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Abstract
Bifurcations and related dynamical behaviors of a glucose metabolism model are
thoroughly studied in this paper. It is shown that the model undergoes transcritical,
Hopf, degenerate Hopf, saddle-node, cusp, and zero-Hopf bifurcations, as well as
Bogdanov–Takens bifurcations of codimensions 2 and 3. Considering the periodicity
of hepatic glucose production and β cells’ glucose tolerance range, four elementary
periodic mechanisms are also analyzed. These mechanisms lead to more complex
dynamics, including periodic solutions of different periods, quasiperiodic solutions,
chaos through torus destruction, or cascade of period doublings. Sensitivity analysis
is performed to isolate the high-effect factors and explore a few advanced treatment
approaches. The described dynamics explain well several clinical observations, which
could provide sound guidance in the therapeutic process.

Keywords Glucose metabolism model · Bifurcation · Attractor · Periodic
perturbation · Glucose disorder

Mathematics Subject Classification 34C23 · 92C50 · 65P20

1 Introduction

Diabetes, a chronic disease, affects 9% of the adult population worldwide, with a
prevalence predicted by the World Health Organization (WHO) to double by 2030
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(García-Jiménez et al. 2016; Zhou et al. 2016). At present, chronic hyperglycemia is
increasingly recognized as a risk factor for microvascular and neuronal complications,
representing an enormous social and economic health burden (Tsilidis et al. 2015).
Because of its globally highmortality andmorbidity, extensive studies (Meta-Analyses
of Glucose and Insulin-related traits Consortium (MAGIC) Investigators 2012; Lean
et al. 2018; Zhao et al. 2018; Song et al. 2014; Huang et al. 2012; Li et al. 2006;
Shi et al. 2017) have been committed to finding out its pathogenesis, prevention, and
reversal.

A constructive attempt was made by Topp et al. (2000). They proposed a nonlinear
dynamical model of plasma glucose concentrations, plasma insulin concentrations,
and β cell mass,

⎧
⎪⎪⎨

⎪⎪⎩

Ġ = a − (b + cI )G,

İ = dβG2

e + G2 − f I ,

β̇ = (−g + hG − g1G2)β,

(1.1)

which is denoted as the GIβ model. Here, G, I , and β represent the plasma glu-
cose concentration (measured in mmol/l), the blood insulin concentration (measured
in µU/ml), and the β cell mass (measured in mg), respectively. a denotes the hep-
atic glucose production, b is the rate of insulin-independent glucose utilization, c is
the insulin sensitivity, d denotes the rate of insulin secretion, e determines the half-
saturation constant, f denotes the rate of insulin clearance, g is the apoptosis rate of
β cell, h determines the β cell’s glucose tolerance range, and g1 presents the β cell’s
necrosis rate (Rathee 2017). The process of blood metabolism is shown in Fig. 1.

There have been several numerical results (Topp et al. 2000; DeGaetano et al. 2008;
Ha et al. 2015) of the GIβ model. In Topp et al. (2000), the authors described three
pathways inwhich such insufficient insulin concentrations and deficient insulin actions

Fig. 1 Diagram of the GIβ
model (1.1)
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may develop regulated hyperglycemia, bifurcation, and dynamical hyperglycemia.
Exact adaptation, a property ofmaintaining a constant set point for a regulated variable
despite variation in model parameters was explored in De Gaetano et al. (2008). In Ha
et al. (2015), the authors illustrated the consequence of bistability and other important
aspects of glucose control, which underline the success of bariatric surgery and acute
caloric restriction in rapidly reversing type 2 diabetes.

A fresh finding Chen et al. (2012) showed that an imminent bifurcation point can
serve as a general early-warning signal before the disease occurs, especially for dys-
functional metabolic processes and regulations of cell proliferation, which enlightens
us to investigate the bifurcations and related dynamic behaviors of model (1.1). There-
fore, we theoretically study the global dynamic behaviors of model (1.1) in this paper.
The analysis exhibits that the GIβ model has rich and complex dynamics such as
Hopf and saddle-node bifurcations of codimension 1; cusp, zero-Hopf, andBogdanov–
Takens bifurcations of codimension 2; and even a Bogdanov–Takens bifurcation of
codimension 3. The complexity of model (1.1) directly reflects the corresponding
intricate process of glucose metabolism. Such a critical transition often occurs at the
above various bifurcation points, at which the model shifts abruptly from one state to
another. These sudden catastrophic shifts during gradual health deterioration imply
various disease states, such as hypoglycemia, hyperglycemia, and diabetes.

