞

T L2T + 2 ‖
0‖2L2

∥
∥bθ

∥
∥2
L∞
T L∞ T

)
exp

{∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

dt

}

≤ C(T ).

Then, this gives (2.5).
Similarly, using integration by parts, one has

1

4

d

dt
(‖ωr‖4L4 + ‖ωz‖4L4) + 3

4
‖∇(ωr )2‖2L2 + 3

4
‖∇(ωz)2‖2L2 +

∥
∥
∥
∥

ωr

√
r

∥
∥
∥
∥

4

L4

=
∫

R3
ωr∂r u

r |ωr |2ωrdx +
∫

R3
ωz∂zu

r |ωr |2ωrdx +
∫

R3
ωr∂r u

z |ωz |2ωzdx

+
∫

R3
ωz∂zu

z |ωz |2ωzdx

: = B1 + B2 + B3 + B4.

For the first term B1, it follows that

B1 = 2π
∫ +∞
−∞

ur (ωr )4
∣
∣r=∞
r=0 dz − 2π

∫ +∞
−∞

∫ +∞
0

(4ur (ωr )3 · ∂rω
r · r + ur · (ωr )4)drdz

≤ 2‖ur‖L∞‖ωr‖2L4‖∇(ωr )2‖L2 +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖ωr‖4L4

≤ C‖ur‖2L∞‖ωr‖4L4 +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖ωr‖4L4 + 1

8
‖∇(ωr )2‖2L2 . (2.12)

For the second term B2, one has

B2 =
∫

R3
ωz∂zu

r |ωr |2ωrdx = −2π
∫ +∞

−∞

∫ +∞

0
ur · ∂z(|ωr |2 · ωr · ωz · r)drdx

= −3
∫

R3
ur · (ωr )2∂rω

r · ωzdx + 2π
∫ +∞

−∞

∫ +∞

0
ur · (ωr )3 · ∂r (rω

r )drdz
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= −3

2

∫

R3
ur · ∂r (ω

r )2 · ωr · ωzdx +
∫

R3
ur · (ωr )2

(
ωr

√
r

)2

dx

+ 1

2

∫

R3
ur · ∇(ωr )2 · (ωr )2dx

≤ 3

2
‖ur‖L∞‖ωr‖L4‖ωz‖L4‖∇(ωr )2‖L2 + ‖ur‖L∞‖ωr‖2L4

∥
∥
∥
∥

ωr

√
r

∥
∥
∥
∥

2

L4

+ ‖ur‖L∞‖ωr‖2L4‖∇(ωr )2‖L2

≤ C‖uz‖2L∞(‖ωr‖4L4 + ‖ωz‖4L4) + 1

2

∥
∥
∥
∥

ωr

√
r

∥
∥
∥
∥

4

L4
+ 1

8
‖∇(ωr )2‖2L2 . (2.13)

For the third term B3, we have

B3 =
∫

R3
ωr∂r u

z |ωz |2ωzdx − 2π
∫ +∞

−∞

∫ +∞

0
uz · ∂r (ω

r · |ωz |2 · ωzr)drdz

= 2π
∫ +∞

−∞

∫ +∞

0
uz · ∂z(rω

z) · |ωz |2 · ωzdrdz − 3

2

∫

R3
ur · ωr · ωz · ∂r (ω

z)2dx

= 1

2

∫

R3
uz(ωz)2∂z(ω

z)2dx − 3

2

∫

R3
ur · ωr · ωz · ∂r (ω

z)2dx

≤ C‖uz‖L∞‖ωz‖2L4‖∇(ωz)2‖L2 + C‖uz‖L∞‖ωr‖L4‖ωz‖L4‖∇(ωz)2‖L2

≤ C‖uz‖2L∞‖ωz‖4L4 + C‖uz‖2L∞(‖ωr‖4L4 + ‖ωz‖4L4) + 1

8
‖∇(ωz)2‖2L2

≤ C‖uz‖2L∞(‖ωr‖4L4 + ‖ωz‖4L4)

+ 1

8
‖∇(ωz)2‖2L2 . (2.14)

For the last term B4, it follows that

B4 = −
∫

R3
uz∂z(|ωz |4)dx = −2

∫

R3
uz(ωz)2 · ∂z(ω

z)2dx

≤ C‖uz‖2L∞‖ωz‖4L4 + 1

8
‖∇(ωz)2‖2L2 . (2.15)

Consequently,

1

4

d

dt
(‖ωr‖4L4 + ‖ωz‖4L4) + 1

2
‖∇(ωr )2‖2L2 + 1

2
‖∇(ωz)2‖2L2 + 1

2

∥
∥
∥
∥

ωr

√
r

∥
∥
∥
∥

4

L4

≤ C

(

‖ur‖2L∞ + ‖uz‖2L∞ +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

)

(‖ωr‖4L4 + ‖ωz‖4L4). (2.16)

The Gagliardo–Nirenberg’s inequality and Lemma 2.1 give to
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∫ T

0
‖(ur , uz)‖2L∞dt ≤ C

∫ T

0

(

‖∇(ur , uz)‖
1
2
L2‖∇2(ur , uz)‖

1
2
L2

)2

dt

≤ C
∫ T

0
‖∇u‖L2

(

‖∇ωθ‖L2 +
∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥
L2

)

dt

≤ C‖∇u‖L2
T L

2

(

‖∇ωθ‖L2
T L

2 +
∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥
L2
T L

2

)

≤ C‖u0‖L2

(

‖∇ωθ‖L2
T L

2 +
∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥
L2
T L

2

)

