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Abstract
This paper deals with a two-species attraction—repulsion chemotaxis system

ur =d1Au—&V-uvVov)+ x1V-@Vz) + g1(u, w), (x,1) € Q x (0, 00),

Ty =dyAv+w — v, (x,t) € Q2 x (0, 00),
wy =d3Aw — £V - (wVz) + 2V - (wVv) 4+ go(u, w), (x,1) € Q x (0, 00),
T2 = d4 A7 +u —z, (x,1) € Q x (0, 0)

under homogeneous Neumann boundary conditions in a smoothly bounded domain
Q C R" forn > 1, where T € {0, 1}, the parameters d; (i = 1,2,3,4),&;, x;(j =
1, 2) are positive and the kinetic terms g (u, w), g2 (u, w) satisfy

gl(u,w)zu(ao—alu—azw—a3/ udx—a4/ wdx),
Q Q

gz(u,w):w<bo—b1u—b2w—b3/ udx—b4/ wdx)
Q Q
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with ag, ay, bg, by > 0, ay, a3, aq, by, b3, bsy € R. It is shown that under some suit-
able parameter conditions, the above system possesses a unique global and uniformly
bounded solution in any spatial dimension. Moreover, we investigate the asymptotic
stability of solutions under the locally intraspecific competition and globally inter-
specific cooperation. Finally, we present some numerical simulations, which not only
support our analytically theoretical results, but also find some new and interesting
phenomena.

Keywords Two-species - Attraction—repulsion - Boundedness - Stability - Nonlocal
kinetics

Mathematics Subject Classification 35B35 - 35B40 - 35K15 - 35K55 - 92C17

1 Introduction

Chemotaxis is the biochemical process through which the directed movement of a cell
or organism responses to the concentration gradient of a chemical signal. It plays a
significant role in a wide range of biological applications, such as pattern formation
Budrene and Berg (1991), wound healing Petter et al. (2003), embryonic development
Li and Muneoka (1999) and blood vessel formation Chaplain and Logas (2005). The
little movement is referred to as chemoattraction (i.e., positive chemotaxis) if the
cells move toward the increasing signal concentration, whereas chemorepulsion (i.e.,
negative chemotaxis) whenever the cells move away from the direction of increased
signal concentration (see Hillen and Painter (2009); Hazelbauer (1979)). In order to
describe the aggregation of microglia observed in Alzhemer’s disease, the single-
species attraction—repulsion chemotaxis model was proposed by Luca et al. (2003).
A particular core of this model is, in addition to random motion, that the cells can
produce both chemoattractants and chemorepellents.

In this paper, we consider the following two-species attraction—repulsion chemo-
taxis system with nonlocal kinetics:

uy =diAu—&V-wVv)+ x1V- V) + g1 (u, w), (x,1) € Q2 x (0, 00),
vy =doAv+ w — v, (x,1) € 2 x (0, 00),
wy = d3Aw — £V - (wV2) + 2V - (wVv) + g2(u, w), (x,1) € Q2 x (0, 00),
Tz = d4Az4+u —z, (x,1) € 2 x (0, 00),
%:%:%:2{:0, (x,1) € 022 x (0, 0),
(u, v, w, t7)(x, 0) = (ug(x), Tvg(x), wo(x), TZ0(x)), x € Q,

(1.1)

where @ C R"(n > 1) is a smoothly bounded domain, t € {0, 1},d; > 0( =
1,2,3,4),&;, x; > 0(j = 1, 2) and the kinetic terms g1, g2 satisfy

@ Springer



Journal of Nonlinear Science (2023) 33:57 Page3of62 57

gl(u,w)=u<a0—a1u—a2w—a3/ udx—a4/ wdx),
Q Q

go(u,w) = w(bo —biu — bhw — b3/ udx — b4/ wdx)
Q Q

with ag, ay, bg, by > 0, az, as, as, by, b3, b4 € R. Under the influences of random dif-
fusion (i.e., di Au, d) Aw), chemoattractant (i.e., —&;V - (uVv), =&V - (wVz)) and
chemorepellent (i.e., +x1 V- (uVz), +x2V - (wVv)), the movements of the two popu-
lations in system (1.1) become more complex. Furthermore, we also consider that both
populations reproduce and compete (or cooperate) themselves, and mutually compete
(or cooperate) with the other. These characteristics enable system (1.1) to describe
more abundant and interesting biological phenomena between two species. Such as
system (1.1) can be used to describe the differential chemotaxis driven cell sorting pro-
cess (Ref. Painter (2009) and the references therein). Here, u(x, t), w(x, t) denote the
densities of two different species, respectively, v(x, 1), z(x, t) represent the concentra-
tions of the chemicals produced by w(x, t) and u(x, t), separately. d; (i = 1, 2, 3,4)
are the random diffusion coefficients for species and chemicals, &1, & represent the
chemoattraction sensitivity coefficients, and x1, x2 refer to the chemorepulsion sensi-
tivity coefficients. The parameters ag, by > O represent the intrinsic growth of species,
and ay, b» > 0 describe locally intraspecific competition. The parameters a; and by
describe the local influence of each species in interspecific population. Each subspecies
globally competes if a3 and b4 are positive and globally cooperates if a3z and b4 are
negative. When the coefficients a4, b3 represent the strength of nonlocal interspecific
competition provided that a4, b3 > 0. When a4, b3 < 0, they represent the strength
of nonlocal interspecific cooperation. The nonnegative initial data (u¢, Tvg, wo, T20)
are nonnegative and satisfy

(1.2)

(uo, TVo, Wo, T20) € CAUQ) x WX (Q) x C%() x W™ (Q). (1.3)

Now, we mention some previous contributions to understand the development of the
system (1.1).

1.1 Single-Species Chemotaxis System

The well-known mathematical model was initially proposed by Keller and Segel (1970)
to describe the aggregation of cellular slime molds Dictyostelium discoideum. Mimura
and Tsujikawa (1996) firstly considered the cell proliferation and death in the well-
known Keller—Segel model

uy =Au—&V-uVv) + f(u), (x,t) € Qx(0,00),

(1.4)
Ty =Av+u—v, (x,1) € Q x (0, 00),

where T € {0, 1} and f(u) describes the cell proliferation and death. A large number
of results are found, which includes the global existence, boundedness and blow-up
behavior of solutions under the chemoattraction condition & > 0 (see, e.g., Ishida et al.
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(2014); Tello and Winkler (2007); Nagai (1995); Horstmann and Winkler (2005); Win-
kler (2010a, 2014a); Tao and Winkler (2012); Winkler (2010b); Burger et al. (2006);
Winkler (2015); Kurt and Shen (2021); Winkler (2014b)). For the chemorepulsion case
& < 0, there exist many interesting results about the global existence and bounded-
ness of solutions (see, e.g., Tao (2013); Freitag (2018); Lin and Xiang (2021); Heihoff
(2021); Hu and Zheng (2022a); Hu et al. (2022)).

In the process of studying Alzhemer’s disease, Luca et al. (2003) proposed the
following attraction—repulsion chemotaxis model:

Uy =Au —EV-wVv)+ xV-uVw), (x,t) € Q x (0,00),
vy = Av + Bu — av, (x,1) € 2 x (0, 00), (1.5)
Tw, = Aw +du — yw, (x,1) € Q x (0, 00),

where T € {0, 1} and all parameters x, &, «, B, ¥, § are positive. Model (1.5) also
be used to address the quorum effect in the chemotactic process (Ref. Painter and
Hillen (2002)). There are a number of theoretical results about the attraction—repulsion
system (1.5) in recent years. In the case of T = 1, Liu and Wang (2012) obtained
the global existence and steady states of solutions in one-dimension domain. Tao
and Wang (2013) proved that the solutions of system (1.5) are global and uniformly
bounded in two-dimensional domain if the strength of the chemorepellent exceeds the
chemoattractant (i.e., x§ > &8, « = y). Under the similar case x§ > &8, Jin (2015)
proved that the global existence of classical solutions in two-dimensional domains
and weak solution in three-dimensional domains with large initial mass fQ updx.
When £ = x4, Lin et al. (2015) proved that the solution is globally bounded and
exponentially converges to the constant state in physical domains Q C R*(n = 2, 3).
In the case T = 0, Tao and Wang (2013) also obtained that the solutions of system
(1.5) are globally bounded for n > 2 if the strength of the chemorepellent exceeds the
chemoattractant. Moreover, in Tao and Wang (2013), the finite-time blow-up occurs
at xo € Q under the conditions that n = 2 and fQ ug(x)|x — x0|2dx is small enough,
provided that £8 > x§,a = y and [, o uodx > Eﬁg_ﬁ hold. Whereafter, Espejo
and Suzuki (2014) removed the condition « = y when @ = B(0,R) C R?is a
ball. For more results, please refer to Li and Li (2016); Yu et al. (2017); Hsieh and Yu
(2022); Chiyo and Yokota (2022a,b). However, there are few results about two-species
attraction—repulsion chemotaxis system.

1.2 Two-Species Chemotaxis System

e Two-species and one-signal chemotaxis system To describe the movement of
two species, the following two-species and one-stimuli chemotaxis system

ur = Au—&V-@Vw) + nu(l —u — ayv),
vy =Av—&V - (wVw) + uav(l — au — v), (1.6)
Tw; = Aw 4+ biu + bpv — Bw
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was proposed by Tello and Winkler (2012), where T € {0, 1}, B8, &, ui, ai, b > 0( =
1, 2). In the case of t = 0, Tello and Winkler (2012) obtained the global existence
and asymptotic behavior of solutions when ay, ax € [0, 1),2(&1 4+ &) +aju2 < uq
and 2(§1 + &) + a1 < 2. Whenaj > 1 > ap > 0, Stinner et al. (2014b) proved
that the semi-trivial steady state is asymptotically stable. In the case of T = 1, Bai
and Winkler (2016) derived the global existence of classical solutions if n < 2 and
asymptotical behavior when the damping terms are suitably strong (i.e., ;1 and ua
are large enough). More related interesting results can be found in Black et al. (2016);
Mizukami and Yokota (2016); Negreanu and Tello (2014).

Furthermore, many scholars also studied chemotaxis models by nonlocal terms
of integral type, such as Armstrong et al. (2006); Gerisch and Chaplain (2008). For
more introductions of nonlocal terms, we can refer to Coville et al. (2008); Weinberger
(1982, 2002); Kao et al. (2010). So far, the following chemotaxis system with nonlocal
terms

up =dyAu— &V - (uVw) +u(ag — aju — arv — a3 [ udx — ay [ vdx),
vy =drAv — &V - (vWw) + v(b() — biu — bov — b3 fQ udx — by fQ vdx),
twy =d3Aw +ku+Ilv+ f— A w

(1.7)

was studied by some authors, where t € {0, 1}, aog, by, d1, da, d3, A, k, [, a;, bi, & >
0(i = 1,2) and a3, a4, b3, by € R and the forcing term f € C;f:,ﬁ (€2 x [0, 00)) (e >
0,86>1+ %) is uniformly bounded, which is introduced artificially by an external
application. When t = 0 and di = d» = d3 = 1, Negreanu and Tello (2013) obtained
the boundedness and asymptotic stabilization of the global solution for system (1.7)
under some suitable assumptions. When t = 0 and f = 0, Issa and Salako (2017)
showed the global existence and asymptotical behavior of the nonnegative solutions.
When 7 = 1 and f = 0, Xu (Preprint) proved that the solution of system (1.7) is
globally bounded and converges to the constant steady state. We refer the readers to
Sherratt et al. (2009); Shen and Zhang (2012); Evje and Winkler (2020) for more
interesting results.

e Two-species and two-signal chemotaxis system Some scholars considered the
following chemotaxis system involving two species and two signals

ur=Au—&V.-wVv), (x,t) € Q2 x(0,00),

0=Av+w-—v, (x,1) € Q x (0, 00), (1.8)
w = Aw —EV - (wVz), (x,1) € Q x (0, 00), '
0=Az4+u-—z, (x,1) € Q2 x (0, 00),

where &1,& € {—1,1},r € {0,1}. In Tao and Winkler (2015), Tao and
Winkler obtained the global boundedness and finite-time blow-up of solutions
for (1.8) when r = 0. Particularly, when n = 2,& = & = 1 and
the initial masses |[luollz1(q), lwollp1(q) are small, system (1.8) has a globally
bounded classical solution. Moreover, if the initial masses are large enough (i.e.,
min { luoll 1), llwoll L (Q)} > 41r), the finite-time blow-up of solutions may occur
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in two-dimensional domains. Subsequently, Zheng (2017) generalized the results of
Tao and Winkler (2015) to the quasilinear cases. For the fully parabolic case (i.e.,
T = 1), Li and Wang (2017) derived the global boundedness of solutions if the initial
masses are suitably small. In recent years, considering the Lotka—Volterra-type kinet-
ics, the following two-species chemotaxis—competition system with two chemicals

ur = Au —& V- wvv) + pu(l —u —ajw), (x,1) € Q x (0, 00),

v, = Av + Bw — av, (x,1) € Q x (0, 00), (19)
wr =Aw — £V - (wV2) + pow(l —aou —w), (x,1) € 2 x (0,00),
T = Az +6u —yz, (x,1) € 2 x (0, 00)

was studied by many authors, where 7 € {0, 1} and e, B, y, 6, &, i, ai > 0@ = 1, 2).
When r = 0 and the production efficiency of the signals v, z is the same as the
consumption (i.e.,« = B =y = § = 1), Zheng and Mu (2017) derived the global
boundedness of solutions under the conditions in two-dimensional domains. When
T =0andaj, az € (0, 1), the global boundedness and large time behavior of solutions
for system (1.9) were addressed in Zheng et al. (2018). Moreover, due to the positivity
of Lotka—Volterra competition, Tu et al. (2018) proved the global boundedness and
convergence rate of solutions for n > 2. Recently, Wang and Mu (2020) improved the
previous conditions of Tu et al. (2018). On the other hand, when t = 1, Zheng and Mu
(2017) showed that system (1.9) has a globally bounded classical solution for n > 2
provided that the chemotactic sensitivities are small enough (i.e., 2 6o, Lo 6o
for some 6y > 0). For more related contents, please refer to Liu and Dai (2022); Zhang
et al. (2017); Zhang (2018); Zheng (2021). So far, to the best of our knowledge, no
work has been done for the solution behavior when attraction—repulsion chemotaxis
as well as nonlocal kinetic terms involving both species are present.