However, growing evidence supports that blood glucose homeostasis is strongly
regulated and controlled by internal or external periodically varying living environ-
ments. Experimental results have indicated that seasonal hyperthermia is significantly
associated with increased risks of gestational diabetes mellitus (Booth et al. 2017).
Besides, the circadian clock drives oscillations to regulate a diverse set of biological
processes, including sleep, locomotor activity, blood pressure, body temperature, and
blood hormone levels are found in all kingdoms of life (Depner et al. 2018; Dobin
et al. 2013; Zhang et al. 2014; Ando et al. 2016; Morris et al. 2016). Clinical stud-
ies Ando et al. (2016), Morris et al. (2016) revealed that hepatic glucose production
and glucose tolerance exhibit circadian rhythms in a pronounced 24-h cycle. Since the
oscillating clock plays a critical role in generating these cyclic patterns, further studies
are needed to elucidate how periodic factors influence a body’s glucose metabolism.
Thus, exploring the dynamic behaviors of the GIβ model with four different period-
icity mechanisms is one of our interests, doing so and would be clinically valuable.
The perturbed terms are shown in Fig. 1.

In brief, the aims of this paper are twofold. First of all, for the lack of global
dynamic analysis, we theoretically investigate the global dynamic behaviors of model
(1.1). Moreover, we consider four more reasonable periodic mechanisms to explore
the functional role of the circadian clock in global dynamics, including periodic solu-
tions with different periods, quasiperiodic solutions, and chaotic solutions. We isolate
the high-effect factors by comparing the sensitivity and correlation of the unperturbed
model with those of the perturbed model. The periodically perturbed dynamics effec-
tively fit the clinical data and appropriately explain the various phenomena of glucose
level, oscillation, and disorder, which provide novel insights into practical pharmacol-
ogy and medical treatment.
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2 Bifurcations

Obviously,model (1.1) has three equilibria E0(
a
b , 0, 0), E1(G1, I1, β1), E2(G2, I2, β2),

where

G1,2 = h ± √
h2 − 4g1g

2g1
, Ii = a

cGi
− b

c
, βi = f Ii (e + G2

i )

dG2
i

.

The Jacobian matrix of model (1.1) at any point (G, I , β) is

J (G, I , β) =

⎛

⎜
⎜
⎝

−(b + cI ) −cG 0
2deGβ

(e + G2)2
− f

dG2

e + G2

(h − 2g1G)β 0 hG − g1G2 − g

⎞

⎟
⎟
⎠ .

The characteristic equation at Ei is

H(λ)i=1,2 = λ3 + δ(Gi )λ
2 + ζ(Gi )λ + θ(Gi ) = 0, (2.1)

where

δ(Gi ) = f + a

Gi
,

ζ(Gi ) = a f

Gi
+ 2e f (a − bGi )

Gi (e + G2
i )

,

θ(Gi ) = f (bGi − a)(2g1Gi − h).

Theorem 1 For model (1.1), the trivial equilibrium E0(
a
b , 0, 0) is

– a saddle-node of codimension 1, when
hb

a
− g1b2

a2
− g = 0,

2ag1
b

− h �= 0,

– a semi-hyperbolic point of codimension 2, when
hb

a
− g1b2

a2
−g = 2ag1

b
− h = 0.

Proof For
hb

a
− g1b2

a2
− g = 0, the eigenvalues of Jacobian of model (1.1) at E0

are −b, 0,− f . Define T = (Ti j )3×3 = (V1, V2, V3), where V1, V2, V3 are the corre-

sponding eigenvectors of the Jacobian matrix. The transformation x = G − a

b
, y = I

and z = β, brings E0 to the origin. Let

⎛

⎝
x
y
z

⎞

⎠ = T

⎛

⎝
u
v

w

⎞

⎠ ,
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where

T =

⎛

⎜
⎜
⎜
⎝

1 1 1

0 −b2

ac

b( f − b)

ac

0
− f b2(a2 + eb2)

cda3
0

⎞

⎟
⎟
⎟
⎠

.

Model (1.1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = −bu +
i+ j+k=2∑

i, j,k∈N
mi jku

iv jwk + O(|u, v, w|3),

v̇ =
i+ j+k=2,3∑

i, j,k∈N
li jku

iv jwk + O(|u, v, w|4),

ẇ = − f w +
i+ j+k=2∑

i, j,k∈N
ni jku

iv jwk + O(|u, v, w|3),

(2.2)

where

l110 = l011 = l020 = h − 2ag1
b

, l030 = −g1.