≤ C(T ). (2.17)

Inserting (2.17) into (2.16), and by Gronwall’s inequality, we conclude that

‖ωr‖4L∞
T L4 + ‖ωz‖4L∞

T L4 + 2‖∇(ωr )2‖2
L2
T L

2 + 2‖∇(ωz)2‖2
L2
T L

2 + 2

∥
∥
∥
∥

ωr

√
r

∥
∥
∥
∥

4

L4
T L

4

≤ (‖ωr‖4L4 + ‖ωz‖4L4)exp

{∫ T

0
‖(ur , uz)‖2L∞dt + C

∫ T

0

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

dt

}

≤ C(T ),

where C(T ) is a constant depending on the initial data,A(T ) and T . Then, this gives
(2.6), and from (2.4) and (2.6), we obtain that

‖ω‖4L∞
T L4 + ‖∇ω2‖L∞

T L2 < ∞.

2. Estimates for ∇u, ∇b and ∇ρ

In the following, we focus on the estimates for ∇u, ∇b, and ∇ρ.

Lemma 2.4 Assume (u0, b0, ρ0) ∈ H2(R3), 
0 ∈ L∞(R3) and ∇b0 ∈ L∞(R3). Let
(u, b) be the corresponding axisymmetric solution of system (1.4) satisfying (1.3) on
[0, T ), for some T < ∞; then, we have

‖∇u‖L4
T L

∞ ≤ C(T ),

‖∇b‖L∞
T L∞ ≤ C(T ),

‖∇ρ‖L∞
T L∞ ≤ C(T ),

where the constants C(T ) depend on the initial data, T and A(T ).

Proof Taking “Curl” operator to (1.1)1, we can get

ωt − �ω = −∇ × (ω × u) + ∇ × (b · ∇b) + ∇ × ρe3.

Then, it follows that

ω = et�ω0 −
∫ t

0
e(t−s)�(∇ × (ω × u) − ∂z(
bθeθ ) − ∇ × ρe3)ds.
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Standard estimates Wahl (1982) show that

‖∇ω‖L4
T L

12 � ‖ω × u‖L4
T L

12 + ‖
 · bθ‖L4
T L

12 + ‖ρ‖L4
T L

12

� ‖ω‖L4
T L

12‖u‖L∞
T L∞ + ‖
0‖L12‖bθ‖L∞

T L∞T
1
4 + ‖ρ‖L4

T L
12

� ‖ω‖L4
T L

12‖u‖L∞
T L∞ + ‖
0‖

5
6
L∞‖
0‖

1
6
L2‖bθ‖L∞

T L∞T
1
4 + ‖ρ‖L4

T L
12

� ‖ω‖L4
T L

12‖u‖L∞
T L∞ + ‖
0‖

5
6
L∞‖b0‖

1
6
H2‖bθ‖L∞

T L∞T
1
4 + ‖ρ‖L4

T L
12 .

Since

‖ω‖L12 = ‖ω2‖
1
2
L6 ≤ ‖∇ω2‖

1
2
L2 ,

then

‖∇ω‖L4
T L

12 � ‖∇ω2‖
1
2

L2
T L

2‖u‖L∞
T L∞ + ‖ρ‖L4

T L
12

+ ‖
0‖
5
6
L∞‖b0‖

1
6
H2‖bθ‖L∞

T L∞T
1
4 . (2.18)

On the other hand, by the Gagliardo–Nirenberg inequality, we obtain

‖∇u‖L∞ ≤ C‖∇u‖
1
2
L4‖∇2u‖

1
2
L12 ,

then

‖∇u‖4
L4
T L

∞ ≤ C‖∇u‖2L∞
T L4‖∇2u‖2

L2
T L

12 ≤ C‖ω‖2L∞
T L4‖∇ω‖2

L2
T L

12

≤ C‖ω‖2L∞
T L4‖∇ω‖2

L4
T L

12T
1
2 . (2.19)

Combining (2.18) and (2.19) together, one has

‖∇u‖4
L4
T L

∞

� ‖ω‖2L∞
T L4

(

‖∇ω2‖L2
T L

2‖u‖2L∞
T L∞ + ‖
0‖

5
3
L∞‖b0‖

1
3
H2‖bθ‖2L∞

T L∞ + ‖ρ0‖2L4
T L

12

)

T
1
2 .

(2.20)

Using the Gagliardo–Nirenberg inequality, Young’s inequality, and Lemma 2.3, one
obtains that

‖u‖L∞
T L∞ ≤ C(‖u‖L∞

T L2 + ‖ω‖L∞
T L4)

≤ C(‖u0‖L2 + ‖ωr‖L∞
T L4 + ‖ωθ‖L∞

T L4 + ‖ωz‖L∞
T L4)

≤ C(T ). (2.21)
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Therefore, it follows from (2.20) that

‖∇u‖4
L4
T L

∞ ≤ C(T ). (2.22)

Then, taking “∇” operator to (1.4)4, one has

d

dt
∇b + u · ∇∇b − �∇b = −∇u · ∇b + ur

r
∇b + ∇ur
 − ur

r

er . (2.23)

Multiplying the above equation by |∇b|p−2∇b and then integrating the resulting
equation over R3, we have

1

p

d

dt
‖∇b‖p

L p + 4(p − 1)

p2

∥
∥
∥∇|b| p

2

∥
∥
∥
2

L2
≤ ‖∇u‖L∞‖∇b‖p

L p +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖∇b‖p
L p

+
(

‖∇ur‖L∞ +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

)