Recently, some scholars considered several special cases for system (1.1). For
instance, when 7 = 0 and no kinetic terms (i.e., g = g2 = 0) in (1.1), Liu and Dai
(2021) proved that the cells aggregation occurs in finite time. Moreover, the solutions
are globally bounded if the initial masses are small enough or x; = 2 = & =
& > 01in Liu and Dai (2021). When the strength of the chemorepellent exceeds the
chemoattractant (i.c.,min { x1, x2} > & +&), Liuetal. (2022) proved that the system
(1.1) has a unique globally bounded classical solution. Without nonlocal terms in (1.1),
Zheng and Hu (Preprint) showed global boundedness and stability of the constant
steady state. When g1 and g satisfy (1.2) with a;, b; > 0(G = 0,1,2),a;,b; €
R(j = 3,4), Zheng et al. (2022) studied the fully parabolic two-species chemotaxis
system with indirect signal production and proved that the solutions are globally
bounded and converge to the constant steady state under the locally and globally
competitive assumptions. Particularly, when g1 and g satisfy (1.2) witha;, b; > 0(i =
0,1,2),a;,b; € R(j = 3,4), Hu and Zheng (2022b) proved the boundedness and
stabilization of global solutions for system (1.1) under the competitive case. However,
considering only the intrinsic growth and locally intraspecific competition, to the
best of our knowledge the literature does not provide any qualitative analysis on the
solution behavior of the general two-species attraction-repulsion chemotaxis system
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with nonlocal terms. Hence, the above problems are responded affirmatively in this
paper.

1.3 Main Results

In this paper, we mainly study the global boundedness of solutions for system (1.1) with
attraction—repulsion and nonlocal terms. Moreover, we consider the global stability
of solutions for system (1.1) under the locally intraspecific competition and globally
interspecific cooperation case (i.e., ar, b» > 0, az, by, aa, b3 < 0). For simplicity, we
introduce a notation that is (a)— := max{0, —a} for all a € R.

Firstly, we shall give the global boundedness of solutions for system (1.1) when
T =0and v = 1, separately.

Theorem 1.1 Let 1 = 0,d; > 0 = 1,2,3,4),&;,x; > 0(j = 1,2) and Q C
R"(n > 1) be a smoothly bounded domain. Assume that g1, g» satisfy (1.2) with
ao, ai, by, by > 0,a»,a3, a4, b1,b3,bs € R, and that the nonnegative initial data
(ug, wo) satisfy (1.3). Moreover, if the following assumptions hold:

e n = 1, the condition

ap > (02)7‘;(17])7 + ((a3)_ + (a4)7~2Hb3), |Q|,

(1.10)
by > (az)—;(bl)— + <(b4)_ + (a4)7-5(b3), 12
e n > 2, the condition (1.10) and
min{ﬁ+a1,£+b2}>§—1+§_2+(a2)7+(b1)7_ (1.11)
dy d> dr dy

Then, system (1.1) admits a unique global nonnegative classical solution
(u, v, w, z) in 2 x (0, 00), which is uniformly bounded in the sense that there
exists a constant C > 0 independent of t such that

(-, Loy + v, DllLoe) + Hw, Ol + 112G, DllLe(@)
<C forallt>Q0.

Remark 1.1 Whend; = 1(i =1,2,3,4)anday = a3 =a4 = by = b3 = by =0in
(1.1), compared with the results of Theorem 1.1 in Liu and Dai (2022), it can be found
thatmin { x1 +ay, x2+b2} > min {a1, b2} > & +&; under the conditions x1, x2 > 0
and n > 2, which implies that the repulsive mechanism is helpful for the global
boundedness of solutions. Whenn = 1, x;1 = xp = 0anday; = b) = a3 = a4 =
b3 = by = 0, Theorem 1.1 only need the conditions aj, b, > 0 in this paper, which
removes the condition min {al, bz} > &1 + & in Liu and Dai (2022). If ap, by > 0,
the conditions in this paper are same as in Hu and Zheng (2022b). Moreover, when
n = 2, the small initial condition max {||u0||L1(Q), ||w0||L1(Q)} < m
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in Liu and Dai (2021) can also be canceled under the effect of locally intraspecific
competition.

Theorem1.2 Let v = 1,d; > 0G = 1,2,3,4),&;,x; > 0(j = 1,2) and Q C
R"(n > 1) be a smoothly bounded domain. Assume that gy, g» satisfy (1.2) with
ap, ay, bo, by > 0, a2, a3, as, by, b3, bs € R, and that the nonnegative initial data
(uo, vo, wo, zo) satisfy (1.3). Moreover, suppose that the following conditions

o n=1and(1.10);
e n=2and

. {M +((a3)- + (a4)-5(b3)>|9|’ 2(a32)7 + (b13)7 }’
(1.12)
by > max {—(@)_;(b])_ + | (ba)- + (a4)_J2r(b3)_)|Q|’ (azs)_ + 2(b3|)_ b

e n>3and

(a2)— + (b1)—
2

(a2)— + (by)-
2

(as)— + (b3)-
2

(asg)— + (b3)—
2

a >max{ +((u3)7+ )\Ql,él +x1 + (a2)- + (b1)- + Cs, (xa +§2)},

by >max{ +((b4>,+ )\Q|,§2+X2+(a2)—+(h1)—+Csz(X2+$1)}

(1.13)

hold, where the positive constants C, and Cs, depend on the diffusion coefficients
dy and dy, respectively. Then, system (1.1) admits a unique global nonnegative
classical solution (u, v, w, z) in Q2 x (0, 00), which is uniformly bounded in the
sense that there exists a constant C > 0 independent of t such that

[u, OllLe@) + [vE, Dllwieoq) + lw, DllLe@)
+zC, Ol < C forallt > 0.

Remark 1.2 Whenn = 2,a1,by > Oand x1 = xop = a3 = a4 = by = by = 0,
Theorem 1.2 includes the result of Black (2017) in this paper. When n > 3 and
X1 = X2 = a; = a3 = a4 = by = by = by = 0, the result of Theorem 1.2 in
Liu and Dai (2022) is covered by Theorem 1.2 in this paper. Particularly, for the case
ofn <2and xy = xop = a1 = a3 = a4 = by = b3 = by = 0, Theorem 1.2
only requires the conditions aj, by > 0 in this paper, which improves the conditions
ap > & 4+ &Cs,by > & + £ Cy in Liu and Dai (2022). Moreover, when n < 2,
the small initial condition in Liu et al. (2022) can also be removed under the effect of
locally intraspecific competition.

Next we mainly focus on the asymptotic behavior of the global bounded solutions
for system (1.1). When ag, bg, a1, b> > 0,a3,a4,b1,b3 < 0 and a3, by € R, the
locally intraspecific competition and globally interspecific cooperation cases are

ap > (a3)- €2,

1.14
by > (ba)-|<2| (1
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and

a1 +a3|2] ax + as4|R2| ap
< <0< —,
b1 +b3|2| by + by| 2 bo

(1.15)

then the unique positive constant steady state (u, Vs, Wy, Z4) can be obtained as

. ao (b + b4|2|) — bo (a2 + a4|2|)

T (b2 + b4lQ) (a1 + a3|Q0) — (a2 + a4|R) (b1 + b3|QD)’

. ao (b1 + b3|2|) — by (a1 + a3|$2)

(a2 + as|Q) (b1 + b3|Q) — (b2 + b4lQ) (a1 + a3|Q)’

w, = ap (b1 + b31L2[) — by (a1 + a3|L2|) ’
(a2 + a4|2]) (b1 + b31R2]) — (b2 + b4|R2]) (a1 + a31L2])

. ao (b2 + b4|R2|) — bo (a2 + a4]L2|) '

(b2 + b4|R2]) (a1 + a3|R2|) — (a2 + a4|R2]) (b1 + b31R2])

Uy

Uy ©
(1.16)

Theorem 1.3 Let the conditions in Theorem 1.1 and (1.14)—(1.15) hold. Suppose that
ag, by, ar, by > 0,as, a4, b1, b3 < 0and as, by € R. Assume that system (1.1) admits
a unique global classical solution (u, v, w, z) with the property

”u(.’t)”CH]?’]Jr%(ﬁX[ ])+ ”U(',t)”c

+ w0l

v
141 T (@x[r,041])

(1.17)

+ ”Z(" t)”Cz-H?'H—%(ﬁX

2004 Qolr,141]) (141

forallt > 1, where K > 0 and ¥ € (0, 1). Furthermore, assume that there exist
01,0, € (0, 1) such that

M*Xlz
4d1ds(1 — 01)
w*‘i:zz
4dzdy(1 — 0y)

2

_ b3)_
4 (<a3>_ + M)M

(a2 + b1)? (1.18)

260162 [21)2 — (2b4)— + (b3)- + (a4)_)|9|}

_ b3)_
+ ((a3>_ + M)m}

ay > max{

+ <(a3)_ + M)M

and

usEl (as)— + (b3)—
—4d1d2(1 — %) +<(b4)—+—2 )|SZ|,

2
Wi X3 (as)— + (b3)-
sk (0 + 28 el

br > max {
(1.19)
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Then, for some fixed time ty, there exist C > 0 and k > 0 such that

lu(-, 1) — wsllpoo(@) + V(5 1) — VsllLoo() + lw (-, 1) — Wyl Loo ()

_ (1.20)
+ llz(, 1) — z4llLoo(@) < Ce™™

forallt > 1.

Theorem 1.4 Let the conditions in Theorem 1.2 and (1.14)—(1.15) hold. Suppose that
ao, by, ar, by > 0,az, aq, b1, b3 < 0andas, by € R. Assume that system (1.1) admits
a unique global classical solution (u, v, w, z) with the property (1.17). Furthermore,
assume that there exist 03, 64 € (0, 1) such that

2 2
Kous  Elw, (as)— + (b3)—
4+ —1|22],
a1>max{8d4(1_63)( " + a >+((a3) + 5 |€2]
(a2 + b1)*
(1.21)
20304| 2b2 — (2(ba)— + (b3)— + (as)-) |2
(ag)— + (b3) -
+ <(a3) +—F 1€
2
and
1 Elux | X3ws (as)— + (b3)-
b by)_ + ——————||2]. (1.22
2>8d2(1—04)<d1 + 0 + | (ba)— + 5 |€2]. (1.22)
Then, for some fixed time ta, there exist C > 0 and ) > 0 such that
lu(-, 1) — usllLo@) + v, 1) — vl Lo (@)
+ llw(, 1) — wyllLe@) + 12(, 1) — zllLo@) (1.23)
S Ce—}»t
forallt > t.
Remark 1.3 We rewrite u,, w, as
_ bolar+a4|Q2]) aog(b1+b312))
. 40 ~ by sl W @raian Lo
koo ’ koo 9
(@1 + a3l ) — “eRlG hleD xtaslODBERIE) (b, 4 by|2])

then u., w, are sufficiently close to zero as aj, by are large enough for fixed
ao, az, az, aa, by, b1, bz, bs. Hence, the assumptions (1.18) and (1.19) (or (1.21),
(1.22)) make sense with suitably large ay, b,. Moreover, we only consider the stabi-
lization of globally bounded solutions for system (1.1) under the case ag, bo, a;, by >
0,a2,a4,b1,b3 < 0 and a3, by € R in this paper. For the case a;,b; > 0 =
0,1, 2,3,4), it follows from the same method of Zheng et al. (2022) that the stabi-
lization of globally bounded solutions can also be derived.
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Remark 1.4 Tt follows from the results in Theorems 1.1-1.4 and numerical simulations
in Section 6 that it is not difficult to see that the size of bounded domain Q2 C R”
plays an important role in studying the global boundedness and asymptotic stability
of solutions in this model. However, due to the appearance of the nonlocal kinetics, as
far as we know, the model does not possess the rescaling invariance. What’s more, the
results and proofs of this paper are not invariant under the rescaling of the domain €2.
When the domain €2 is replaced by A2 (A > 0), the parameter conditions of Theorems
1.1-1.4 shall be changed. Thus, how to keep the scale-invariant formulation, which
is an interesting topic of mathematical analysis in future work. But in this paper, we
pay more attention to the explanation of the biological field in a fixed and bounded
domain 2.

Mathematical challenges and main ideas. Our main ideas are inspired by two-
species attraction—repulsion chemotaxis model in Liu and Dai (2022) and nonlocal
chemotaxis model from Negreanu and Tello (2013). The model of this paper involves
more complex cross-diffusion mechanisms, which leads to the mathematical difficulty
of qualitative analysis of the solutions. As far as we know, the global boundedness of the
problem is not difficult when two populations proliferate and compete according to the
Lotka—Volterra-type kinetics (see, e.g., Bai and Winkler (2016); Stinner et al. (2014b);
Tello and Winkler (2012)). However, compared with the well-understood situations
of Lotka—Volterra-type kinetics, the present setting exposes its increased complexity
through locally intraspecific competition and globally interspecific cooperation (or
competition), as defined by

g1(u,w)=u(ao—a1u—a2w—a3f udx—a4/ wdx),
Q Q

gz(u,w)=w<bo—b]u—b2w—b3/ udx—b4/ wdx)
Q Q

with ag, a1, bg, b > 0 and ay, a3, aq, b1, b3, by € R. Thus, the method in (Bai and
Winkler 2016, Lemma 2.6) is invalid for the fully parabolic case (i.e., T = 1) in proof
of global boundedness. Therefore, we have to overcome some difficulties to prove it
as follows.

Firstly, in investigating the globally bounded solution of (1.1), as pointed out in
previous work (e.g., Chiyo and Yokota (2022a); Tello and Winkler (2012); Stinner
et al. (2014b); Negreanu and Tello (2013)), the essential analytic obstacle is that
the chemotaxis and positive kinetic terms in the first and third equations of (1.1).
On the other hand, relying on our previous work in Hu et al. (2022); Hu and Zheng
(2022a,b), we know that the repulsive and competitive mechanisms effectively prevent
the occurrence of cells aggregation in the mathematical sense that the solutions blow
up. When t = 0, by proceeding in a quite standard testing procedure of L”-estimates,
with the aids of the Agmon—Douglis—Nirenberg L”-estimates for v, z, one can use the
random diffusion (i.e., d| Au, do Aw), chemorepulsion (i.e., +x1V - (uVz), +x2V -
(wVv)) and negative kinetic terms (i.e., —aju?, —byw?) to simultaneously estimate
the chemotaxis and positive kinetic terms (see, e.g., Lemma 3.1 and Lemma 3.2).
Hence, in any space dimension n > 1, we can improve the priori estimates of u, w
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from L!-estimates to L?-estimates with any p > 1, so that we can deduce the uniform
boundedness of u, v, w, z by the well-known elliptic maximum principle and Moser—
Alikakos iteration in Alikakos (1979). When 7 = 1, we still need to overcome the
above difficulties. In low-dimensional domains n < 2, one can use random diffusion
terms, negative kinetic terms and the known regularities of v, z to effectively control the
chemotaxis and positive kinetic terms, then we get L?-estimates of u, w, which plays
an important role for L?”-estimates of u#, w (see Lemma 4.3 for L?-estimates, Lemma
4.3 for L9-estimates withany g > 1). And in high-dimensional domainsn > 3, relying
on the maximal Sobolev regularity ( (Wang et al. 2018, Lemma 2.3)), we also obtain
the LP-estimates of u, w by proceeding in a quite standard testing procedure (see
Lemma 4.5). Accordingly, in view of the standard parabolic regularity argument and
the Moser—Alikakos iteration technique, we are able to derive the uniform boundedness
of u, v, w, z for T = 1 in any spatial dimension.