Then, we compute the center manifold; for v ∼ 0, there exists a center manifold

u = m020

b
v2 + O(v3), w = n020

f
v2 + O(v3). (2.3)

If l020 = 0, model (2.2) reduced on the one dimension center manifold (2.3) is given
by

v̇ =
(

l030 + l110
m200

b
+ l011

n200
f

)

v3 + O(v4),

= −g1v
3 + O(v4).

The coefficient of v3 is defined and does not vanish. Hence, E is a semi-hyperbolic
point of codimension 2.

If l020 �= 0, immediately we know that the model on the center manifold is topo-
logically equivalent to

v̇ = ±v2 + O(v3). (2.4)

Therefore, it is a saddle-node of codimension 1. ��
In the following, we discuss the bifurcations of the nontrivial equilibrium.
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Theorem 2 Model (1.1) undergoes a Hopf bifurcation at E1, if δ(G1)ζ(G1) = θ(G1).

Proof Consider g1 as a bifurcation parameter. Substituting δ(G1)ζ(G1) = θ(G1) into
Eq. (2.1) yields

(λ2 + ζ )(λ + δ) = 0. (2.5)

The three roots of Eq. (2.5) are

λ1,2 = ±√
ζ(G1)i, λ3 = δ(G1).

We get

∂λ1,2

∂g1
= 2 f g1G1(a − bG1)

3λ2 + 2δλ + ζ
,

and for ζ > 0,

(

Re
∂λ1,2

∂g1

)

|δζ=θ = b f g1G1

ζ 2 + ζ δ2
�= 0,

(

Im
∂λ1,2

∂g1

)

|δζ=θ =
√
ba f g1G1

ζ 2 + ζ δ2
�= 0.

Similarly, if we take a as a bifurcation parameter, for ζ > 0, we get

(

Re
∂λ1,2

∂a

)

|δζ=θ = b f (bG1 − a)

2(ζ 2 + ζ δ2)
�= 0,

(

Im
∂λ1,2

∂a

)

|δζ=θ =
√
ba f (bG1 − a)

2(ζ 2 + ζ δ2)
�= 0.

Hence, model (1.1) undergoes Hopf bifurcation at E1. ��
In the following, we prove that the model can undergo saddle-node bifurcation of

codimension 1. Two nontrivial equilibria E1 and E2 collide at Ē(Ḡ, Ī , β̄), where

Ḡ = h

2g1
, Ī = 2ag1 − bh

ch
, β̄ = 4e f g21(2ag1 − bh)

cdh
.

Theorem 3 For model (1.1), the nontrivial equilibrium Ē(Ḡ, Ī , β̄) is a saddle-node
of codimension 1, when h2 − 4g1g = 0.

Proof For h2 − 4g1g = 0, the corresponding characteristic equation is H(λ) =
λ3 + δ(Gi )λ

2 + ζ(Gi )λ, with a zero-eigenvalue.
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Using transformation x = G − Ḡ, y = I − Ī and z = β − β̄, model (1.1) can be
written as

⎛

⎝
ẋ
ẏ
ż

⎞

⎠ = J (Ē)

⎛

⎝
x
y
z

⎞

⎠ +
⎛

⎝
a110xy

b200y2 + b101xz + b300x3 + b201x2z
c200z2 + c101xz + c201x2z

⎞

⎠ + O(|x, y, z|)4,

(2.6)

where

a110 = −c, b101 = 2edḠ

(e + Ḡ2)2
, b200 = edβ̄(e − 3Ḡ2)

(e + Ḡ2)3
, c101 = h − 2g1Ḡ,

c201 = −g1
3

, b300 = − 2edβ̄Ḡ

(e + Ḡ2)3
, b201 = ed(e − 3Ḡ2)

(e + Ḡ2)3
, c200 = −g1β̄.

Let q0 ∈ R
3 be proper eigenvector for Jq0 = 0 and p0 ∈ R

3 be corresponding adjoint
eigenvector for J T p0 = 0.
To achieve the necessary normalization 〈p0, q0〉 = 1, we can take

q0 =

⎛

⎜
⎜
⎜
⎝

n

s
(b + cĪ )n

csḠ
1

⎞

⎟
⎟
⎟
⎠

, p0 =
⎛

⎝
0
0
1

⎞

⎠ ,

where

n = −dḠ2

e + Ḡ2
, s = f (b + cĪ ) + 2cdeβ̄Ḡ2

(e + Ḡ2)2
.

By center manifold theorem, the restriction of model (2.6) to the center manifold takes
the form

v̇ = 1

2
〈p, B(q0, q0)〉v2 + O(v3),

where

B(q0, q0) = 2
n

s

⎛

⎜
⎜
⎜
⎝

a110
n

s
b200

n

s
+ b101

c200
n

s

⎞

⎟
⎟
⎟
⎠

, 〈p0, B(q0, q0)〉 = −2g1β̄
n2

s2
�= 0.