‖
‖L p‖∇b‖p−1
L p ,

applying Gronwall’s inequality and taking p → ∞, we have

‖∇b‖L∞
T L∞ ≤

{

‖∇b0‖L∞ +
∫ T

0

(

‖∇u‖L∞ +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

)

‖
‖L∞dt

}

· exp
{∫ T

0

(

‖∇u‖L∞ +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

)

dt

}

≤
{

‖∇b0‖L∞ + ‖
0‖L∞
∫ T

0

(

‖∇u‖L∞ +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

)

dt

}

· exp
{∫ T

0

(

‖∇u‖L∞ +
∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

)

dt

}

≤
{
‖∇b0‖L∞ + ‖
0‖L∞

(
‖∇u‖L4

T L
∞T

3
4 + A 1

2 (T )T
3
4

)}

· exp
(
‖∇u‖L4

T L
∞T

3
4 + A 1

2 (T )T
3
4

)
. (2.24)

Using (2.1) and (2.22), there holds

‖∇b‖L∞
T L∞ ≤ C(T ).

Similar techniques used to the third equation of (1.1) yield

1

p

d

dt
‖∇ρ‖p

L p + 4(p − 1)

p2

∥
∥
∥∇|ρ| p

2

∥
∥
∥
2

L2
≤ ‖∇u‖L∞‖∇ρ‖p

L p , (2.25)

by Gronwall’s inequality, and taking p → ∞, one has
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‖∇ρ‖L∞
T L∞ ≤ ‖∇ρ0‖L∞ exp

{∫ T

0
‖∇u‖L∞dt

}

≤ ‖∇ρ0‖L∞ exp

⎧
⎨

⎩

(∫ T

0
‖∇u‖4L∞dt

) 1
4
(∫ T

0
1

4
3 dt

) 3
4

⎫
⎬

⎭

≤ ‖∇ρ0‖L∞ exp
{
‖∇u‖L4

T L
∞T

3
4

}
.

It follows from (2.22) that

‖∇ρ‖L∞
T L∞ ≤ C(T ).

3. H2(R3) estimates of (u, b, ρ)

The following lemma shows that the boundedness of A(T ) guarantees the
smoothness of axisymmetric solutions to (1.4).

Lemma 2.5 Assume (u0, b0, ρ0) ∈ H2(R3), 
0 ∈ L∞(R3) and ∇b0 ∈ L∞(R3). If

A(T ) = ‖�‖2L∞
T L2 + ‖∇�‖2

L2
T L

2 < ∞,

for some 0 < T < ∞, then the corresponding solution of system (1.4 ) remains smooth
on [0, T ].
Proof In the following, applying “�” operator to (1.1) and then taking the inner
product, we have

1

2

d

dt
(‖�u‖2L2 + ‖�b‖2L2 + ‖�ρ‖2L2) + ‖∇3u‖2L2 + ‖∇3b‖2L2 + ‖∇3ρ‖2L2

= −
∫

R3
�u · �(u · ∇u)dx +

∫

R3
�u · �(b · ∇b)dx +

∫

R3
�u · �ρe3dx

−
∫

R3
�b · �(u · ∇b)dx +

∫

R3
�b · �(b · ∇u)dx −

∫

R3
�ρ · �(u · ∇ρ)dx

:= I1 + I2 + I3 + I4 + I5 + I6.

For the first term I1, one has

I1 = −
∫

R3
�u · (�u · ∇u)dx −

∫

R3
�u · (u · ∇�u)dx − 2

∫

R3
�u · (∇u · ∇2u)dx

≤ 3‖∇u‖L∞‖�u‖2L2 + ‖u‖L∞‖�u‖L2‖�∇u‖L2

≤ 3‖∇u‖L∞‖�u‖2L2 + C‖u‖2L∞‖�u‖2L2 + 1

8
‖�∇u‖2L2 .

For the second term I2, utilizing the integration by parts and the fact div b = 0 give

I2 =
∫

R3
�u · (�b · ∇b)dx +

∫

R3
�u · (b · ∇�b)dx + 2

∫

R3
�u · (∇b · ∇2b)dx
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≤ 3‖∇b‖L∞‖�b‖L2‖�u‖L2 + ‖b‖L∞‖�b‖L2‖�∇u‖L2

≤ C‖∇b‖L∞(‖�b‖2L2 + ‖�u‖2L2) + C‖b‖2L∞‖�b‖2L2 + 1

8
‖�∇u‖2L2 .

The third term I3 can be estimated as following

I3 =
∫

R3
�u · �ρe3dx ≤ C‖�u‖L2‖�ρ‖L2 .

The fourth term I4 can be estimated as follows:

I4 = −
∫

R3
�b · (�u · ∇b)dx −

∫

R3
�b · (u · �∇b)dx − 2

∫

R3
�b · (∇u · ∇2b)dx .

Integrating by parts and taking the divergence-free of u into account, we see that

∫

R3
�b · (u · �∇b)dx = 0.

Thus,

I4 ≤ ‖∇b‖L∞‖�u‖L2‖�b‖L2 ≤ ‖∇b‖L∞(‖�u‖2L2 + ‖�b‖2L2).

The term I5 is similar to I1; one obtains that

I5 =
∫

R3
�b · (�b · ∇u)dx +

∫

R3
�b · (b · ∇�u)dx + 2

∫

R3
�b · (∇b · �u)dx

≤ ‖∇u‖L∞‖�b‖2L2 + ‖b‖L∞‖�b‖L2‖∇�u‖L2 + ‖∇b‖L∞‖�b‖L2‖�u‖L2

≤ ‖∇u‖L∞‖�b‖2L2 + C‖b‖2L∞‖�b‖2L2 + 1

8
‖∇�u‖L2

+ ‖∇b‖L∞(‖�b‖2L2 + ‖�u‖2L2).