Secondly, under the locally intraspecific competition and globally interspecific
cooperation case, we mainly construct the following Lyapunov functionals to derive
the globally asymptotic stabilization of coexistence steady states

2
E(1) ::/ (u—u*—u*lnl>+f (w—w*—w*ln£>—}-ﬂ (v—v*>
Q Uy Q Wi 2 Jo
2
02
+ B Q(Z Z*)

fort > 0 with T € {0, 1} and p1, po > 0, where (i, vy, Wy, z4) is given by (1.16).
The cross-diffusion and nonlocal terms in the first and third equations of (1.1) are
the main mathematical technical difficulty. To achieve our goal, we use the quadratic
function instead of positive definite quadratic form to obtain the following energy
inequality

iE(r) < —C/ ((u —u)?+ W —v)?+ (w—w)+ (z— z*)z)
dr Q

for all + > 0 with some C > 0 provided that a; > a and b, > b for sufficiently large
a,b (see Lemma 5.2 and Lemma 5.5). Consequently, with the aids of boundedness
for solutions and some delicate interpolations, we obtain the asymptotic behavior of
solutions for (1.1) (see Lemma 5.4 and Lemma 5.7). Finally, some numerical simula-
tions for model (1.1) are carried out with the help of the MATLAB, which verifies the
analytically theoretical results and finds some new phenomena.

This paper is organized as follows. In Sect.2, we give some preliminary lemmas
and the local existence of solution for system (1.1). In Sect. 3 and Sect. 4, we study the
global existence and boundedness of solutions for system (1.1), and prove Theorem 1.1
and Theorem 1.2. In Sect. 5, we study the asymptotic behavior of global solutions for
system (1.1), and prove Theorem 1.3 and Theorem 1.4. In Sect. 6, we present numerical
results to verify the analytically theoretical results. In addition, we letu (-, ¢) := u(x, t)
and omit signs dx during integrating for concision throughout this paper.
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2 Preliminaries

In this section, we shall give several preliminary lemmas. Firstly, we state the local
existence of solutions for system (1.1).

Lemma21 Lett € {0,1},d; > 0G =1,2,3,4),&;,x; > 0(j = 1,2) and @ C
R"(n > 1) be a smoothly bounded domain. Assume that g1, g2 satisfy (1.2). Suppose
that the nonnegative initial data (ug, Tvg, wo, T20) satisfy (1.3). Then, there exist
Tmax € (0, oo] and uniquely determined nonnegative functions

u, we CO2 x [0, Trmax)) N CH' (2 x (0, Trnax)),
v,z € CYQ x [0, Tmax)) N C*1(2 % (0, Tmax)) N L2 ([0, Tmax); W9 (82))

such that (u, v, w, z) solves system (1.1) classically in Q x (0, Tmax), where g > n.
Moreover, if Tmax < 00, then

lim sup (”M(', Dl + lv( Dlize@) + lw, Dlle@) + l1z(, f)||L°°(S2))
[/‘Tmax

= o0. 2.1

Proof By well-established methods involving the standard parabolic regularity theory
and an appropriate fixed point framework, we can obtain the local existence and
extensibility criterion (see Stinner et al. (2014b) and Winkler (2010a)). For the details
of proof, please refer to Appendix A. O

Secondly, the following lemma gives a uniform L !'-bound for the solutions.

Lemma 2.2 Let (u, v, w, 7) be a solution for system (1.1). Assume that the nonnegative
initial data (ug, Tvo, wo, T20) satisfy (1.3) with t € {0, 1}. Suppose that the condition
(1.10) holds. Then,

luC, Ol + lw, Dz

max{ag, bo} } — My 22)

< max { luollL @) + llwoll L1 (). 21$2 mintly. )

and

lv( DliLiq) + I1zC¢ D11y < max {||U0||Ll(gz) + llzollL1(g): Mo} i=mg

2.3)
forallt € (0, Tmax), where
1 €2|
li=a— 5((612)— + (bl)—> — |€2](a3)- — 7<(a4)— + (b3)—>,
2.4)
1 Q
lp =by — 5((612)— + (bl)—) — [2/(ba) - — %((CM)— + (b3)—)-
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Proof Integrating the first equation in (1.1) and using Young’s as well as Holder’s
inequalities, we obtain

i/ u:/ u(ao—alu—azw—agf u—a4/ w)
dr Jo Q Q Q
2
“f u—(al—(”?‘)/gu“(%— 7))
2
(az) 4 (aa)- < / w) 2.5)
Q
oot o)
(a2)- | 182|(as)— P
+< > + 2 >/Qw
for all € (0, Tnax)- By the similar method to w-equation, we get
d b1)— b3)_
a/ﬂwflm/gw—(bz— ( 12) —((b4)—+( z) >|Q|>/Qw2
(by)- | [921(b3)- 2
+< > + > )/Qu .
Combining (2.5) with (2.6), we obtain

g/(u+w) Sao/ . (al @)t b)- <(a3)7+ (“4)‘+(b3)‘)\sz|)f 2
dr Jo Q 2 2 Q
+b()/ w— <b2 _ M _ ((b4)_ + M)IQO/ w2'
Q 2 2 Q

@.7)

(2.6)

It follows from (1.10) that the constants /1 and [/, given by (2.4) are positive. Hence,
we have

¢ oot o) oo (L)
dr Jo =9 Ja 121\ Ja *Ja 12|
gmax{ao,bo}/(u—}—w)—%mln{ll l2}</ u—i—/ )
Q
(2.8)

By the comparison argument of ODE, we have

max{ao, bo}

/(u—i—w) §max{/(uo+wo),2|§2| } = My 2.9)
Q Q

min{ll, lz}

for all t € (0, Tnax)-
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When t = 1, integrating the second and fourth equations in (1.1), respectively,
adding up them and using Young’s inequality, we obtain

vl + Izl q) < max {HUOHLI(Q) + llzoll L1 (), MO} =mo (2.10)

forall t € (0, Tinax)-
When r = 0, by a straightforward computation and (2.9), we obtain from the
second and fourth equations in (1.1) that

ol + 1zl L1y < Iwllzigy + lull iy < Mo @.11)
for all t € (0, Tnax)- The proof of Lemma 2.2 is complete. O

Lemma 2.3 (see Friedman (1969)) Let p, k > 0, m € [0, k) and q,r € [1, 0o]. Then,
for any W € Wka4(Q) N L™ (), there exists Cgy = C(k, q,r,2) > 0 such that

ID"WliLr@) < ConlID*WIa o) 1) + Conll¥llr @,  (2.12)

where o satisfies

1 m 1 %k +1 1 N ;—7—;6 m1
—— —=a| - — - o B o= -,
p n q n r 1_k_ 1 k

and DX is expressed as Fréchet derivative of order k.

Lemma 2.4 (see (Temam 1997, Chapter III, Lemma 5.1)) Let ®(¢) > 0 satisfy

() + kyd? (1) < ko, t >0,
{ 1)+ kiy®’ (1) < ks, t > 013

D(0) = Dy
for ®g > 0 with some constants k1, ky > 0 and 6 > 0. Then,

ko

1

7

@ (1) < max {CDO, (k_) } forall t > 0.
1

Lemma 2.5 (see (Wang et al. 2018, Lemma 2.3)) Let 0 < fy) < Tmax < 00 and
Q c R"(n > 1) be a smoothly bounded domain. Assume that ug € W>?(Q)(p > n)
with dyug = 0 on dS2. Then, for each d > 0 and h € LP((O, Thax); LP(Q)), the
system

U =dAu —u+h, (x,1) € Q x (0, Tnax),

9

a—” -0, (X, 1) € 32 X (0, Toax), (2.14)
Vv

u(-,0) = uop, xe
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has a unique solution u € whp ([O, Tax); LP(Q)) NLP ([0, Thax); Wz’p(Q)). More-
over, ifu(-, to) € WP () with w = 00n 02, then there exists Cs = Cs(d) > 0
such that

t
/e’”/ [Au(-, s)|Pds
o @ (2.15)

t
<cs [e [ |h(~,s>|1’ds+cse'”0(||u(-,to)||ip(m+||Au<~,to>||§p(m)
to Q

forany t € (tg, Tmax)-

3 Boundedness for 7= 0

The aim of this section is to show the global boundedness of solution to (1.1) with
t = 0 and prove Theorem 1.1.

Lemma3.l Lett =0,d; > 00 =1,2,3,4),§;,x; >0(j =1,2)and Q CR bea
smoothly bounded domain. Suppose that (1.10) holds. Then, there exists C1 > 0 such
that

luC, Oll2) + lw, D2 = Ci (3.1

forallt € (0, Tmax)-

Proof Multiplying the first equation in (1.1) by 2u and integrating by parts over €2,
we derive from Young’s inequality and Lemma 2.2 that

d 2 / 2 / 2 él 2 Xl 2
— | u+ | u=-2d |Vu| ——/u(v—w)—i——/u(z—u)
dr Jo Q "o dr Jo ds Jo
+2/uz(ag—alu—azw—%/u—m/w>+/u2
Q Q Q Q
2 &1 2 X1 2
< —2d; [Vul“+ | = + 2(az) - uww+— [ uz
Q dr Q dy Jg
+<2a0+1+4a5M0)fu2—2a1/u3
Q Q
s—wl/ |w|2+(5—‘+2<a2>+ﬁ)/ u3
Q d> dy ) Jo

+<$—1+2(02)—>/ w3+ﬁ/z3+C2
dy Q ds Jo

(3.2)
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(200+1+4HSM0) 1.

for all t € (0, Tnax), Where a5 := max {(a3)_, (a4)_} and C := 310
aj

Similarly, we have

/w +/w <—2d3/ IVw|? + ( +2(b1)— +X2>/w3
dr ) Jo
52 E 3
(d + 2(b1)— )/Q +d2/§zv + C3

for all 7 € (0, Trnax), Where bs := max {(b3)_, (b4)_} and C3 “’“12+7+Mo)3|9|
In view of (3.2) and (3.3), we have

L) (e )

5—2d1/ |Vu|2+(SI +'§—2+—+2(az) +2(by)- )/ u3+ﬁ/z3 (3.4)
dy Q ds Jo

(3.3)

—2d3/ [Vw? + (51 +i—2+d—+2(a2) +2(b))_ )/Qw3+§—jfﬂv3+cz+c3

for all ¢ € (0, Tax)-
Since 0 = dy Av—v+w and 0 = dy Az — 7+ u, it follows from Young’s inequality

that
/ v < / w3 (3.5)
Q Q
f 2 < / u (3.6)
Q Q

for all t € (0, Timax)- By substituting (3.5), (3.6) into (3.4), we derive

sl L L) o (e s o)

5—2d1/ |Vu|2+<El + 52 2 ) 20 )/ 3
Q Q

and

& di
2
—2d3/|Vw|2+ $1+§—2+£+2( 2)— +2(b1)_ /w3+C4

for all t € (0, Thyax) With C4 = C2 + C3 > 0.
We next estimate the terms ( +2 s+ 2X1 +2(a2)- +2(b1)-) Jqu’ and (% +

24 2X2 + 2(a2)— +2(by)— )fQ 3. By usmg Lemma 2.2 and Lemma 2.3(n = 1),
there ex1st some positive constants Cs, Cg such that
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(E‘ + 52 2 ) 20 )/ 3
Q

dy dy d
(5 | & 3
_(d—2 #2022+ 200 Il
S
SCS(HVMHLZ(Q)HMH et Ilulliw») (3.8)

=C5</;2|Vu|2>j</9u)§+C5</Qu>3
§C6</Q|Vu|2>3 + Cs

for all t € (0, Thax)- It follows from Young’s inequality with (3.8) that

2
(él 7 D R )/ u3§C6(/ |Vu|2)3 +Ce
b dy o dy Q Q (3.9)

<24, / IVul®> + C7
Q

for all t € (0, Tnax) With C7 > 0. Similarly, we obtain

(S‘ 242 o) 2. )fw3szd3f IVwl? +Cs (3.10)
dr dy d> Q Q

for all 1 € (0, Tryax) With some Cg > 0.
As a consequence of (3.7), (3.9) and (3.10), we derive

i(/u%r/w2)+</u2+/w2>5c7+c8 (3.11)
dr Q Q Q Q

for all t € (0, Tmax). According to Lemma 2.4, we get

/u2+/wzsmax{/u%—i-/w%,ﬁ—l—Cg}
Q Q Q Q

for all t € (0, Tax). The proof of Lemma 3.1 is complete. O

Lemma3.2 Lett =0,d; > 00 =1,2,3,4),&;, x; >0(j =1,2)and Q@ C R"(n >
2) be a smoothly bounded domain. Suppose that (1.10) and (1.11) hold. Then, for some
p > po, there exists Cy > 0 such that

lu(-, DllLr@) + lw, Hllr@) < Cy (3.12)
forallt € (0, Tmax), where

4 dy d4 dy

2’ (,2+d4+<a2) FOD- - —a B4+ 2 @)+ b)) — &b

§ i3 2
dl X1 (112 X
Po := max
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Proof For some p > po > 1, multiplying the first equation in (1.1) by pu?~! and
integrating by parts over €2, we deduce from Young’s inequality and Lemma 2.2 that

4 p+/ u”=—74d1(p_1)/ |Vug 2—Ll(p_nfu"(v—w)
Q p Q da Q

u
dr Jo
+X1(p_1)/up(z—u)
dy Q
+p/up<a0—a1u—a2w—a3/u—a4/w)—!—/up
Q Q Q Q
(3.13)
_4d1(P—1)/ wug 2+<51(P—1) —a2p>/ P
P Q Q

d
—1
+X1(P )/u,,z
dy Q

—1
+ ((ao+2a5Mo)p+ 1)/ ubl — (alp—i— M)/ ubtl
Q dy Q

for all t € (0, Thax), Where as := max {(a3)_, (a4)_}. By applying Lemma 2.2,
Lemma 2.3 and Young’s inequality, there exists a positive constant C¢ such that

P2
((a() + 2615M0)p + 1) / u? :((ao + 2“5M0)P + 1) HMZ ”LZ(Q)
Q

Ly It
LP(Q)

2 )
2
L) 3 14

B lut]

P
5C10<”V”2 ”LZ(Q)
(1-ap) 22\
SCIOMé) ! (/ |V147|2> +C10M0p

Q

SL(”_D/ Vit +Cy
p Q
o]

. l—lal pal 1=a P
forall € (0, Tax) with C1; = (1 —a1)Cy _— + CioM, > 0,

4di(p — 1)
np_n
where o) = ﬁ € (0, 1) due to p > 1. By inserting (3.14) into (3.13), we
2T
have

d -1 -1
5 Mp_|_/ u? §<—El(l; )—azp)f upw~|——X1(l; )/upZ
Q Q 2 Q 4 Q (315)