Therefore, Ē is a non-degenerate saddle-node of codimension 1 and model (2.6) on
the center manifold is topologically equivalent to model (2.4). ��
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Next, we study zero-Hopf bifurcation of codimension 2, and Bogdanov–Takens bifur-
cation of codimension 2, 3. Here, we ignore the biological meaning to get the global
bifurcations.

Theorem 4 For model (1.1), the nontrivial equilibrium Ē is

– a zero-Hopf bifurcation point of codimension 2, when δ(Ḡ) = θ(Ḡ) = 0, F(0) �=
0,

– a zero-Hopf bifurcation point of codimension at least 3, when δ(Ḡ) = θ(Ḡ) =
F(0) = 0,

where

F(0) = −mcḠ

[(b + cĪ )2 + ω2 + mcḠ]
(
1

Ḡ
− edβ̄(e − 3Ḡ2)

(e + Ḡ2)3
− g1β̄n(b + cĪ )

csḠ

)

.

Proof In the following, we theoretically consider the zero-Hopf bifurcation point.
Choose a, c as bifurcation parameters and denote further by α = (a, c).
For δ(Ḡ) = θ(Ḡ) = 0, the corresponding characteristic equation of the coinciding
equilibria is

H(λ) = λ3 + ζ(Gi )λ = 0,

and its eigenvalues are 0 and ±ωi , where ω2 = a f

Ḡ
+ 2e f (a − bḠ)

Ḡ(e + Ḡ2)
.

Let q1, p1 ∈ C
3 are corresponding eigenvector and adjoint eigenvector given by

Jq1 = iω, J T p1 = −iω,

such that

〈p0, q0〉 = 1, 〈p1, q1〉 = 1, 〈p0, q1〉 = 0, 〈p1, q0〉 = 0.

Here

q1 =

⎛

⎜
⎜
⎝

1
−(iω + b + cĪ )

cḠ
0

⎞

⎟
⎟
⎠ , p1

= −mcḠ

(b + cĪ )2 + ω2 + mcḠ

⎛

⎜
⎜
⎜
⎝

−1
−iω + b + cĪ

m
n

s
− n(b + cĪ )(b + cĪ − iω)

smcḠ

⎞

⎟
⎟
⎟
⎠

,
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with m = 2edḠβ̄

(e + Ḡ2)2
.

Using the transformation

u = 〈p0(α), x〉,
z = 〈p1(α), x〉,

with x = uq0 + zq1 + z̄q̄1, the model (2.6) can be further put in the form

{
u̇ = g(u, z, z, α),

ż = λz + h(u, z, z, α),
(2.7)

where g(u, z, z, α) = 〈p0, F(uq0 + zq1 + zq̄1, α)〉, h(u, z, z, α) = 〈p1, F(uq0 +
zq1 + zq̄1, α)〉.

And these functions are smooth of their variables,whichTaylor expansions in u, z, z̄
start with quadratic terms

g(u, z, z, α) =
∑

i+ j+k≥2

1

i ! j !k!gi jk(α)ui z j zk,

h(u, z, z, α) =
∑

i+ j+k≥2

1

i ! j !k!hi jk(α)ui z j zk .

By calculation, we obtain

g200 = c200
n2

s2
+ c101

n

s
, g020 = c200, g002 = c200, g101 = 2c200

n

s
+ c101,

g110 = 2c200
n

s
+ c101, g011 = 2c200, h011 = 2

(
(b + cĪ )

G̃
+ m1

)

+ 2m2i,

h020 =
(
b + cĪ

Ḡ
+ m1

)

+
(

ω

Ḡ
+ m2

)

i, h002 =
(
b + cĪ

Ḡ
+ m1

)

+
(−ω

Ḡ
+ m2

)

i,

h101 = 2m1
n

s
+ m3 +

(−nω

sḠ
+ 2m2n

s
+ m4

)

i, h110 = 2m1
n

s
+ m3

+
(
nω

sḠ
+ 2m2n

s
+ m4

)

i,

h200 = −n2(b + cĪ )

s2Ḡ
+

(
m1

n

s
+ m3

) n

s
+

(
m2

n

s
+ m4

) n

s
i,

where

m1 = b200(b + cĪ )

m
+ c200

nmcḠ − n(b + cĪ )2

mcsḠ
, m2 = ω

m

(

−b200 + c200n(b + cĪ )

csḠ

)