The last term I6 is similar to I4; we have

I6 ≤ C‖∇ρ‖L∞‖�u‖L2‖�ρ‖L2 ≤ C‖∇ρ‖L∞(‖�u‖2L2 + ‖�ρ‖2L2). (2.26)

Combining the above estimates, it follows that

d

dt
(‖�u‖2L2 + ‖�b‖2L2 + ‖�ρ‖2L2) + ‖�∇u‖2L2 + ‖�∇b‖2L2 + ‖�∇ρ‖2L2

≤ C(‖∇u‖L∞ + ‖∇b‖L∞ + ‖∇ρ‖L∞)(‖�u‖2L2 + ‖�b‖2L2) + C‖∇u‖2L∞‖�u‖2L2

+ C‖∇b‖2L∞‖�b‖2L2 + C‖∇ρ‖2L∞‖�ρ‖2L2 .

123



Journal of Nonlinear Science (2023) 33 :61 Page 19 of 31 61

Thus, it follows from Lemmas 2.2 and 2.4, (2.21), Gronwall’s inequality, and thanks
to A(T ) ≤ ∞, one has

‖�u‖2L∞
T L2 + ‖�b‖2L∞

T L2 + ‖�ρ‖2L∞
T L2 + ‖∇3u‖2

L2
T L

2 + ‖∇3b‖2
L2
T L

2 + ‖∇3ρ‖2
L2
T L

2

� exp

{∫ T

0
(‖u‖2L∞ + ‖b‖2L∞ + ‖ρ‖2L∞ + ‖∇u‖L∞ + ‖∇b‖L∞ + ‖∇ρ‖L∞)dt

}

≤ C(T ).

Moreover, together with the basic energy estimates for (1.1), we conclude that

‖u‖L∞
T H2 + ‖u‖L2

T H
3 ≤ ∞,

‖b‖L∞
T H2 + ‖b‖L2

T H
3 ≤ ∞,

‖ρ‖L∞
T H2 + ‖ρ‖L2

T H
3 ≤ ∞.

Therefore, the proof of Lemma 2.5 is complete.

4. Contradiction argument

Let (u, b, ρ) be the axisymmetric local strong solution to the MHD-Boussinesq
equations on [0, T ∗) with the axisymmetric initial data (u0, b0, ρ0), where T ∗ is the
lifespan. Next, we will prove T ∗ = ∞ by contradiction. Note that (�, ρ) satisfies

{
∂t� + (u · ∇)� − (� + 2

r ∂r )� = −∂z

2 − 2 uθ

r � − ∂rρ
r

∂tρ + (u · ∇)ρ − (� + 2
r ∂r )ρ = − 2

r ∂rρ
(2.27)

Let G = � − 1
2ρ; one has

∂tG + (u · ∇)G − (� + 2

r
∂r )G = −∂z

(
bθ

r

)2

− 2
uθ

r
�.

Using energy estimates and integration by parts, note that the boundary term should
be dealt with by applying the methods introduced in Leonardi et al. (1999); Neustupa
and Pokorny (2001), which can help to avoid the singularity coming from the change
of variables on the z-axis. Thus, one has for any t ∈ [0, T ∗) that

1

2

d

dt
‖G‖2L2 + ‖∇G‖2L2 +

∫ +∞

−∞
|G(t, r = 0, z)|2dz

= −
∫

R3
∂z


2Gdx +
∫

R3
∂z

(
uθ

r

)2

Gdx ≤ ‖
‖2L4‖∂zG‖L2 +
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

2

L4
‖∂zG‖L2

≤ 4‖
‖4L4 + 4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
+ 1

2
‖∇G‖2L2 . (2.28)
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It follows that

d

dt
‖G‖2L2 + ‖∇G‖2L2 ≤ 8‖
‖4L4 + 8

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
. (2.29)

In the following, we estimate
∥
∥
∥ uθ

r

∥
∥
∥
L4
. Firstly, the equation for � reads

∂t� + u · ∇� −
(

� + ∂r

r
− 3

4
· 1

r2

)

� = −3

2

ur

r
�. (2.30)

Multiplying both sides of (2.30) by �3 and integrating the resulting equation over R3

yield

1

4

d

dt
‖�‖4L4 + 3

4
‖∇�2‖2L2 + 3

4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
= 3

2

∫

R3

ur

r
�4dx ≤ 3

2

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖�‖4L4 .

Hence,

4
d

dt
‖�‖4L4 + 12‖∇�2‖2L2 + 12

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
≤ 24

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖�‖4L4 . (2.31)

Combining (2.29) and (2.31) leads to

d

dt
(‖G‖2L2 + 4‖�‖4L4) + 2‖∇G‖2L2 + 12‖∇�2‖2L2 + 4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4

≤24

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖�‖4L4 + 8‖
‖4L4 . (2.32)

We estimate the right-hand-side term ‖ ur
r ‖L∞‖�‖4

L4 ; then, one will see that with the

smallness condition (1.9) in hand, ‖ ur
r ‖L∞‖�‖4

L4 can be absorbed by the left-hand
side of (2.32). By virtue of Lemma 2.1, it follows that

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

≤ C

∥
∥
∥
∥
ωθ

r

∥
∥
∥
∥

1
2

L2

∥
∥
∥
∥∂z

ωθ

r

∥
∥
∥
∥

1
2

L2
≤ C‖�‖

1
2
L2‖∂z�‖

1
2
L2 . (2.33)