-1
_ <a1p+ M)/ WP 4
dy Q

forall t € (0, Trax)-
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Similarly, there is a positive constant C» such that

d —1 -1
d w,,+/ WP < (52(17 )_blp)/ whu 4 X2P )/ Wl
dr Q Q d4 Q d2 Q

-1
— (bzp + M) f wPtl 4+ Cpp
dy Q

(3.16)

for all t € (0, Tmax)-
It follows from (1.11) that

48 _x 48 _x

b max{ &t d T A & td T d }
R (e R (R R S e (o R R )

which implies that the constants o := <a1 —(a2)— —(bl)_>p— (5—;4—3—1 - ﬁ—;) (p—1)

and oy = <b2 —(ap)- — (bl)_>p — (% + j—i - g—;)(p — 1) are positive. By adding
up (3.15) and (3.16), and using Young’s inequality, we obtain

sl Lo o) oL o)
dr Q Q Q Q
S<M—a2p>/u‘”w+wfu"’z—(mp—FM)/u”H
d2 Q dy Q dy Q
+(M_blp>/wﬂu+wprv—(b2p
dy Q dy Q

-1
+7XZ(1;2 ))/Qw‘”‘H +Ci3 (3.17)

< —01/ uP 4 xp -l / ulz —02/ wPt 4 xp -1 / wlv+ Ci3
Q ds Q Q da Q
< — ﬁ/ wPtl (@)p<){l(ﬁ - 1)>p+1f fan
- 2 Jq o1 da(p+1) Q
+1
o P 2£>p<X2(p - 1)>p / P+
F e (2) Gosn) e
for all # € (0, Thhax) and some Cy3 > 0.
By using the Agmon—Douglis—Nirenberg L? estimates (see Agmon et al. (1959,

1964)) on linear elliptic equations with the homogeneous Neumann boundary condi-
tions, there exists a positive constant C4 such that

lvllw2r ) < CrallwliLr(e) (3.18)

for all € (0, Thax). Then, it follows from Lemma 2.2 and Lemma 2.3 as well as
(3.18) that
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(@)"(m(p—l))"“/vw _ (@)"(xxp—n)”‘”v”pﬂ
02) \da(p+1) Q o2 ) \da(p+1) Lri@)

< CisIDl i) 2 i)~ + Cislivllf T g,
< Cisllwlfrigy® + Crsmp™! (3.19)
p p+l1
for all + € (0, Tpay) with Ci5 = (i-f) <%> and Cig =
n— 1
C15Cf£+1)a2mgp+l)(l_a2), where oy = M—erln € (0, 1) because of p > 5.1t
P

is obvious to compute (p + 1)y < p. By using Young’s inequality with (3.19), we

get

(p+Da +1
< Cislwllfigy* + Cisml

LP ()
( + 1) » b _ (p(+l);>f)2
- = Da p—(p+Da:
< 0—2/ wp 4 LT R o (—2p ) C 4 Cismft!
2 Jo (p+ Doz
< "_2/ w4+ Cpy (3.20)
2 Ja
forall t € (0, Tiax) With
» __(pthep
= O'zpp|Q| p—(p+ Doy Cp(l,ﬂ)az< op ) p—(p+Das
2(p + DpH! 1o 2(p+ D

—i—Clsmg+1 > 0.

Likewise, we have

P _ p+l
2_P xi(p—1) /Zp+1 < ﬂ/ WPt 4 Ce (3.21)
o da(p + 1) Q 2 Ja

forall ¢t € (0, Tinax) with Cig > 0.
By combining (3.17)—(3.21), one can find a positive constant C19 such that

i(/u”+/w”)+</u1f’+fw”)wa (3.22)
dr Q Q Q Q

for all # € (0, Thyax). It follows from Lemma 2.4 that

/up+/wp§max{/ug+/wg,clg}
Q Q Q Q
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for all + € (0, Tmax) and some p > pg, which implies (3.12). The proof of Lemma
3.2 is complete. O

Lemma3.3 Lett =0,d; > 00 =1,2,3,4),&;, x; >0(j =1,2)and 2 C R"(n >
1) be a smoothly bounded domain. Suppose that (1.10) and (1.11) hold. Then, there
exists Cro > 0 such that

e, Dl Loy + lw(, DllLe@) < Cao (3.23)

forallt € (0, Tmax)-

Proof When n = 1, by Lemma 3.1 and the method in (Zheng and Mu 2017, Lemma
3.6), we can obtain that (3.23) holds. When n > 2, it follows from Lemma 3.2
and the Moser—Alikakos iteration in Alikakos (1979) (or Lemma A.1 of Tao and
Winkler (2012)) that (3.23) holds. Here we omit the details. The proof of Lemma 3.3
is complete. O

Proof of Theorem 1.1. It follows from Lemma 3.3 that [|u(-, t)|| zoo @)+ 1w (-, ) || Lo (@)
< oo forall ¢ € (0, Tmax). According to the well-known elliptic maximum principle
and (3.18), we derive [|z(, t)[|Lo(@) < |lu(-, D)||Lo@@) < 0o and [[v(:, D)]|Le@) <
lw(, H]le) < oo forall t € (0, Tmax). Hence, it follows from Lemma 2.1 that
Tmax = 00. The proof of Theorem 1.1 is complete. O

4 Boundedness for 7 = 1

The aim of this section is to show the global boundedness of solution to (1.1) with
© = 1 and prove Theorem 1.2.

Lemma4.1 Lett = 1 and Q2 C R"(n > 1) be a smoothly bounded domain. Assume
that (1.10) holds. Then, there exists a constant C1 > 0 such that

t+10 t+70
/ f u*(-, s)ds +f / w2 (-, s)ds < C) 4.1)
t Q t Q

forall't € (0, Tmax — 7o), where 1o := min{1, T,

Proof From (2.7), we get

i/(u—i—w)—l—min{ll,lz}/(uz—}-wz) < max{ao,bo}/(u+w) 4.2)
dr Jo Q Q
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for all # € (0, Tmax). Then, by integrating over (¢, t + 79) and using Lemma 2.2, we
obtain

t+T1
/ (u(-, t+10) +wi, t+ ro)> + min{/,, 12}/ 0/ <u2(-, ) + w?(, s))ds
Q t Q
47
fmax{ao,bo}/ 0/ (u(~,s) + w(-,s))ds +/ (u(',t) + w(~,t)) 4.3)
t Q Q

< ( max{ag, bo}to + I)Mo

for all t € (0, Tnax — 7o), which implies that (4.1) holds. The proof of Lemma 4.1 is
complete. O

Lemma4.2 Lett = 1,d; > 0( = 1,2,3,4),&;,x; > 0 = 1,2) and Q C
R*(n > 1) be a smoothly bounded domain. Assume that (1.10) holds. Then, there
exists a constant Co > 0 such that

/ IVo(, D> < Ca (4.4)
Q
and
/ IVz(, ) < G2 4.5)
Q
forallt € (0, Tmax), as well as

4710
/ / |AV(., 5)[*ds < Ca (4.6)
t Q

and

t+10
f / |AZ(-, 5)|*ds < C; (4.7)
t Q

fOV allt € (0, Tmax - tO)’ where 0 ‘= min{l’ Tniax }

Proof Multiplying the second equationin (1.1) by —2Av and using Young’s inequality,
we derive

d 2 2 2
— | IVu|"+2 [ |Vu|"+2dr | |[Av|"=—-2 [ w-Av
dr Jo Q Q Q

1
5—/ w2+d2/ AvP,
dr Ja Q
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then,

d 1
—/ |Vv|2+/ |Vv|2+d2/ |Av|? < —/ w? (4.8)
dt Jo Q Q dy Jo

for all # € (0, Tiax)-
In view of (Stinner et al. 2014a, Lemma 3.4) and Lemma 4.1, we obtain

/|Vv(-,t)|2§max{/ |vv0|2+cl,3cl} (4.9)
Q Q

forall # € (0, Tryax)-
By integrating for (4.8) over (¢, t + 19), we get

t+10 t+10
/|Vv(-,t+t0)|2+/ /|Vv(~,s)|2ds+d2/ /|Av(-,s)|2ds
Q 1 Q t Q
1 t+10 (410)

<— /w(.,s)de/ IVo(, 1)
dr J; Q Q

for all t € (0, Thax — T0), Where 79 := min{1, T“ia" }. By using Lemma 4.1 and (4.9),
we get (4.6). Similarly, we get (4.5) and (4.7). The proof of Lemma 4.2 is complete. O

When n < 2, we shall establish L% —boundedness of u and w, which is essential to
obtain L°° —boundedness of u# and w.

Lemma43 Lett =1,d; > 00 =1,2,3,4),&;, x; >0(j =1,2)and 2 CR"(n <
2) be a smoothly bounded domain. Suppose that (1.12) holds. Then, for all nonnegative
initial data (ug, vo, wo, zo) satisfying (1.3), there exists a constant C3 > 0 such that

lu(, Dll2) < C3 .11
and

lw(, D2 = C3 (4.12)

forallt € (0, Tmax)-

Proof Multiplying the first equation in (1.1) by 2u and integrating by parts over €2,
we derive from Lemma 2.2 and Young’s inequality that

d
— u2=—2d1/ |Vu|2—§1/u2-Av+x1/u2-Az
dr Jq Q Q Q
+2/u2(a0—a1u—a2w—a3/u—a4/w)
Q Q Q

5—2d1/ |Vu|2—§1/u2~Av+x1/u2-Az
Q Q Q

+2(a0+2a5M0)/ u2—2a1/ u3+2(a2)_/ uw
Q Q Q

(4.13)
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for all 7 € (0, Tnax), Where as := max {(a3)—, (as)—}.
Similarly, we get

d
— w2§—2d3/Ilez—ész2~Az+X2/w2'Av
dr Jo Q Q Q

(4.14)
+2(bo + 2b5M0)/ w? — 2b2/ w’ + 2(b1)_/ w?u
Q Q Q

forall # € (0, Tyax), where bs := max {(b3)_, (bs)—}. Then, combining (4.13) with
(4.14) and using Young’s inequality, we have

d
— (u2+w2)§—2d1/ |Vu|2—§1/u2~Av+x1/u2-Az
dr Jo Q Q Q
—2d3f IVw|2—$2/w2~Az+x2/w2-Av
@ = @ (4.15)
+2(a0+2a5M0)/ u2—2a1/ u3+2(a2),/ w?w
Q Q Q

+2(bo—|—2b5Mo)/ w2—2b2/ w3+2(b1)_/ wu
Q Q Q

for all t € (0, Tnax)-

We next estimate the boundedness of [[u|[2(q) + w1 2(q) Wwhenn = 1andn = 2,
respectively.
Case 1: L>—boundedness for n = 1.

By Lemma 2.2, Lemma 2.3 (n = 1), Holder’s and Young’s inequalities, we deduce

- /Q w - Av <&l g, - 18] 20

<Ca(IVull 20 lull L1 () + 171 gy 1AV L2

(4.16)
<Cs(IIVull 2@y + 1)1 Avll2(q)
<— [Vul|= 4+ Ce¢ |Av|” 4+ Cg
3 Ja Q
with some Cy4, Cs5, Cg > 0. Similarly, we have
2d
xl/ i Az s—‘/ |W|2+c7/ AP +Cr (4.17)
Q 3 Ja Q
and
2d
—g2/ w? - Az 5—3/ |Vw|2+C8/ |Az|? + Cg (4.18)
Q 3 Ja Q
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as well as

2 2d3 2 2
x2 | wo-Av <— [IVw|* + Co | |AV|* + Co, 4.19)
Q 3 Ja Q

where C7, Cg, Cg > 0.
By Young’s inequality, we have

2(a)- / uPw +2(b)- f wlu < 2((a2>+<b1>>( S + [ u3). (4.20)
Q Q

Then, using Lemma 2.2, Lemma 2.3 (n = 1) and Young’s inequality, we derive

2 5 3
2<(az)+(b1))/u3 Sclo(f |Vu|2>3</u>3 +clo<f u)
Q Q o e/ 421

<— [ IVul"+Cu
3 Ja

with some C1g, C11 > 0. Similarly, we have

2d
2((a2)_ + (bn_) / wt < 2B / Vul? +Cia 422)
Q 3 Ja
with some Cj, > 0.

In view of (4.15)—(4.22), we deduce from Young’s inequality that

d
dr Jgo

§(C6+C9)/ |Av|2+(C7+Cg)/ |AZ|2
Q Q

(u* + w?) +2/sz (u* + w?)

+ 2(ag + 2as My + 1)/ u? — 2a; / u’
Q Q 4.23)

+2(bo+2b5Mo+1)f w2—2b2/ w?
Q Q
+Ce+C74+Cs+Co+Ci1+Cr2

E(C6+C9)f |AU|2+(C7+C8)[Q|AZ|2+C13
Q

for all t € (0, Tryax) With some Ci3 > 0.
Accordingly, in view of (Stinner et al. 2014a, Lemma 3.4) and Lemma 4.2, we have

/ WG, 1)+ wi(-, 1) < Cig
Q
for all t € (0, Tnax)-
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Case 2: L2 —boundedness for n = 2.
By utilizing the Young’s inequality, we find that

2(a0+2a5M0)f u2—2a1/ u3+2(a2),/ uw>w
Q Q Q

+2(bo+2b5Mo)/ w? —2b2/ u’ +2(b1)_/ wu
Q Q Q

2@) (bl)_>f r
Q

3 3

< 2(ap + 2a5M0)/ u’ — 2<a1
Q

+2(bo + 2bsMo) / w? — 2<b2 -
Q

<Cis,

8(agp + 2asMo)>

20)- (a2>_> / )
3 3 o

8(bo + 2bsMy)?

(4.24)

where Ci5 =

Q|+ 2|S2| > (0 and

27(611 _ 2(“%)— o (bg)f )2

: 27(b2 _ 2@’3})— _ (aé)—)
we have used the facts that

2(a2)-  (b1)-
a — ——— —

>0
3 3
and
2(by)— _
by 20D @
3 3

because of (1.12). Then, combining (4.15) with (4.24) yields

(u2+w2)§—2d1/|Vu|2—§1fu2-Av+x1/u2-Az
Q Q Q

—2d3/|Vw|2—§2/w2~Az+x2/w2-Av+C15
Q Q Q

(4.25)

d

dr Jo

forall t € (0, Tinax)-
It follows from Lemma 2.3 (n = 2), Holder’s and Young’s inequalities that

_§1/Qu2.lAv+X1/Qu2l.Az_ngngl.Az_sz/;zwlz.Av
551(/9“4)2~§/Q|Av|2)2+1xl(/gu4)2.<I/Q|Az|z)2 |
o) () o) (o)

s/\(llulli4(9) + llwlli4<g)) (nAanz(m + ||Az||Lz(m>
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§C16(lIVu||L2(sz)||M||L2(sz) + ||u||2Lz(Q)> (lIAU||L2(Q) + ||AZ||L2(.Q)>

+ C16<||Vw||L2(Q)||U)||L2(s2) + ||w||iz(g)) <||AU||L2(Q) + ”AZ”L2(Q)>

<2d1[|Vull3s g + 2431 VWl g,

+ cn<||u||izm) + ||w||§z(m) (nAvniz(m +11Azl72 g, + 1) (4.26)

forallt € (0, Tiax), where A := max{&q, x1, &2, x2}, C16 = ACéN > 0and Cy7 > 0.
By (4.25) and (4.26), we have

d 2 2 2 2 2 2
a(/g“ +/Q“’ ) §C17(/QM +/Qw 1801y + 182820y 1)y 0

+ Cys.