,

m3 = b101(b + cĪ )

m
+ c101

nmcḠ − n(b + cĪ )2

mcsḠ
, m4 = ω

m

(

−b101 + c101n(b + cĪ )

csḠ

)

.
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Under the assumption g200 �= 0 and g011 �= 0, we introduce the changes

v =u − 1

2

g020
2ωi

z2 + 1

2

g002
2ωi

z̄2 − g110
ωi

uz + g101
ωi

uz̄,

w =z + 1

2

h200
ωi

u2 − 1

2

h020
ωi

baru2 + 1

2

h002
3ωi

z̄2 + h101
2ωi

uz̄ + h011
ωi

zz̄,

and a linear scaling of the variables and time

u = v + 1

2
r3(α)v2,

z = w + K (α)vw,

dt = (1 + r1v + r2|w|2)dτ,

where

r1 = Im g110h200
g200ω

, K = r2ωi + H021

g011
, r3 = 2Re K − r1

− 2g110 Im h011 + g020 Im h010
g011ω

,

with

H021 = i

2ω

(

h011h020 − 1

2
h101g020 − 2|h011|2 − 1

3
|h011|2

)

.

Then, model (2.7) becomes

{
u̇ = 1

2g200u
2 + g011|z|2 + O(||(u, z, z̄)||4),

ż = iωz + D(0)uz + E(0)u2z + O(||(u, z, z̄)||4), (2.8)

where

D(0) = 2m1
n

s
+ m3 +

(
nω

sḠ
+ 4m2n

s
+ 3m4

)

i,

F(0) = −mcḠ

[(b + cĪ )2 + ω2 + mcḠ]
(
1

Ḡ
− edβ̄(e − 3Ḡ2)

(e + Ḡ2)3
− g1β̄n(b + cĪ )

csḠ

)

.

If F(0) = 0, then Ē is a degenerate zero-Hopf bifurcation point of codimension at
least 3.
Contrarily, if F(0) �= 0, by linear scaling and time-reparametrization

u = g200
F0

u1, z = g3200
g011F2(0)

v1, t = F(0)

g2200
τ,
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model (2.8) is topologically equivalent to

⎧
⎨

⎩

u̇1 = u21 ± |u1|2 + O(||(u1, v1, v̄1)||4),
v̇1 = E(0)

g2200
iωu1 + D(0)

g200
u1v1 + u21v1 + O(||(u1, v1, v̄1)||4). (2.9)

Hence, Ē is a non-degenerate zero-Hopf bifurcation point of codimension 2. ��
Theorem 5 Suppose δ(Ḡ) = θ(Ḡ) = 0 and M̄11 �= 0, then Ē is a Bogdanov–Takens
point of codimension 2, and model (1.1) localized at Ē is topologically equivalent to

{
u̇ = v,

v̇ = u2 + sign(M̄11)uv + O(|u, v|3), (2.10)

where

M̄11 = g1 f (e + Ḡ2)

dḠ2
+ c f [2(b + cĪ ) − 1]

b + cĪ
+ (e − 3Ḡ2)(2 Ī + dβ̄Ḡ)

4eḠ Ī 2(e + Ḡ2)
.

Proof For δ(Ḡ) = θ(Ḡ) = 0, the corresponding characteristic equation of the coin-
ciding equilibria Ē is

H(λ) = λ3 + ζ(Ḡi )λ = 0.

The generalized eigenvectors of λ1,2 = 0 and the eigenvector of λ3 = − f − b − cĪ
are

V1 =

⎛

⎜
⎜
⎝

− f
−2e f Ī

Ḡ(e + Ḡ2)
0

⎞

⎟
⎟
⎠ , V2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f (1 − b − cĪ )

(b + cĪ )
2e f Ī

Ḡ(e + Ḡ2)

−(e + Ḡ2)( f + b + cĪ )

dḠ2(b + cĪ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V3 =

⎛

⎜
⎜
⎝

b + cĪ
−2e f Ī

Ḡ(e + Ḡ2)
0

⎞

⎟
⎟
⎠ .