Using the Hölder’s inequality, it is obvious to see

‖�‖4L4 =
∫

R3

(uθ )4

r2
dx =

∫

R3

(
uθ

r

)3

(ruθ )dx

≤
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

3

L4
‖‖L4 ≤

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

3

L4
‖‖

1
2
L2‖‖

1
2
L∞
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≤
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

3

L4
‖0‖

1
2
L2‖0‖

1
2
L∞ . (2.34)

Inserting (2.33) and (2.34) into (2.32), we can obtain that

d

dt

(
‖G‖2L2 + 4‖�‖4L4

)
+ ‖∇G‖2L2 + 12‖∇�2‖2L2 + 4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4

≤ C‖�‖
1
2
L2‖∂z�‖

1
2
L2

∥
∥
∥
∥
∥

(
uθ

r

)2
∥
∥
∥
∥
∥

3
2

L4

‖‖L4 + 8‖
‖4L4 (2.35)

≤ C‖�|
1
2
L2‖‖L4

(

‖∂z�‖2L2 +
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4

)

+ 8‖
‖4L4

≤ C‖�‖
1
2
L2‖0‖

1
2
L2‖0‖

1
2
L∞

(

‖∇G‖2L2 +
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
+ ‖∇ρ‖2L2

)

+ 8‖
‖4L4 .

We now define a finite time T0 as

sup

{

t > 0

∣
∣
∣
∣‖G(t, ·)‖2L2 + ‖∇G‖2

L2
t L2 + 4 ‖�(t, ·)‖4L4 ≤ 2δ0

}

:= T0 < ∞,

(2.36)

where

δ0 := ‖G0‖2L2 + 4 ‖�0‖4L4 + C‖
0‖2L3‖
0‖2L2 + ‖ρ0‖2L2 .

Indeed, for any 0 ≤ t < T0, we can obtain

‖�(t) = G(t) + 1

2
ρ(t)‖2L2 ≤ 4(‖G0‖22 + ‖�0‖4L4) + ‖ρ0‖2L2 .

Considering the equation for 
 gives

d

dt

 + u · ∇
 −

(

� + 2
∂r

r

)


 = 0.

It is not difficult to get for 2 ≤ p ≤ ∞ that

‖
(t, ·)‖L p ≤ ‖
0‖L p .

On the other hand, one has the following uniform estimate

∫ T

0
‖
‖4L4dt ≤

∫ T

0

(

‖
‖
1
2
L3‖
‖

1
2
L6

)4

dt ≤ ‖
0‖2L3

∫ T

0
‖
‖2L6dt
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≤ ‖
0‖2L3

∫ T

0
‖∇
‖2L2dt ≤ C‖
0‖2L3‖
0‖2L2 . (2.37)

Integrating (2.35) with respect to time variable over [0, T0), one has:

‖G‖2L∞
T0
L2 + 4‖�‖4L∞

T0
L4 + 2‖∇G‖2

L2
T0
L2 + 12‖∇�2‖2

L2
T0
L2 + 4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
T0
L4

≤ ‖G0‖2L2 + C
(
‖G0‖2L2 + ‖�0‖4L4 + C‖
0‖2L3‖
0‖2L2 + ‖ρ0‖2L2

) 1
4

× ‖0‖
1
2
L2‖0‖

1
2
L∞

⎛

⎝‖∇G‖2L2L2 +
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
T0
L4

⎞

⎠ + 4‖�0‖4L4 + C‖
0‖2L3‖
0‖2L2 .

By condition (1.9) in Theorem 1.1, one has

‖0‖L∞ ≤ δ
(
‖G0‖2L2 + ‖�0‖4L4 + C‖
0‖2L2‖
0‖2L3 + ‖ρ0‖2L2

)− 1
2 ‖0‖−1

L2 ,

when the positive constant δ is small enough, such that

C
(
‖G0‖2L2 + ‖�0‖4L4 + C‖
0‖2L2‖
0‖2L3 + ‖ρ0‖2L2

) 1
4 ‖0‖

1
2
L2‖0‖

1
2
L∞ ≤ Cδ

1
2 ≤ 1

2
.

Therefore, we conclude that

‖G‖2L∞
T0
L2 + 4‖�‖4L∞

T0
L4 + 2‖∇G‖2

L2
T0
L2

≤ ‖G0‖2L2 + 4‖�0‖2L2 + C‖
0‖2L2‖
0‖2L3 + ‖ρ0‖2L2 ,

This contradicts the definition of (2.36). In the following, multiplying the ρ equation
of (2.27) by ρ (2 ≤ p ≤ ∞) and integrating over R3, one has

d

dt
‖ρ‖p

L p + 4(p − 1)

p2

∥
∥
∥∇|ρ| p

2

∥
∥
∥
2

L2
= 0,

taking p = 2 and integrating the above inequality in time variable over [0, T0) yields

‖ρ‖2L∞
T0
L2 + 2‖∇ρ‖2

L2
T0
L2 ≤ ‖ρ0‖2L2 .

Therefore, the global existence of axisymmetric strong solutions follows by Lemma
2.5 (see also Theorem 2.5.5 in Zheng 2004), so we completed the proof of the first
case of Theorem 1.1.