By Lemma 4.1 and Lemma 4.2, there exists some #y € [t — 19, 1] C (0, Tax) such
that

/uz(-,to)—i--/ wz(-,to)gmax{/ uf+wd, 20} = Cis,  (4.28)
Q Q Q

where 7 := min{1, T‘B“" }. By integrating for (4.27) over (f, t), we deduce

fuz(-,r)+/ w? (-, 1)
Q Q
i1
5/ (uz(,’to)+wz(.’t0)>eclvf,o (18009125 o HIAZCI2 o +1)ds 429)
Q

t t 2 2
C Av(-,s +IAzZ(,s +1)ds
+C15/ e s (” P2 g HIAZC2 g ) *ds.
fo

With the aid of (4.28), Lemma 4.2 and the fact that r — typ < 79 < 1, we obtain the
boundedness of fQ u?(-, 1) + w?(-, 1) forall t € (0, Tmax). The proof of Lemma 4.3
is complete. O
Lemma4.4d Lett =1,d; >0 =1,2,3,4),&;, x; >0(j =1,2)and 2 CR"(n <

2) be a smoothly bounded domain. Suppose that (1.12) holds. Then, for g > 1 there
exists a constant C19 > 0 such that

lu (-, DllLa@) + llw, DllLae) < Cio (4.30)

forallt € (0, Tmax)-
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Proof Multiplying the first equation in (1.1) by qu?~'(q > 1) and using Young’s
inequality as well as Lemma 2.2, we infer from a simple calculation that

d
— | u? +diq(g — 1)/ Lﬂ_2|Vu|2
dr Jo Q

=$1q(q—1)/ uq_IVu'Vv—xw(q—l)/ ui='Vu . vz
Q Q

—|—qa0/up—q/ uq<a1u+a2w+a3/u+a4/ w)
Q Q Q Q

sélq(q—l)fguq_IVu-Vv—mq(q—1)/Quq_lw-Vz

+q(ao+2asMo)/ u"—qalf uq+l+q(az)</ u"“+/ wq“) (4.31)
Q Q Q Q

for all r € (0, Tnax), Where as := max {(a3)_, (a4)_}.
In view of (Liu and Tao 2016, Lemma 2.3) (n < 2) and Lemma 4.3, we have

lvllwia@) < Cao (4.32)
and
zllwi4q) = C20 (4.33)

for all # € (0, Trmax) With some Cpp > 0.
It follows from (4.32), Young’s and Holder’s inequalities that

£1q9(q — 1)/ ul='Vu - Vo
Q

- w/ u4*2|Vu}2+q(q—l)$12/ quVvl2
5 Q @

1 (4.34)
_diglg =D 2
< —/ =2|ul + g(g - DE? / / |vol*
d —1
< Mf uq_2|Vu’2 +q(qg — 1)512C§0</ Zq) )
5 Q Q
By Lemma 2.3 and Lemma 4.3, there exist some C;1, C22 > 0 such that
1
2,2 24\ _ 22 42
g — D& C3 L =q(q — )& Cylu? ||L4(s2)
203 2(1—a3) (4.35)
<Car| Tt 5 I 24 + o2

<Cxn HVM% Hiof(m + Co,
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where

ng _n
4 4
a3 =——— € (0,1
YTy m ©.D

due to g > 1 and n < 2. Making use of the Young’s inequality, we have

1
2 o3
q(q_1)512C§0</'42q> SC22</ IVuglz) +Cx»
¢ Lo (4.36)
cAa=D )/uq—z\vu|2+c23
5 Q

with some C»3 > 0. Combining (4.34)—(4.36) yields

2d —1
slq(q—D/ WV -V s%/ W2 Vuf + Cn 437)
Q Q

Similarly, we get

2d -1
—x19(q — 1)/ ul='Vu - vz 5%[ uq_2|Vu|2—|—C24 (4.38)
Q Q

with some Ca4 > 0.
As a consequence of (4.31), (4.37) and (4.38), we obtain

d d —1
a Mq+ ICI(q )/uq_2|vu|2
dr Jo 5 Q

Sq(ao+2a5Mo)/ ul —qm/ ud*! +q(a2)_</ ut*! +/ wq“) (4-39)
Q Q Q Q

+ Co3 + Co4.

Making use of the similar method on w-equation, we have

d d —1
_/ wq+ 3Q(q )/ wq_2|Vu|2
dr Jq 5 Q

SQ(b0+2b5M0)f w"—qbzf wq+1+q<b1)_</ uq+1+/ wq+1)+C25
Q Q Q Q
(4.40)

with some C»5 > 0. Then, we deduce from (4.39) and (4.40) that

sl Lo L) val Lo [)

+d161(q—1)/uq_2|vu‘2+d3Q(q—1)/ wi2|Vu|?
5 Q 5 Q
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<q(ap + 2as Mo + 1)/ u? —qal/ u?™! +Q<(az)f +(b1)7)/ u?™!
Q Q Q

+q(bo+2bsMo+1>/ wq—qbzf wq+‘+q(<az>_+(b1>_>/ wit! 4 Cag
Q Q Q
(4.41)

with some Cps > 0.
By applying Lemma 2.3, Lemma 4.3 and Young’s inequality again, there exist some
C27, Cag, Ca9 > 0 such that

q 2(g+1)
q<<a2>_+<b1>_>/ ut ! =q((a2)_+<b1>_)|!uf|! By
Q L 17 (Q)

2g+D) (1 2(g+1)
g (1—aq)

q @0‘4 q q q
S A R L 7@ + Corlu? ”Lg(ﬂ)
2(q+D)
< Cag|Vu? I, ‘(’Q)M + Cag
< dglq =1 / uq_2|Vu\2 + Ca (4.42)
5 Q
where
ng _ _nqg
2~ 2q+D
=" 0,1
ag =T Ty €0,

because of ¢ > 1 and n < 2. Similarly, there exists a positive constant C3p such that

q((az)_ +(bl)_)/9w‘i+l < @/guﬂﬂvﬂﬁcw. (4.43)

By (4.41)—(4.43), we derive from Young’s inequality and Lemma 2.4 that (4.30)
holds for all # € (0, Tmax). The proof of Lemma 4.4 is complete. m]

Lemma45 Lett =1,d; >0 =1,2,3,4),&;, x; >0(j =1,2)and 2 C R"(n >
3) be a smoothly bounded domain. Suppose that (1.13) holds. Then, for p > 1 there
exists a constant C31 > 0 such that

lu(-, DllLre) + lw, Hlir@) < C31 (4.44)

forallt € (0, Tmax)-
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Proof For all p > 1, multiplying the first equation in (1.1) by pu”~! and integrating
by parts over 2, we derive from Young’s inequality and Lemma 2.2 that

d
el p 1 p
pP Qu +(p+ )/Qu

4d —1 p
=_M/ |vu%\2—§](p—1)/ul’.Av+x1(p—1)/ul’-Az
p Q Q Q
+(pao+p+1)/914”—p/szup<a1u+a2w+a3£2u+a4£2w)
4d —1 p
S—%/ Wu12|2+<(ao+205Mo)P+P+1>/ ub
Q Q

—|—$1P/ |Av|PT! +X1P/ |Az|PH!
Q Q

— (al — (@) — & — xl)p/ uPt 4 (az)—P/ wh!
Q Q

forall 1 € (0, Tinax), Where as := max {(a3)—, (a4)_}.
It follows from (3.14) and (4.45) that

i[ up+(p+1)/ u? S($1+X1+(a2)7—a1)17/ u”“—l—(az)fp/ wrt!
dr Jq Q Q Q

(4.46)
+§117/ |Av|PT! +xlp/ |Az|PT! + Cx,
Q Q

(4.45)

forall t € (0, Tinax) with C3o > 0.
Let 19 € (0, Tmax) such that o < 1, there exists a positive constant C33 such that

t
/up 5(51+X1+(a2)——a1>p/ e_(”“)(“”/ uPt(s)ds
Q 1 Q

t
+(a2)_p/ e_(p'*'])(’_s)/ wPt(s)ds
19 Q
t t
+§1P/ e—(p+l)(r—.r)/ \AU(S)lIH']dS—i-le/ e—(p+l)(r—s)f \Az(s)\p“ds
Iy Q 1o Q
t
+e—(p+l)(t—t<))/ up(t0)+c32/ e—(p+l)(t—.v)ds (447)
Q to
t t
Sélp/ e—(pﬂ)(r—s)[ |Av(s)|"+‘ds+x1p/ e—(p+1)(r—x)/ |AZ(s)|P+ ds
fo Q fo Q
t
+ (51 + x1 + (a2)- — al)P/ 67(”“)(’7”/ uP T (s)ds
10 Q

t
+(a2)7p/ e*(p#»l)(tfx)'/ w”+1(s)ds+C33
fo Q

forallt € (t9, Tmax), Where we have used the variation of constants formula to (4.46).
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By applying the similar way to w-equation, we get

t t
f wP <&p / e~ (PHDI=s) f |Az()|PT ds + xop / e~ (PHDI=s) f |Av(s)|PHds
Q to Q 1o Q

t
+ (sz + x4 (b1)- — bz)l? f e~ (PHDI=s) / wPt(s)ds (4.48)

1o Q

1
+(b)-p / e P / uP*(s)ds + C3
10 Q

for all t € (ty, Timax), Where Czq > 0.
By (4.47) and (4.48), we derive

t
/ uP + / w? 5(& + X1+ (@)— + (b)) —al)p f e (PHDI=s) / uP(s)ds
Q Q fo Q

t
+ (1 +&)p f e~ (PHDI=s) / |Az(s)|P T ds

0 @ ) (4.49)
+ (sz + x2 + (@)— + (b1)- —b2>P / e~ (PHDI=9) / wPt(s)ds

10 Q

t
+(51+Xz)p/ e*(”“(’*”/ [Av(s)|PH ds + Css
Q

fo

for all t € (t9, Tmax), Where C3zs = C33 + C3q4.
By applying Lemma 2.5 with the second equation in (1.1), there exists a positive
constant C36 = Cs, (d2) such that

t
/e—@“)(f—-“)/ |Av(s)|PH ds

1o Q
t
1 +1
§C36/ (P tDs / wPt(s)ds + C36e1"0(||v(~, t0)||12r+1(9) + |Av(., l‘O)”IL?,;H(Q)).
1) Q

(4.50)

Similarly, we can find C37 = Cg, (ds) > 0 such that

t
/e*(p+1)(1*-v)‘/. \AZ(S)|p+]dS
10 Q

'
+1 +1
§C37/t o(PtDs /;2 uPt(s)ds + C37ePlo(||Z(-, to)”ipH(Q) + [1Az(, to)||€p+l(9))

i 4.51)

forall t € (tg, Tmax)-
By collecting (4.49)—(4.51), we get

t
/u”+f w? S*(“l —§1-x1 = (@)= =(b)- = Cx1(x1 +52>>pf e‘<P+‘><"-“)/ uPt(s)ds
Q Q 10 Q
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t
- <b2 —& — x2— (@) — (b)) — Cag(51 + Xz))p f e~ (PHDE=s) fg wP(s)ds + Csg
10
(4.52)

forall ¢t € (tg, Tmax), Where

1 1
C38 :C36(X1 + gz)pept0<||v(~, tO)”i:Jrl(Q) + ||AU(, tO)”z;tFl(Q))

I I
+ C37(&1 + x2) pe™ (HZ(', lo)lli;l(g) + I1Az(., to)llijﬂ(g)) + Css.

It follows from (1.13) that the constants a; — &1 — x1 — (a2)— — (b1)— — C37(x1 + &2)
and by — & — x2 — (a2)— — (b1)— — C36(&1 + x2) are positive. Hence, we derive from
(4.52) that

/ u? —I—/ w? < Csg (4.53)
Q Q

for all ¢t € (fy, Tmax)- By Lemma 2.1, we obtain that fg uf + fQ w? is uniformly
bounded on (0, #9). The proof of Lemma 4.5 is complete. O

Proof of Theorem 1.2. Thanks to (Hu and Zheng 2022a, Lemma 3.2) and the bound-
edness of ”u ” Lk T H w H L @) for sufficiently large k, we obtain the boundedness

of Hvalm(Q), szLc>o Q) for all t € (0, Thmax)- For the case n < 2, by Lemma
4.4 and the Moser—Alikakos iteration in Alikakos (1979) (or Lemma A.1 of Tao and
Winkler (2012)), one can obtain the global boundedness of solution to (1.1). For the
case n > 3, the global boundedness of solution to (1.1) is derived by Lemma 4.5 and
the Moser—Alikakos iteration in Alikakos (1979) (or Lemma A.1 of Tao and Winkler
(2012)). Hence, it follows from Lemma 2.1 that Trpax = 00. The proof of Theorem
1.2 is complete. 0

5 Asymptotic Behavior

In this section, under the assumption that locally intraspecific competition and glob-
ally interspecific cooperation cases (i.e., ao, ai, bo, bo > 0, a», as, b1, b3 < 0), we
shall prove Theorems 1.3 and 1.4 by constructing some energy functionals, sepa-
rately. In what follows, assume that system (1.1) has a unique global classical solution
(u, v, w, z) with the property (1.17). To achieve our goals and apart from constructing
the energy functionals, we first give the following key lemma.