Let T̄ = (V1, V2, V3)T , under the non-singular linear translation

⎛

⎝
x
y
z

⎞

⎠ = T̄

⎛

⎝
u
v

w

⎞

⎠ ,

model (1.1) becomes

⎧
⎪⎨

⎪⎩

u̇ = −v + L20u2 + L11uv + L02v
2 + O(|u, v, w|3),

v̇ = M20u2 + M11uv + M02v
2 + O(|u, v, w|3),

ẇ = −( f + b + cĪ )w + O(|u, v, w|2),
(2.11)
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where

L20 = a110
f

M
+ b200

N f 2

Mm2 + c200
n(MN − f ) f 2

m2M2 ,

L21 = N f 2

Mm2

[

3b300
f (N − 1)

mN
+ b201

N

M
+ c201

(MN − f )

N 2

]

,

L12 = (N − 1)2 f 2

Mm2N 2

[

3b300
− f

mN
+ b201

M

n
+ c201

(MN − f )

1 − N

]

,

M02 = c101
f (N − 1)

mN
, M21 = c201

f 2M

m2nN
, M20 = c200

nN f 2

Mm2 ,

M11 = c200
2n(1 − N ) f 2

Mm2 ,

L11 = c f (2N − 1)

N
+ f

m

[
b200M f (2 − N )

m
− b201

n

]

+ n f (MN − f )

mNM2

[

c201
M

n
+ c200

f (N − 2)

m

]

,

with M = f + b + cĪ , N = b + cĪ , m = 2e f Ī

Ḡ(e + G2)
. The other coefficients of

quadratic terms of model (2.11) are omitted here.
According to the center manifold theorem, for ε1, ε2 sufficiently small, there exists

a center manifold for model (2.11), which can be locally represented as follows

Wc = {(u, v, w)|w = H(u, v), |u| < ε1, |v| < ε2, H(0, 0) = 0, DH(0, 0) = 0} .

Then, model (2.11) restricted to the center manifold is given by

{
u̇ = −v + L20u2 + L11uv + L02v

2 + O(|u, v, w|3),
v̇ = M20u2 + M11uv + M02v

2 + O(|u, v, w|3). (2.12)

Using the near-identify transformation

{
u = X ,

v = −Y + L20X2 + M02XY + O(|X ,Y |3),

and rewriting X ,Y into u, v, we obtain

{
u̇ = v,

v̇ = M̄20u2 + M̄11uv + O(|u, v|3), (2.13)

where M̄20 = −M20, M̄11 = −M02 − L11.
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By calculation, we get

M̄20 = − f (b + cĪ )Ḡ2(e + Ḡ2)2

4g1( f + b + cĪ ) Ī e2
�= 0,

M̄11 = g1 f (e + Ḡ2)

dḠ2
+ c f [2(b + cĪ ) − 1]

b + cĪ
+ (e − 3Ḡ2)(2 Ī + dβ̄Ḡ)

4eḠ Ī 2(e + Ḡ2)
.

Under the above assumptions, making a change of coordinates and time to preserve
the orientation by time

u → | M̄20

M̄2
11

|u, v → | M̄
2
20

M̄3
11

|v, t → | M̄11

M̄20
|t,

model (1.1) is topologically equivalent to the normal form (2.10). ��
Theorem 6 Suppose that ζ(Ḡ) = θ(Ḡ) = M̄11 = 0 and M̄31 �= 0, then Ē is a
codimension 3 degenerate Bogdanov–Takens singularity, and themodel (1.1) localized
at Ē is topologically equivalent to

{
u̇ = v,

v̇ = u2 + u3v + O(|u, v|4)v.
(2.14)

where M̄31 = −(2L12M20 + L21M11 + L11M21).

Proof The proof is long but standard, which can be divided into seven steps.

Step 1 Expand the model (2.6) up to order 4, and diagonalize the linear part with
transformation T̄ .

Step 2 Calculate the center manifold Z = H(u, v) up to O(|u, v|4) and reduce the
model on the center manifold, then model is restricted on

{
u̇ = −v + L20u2 + L02v

2 + L11u1v1 + L30u3 + L03v
3 + L21u2v + L12v

2u + O(|u, v|4),
v̇ = M02v

2 + M02v
2 + M03v

3 + M21u2v + O(|u, v|4).
(2.15)

Step 3 Reduction to a nonlinear oscillator.
We make a near-identity transformation

{
u1 = u,

v1 = −v + L20u2 + L02v
2 + L11u1v1 + L30u3 + L03v

3 + L21u2v + L12v
2u + O(|u, v|4),

which brings model (2.15) into

⎧
⎪⎪⎨

⎪⎪⎩

u̇1 = v1,

v̇1 =
∑

i=2,3,4

M̄i0u
i
1 +

i+ j=2,3,4∑

i, j∈N
M̄i j u

i
1v

j
1 + O(|u1, v1|5), (2.16)
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where M̄20 = −M20 and M̄31 = −2L12M20 − L21M11 − L11M21. The other
coefficients of quadratic terms of model (2.16) are omitted here.