Next, we deal with (2.32) as follows:

d

dt

(
‖G‖2L2 + 4‖�‖4L4

)
+ 2‖∇G‖2L2 + 12‖∇�2‖2L2 + 4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
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≤ 24

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L∞

‖�‖4L4(r≤ε)
+ 24

∫

r≥ε

∣
∣
∣
∣
ur

r
�4

∣
∣
∣
∣ dx + 8‖
‖4L4

≤ C‖�‖
1
2
L2 ‖∂z�‖

1
2
L2

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

3

L4
‖‖

1
2
L2‖‖

1
2
L∞(r≤ε)

+ 1

ε4

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L2

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥
L2

‖‖3L∞(r≥ε) + 8‖
‖4L4

≤ C‖�‖
1
2
L2‖‖

1
2
L2‖‖

1
2
L∞(r≤ε)

(

‖∇G‖2L2 +
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
+ ‖∇ρ‖2L2

)

+ 1

ε4

∥
∥
∥
∥
ur

r

∥
∥
∥
∥
L2

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥
L2

‖‖3L∞(r≥ε) + 8‖
‖4L4 . (2.38)

Let’s define

sup
{
t > 0

∣
∣‖G(t, ·)‖2L2 + 4‖�(t, ·)‖4L4 ≤ 2�2

0

}
:= T1. (2.39)

Integrating (2.38) with respect to time variable over [0, T1) yields

‖G‖2L∞
T1
L2 + 4‖�‖4L∞

T1
L4 + ‖∇G‖2

L2
T1
L2 + 12‖∇�2‖2

L2
T1
L2 + 4

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
T1
L4

≤ C‖�‖
1
2
L∞
T1
L2‖0‖

1
2
L2 sup

t∈(0,T1)
‖‖

1
2
L∞(r≤ε)

⎛

⎝‖∇G‖2
L2
T1
L2 +

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

4

L4
T1
L4

+ ‖∇ρ‖2L2

⎞

⎠

+ 1

ε4

(
‖u0‖2L2 + ‖b0‖2L2 + ‖ρ0‖2L2

)
‖0‖3L∞

+ C‖
0‖2L3‖
0‖2L2 + ‖G0‖2L2 + 4 ‖�0‖4L4 .

By condition (1.10) and (2.39), we obtain

‖G‖2L∞
T1
L2 + 4‖�‖4L∞

T1
L4 ≤ �2

0 ,

similar as the first case, one can conclude that the axisymmetric strong solutions exists
globally. Therefore, the proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

In this section, we are devoted to the proof of Theorem 1.2. To this end, we first give
an estimate of the global decay of ‖u(x, t)‖L2 (see 3.1), then establish decay estimates
for the swirl components of velocity and magnetic fields, and find out that the swirl
components decay faster for a class of initial data. Following the ideas of Brandolese
and Schonbek (2012), Chen et al. (2017b), Liu and Han (2020) and using the Fourier
splitting method in Schonbek (1985), one can obtain the following estimates for the
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MHD-Boussinesq equations with slight modifications of those for the Boussinesq
equations in Fang et al. (2018), and we are not going to repeat it here.

If ρ0 ∈ L1 ∩ L p for any p ∈ [1,∞), then

‖ρ(t)‖L p ≤ C〈t〉− 3
2

(
1− 1

p

)

.

Furthermore, if ρ0 satisfies

∫

R3
|ρ0(x)||x |dx ≤ ∞,

∫

R3
ρ0(x)dx = 0 and ‖ρ0‖L1 ≤ ε0,

where ε0 is a small positive constant independent of the initial data, then

‖ρ(t)‖2L2 ≤ C〈t〉− 5
2 .

Moreover, for u0 ∈ L
3
2 and b0 ∈ L2, one can deduce the following decay estimates,

whose proof is very similar to the one in Fang et al. (2018), and we also skip the details
here.

‖u(t)‖2L2 + ‖b(t)‖2L2 + ‖ρ(t)‖2L2 + 〈t〉‖∇u(t)‖2L2 + 〈t〉‖∇b(t)‖2L2

+ 〈t〉‖∇ρ(t)‖2L2 + t〈t〉‖(∂t u,�u)‖2L2 + t〈t〉‖(∂t b,�b)‖2L2

+ t〈t〉‖(∂tρ,�ρ)‖2L2 ≤ C〈t〉− 1
2 . (3.1)

Next, we focus on the decay estimates for the components which don’t appear in
the Boussinesq equations.

• Decay estimates for ‖‖2
L2 and ‖
‖2

L2

For 0 ∈ L1(R3) ∩ L p(R3), where p ∈ [1,∞), one has

‖(t)‖L p ≤ ‖0‖L p . (3.2)

Moreover, multiplying the  equation of (1.8) by  and integrating the resulting
equation over R3, one has

1

2

d

dt
‖‖2L2 + ‖∇‖2L2 = 0. (3.3)

By the Sobolev embedding theorem, we obtain

‖‖L2 ≤ C‖‖
2
5
L1‖∇‖

3
5
L2 ≤ C‖0‖

2
5
L1‖∇‖

3
5
L2 ≤ C‖∇‖

3
5
L2 . (3.4)

From (3.3) and (3.4), it follows that

d

dt
‖‖2L2 ≤ C(‖‖2L2)

5
3 ,
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and

‖‖2L2 ≤ C〈t〉− 3
2 .

Similarly, for 
0 ∈ L1(R3) ∩ L2(R3) with p ∈ [1,∞), we can obtain the following
decay estimate

‖
‖2L2 ≤ C〈t〉− 3
2 .