Lemma 5.1 (see (Bai and Winkler 2016, Lemma 3.1)) Let f(¢) : (1,00) — R be a
nonnegative and uniformly continuous function that satisfies | loo f(@®)dt < oo. Then,
f(@)—>0ast — oo.
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5.1 Proof of Theorem 1.3

Lemma5.2 Lett = 0and (u, v, w, 7) be a global bounded classical solution to (1.1).
Suppose that the conditions of Theorem 1.3 hold. Then, there exists § > 0 such that

iE(t)<—8 U—u)?+W=—v)+w—w)’+@—z0*) .1
dr 1 = o * * * I — Tk .
forallt > 0, where

u w
E (1) :=f (u—u*—u*ln—)—l—/ (w—w*—w*ln—>
Q Uy Q Wi

and (U, Vs, Wy, Z4) satisfies (1.16). Moreover,

//(u—u*)2+f /(v—v*>2+/ /(w—w*)2+f /(z—z*)2<00~
0 Q 0 Q 0 Q 0 Q

Proof Setting

A(t):/ <u—u*—u*1ni),

Q Us

B(t):/ <w—w*—w*lnﬂ>,
Q Wy

then E1(¢) can be rewritten as

(5.2)

E\(t) = A(t) + B(t) (5.3)

forall r > 0.
Firstly, we show the nonnegativity of E1(¢). Let y(s) := s — u, Ins for s > 0. By
applying Taylor’s formula, there exists o € (0, 1) such that

1
Y@) = ) =Y - @ =) + 2y Tou+ (1= o)l - (= )’
5.4)
_ U _ 2 >0 (
“out(d—oymp =

for x € Q and ¢ > 0, which implies that A(1) = [, (y(u) — y(us)) > 0. Similarly,
we can obtain B(¢) > 0 for all # > 0. Thus, E;(¢) is nonnegative.
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Next, we will prove (5.1). By a simple calculation with (1.1), we have

dA(t) d/ 1 u
— =— U— Uy — Uy In —
dt dr Jo O,
=/ (1—ﬁ><d1Au—§1V-(qu)+X1V‘(qu)>
Q u
+/ (u—u*><ao—a1u—a2w—a3/u—a4/ w) (5.5)
Q Q Q
Vu|? Vu Vu
=—d1u*/ — +$1u*/—'Vv—X1u*/—~VZ
Q Q U Q U

—+—/ (u—u*><a0—a1u—a2w—a3/u—a4/w).
Q Q Q

It follows from ag = (a1 +a3|S2|)u«+ (a2 +a4|2|) wy, Holder’s and Young'’s inequal-
ities that

/(u—u*><a0—a1u—a2w—a3/u—a4/w)
Q
=/ (u—u*><a1(u*—u)+az(w*—w)+a3/(u*—u)+a4/(w*—w))
——m/(u—u*>2—a2/(u—u*><w—w*>—a3(/(u—u*>>

_a4f(u_u*)'/(w_w*)

Q Q
<— <a1 — (a3)-19| — w>/(u—u*)2—a2/(u—u*)(w—w*)
Q Q
(as)-1Q o
+—2 /Q(w

Therefore, we have

d Vu |? Vu Vu
—A(t) < —diuy + Equy — Vv — xjux — - Vz
dr Q Q u Q u

- (al — (a3)-192| — M) / (u — uy)? (5.6)
2 Q

—a2/(u—u*)(w—w*)+M/(w—w*)2.
Q 2 Q

By using a similar method for B(¢), we get

2 Vw Vw
+ &Hw, — - Vz—xowy | — Vv
Q w Q w

d Vw
—B(t) < — dzwy
dr Q
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b3)_|Q
- (bz— (ba)_|2 - %)/(u} —w,)?
Q

— by / (U — u)(w — wy) + (b3)-182 f (U — uy)? (5.7)
Q 2 Q

due to the fact that by = (b1 + b3|§2|)u>,< + (b2 + b4|§2|)w*
By combining (5.3), (5.6) and (5.7), we get

Vu
+§1M*/ — VU—XIM*/ -Vz

+§2w*/— Vz—sz*/—

_<a1_(a3)_|m_ (a4)2_|sz| ~ (b3)2—|9|>/(u_u*)2 5.8)
Q

d
—El(t) <- d1u*/

\%
—d3w*/
Q

— (a2 +b1)/9(u — ) (W — wy)

b3)_|Q2 _|
_ <b2 by — ( 3)2| | (a4)2| |> / (w — wy)2.
Q

By applying Young’s inequality, we have

Vu v d1
A1 t=g 2d1

— — Vv
a/ < 2d1/| §
\Y d vwl? %3

—Xzf—w'vvfi/ Yw +X—2/|Vv|2
Q w 2 Q w 2d3 Q
Vw d Vu | 2

& —-Vz§—3/ — +S—2/|Vz|2
Q w 2 Q| w 2d3 Q

Then, we deduce

dpw<- (a1 — (@)_|a) - @ (b”z"g')fgw — )

u

and

as well as

dr 2
— (a2 +by) /Q(u — U ) (W — wy)

b3)_|2 _|1
—(bz—(b4)_|§2|— ( 3)2| | (a4)2| |)/(w—u)*)2
Q
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u w u w
4+ (51 * X2 * / v X1 * 52 * / |VZ|
5.9
It follows from 0 = do Av — v + w and vy, = w, that
d2/ |Vv|2=—/(v—v*)z—i—/(v—v*)(u}—w*). (5.10)
Q Q Q
Similarly, we have
d4/ |Vz|2=—/(z—z*)2+/(z—z*)(u—u*)- (5.11)
Q Q Q
Together with (5.9)—(5.11), we get
d _|2 b3)_|Q
aEl(z)s—<a1 —(a3)-19 - (”“)2‘ - 3)2' ‘)/Q(u_u*)z
— (a2 +b1)/g(u—u*)(w—w*)
b3)_|Q2 _|1Q
—(bz—(b4)—|9|— G-l )] ')/(w—w*f (5.12)
Slu* xzw* / e Slu* sz* / B B
2d2 a (v—v:)" + a (v —v) (W — wy)
1 Xl”* {"2“}* / 2 X]u* 352 * / _ _
2d4( 4 =+ ( a (z = z) (U — ).

Since the conditions (1.18) and (1.19) hold, y; := aj — (a3)_ || — @121 ) 19

and yy := by —(bs)_|2|— w — w are positive, and there exist 01, 6, € (0, 1)
such that

4610:y1y> > (as + b1)?, (5.13)
2 2
Y1 > max e Xi , Wiy (5.14)
4dyds(1 — 01)" 4dzda(1 — ;)

and

'4*512 w*Xzz }

) 5.15
4didr (1 — 67) 4drd3(1 — 62) 1)

y2 > max {

According to (5.13)—(5.15) and u,, w, > 0, one can find some § > 0 satisfying

5 < min [ 401071y — (az + b))% 41— ODyididausx? —uly! 41— 0)y1dadaw.E7 — wiES
- 010211 +12) A —0)dida(didayr + unxD) T 41— 0)d3da(dsdayy + wiES) ’(5 16)
40— 0)prdi dyuE2 — u2Er 41— ) yadadswixd — wid ’
4(1 — O)dvdy (dvdayr + 1) 4L — 02)dad3(dadsys + wex3)

,)/lql/z}‘
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Therefore, we get

4y < - 8/ ((u ) = v (w— w2 — z*)2>
dr Q

(5.17)
[t b+ ),
where
hi = =01(y1 — 8)(u — us)* — (a2 + b)) (u — w) (w — w,) — a(y2 — &) (w — wy)?,
=1 = o) + ;’d*f‘d‘i W — 1)@ — 20) — %(le —8)(z—z)?,
hy == _291 1 = 8 —u) + ;‘:ﬁ (U —u)(z = 2) — %(ﬁf —8)(z =27,
hy = _292 (72 = 8)(w — wy)* + 2”;15;2 (W —w) (v —v,) — %(Zlf,i —8)w — v,
hs = -2 _292 (2 = O)(w — w)* + 2’”;2’2 (W — w) (v — vy) — %(‘Zf —8)(v —v)?.
For each the discriminant of k; (i = 1,2, 3,4, 5) and by (5.16), we have
Ay = (a2 +b1)*(w — we)* — 40162 (y1 — 8)(y2 — &) (w — wy)* <0,
Ay = j;;‘dz (2 —dx _29‘ (1 — 8 x %('z,lzj —8)(z —2.)* <0,
Az = szé (z—z)* =4 x 1_291 (y1 — 8) x %(j}f —8)z—z)? =<0, (5.18)
Dy = 4bf;522 (v —v.)? — 4 x 1 _292 (r2 = 8) x %(L:lfilj —8)(w—v.)? =0,
As = :fz;zz (—vs)? —4x 1_2792(;/2 —8) x %(gf —8) (v —vy)* <0,
which concludes
hi <0,i=1,2,3,4,5. (5.19)

By (5.17) and (5.19), we directly obtain (5.1). Finally, integrating (5.1) over (0, 00),
we get

/f(u—u*>2+/ /(v—v*>2+/ /(w—w*>2+/ /(Z—z*)2<00~
0 Q 0 Q 0 Q 0 Q

The proof of Lemma 5.2 is complete. O
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Lemma 5.3 Suppose that the conditions of Theorem 1.3 hold. Then, the solution of
(1.1) satisfies

e, 1) — wsll Loy + V(L 1) — villLoo(@) + lw (e, 1) — wyllLoo(e)

(5.20)
+ 1z, 1) — zxllLe@) — 0

ast — oQ.

Proof A combination of Lemma 5.1 and Lemma 5.2 implies this lemma. The proof
of Lemma 5.3 is complete. O

Lemma 5.4 Suppose that the conditions of Theorem 1.3 hold. Then, there exist C; > 0
and k > 0 such that the solution (u, v, w, z) of (1.1) satisfies

N (-, 1) — usll Loy + IV(, 1) — vyl Loo(e)

B (5.21)
+llw(, 1) — willzo@) + 12, 1) — zellLo@) < Cre™!

forallt > t1, where t| > 0 is some fixed time.

Proof This idea of proof is similar to (Bai and Winkler 2016, Lemma 3.7). For reader’s
convenience, we give the sketch of the proof.

According to the function y(s) = s — u, Ins for s > 0 that is given in Lemma 5.2
and L"Hopital’s rule, we have

ys) = y) 1

li = . 5.22
i (s — uy)? 2u, (5.22)
Similarly, we have
S — Wy — Wy In =
lim P Wy, 1 (5.23)
§—> Wy (s — w*)2 2Ws

By Lemma 5.3, there exist some #; > 0 and C, C3 > 0 such that

C2/ (1 — u)? < f (u — 4y —uyIn i) < Gy f —u)?  (5.24)
Q Q Uy Q

C2/ (w — wy)? < / (w — Wy — wyIn i) < C3f (w—wy)?  (5.25)
Q Q W Q

forallt > 1.
By means of the definition of E (¢), it follows from the second inequalities in (5.24)
and (5.25) that there exists C4 > 0 such that

and

C4+E\(t) < / (u—up)* + / (v—v)? + / (w — wy)? + / (z — z4)? (5.26)
Q Q Q Q
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for all t+ > #;. With the aid of Lemma 5.2, we get

i151(r) < —5(/ (u —us)® + / (v—ve)? + / (w— we)* + f (z— 27
dr Q Q Q Q
< —C48E (1), (5.27)
which implies
E\(t) < Ey(t))e”“400—1) (5.28)

forallt > t;. Then, by combining (5.28) with the first inequalities in (5.24) and (5.25),
we derive a positive constant C5 > 0 such that

/ =)+ / (w — wy)? < C5E1(1) < CsEy(m)e-CH¢  (5.29)
Q Q

forall t > 1.
By applying the Gagliardo—Nirenberg inequality and (1.17), there exist some pos-
itive constants C¢, C7 and Cg such that

N (-, 1) — wsll Loy + lw (-, 1) — wyllLoo(e)

_n_ 2
_n_ 2
- Collw 1) = wall o 0 1) — w3,
2 2
<CluC 1) = wal [y + Crllw( 1) — wall 732, (5.30)

) ) n+2
fCS(”u(, t) - u*”LZ(Q) + ||IU(, t) - w*”LZ(Q))

1
nt2 Cad(—1y)
<Cg| CsE(11) e 2

forall t > 1.
Accordingto T = 0in (1.1) and v, = wy, 24 = Uy, We get

lo(-, 1) — villLoe(@) + 1120, 1) — 2l Lo (@)
Sllw(, 1) — wyllpoo@) + lu(-, 1) — usll L)

) (5.31)
n+2 Cydt—t1)
<Cg <C5E1(ll)> e nf2

by the application of the elliptic maximum principle and (5.30). The proof of Lemma
5.4 is complete. O

Proof of Theorem 1.3. Lemma 5.4 directly shows the results of Theorem 1.3. O
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5.2 Proof of Theorem 1.4

When t = 1, we firstly introduce the following functional

u w £1 :
E>(1) :=/ (u—u*—u*ln—>+/ (w—w*—w*ln—)+—/ <v—v*)
Q Uy Q Wi 2 Q
2
02

where p1, pp > 0 shall be determined and (u4, vy, Wy, z4) satisfies (1.16).

Lemma5.5 Lett = 1and (u, v, w, 2) be a global bounded classical solution of (1.1).
Assume that the conditions of Theorem 1.4 hold. Then, there exists B > 0 such that

iE(t)<—ﬁ U =)+ =)+ w—w)?+ (z—z0)%) (532)
di 2 = o * s * e T .

forallt > 0. Moreover,

//(u—u*)2+/ /(v—v*)2+/ /(w—w*)2+/ /(z—z*)2<oo.
0 Q 0 Q 0 Q 0 Q

Proof Firstly, E(t) can be rewritten as
E>(t) = A(t) + B(t) + C(t) + D(1), (5.33)
where A(1), B(t) are given by (5.2) and C (1) := &- [, (v — v*)z, D(t):=2 [, (z—

z*)z. We obtain the nonnegativity of E>(t) by (5.4).
Next, we will prove (5.32). It follows from a simple calculation that

%C(t) =p1 f (v —v) (2 Av — v+ w)

@ (5.34)

=—p1d2/ IVvIZ—m/(v—v*)2+p1/(v—v*)(w—w*)
Q Q Q

and

%D(l) 21)2/ (z — ze)(dsAz — 2 + u)

¢ (5.35)

= —Pzd4/ |Vz[? —p2/ (z — z4)? +p2f (2 — ze) (U — uy),
Q Q Q

where we have used the facts that v, = wy and z, = u..
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By combining (5.9), (5.34) and (5.35), we get

d _|R b3)_ |2
—Ez(l)5—<a1—(a3)—|9|—(a4) | '—(3)2' ')/Qw—u*ﬂ

dr 2

— (a2 + b1) fQ(u — ) (W — wy)

b3)_|Q2 |2
_(bz_(b4)_|9|_(3)2| I_(a4)2| I)/Q(w_w*)z

1 &l xjws / >
- — p1d; \Y 5.36
+(2( o T a ) — p1da Ql v (5.36)

1 Xlzu* gzzw* / 2
—(=—=—— 4+ =—) — pod v
+(2( di + & ) — p2da Q| z|

—m/(v—v*)2+p1/(v—v*)(w—w*)
Q Q

—02/(2—2*)2+p2/(z—z*)(u — Uy).
Q Q

Since the conditions (1.21) and (1.22) hold, y3 := a; —(a3)_| Q| — @12l _ (B3 I2

and y4 1= by—(bs)—|2|— M — M are positive, and there exist 03, 64 € (0, 1)
such that one can find two positive constants pi, py satisfying

(a2 + b1)? < 40564y3 4, (5.37)
1 Elus | xgws
_— (= + = 4ya(1 — 6, 5.38
2d2(d1 & ) < p1 < 4ya( 4) (5.38)

and

L xius | &

4y3(1 — 63). 5.39
2d4( 4 A ) < p2 < 4ys( 3) (5-39)

By (5.37)—(5.39) and u.., wy > 0, one can find some 8 > 0 fulfilling

. {49394y3y4—<a2+b1)2 4(1 = 03)y3p2 — p3 41 — ) yapr — p} }
B < min V3, V4

0304(y3 + y4) T4 =03)(3+ p2) " AL —04)(ya+ p1) v
(5.40)
Therefore, we get
d
B0 =~ ﬂ/ ((u —u)?+ (V=) (w—w) + (2 — z*)2>
@ (5.41)

+/Q(f1 + 2+ f3),
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where

fi = —63(y3 — B — u)? — (a2 + b1)(u — ) (w — wy) — Oa(ya — B)(w — wy)?,
fr=—(1=63)(y3 — B — u)?* + p2(u — us)(z — 24) — (p2 — B)(z — 22)%,
f=—(1=0)(s — Bw —w)? + pr(w — w) (v — v,) — (o1 — BV — v)*.