Step 4 Eliminating non-resonant terms in model (2.16).
Under a series of near-identity transformations (i = 2, 3, 4),

{
ui−1 = ui + uii−1,

vi−1 = vi ,

model (2.16) is transformed to

{
u̇4 = v4,

v̇4 = M̄20u24 + M̄30u34 + M̄40u44 + M̄21u24v4 + M̄31u34v4 + O(|u4, v4|5).(2.17)

Step 5 Removing u24v4 terms from model (2.17).

Note that M̄20 �= 0, let r = M̄21

M̄20
, then M̄20u24 + M̄21u24v4 = M̄20u24(1+ rv4).

We consider a change of variables u4 = u5 and v4 = v4(v5) = v5 + O(v25)

such that

v5dv5 = v4

1 + rv4
dv4. (2.18)

That is

v25 = 2

r

[

v4 − 1

r
ln(1 + rv4)

]

= v24 − 2r

3
v34 + r2

2
v44 + O(v54).

Or, equivalently

v5 = v4 − r

3
v24 − 7r2

36
v34 + O(v44), v4 = v4(v5) = v5 + r

3
v25 + r2

36
v35 + O(v45).

(2.19)

We change model (2.17) to the form

v4dv4 = [Q(u4, v4) + O(|u4, v4|5)]du4, (2.20)

where Q(u4, v4) = M̄20u24 + M̄30u34 + M̄40u44 + M̄21u24v4 + M̄31u34v4.
Now we divide both sides of (2.20) by 1 + rv4, and using (2.18) we find

v5dv5 =
{

[Q(u5, v4(v5)) − M̄20u25[1 + rv4(v5)] + O(|u5, v4(v5)|5)
1 + rv4(v5)

+ M̄20u
2
5

}

du5,

then using the second equality of (2.19) we obtain

v5dv5 = [M̄20u
2
5 + O(|u5|3) + M̄31u

3
5v5 + O(|u5, v5|4)v5]du5,
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which is equivalent to

{
u̇5 = v5,

v̇5 = M̄20u25 + O(|u5|3) + M̄31u35v5 + O(|u5, v5|4)v5. (2.21)

Step 6 Changing M̄20 and M̄31 to be 1 in (2.21).
Under the assumption that M̄20M̄31 �= 0, we make the following changes of
variables and time,

u5 = M̄
1
5
20M̄

− 2
5

31 u6, v5 = M̄
4
5
20M̄

− 3
5

31 v6, t = M̄
− 3

5
20 M̄

1
5
31τ,

then model (2.21) becomes

{
u̇6 = v6,

v̇6 = u26 + O(|u6|3) + u36v6 + O(|u6, v6|4)v6. (2.22)

Step 7 Eliminating the term O(|u6|3) in model (2.22).
Let φ(u6) = u26 + O(u36) and ψ(u6) = ∫ u6

0 φ(u6)du6. By a change of coordi-
nates and time

u6 = (3ψ(u6))
1
3 , v6 = v6, τ = (3ψ(u6))

− 2
3 φ(u6)τ,

and rewriting u6, v6 into u, v, we get that

{
u̇ = v,

v̇ = u2 + u3v + O(|u, v|4)v.

Hence, Ē is a codimension 3 degenerate Bogdanov–Takens singularity. ��
Some bifurcation diagrams and bifurcation curves are shown in Fig. 2. Point

H(LP, BT , ZH ,GH ,CP, BP) represents Hopf (fold, Bogdanov–Takens, zero-
Hopf, degenerated Hopf, cusp, transcritical) bifurcation point. In Fig. 2a, the equi-
librium is stable (unstable) on the solid (dashed) line. In Fig. 2c–f, purple (blue) curve
is subcritical (supercritical) Hopf bifurcation curve; red curve is fold bifurcation curve;
green curve represents Hopf bifurcation curve.

3 Dynamics of PerturbedModel

3.1 Method of Investigation

Maintaining blood glucose homeostasis is achieved by an intricate balance and affected
by insomnia (Stein et al. 2018), obesity (Brenachot et al. 2017), smoking (Aulinas
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Fig. 2 a Bifurcation diagram with a = 16.5, b = 2, c = 1, d = 4, e = 3.6, f = 1, g = 27.4, h =
40, g1 = 1. b Three families of periodic solutions corresponding to (a). c and d Fold bifurcation curve
and Hopf bifurcation curve with a = 6.13, b = 5.9, c = 1, d = 4, e = 0.1, f = 1, g = 0.99, h =
1.83, g1 = 0.72. e Fold-Hopf bifurcation curve with a = 0.34, b = 4, c = 2, d = 2, e = 100, f =
1, g = 7, h = 35.34, g1 = 39.93. f Bogdanov–Takens bifurcation curve with a = 26.74, b = 4, c =
2, d = 2, e = 100, f = 1, g = 7, h = 8.24, g1 = 1
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et al. 2016), diet (Micha et al. 2017), temperature (Booth et al. 2017), and time differ-
ence (Depner et al. 2018). The internal circadian oscillator regulates the physiological
parameters and periodic external environment, which exhibit obvious circadian rhyth-
micity (Depner et al. 2018; Dobin et al. 2013; Zhang et al. 2014; Ando et al. 2016;
Morris et al. 2016). Here, due to hepatic glucose production and β cell’s glucose tol-
erance play key roles in glucose metabolism, we consider GIβ model (1.1) with four
different periodicity mechanisms. That is,