• Decay estimates for ‖uθ‖2
L2 and ‖bθ‖2

L2

Multiplying (1.4)2 and (1.4)4 by uθ , bθ , respectively, and applying Lemma 2.1 and
the decay estimates in (3.1), one has

d

dt
‖uθ‖2L2 + ‖∇uθ‖2L2 +

∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

2

L2
≤

∥
∥
∥
∥
ur

r

∥
∥
∥
∥

4

L2
‖uθ‖2L2 ≤ C‖∇u‖4L2‖uθ‖2L2

≤ C〈t〉−3〈t〉− 1
2 ≤ C〈t〉− 7

2 . (3.5)

Similarly,

d

dt
‖bθ‖2L2 + ‖∇bθ‖2L2 + ‖
‖2L2 ≤

∥
∥
∥
∥
ur

r

∥
∥
∥
∥

4

L2
‖bθ‖2L2 ≤ C〈t〉− 7

2 . (3.6)

Set S(t) = {x | r ≤ g(t)−1}, g(t) = √
α(1 + t)− 1

2 , α ≥ 5
2 . It follows from (3.5) that

d

dt
‖uθ‖2L2 + g2(t)‖uθ‖2L2 ≤ d

dt
‖uθ‖2L2 +

∫

S(t)

∣
∣
∣
∣
uθ

r

∣
∣
∣
∣

2

dx + g2(t)
∫

Sc(t)

∣
∣ruθ

∣
∣2

r2
dx

≤ C〈t〉− 7
2 + g4(t)‖ruθ‖2L2 ≤ C〈t〉− 7

2 .

Then,

e
∫ t
0 g2(τ )dτ‖uθ (t)‖2L2 ≤ ‖uθ

0‖2L2 + C
∫ t

0
e
∫ τ
0 g2(s)ds〈τ 〉− 7

2 dτ.

Since e
∫ t
0 g2(τ )dτ ≈ 〈t〉α and α > 5

2 , one has

‖uθ (t)‖2L2 ≤ C〈t〉− 5
2 . (3.7)

Similarly,

‖bθ (t)‖2L2 ≤ C〈t〉− 5
2 . (3.8)

• Decay estimates for ‖∇(uθeθ )‖2L2 and ‖∇(bθeθ )‖2L2
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Indeed, one has

‖∇(uθeθ )‖2L2 = ‖∇uθ‖2L2 +
∥
∥
∥
∥
uθ

r

∥
∥
∥
∥

2

L2
= ‖ωr‖2L2 + ‖ωz‖2L2 ,

‖∇(bθeθ )‖2L2 = ‖∇bθ‖2L2 + ‖
‖2L2 = ‖ jr‖2L2 + ‖ j z‖2L2 ,

and

�(uθeθ ) =
(

� − 1

r2

)

uθeθ ,

(

� − 1

r2

)

uθ = ∂rω
z − ∂zω

r ,

�(bθeθ ) =
(

� − 1

r2

)

bθeθ ,

(

� − 1

r2

)

bθ = ∂r j
z − ∂z j

r .

Using (1.7) and the equation for bθ , one has

∥
∥
∥
∥

(

� − 1

r2

)

bθ

∥
∥
∥
∥
L2

≤ ‖∂t bθ‖L2 + ‖(ur jr − uz jr )‖L2

≤ 2‖∂t bθ‖L2 + C‖∇u‖2L2(‖ jr‖L2 + ‖ j z‖L2). (3.9)

Integrating (3.6) over time interval
[ t
2 , t

]
, using Gronwall’s inequality and (3.8), we

obtain

‖bθ (t)‖2L2 +
∫ t

t
2

(

‖∇bθ (τ )‖2L2 +
∥
∥
∥
∥
bθ (τ )

r

∥
∥
∥
∥

2

L2

)

dτ

≤ C

∥
∥
∥
∥b

θ

(
t

2

)∥
∥
∥
∥

2

L2
expC

(∫ t

t
2

‖∇u(τ )‖4L2

)

dτ

≤ C

∥
∥
∥
∥b

θ

(
t

2

)∥
∥
∥
∥

2

L2
≤ C〈t〉− 5

2 . (3.10)

Multiplying (1.4)4 by ∂t bθ and integrating by parts lead to:

‖∂t bθ‖2L2 + 1

2

d

dt

(

‖∇bθ‖2L2 +
∥
∥
∥
∥
bθ

r

∥
∥
∥
∥

2

L2

)

= −
∫

R3
(ur j z − uz jr )bθ

t dx

≤ C‖∂t bθ‖L2‖∇u‖L2

(

‖∇ j z‖
1
2
L2‖ j z‖

1
2
L2 + ‖∇ jr‖

1
2
L2‖ jr‖

1
2
L2

)

≤ 1

4

(
‖∂t bθ‖2L2 + ‖∇ jr‖2L2 + ‖∇ j z‖2L2

)

+ C‖∇u‖4L2

(
‖ jr‖2L2 + ‖ j z‖2L2

)
, (3.11)
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and we also have

1

2

d

dt

(
‖ jr‖2L2 + ‖ j z‖2L2

)
+ ‖∇ jr‖2L2 + ‖∇ j z‖2L2 +

∥
∥
∥
∥
jr

r

∥
∥
∥
∥

2

L2

=
∫

R3
( jr∂r + j z∂z)u

r jr + ( jr∂r + j z∂z)u
z j zdx

≤ 1

4

(

‖∇( jr , j z)‖2L2 +
∥
∥
∥
∥
jr

r

∥
∥
∥
∥

2

L2

)

+ C‖∇u‖4L2

(
‖ jr‖2L2 + ‖ j z‖2L2

)
. (3.12)

Set f1(t) = ‖ jr (t)‖2
L2 + ‖ j z(t)‖2

L2 , from (3.10), it satisfies that

∫ t

t
2

f1(τ )dτ ≤ C〈t〉− 5
2 . (3.13)

Combining (3.9), (3.11), and (3.12), one has

d

dt
f1(t) +

∥
∥
∥
∥

(

� − 1

r2

)

bθ (t)

∥
∥
∥
∥

2

L2
+ ‖∂t bθ‖2L2 ≤ C‖∇u(t)‖4L2 f1(t).