For each the discriminant of f;(i = 1, 2, 3) and by (5.40), we have
Ay = (az + b1)*(w — wi)® — 46304(y3 — B)(va — B)(w — w,)* <0,

Do =p3(z— 2P =41 = 03) (3 — B)(p2 — B)(z — 2:)* < 0, (5.42)
Ay = ptw — )% =41 = 0)(ya — B)(p1 — B)(v — v)* <0,

which concludes
fi<0,i=1,2,3. (5.43)

By (5.41) and (5.43), we directly obtain (5.32). Moreover, we get

/ /m—mf+f /w—wﬂ+f /w—wm+/ f&—aﬂ<w
0 Q 0 Q 0 Q 0 Q

by integrating (5.32) over (0, 00). The proof of Lemma 5.5 is complete. O

Lemma 5.6 Suppose that the conditions of Theorem 1.4 hold. Then, the solution of
(1.1) satisfies

(. 1) —usllLo@) + v( 1) = vellLo(@) + lw(-, 1)

(5.44)
— Wyllroo@) + 12(, 1) — zsllzo() — 0

ast — oQ.

Proof A combination of Lemma 5.1 and Lemma 5.5 implies this lemma. The proof
of Lemma 5.6 is complete. O

Lemma 5.7 Suppose that the conditions of Theorem 1.4 hold. Then, there exist Cg > 0
and ) > 0 such that the solution of (1.1) satisfies

e (-, 1) — wsll Loy + V(- 1) — vallLoo() + lw (-, 1)
t

_ (5.45)
— wylleo(@) + 12, 1) — zall Loy < Coe™

forallt > to, where ty > 0 is some fixed time.

Proof This proof is similar to ones of Lemma 5.4, thus we only give the sketch. By
(5.26), Lemma 5.5 and Lemma 5.6, we get
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iEz(t) < —ﬂ(/ (u — uy)? + / (— )+ / (w— wy)? + f (z— Z*)2>
dr Q Q Q Q
< —C4BEX (1), (5.46)
which implies
Ex(t) < Ex(tp)e C4PU—1) (5.47)

forall¢ > t,. Then, by combining (5.47) with the first inequalities in (5.24) and (5.25),
we derive a positive constant C1g > 0 such that

Jo —u)? + [o(0 —v)? + [o(w — wi)? + [z — 24)?
Q Q Q Q

< CioEa(t) < CroEa(tp)eC4PU—12) (5.48)
forall t > 7.

By applying the Gagliardo—Nirenberg inequality and (1.17), there exist some pos-
itive constants C11, C12 and C;3 such that

[l (-, 1) — wsllLoo() + V(-5 1) — villLoo(@)

F+ lw(-, 1) — willLe@) + 12(, 1) — zxllLe (@)

<Ol 1) = | e ) = 075,
UV 1) = 0B g I 1) — w07
I, 1) = w0 1) — w7
1) = 25 g 1) = 2l Ty

=Ciallu(-, 1) — M*IIZ??Q) + Callv(, 1) — U*ll,ﬁm
T ol ) — w5 + Crallztan) = 275

2 2 2 2 i
§C13<|Iu(-, D) = txllpa gy + 10C 1) = vallpa ) + W 1) = willyz ) + 12¢, 1) = Z*HLz(Q)>
ﬁ _Cyplu-n)
<Ci3| CioE2(2) e 2

for all t > #,. The proof of Lemma 5.7 is complete. O

Proof of Theorem 1.4. Lemma 5.7 directly shows the results of Theorem 1.4. O

6 Numerical Experiments

The main purpose of this section is to exhibit the spatiotemporal dynamics of system
(1.1). Numerical simulations of model (1.1) are carried out by using the finite difference
method (central difference scheme) for the spatial derivatives and the method of lines
(MOL) for the time integration. Numerical integration is obtained with the help of the
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MATLAB odel5s solver, and all the space steps are set to Ax = 0.1 in 1 D domain as
well as Ax; = Axp = 0.1 in 2D domain. Here we only consider the fully parabolic
system (i.e., T = 1) and let the parameters d| = d> =dz3 =das =& = 1 =& =
x2=ap=bo=1,ap =a3 =a4 =by = bz =by = —1.

Firstly, in order to illustrate the conditions of Theorem 1.2 and Theorem 1.4 in
one-dimensional space and two-dimensional space, we take the domain 2 = (0, R)"
for R > 0. Hence, the conditions (1.10) and (1.12) of Theorem 1.2 imply that when
locally intraspecific competition coefficients satisfy

ay, by > 1+ 2R" 6.1)

with n = 1, 2, then the system (1.1) has a unique positive globally bounded solution
in n—dimensional domain.

Moreover, we take 03 = 64 = % in (1.21) and (1.22), then Theorem 1.4 implies
that when the locally intraspecific competition coefficients satisfy the condition (6.1)
and

Us + Wy 8 Uy + Wy
—— +2R", ——— 4+ 2R"} b —— +2R" (6.2
a1>max{ ) + b2—2R"+ } n > 1 + (6.2)
with n = 1, 2, then the system (1.1) converges to a positive constant equilibrium

(Uy, Vg, Wy, Z4) @S T — 00, Where

by +1 a +1
Uy = n n n 20 Uk = n n n 2°
(a1 — R")(by — R") — (R" + 1) (ap — R")(by — R") — (R +1%63)
ap+1 by +1 ’

T @ = R (b — R — (R"+ D2 T (a1 — R (by — R") — (R + 2

Next, our numerical simulations are divided into the following two parts.

Part 7: In this part, we mainly study the effect of locally intraspecific competition
in system (1.1). Above all, we take 2 = (0, 1)" with n = 1, 2, then the conditions in
(6.1) are changed into

al, bz >3 (6.4)
and the conditions in (6.2) are turned into

Us + Wy 8
ma 2,
ap > X { 7 + by —

Uy + Wy
2t.b —_ 1+ 2. 6.5
2+ } 2 > y) + (6.5)

Case 1: If we take appropriately large locally intraspecific competition coefficients

a; = 4 and by = 8, then the conditions (6.4) and (6.5) hold. Therefore, the system
5

(1.1) is stable and converges to (U, Vs, Wy, Zx) = (19—7, e 15—7, %) as t — oo with
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uxy V1) wict) 2Ax9)

04

~

.
057

~— 2 — ~—— 2
Distance x 0o Timet Distance x 0o Timet Distance x 0o Timet Distance x 0o

Fig. 1 Stability of (ux, v, wx, z4) for 1D simulations with a; =4, by =8

Fig. 2 Stability of u for 2D simulations with a; = 4, b = 8 at time steps t = 0,7 = 80,7 = 90,1 =

100, = 110,t = 120

Fig. 3 Stability of w for 2D simulations with a; = 4, bp = 8 at time steps t = 0,1 = 80,71 = 90,1 =
100,¢t =110, = 120

!Eiééét

the following perturbation of the positive equilibrium

up(x) = 0.1sin <n2 ) +uy,, vo(x) =0.1cos (?) + vy,
T p (6.6)
wo(x)_Olcos<2)+w*, zO(x)_Olsm(2>+z*

in one-dimensional space, see Fig. 1.
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Fig.4 Stability of (u4, Vs, Ws, z4) for 1D simulations with a; = by = 3.1

™

a0

ﬁ. ==

Fig. 5 Stability of u for 2D simulations with a; = by = 3.1 at time steps t = 0,¢ = 300, = 350,¢ =
400, t = 450, t = 500

When n = 2, we take the same value of parameters and Q2 = (0, 1)2, then the same
effect is observed in 2D simulations with initial data

ug(xy, x2) = 0.1sin (n; ) + 0.1 sin (n;c ) + g, vo(x1, X2)

_Olcos(n2 )—l—ilcos(n2 )+::; 67
wo(xq, x2)—Olcos( 5 )—i—Olcos( 2 )—i—w*, zo(x1, x2)

—Olsm<7T2 )—i—Olsm( > )—i—z*,

see Fig.2 and Fig. 3.

Case 2: Taking the appropriate locally intraspecific competition coefficients a; =
by = 3.1, we can only obtain that the global bounded condition (6.4) holds. However,
itis interesting to see that through numerical simulations in one-dimensional space, we
find the system (1.1) is still stable and converges to (i, vy, Wy, z+) = (10, 10, 10, 10)
as t — oo with the same initial perturbation in (6.6), see Fig.4. Therefore, we pre-
liminarily judge that Theorem 1.4 only gives a sufficient condition, and it is still an
open problem to determine the optimal condition for the stabilization of system (1.1).
Moreover, the same effect is also observed in 2D simulations with the same initial
perturbation in (6.7), see Fig.5 and Fig. 6.

Case 3: When n = 1, taking 2 = (0, 1) and the small locally intraspecific
competition coefficients a; = 2,b, = 3 such that the condition (6.4) of global
boundedness does not hold. Then, it may lead to finite-time blow-up of popula-
tion density u and population density w with the slight initial perturbation ug(x) =
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Fig. 6 Stability of w for 2D simulations with a; = by = 3.1 at time steps t = 0,7 = 300, ¢ = 350,¢ =
400, r = 450, r = 500

xh Vixt) wxt)

Distance x oo Time t nce x ime. Distance x oo Timet

Fig. 7 Finite-time blow-up for u, w and spatiotemporal pattern for v, z with a; = 2, by = 3 and slight
perturbation in 1D

e}

Vixt) wict) 2Ax)

Fig. 8 Finite-time blow-up for u, w and spatiotemporal pattern for v, z with a; = by = —1 and slight
perturbation in 1D

0.1sin(%") 4+ 0.1, vo(x) = 0.1cos(%-) + 0.1, wo(x) = 0.1cos(5-) + 0.1, zo(x) =
0.1 sin(%) + 0.1, see Fig.7. Further, if we take the smaller a; = b, = —1, which
becomes local intraspecific cooperative effect, then the possible blow-up phenomenon
can be observed earlier, see Fig. 8. However, it is still open in the mathematical theory
whether finite-time blow-up of solutions occurs.

Therefore, from case 1 to case 3, we can conclude that locally intraspecific compe-
tition has an inhibitory effect on the blow-up phenomenon of system (1.1).

Part //: In this part, we study the effect of nonlocal terms in the system (1.1) in
terms of spatial dimensions and domain sizes. Firstly, we take a; = b, = 7, then the
condition (6.1) is changed into

R" <3, (6.8)
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xy) vixt) wix) 2Ax1)

08 08 08
055 055
0s ‘ 05 ‘
045 045
04 04
2N < 2 L
18 o 15 — &0
TN _—w TN e
05 >~ _— 2 08 2
Distance x 0o Time t Distance x 0o Time t

Fig.9 Stability of (ux, v, W, z) for 1D simulations withay = by =7, R =2

=0 1=0.90000 1=0.94277

12
10
8
6
4
2
0
2
15
Distance x2 0 o Distance x1 Distance x2 0 o " Distance x1 Distance x2 0 o " Distance x1

Fig. 10 Finite-time blow-up of u for 2D simulations witha; = by =7, R =2
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Fig. 11 Finite-time blow-up of w for 2D simulations witha; = by =7, R =2
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Fig. 12 Finite-time blow-up for u#, w and spatiotemporal pattern for v, z in 1D witha; = by =7, R =4

and the conditions in (6.2) are turned into

Uy + Wy 8 Us + Wy
LW opn, 2 Lopnlo7 T o 7 (6.9
max ) T AR ok T = g TR =T 69

withn =1, 2.
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In one-dimensional space, if we take R = 2, then the conditions (6.8) and
(6.9) hold. Therefore, the system (1.1) is stable and converges to (i4, Vs, Wy, Z4) =
(0.5,0.5,0.5,0.5) as t — oo with the same initial perturbation in (6.6), see Fig.9.
However, in two-dimensional space, the conditions (6.8) and (6.9) are invalid when
R = 2, then the possible blow-up phenomenon of u, w can be observed by simulations
with the slight initial perturbation uq(x) = 0.1sin(%5%) 40.1 sin(%52) +0.1, vo(x) =
0.1 cos(%51)40.1 cos(%52)+0.1, wo(x) = 0.1 cos(51)40.1 cos(52)+0.1, zo(x) =
0.1sin(%51) 4-0.1sin(%52) 4 0.1, see Fig. 10 and Fig. 11. Moreover, if we take R = 4
in one-dimensional space, the conditions (6.8) and (6.9) are invalid, and the possible
blow-up phenomenon of u, w can also be observed by simulations with the slight
initial perturbation uo(x) = 0.1sin(%*) + 0.1, vo(x) = 0.1 cos(5*) + 0.1, wo(x) =
0.1 cos(’%‘) +0.1, zo(x) = 0.1 sin(%) + 0.1, see Fig. 12. In general, we can observe
that appropriately large R” may cause the phenomenon of blow-up. Therefore, when
az = a4 = b3 = by = —1, the nonlocal terms will enhance the possible blow-up
occurrence of the populations u, w.

7 Conclusion

Itis well known that the interplay of diffusion, chemotaxis and logistic growth has been
an interesting topic (see Budrene and Berg (1991) and references therein). The research
resultin Luca et al. (2003) has implied that a population can produce both chemoattrac-
tant and chemorepellent. Based on the mathematical model in Liu and Dai (2021), we
not only considered the random diffusion (i.e., d; Au, d» Aw) and attraction—repulsion
mechanism (i.e., =&V - (uVv)+ 1 V- (uVz), =&V - (wV2)+ x2 V- (wVv)), but also
the intrinsic growth, intraspecific and interspecific relations (i.e., g1 (u, w), g1(u, w))
in this paper. In other words, the random diffusion, chemoattractant, chemorepellent
and kinetics can influence the movements of population. Therefore, system (1.1) can
describe more abundant and interesting biological phenomena between two species,
such as the cell sorting process (Painter 2009). We mainly studied the qualitative
analysis on the solutions of system (1.1) as follows: (i) Relying on some a priori esti-
mates and the Moser—Alikakos iteration in Alikakos (1979) (or Lemma A.1 of Tao
and Winkler (2012)), we obtained the existence and boundedness of global solutions
to system (1.1) in any spatial dimension (see Theorems 1.1 and 1.2). (ii) When the
locally intraspecific competition and globally interspecific cooperation exist, we estab-
lished the globally asymptotic stabilization of coexistence by constructing Lyapunov
functionals (see Theorems 1.3 and 1.4).