Multiplying the above inequality by (t − s) leads to

d

dt
((t − s) f1(t)) ≤ f1(t) + C‖∇u‖4L2(t − s) f1(t), (3.14)

and applying Gronwall’s inequality gives

(t − s) f1(t) ≤
∫ t

s
f1(τ )dτ exp

(

C
∫ t

s
‖∇u(τ )‖4L2τ

)

≤ C
∫ t

s
f1(τ )dτ.

Choosing s = t
2 , from (3.13) we have

f1(t) ≤ Ct−1
∫ t

t
2

f1(τ )dτ exp

(

C
∫ t

t
2

‖∇u(τ )‖4L2dτ

)

≤ Ct−1〈t〉− 5
2 .

Therefore, there holds

‖∇(bθeθ )(t)‖2L2 = f1(t) ≤ C〈t〉− 7
2 .

Similarly, we can obtain

‖∇(uθeθ )(t)‖2L2 ≤ C〈t〉− 7
2 .
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• Decay estimates for ‖∂t uθ‖2
L2 +

∥
∥
∥

(
� − 1

r2

)
uθ

∥
∥
∥
2

L2
and ‖∂t bθ‖2

L2 +
∥
∥
∥

(
� − 1

r2

)
bθ

∥
∥
∥
2

L2

Applying Gronwall’s inequality to (3.14) over
[ t
2 , t

]
, we have

f1(t) +
∫ t

t
2

(∥
∥
∥
∥

(

� − 1

r2

)

bθ

∥
∥
∥
∥

2

L2
+ ‖∂t bθ‖2L2

)

dτ

≤ C f1

(
t

2

)

exp

(

C
∫ t

t
2

‖∇u‖4L2dτ

)

≤ C f1

(
t

2

)

≤ C〈t〉− 7
2 . (3.15)

Taking the time derivative to (1.4)4, one has

∂t t b
θ + u · ∇∂t b

θ −
(

� − 1

r2

)

∂t b
θ = −∂t b · ∇bθ − ∂t

(
urbθ

r

)

.

Taking L2 inner product of the above equation with ∂t bθ , and using incompressibility
condition, we have

1

2

d

dt
‖∂t bθ‖2L2 + ‖∇∂t b

θ‖2L2 +
∥
∥
∥
∥
∂t bθ

r

∥
∥
∥
∥

2

L2

=
∫

R3

(

−∂t u
r j z∂t b

θ + ∂t u
z jr∂t b

θ − ur

r
(∂t b

θ )2
)

dx

≤ ‖∂t u‖2L2

(
‖ j z‖2L3 + ‖ jr‖2L3

)
+ C‖∂t bθ‖2L2‖∇u‖4L2

+ 1

2

∥
∥
∥
∥
∂t bθ

r

∥
∥
∥
∥

2

L2
+ 1

2
‖∇∂t b

θ‖2L2 . (3.16)

Next, it follows that

d

dt
‖∂t bθ‖2L2 + ‖∇∂t b

θ‖2L2 +
∥
∥
∥
∥
∂t bθ

r

∥
∥
∥
∥

2

L2
≤ C‖∂t bθ‖2L2‖∇u‖4L2

+ C‖∂t u‖2L2

(
‖∇b‖L2‖∂t bθ‖L2 + ‖∇u‖4L2

)
.

Multiplying the above inequality by (t − s) and using Gronwall’s inequality on [s, t],
we obtain

(t − s)‖∂t bθ (t)‖2L2

≤ C

(∫ t

s
‖∂t bθ‖2L2 + (τ − s)

(
‖∇u‖4L2 + ‖∇b‖L2‖∂t bθ‖L2

)
‖∂t b‖2L2dτ

)

· exp
(

C
∫ t

s
‖∇u‖4L2dτ

)

. (3.17)
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Taking s = t
2 and applying (3.15), one has

t‖∂t bθ (t)‖2L2 ≤ C

(∫ t

s
‖∂t bθ (τ )‖2L2 + (τ − s)‖bt‖2L2 (‖∇b‖L2‖∂t bθ‖L2 + ‖∇u‖4L2 )dτ

)

≤ C

(

〈t〉− 7
2 + t sup

τ∈[s,t]
(‖∇u‖4L2 + ‖∇b‖L2‖∂t bθ‖L2 )

∫ t

s
(τ − s)‖∂t b‖2L2dτ

)

≤ C
(
〈t〉− 7

2 + (〈t〉−5 + 〈t〉− 5
4 t− 1

2 〈t〉− 5
4 )〈t〉− 3

2

)
≤ C〈t〉− 7

2 ,

and from (3.9), there holds

‖∂t bθ (t)‖2L2 +
∥
∥
∥
∥

(

� − 1

r2

)

bθ (t)

∥
∥
∥
∥

2

L2
≤ Ct−1〈t〉− 7

2 , ∀t > 0.

Similarly, we can also obtain

‖∂t uθ (t)‖2L2 +
∥
∥
∥
∥

(

� − 1

r2

)

uθ (t)

∥
∥
∥
∥

2

L2
≤ Ct−1〈t〉− 7

2 , ∀t > 0.

Therefore, we complete the proof of Theorem 1.2.
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