Furthermore, by some numerical simulations, we verified our analytically theoreti-
cal results and found some new and interesting phenomena. Our results complemented
the existing results in Zheng and Hu (Preprint), where the chemo-repulsive mecha-
nisms or nonlocal terms were not considered. For the parabolic—elliptic—parabolic—
elliptic case (i.e., T = 0), the results in Theorem 1.1 imply that the chemo-repulsive
mechanisms effectively prevent the occurrence of cells aggregation under the same
conditions in Liu and Dai (2022). And for two cases T = 0 and t = 1, the results in
Theorems 1.1 and 1.2 also showed that the size of domain €2 influences the mass of
population under the globally intraspecific and interspecific cooperation.
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In a biological sense, if the strengths of locally intraspecific competition are large
enough in two populations, then they can keep the coexistence steady state all the
time. On the other hand, when the strength of the chemorepellent is the same as the
chemoattractant (i.e., § = x; = 1,i = 1,2) and the global cooperation is stronger
than the locally intraspecific competition, we numerically showed that it may lead to
the occurrence of the cells aggregation. Moreover, when there is only the mechanism of
cooperationin (1.1) (i.e., ap, bo > 0, a;, b; <0G =1, 2, 3,4) in (1.2)), the numerical
simulations indicated that it may also lead to the occurrence of cells aggregation.
However, the rigorous mathematical analysis is still open.
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Appendix A. Proof of Lemma 2.1

Proof The ideas of proof are similar to (Winkler 2010a, Lemma 1.1) and (Stinner et al.
2014b, Lemma 2.1). For reader’s convenience, we give the sketch of the proof.

(i) Existence. Under the assumptions of Lemma 2.1, we claim that for all L > 0 there
exists 7 = T(L) > 0 such that [lugllL>@) < L, |wollL>) < L, [vollwia) < L
and [[zollwia@) < L, then system (1.1) is classically solvable in € x (0, 7). As
a consequence of a standard extension argument, this will imply the existence of a
maximal existence time Tpnax satisfying (2.1).

Now, we prove the local existence of solutions for system (1.1) when t = 1 and
T = 0, respectively.

When t = 1, according to the well-known Neumann heat semigroup (e’ A) >0
in (Winkler 2010b, Lemma 3.1), we can pick K > 0 such that ||etAv||W1,q(Q) <
K|[vllyi.q(g) and ||etAz||W|,q(Q) < Klzllwraq) forall v,z € W4 (). For small
T € (0, 1) to be fixed below, we introduce the Banach space
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X = C°<[0, T c0(§)> X C°<[0, T W“f(Q)) X C°<[0, T CO(§)>
xco([o, T; Wl’q(sz)),

and the close subset

Fi={(u,v,w,2) € X | llullzoqo.rix@) < L+ 1 [vllsqo.rywia@) < KL+ 1,
lwllzoo(o.1y:L @) < L+ 1, 2l poogo.ry:whaqy < KL + 1}

For (u, v, w, z) € F andt € (0, T), we define the mapping

Wy (u, v, w, z)(1)

__ Wi (u, v, w, z)(t) _

Uy (u, v, w, 2)(1) = Wi, v, w, @) | T
W4, v, w, 2)(t)

Ay — g f(; eU=MAY . (u(s)Vu(s))ds + X1 fot eU=IAY - (u(s)Vz(s))ds + fot =N gy (u, w)ds
A= gy 4 1 =0~y (5)ds

e BAy) — & f(; eU=IBAY . (w(s)Vz(s))ds + x2 fé eI=IBAY . (w(5)Vu(s))ds + fol OB g (4 w)ds
et(d4A—l)ZO +j(; e(tfs)(dz;Afl)u(X)dX

Then, we have

ds

t
W11 @, v, w, 2Ol Loy <N PugllLe) + & /
0 L>(R)

t
+X1/
0
t
+
0 L®(R) (7.1)
t
§$1f PAGRUEN v (u(s)Vv(s))
0

t
+X1f
0

+L+T-|gi(u, wllLe(—R-1,R+1))

REDTISVE (u(s)Vv(s)>

ds
L(Q)

e—9diAy (u (S)VZ(S)>

1IN gy w) ds

ds
L (Q)

ds
L>(Q)

et—9)diAyy (u (S)VZ(S)>

where by the maximum principle

td| A

le"" ZupllLo() < lluollLe) < L (7.2)

and

t

t
/ le" 2 g1 (u, w)|| o< (@ ds 5/ llg1(u, w)llLe@ds
0 0 (7.3)

<T-llgi(u, w)|[Loo((—R—1,R+1))

n 1

for all ¢+ € (0, T). Furthermore, by picking any p > q"an and then a € (;, 5=

%(é - %)), we obtain pa > n and the fractional power A% of the sectorial operator
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A := —d A+ 1 with Neumann data in L? (2) satisfies [|¢ |1 @) < CIIA%@|Lr(q) as
well as ||A°‘epd1A¢||Lp(Q) < Cp “l@llLr (e forall ¢ € C5°(S2) (cf. Henry (1981)).

Here and below, C; (i =1, 2, - - - , 23) denote generic positive constants. Therefore, by
_l_mel_1
T<lac (%, 150G ;)) and [|e* MOV | Loy < Cp 72 20T YL

for p < 1 and all R—valued € Cgo(Q) (cf. Weinberger (1982)), we have

t
51/ e“ﬂ”ﬂv-(m@vaﬂ ds
0 L (Q)
t
< C / ‘A“e“—”“v-(u(s)w(s)) ds
0 LP(Q)
l —S
scafa—wY”ezd”V-(mnvww> ds (7.4)
0 LP(Q)
4 1 n/1 1
< Caf (t—s)"% (t—s) 2 2% 2 |lu(s)Vols) ds
0 L9(%2)
l,afﬁ(l,l)
<Cr2 2% L+ 1) (KL+ 1)
for all t € (0, T'). Similarly, we obtain
t
X1 / =AYy <M(S)VZ(S)> ds
0 L®(Q) (7.5)

l_a_ﬂ(l_L)
<3G (L4 1) (KL +1)

forallt € (0, T). For the term || W3 (u, v, w, 2)(?) || L= (@), We can use the similar way.
For |W12(u, v, w, 2)(1)|| L (), We have

! 1
W12, v, w, 2Ol wiaey < e e vollyraq) + Co fo (t =) 2 |lws)llLa)ds
4 1

< Klvollyrag + C1 fo t =) Hw@lxads 0

< KL+CsT? - (L+1)
for all + € (0, T). Similarly, we can estimate the term [|[Wi4(u, v, w, 2)(t) || Lo ().
Then, it follows from (7.1)—(7.6) that if we fix Ty € (0, 1) small enough such that
T € (0, Tp), then W; maps F into itself.

Moreover, using the same ideas with (7.4), for (u, v, w, z) € F and (i, v, w, 7) €
F, we get

W1 (u, v, w, 2)(@) — Vi1 (@, v, w, 2) ()| L)

t
SC9/
0
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t
/
0

t
+ / =i A (gl(u, w) — g1 (i, w))
0
1

t n
< Cio / (= 200 () Vots) — i) V) lr@yds
0

ds
LP(Q2)

‘A%“‘”Mv : (u(s)Vz(s> - ﬁ(s)vz(s)>

ds
L>(€2)

1_n(l1_1

t
+C10/ (z —S)fafrj(rﬁ)llu(S)VZ(S) —u(s)VZ(s)llLads
0

t
+f llg1(u, w) — g1(u, w)| Lo ()ds
0

1_1

1_,_n(l_1
<cyr?” 2(" ")<(L+ D+ (KL + 1)) |, v, w, z) — (1, v, w, 2)|x
+T 81 ooty - 10 v, w,2) = (@i, B, 0, Dl x (1.7)
Similarly, we have
W13, v, w, 2)() — Vi3, 0, w, 2) () Lo @)
1_gon(1_1 o
<Ci2T* 2(4 1’)((L+1)+(KL+1)>-II(M,v,w,z)—(u,v,w,z)le (7.8)

+ T 8]l o potpny - 100 v, w, 2) = @, 5, 9, D)llx

and
Wi2(u, v, w, 2) (1) — Wi2(u, v, w, 2) (@)l L= (@)
<Ci /0 (=5 Hw(s) — D) e (7.9)
< ClT? - |, v, w,2) — (i@, 5, %, 9 x

as well as

W14(u, v, w, 2)(#) — V1a(u, v, w, 2) () | Lo (@)
1 (7.10)
=< C‘lszw7 . ”(uv v, w, Z) - (127 67 le Z)”X

forall ¢t € (0, T'), which shows that W is a contraction mapping if 7' € (0, Tp) is small
enough. Then, by using the Banach fixed point theorem, we know that the existence
of some (4, v, w,z) € F such that Wi (u, v, w, z) = (u, v, w, z). Once again using
standard arguments involving semigroup estimates, it can easily be checked that in
fact (u, v, w, z) lies in the asserted regularity class and is a classical solution of (1.1)
in  x (0, T). Since g1(0,0) > 0 and g»(0,0) > 0 hold, the maximum principle
moreover ensures that u, w, v, z are nonnegative.
When t = 0, we introduce the Banach space

X :=C°([0, TT; C°(Q)) x €°([0, T1; C°()),
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and consider the close subset
F:= {(u, w) € X | lullLeqo.7);Lo) < L+ 1, lwlLeo.ryLeo@) < L + 1},

where T € (0, 1) is small. Similarly, we define the mapping

o Yar(u, v, w, 2)(1)
Wy (u, v, w, 2)(t) = (\Pzz(u, . w,z)(t))

ehdyg + f(; =AY . (Xlu(s)Vz(s) - Sm(s)Vv(s))ds + f(; TN A gy (4, w)ds

BBy + fot eU—)dAYy . (sz(s)Vv(s) — Syu(l)Vz(s))ds + fot UIBA g (44 w)ds

for (u, w) € Fandr € (0, T), where (e’ d; A) >0 denotes the Neumann heat semigroup.
From the second and fourth equation in (1.1), we have —dj Av+v = w and —d3 Az +
z = u under homogeneous Neumann boundary conditions. According to the same
methods in case of T = 1, we get that W5 is a contraction mapping on F if T € (0, Tp)
is sufficiently small. Hence, the Banach fixed point theorem implies the existence of
some (u, w) € F such that Wp(u, w) = (u, w). Moreover, by applying the similar
arguments and the strong maximum principle, we deduce that («#, w) is nonnegative.
And by the strong elliptic maximum principle applied to the second and fourth equation
in (1.1), we also obtain the nonnegativity of (v, 7).

(ii) Uniqueness. Proceeding as in Gajewski and Zacharias (1998), for given T > 0

U=u—-u,V:=v—v,W:=w-—w,Z :=z— z By applying straightforward
testing procedures to (1.1), we have

d
—/ U2+2d1/ |VU|2=2§1/ UVU-VU+2§1[QVU-VV
dr Jo Q Q Q
—2)(1/ UVZ~VU—2X1/ uvU -VZ (7.11)
Q Q

+2/Q(g1(u,w>—g1(ﬁ,w>)u

and
/W2+2d3/ |VW|2=2§2f WVz-VW+2§2/ wVW -VZ
Q Q Q Q
—2X2/ WVv~VW—2X2/ WwVW -VV (7.12)
Q Q

+2/Q (gzw,w) s w))w

forallt € (0, T7).
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When t = 1, by the second and fourth equations in (1.1), we obtain

d
—/ |VV|2~|—2d2/ |AV|2+2/ |VV|2=—2/ WAV (7.13)
dr Jo Q Q Q

and

d
—/ |VZ|2+2d4/ |AZ|2+2/ VZ> = —2f UAZ (7.14)
dr Jo Q Q Q

for all ¢ € (0, T7). By the Holder, Young and Gagliardo—Nirenberg inequalities, we

get
251/ UVU.Vng,g:l(/ |VU|2>7~</ |Vv|q)q-<f U%)W
Q Q Q Q
aE 7 EENCAT
o [rr) (o) ()T 0
Q Q Q

d
s—‘/ |VU|2+c]6/ 2,
2 Jo Q

where we have used the fact that fQ U = 0 by a simple integration of (1.1), and
IVvlLe@ < Ci7fort € (0,T) as well as ¢ > n > 2. By using the same method
with (7.15), we have

d
—2)0/ UVz-VU < —1/ |VU|2+C18f U2, (7.16)
Q 2 Ja Q

Furthermore, we have

d
251/ avU -VV < —1/ |VU|2+C17/ VV|? (7.17)
Q 2 Ja Q
and
- d 2 2
25 | avU-vZ <= | [VUP+Cyo | |VZ] (7.18)
Q 2 Ja Q
as well as
Zf (gl(u,w) —gl(ft,@)>U < Czo/ U?, (7.19)
Q Q

in view of the boundedness of # and & in 2 x (0, 77) and the local Lipschitz continuity
of g1. Then, by substituting (7.15)—(7.19) into (7.11), we derive

d
— Uzs(c16+clg+czo)/ U2+C17/ |VV|2+019/ IVZ|2.(7.20)
dr Q Q Q Q
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By using the same method to (7.12), we have

d 2 2 2 2
Wo<Cy | W +Co | IVVI"+Co | IVZ]". (7.21)
dr Jg Q Q Q

By Young’s inequality, we obtain from (7.13) and (7.14) that

i/ |VV|2+2f IVV|? < i/ w? (7.22)
dr Q Q _2d2 Q '

and

d 2 2 1 2
S wvzPr+2 | vz < — | U2 (7.23)
dt Jqo Q 2dy Jo

By combining (7.20)—(7.23), one can find a positive constant Cy such that

d

—</ U2+/ W2~|—/ |VV|2+/ |VZ|2>

dr \ Jg Q Q Q

§C22</ U2+/ W2+/ |VV|2+/ |VZ|2>.
Q Q Q Q

When t = 0, by a straightforward computation, we deduce

d
— | v < C23(/ U2+/ W2+/ |VV|2+/ |VZ|2> (7.25)
dr Jo Q Q Q Q

(7.24)

and
d
—/ W2§C23</ U2+/ W2+/ |VV|2+/ |VZ|2> (7.26)
dr Jg Q Q Q Q
as well as
/|VV|2§/ w2 (7.27)
Q Q
and

/IVZ|2§/ U (7.28)
Q Q

Then, by combining (7.25)—(7.28), we have

i(/ U2+/ W2> 5023(/ U2+/ W2>. (7.29)
dr \ Jgo Q Q Q
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Now with the aid of Gronwall’s lemma, we obtainthatU =0,V =0, W =0, Z =
0in @ x (0, T7). Hence, we obtain (u, v, w, z) = (u, v, w, z) in 2 x (0, T'), because
T1 € (0, T) is arbitrary. The proof of Lemma 2.1 is complete. O
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