mechanism 1: a = a0(1 + ε sin 2πωt),

mechanism 2: h = h0(1 + ε sin 2πωt),

mechanism 3: a = a0(1 + ε1 sin 2πωt) and h = h0(1 + ε2 sin 2πωt),

mechanism 4: a = a0(1 + ε1 sin 2πωt) and h = h0(1 + ε2 cos 2πωt).

(3.1)

Here, ε is the degree of the periodicity. a0, h0 are the average value of a, h.
The bifurcations of the periodically perturbed model are obtained by Poincaré map

via a continuous technique. The periodical perturbation can be done by adding a
nonlinear oscillator with the desired periodic as the solution components. For model
(1.1), the perturbed period is 1 day. Here, we take such an oscillator,

{
v̇ = v + 2πw − v(v2 + w2),

ẇ = −2πv + w − w(v2 + w2),
(3.2)

with an asymptotically stable periodic solution v = sin 2π t, w = cos 2π t . In the
periodicity mechanisms (3.1), model (1.1) can be transformed into four autonomous
five-dimensional models. Taking the second mechanism of (3.1) as an example, the
higher dimensional autonomous model is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ġ = a − (b + cI )G,

İ = dβG2

e + G2 − f I ,

β̇ = (−g + h0(1 + εv)G − g1G2)β,

v̇ = v + 2πw − v(v2 + w2),

ẇ = −2πv + w − w(v2 + w2).

(3.3)

The equilibrium (xa, ya, za) of model (1.1) corresponds the periodic solution
(xa, ya, za, sin 2π t, cos 2π t) of the perturbed model (3.3). When ε �= 0, we can
calculate the bifurcation diagrams of model (3.3) by using the Poincaré map P . For
model (1.1), the first return map is

P : (y1(0), y2(0), y3(0), v(0), w(0)) �→ (y1(1), y2(1), y3(1), v(1), w(1)).

(3.4)

The phase portrait of the Poincaré map P is composed of fixed points, regular and
irregular invariant sets, and all other orbits. The k-period fixed points, regular and
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irregular invariant sets correspond to subharmonical periodic solutions with period k,
quasiperiodic solutions, and chaotic solutions, respectively. In the bifurcation diagrams
presented below, we use the following notation h(k), t (k), and f (k) to denote Hopf
(Neimark–Sacker) bifurcation curve, tangent (fold) bifurcation curve, and flip (period
doubling) bifurcation curve. In addition, A or Ai , B or Bi , C or Ci , D or Di , (i ∈ N),
represent 1:1 resonance, 1:2 resonance, 1:3 resonance, 1:4 resonance. See detailed
descriptions in Ren and Li (2016).

3.2 Bifurcations of PerturbedModel with Periodic Mechanism 1 and 2.

According to Theorem 2, we classify the unperturbed model (1.1) into four cases,
resorting to the types of Hopf bifurcations. In this subsection, we shall explore and
present bifurcation diagrams of the Poincar’e map for the perturbed model with peri-
odic mechanism 1 and mechanism 2.

Case 1 The unperturbed model (1.1) undergoes two supercritical Hopf bifurcations
when a is varied. It undergoes two supercritical Hopf bifurcations if h is varied.

Taking a0 = 16.51, b = 2, c = 1, d = 4, e = 3.559, f = 1, g = 27.425, h0 =
40, g1 = 1, the unperturbedmodel (1.1) undergoes two supercriticalHopf bifurcations
at a1H = 5.34 and a2H = 1.66 when a0 is varied. It undergoes two supercritical Hopf
bifurcations at h1H = 11.878 and h2H = 15.01 when h0 is varied. For these values,
the unperturbed model oscillates on a stable limit cycle. The asymptotic period of the
cycle (evaluated numerically) is 1.497 (3.609) when a0 approaches a1H (a2H ). It is 1.51
(2.809) while h0 approaching h1H (h2H ). The bifurcation diagrams of the perturbed
model on the (ε, a0) and (ε, h0) planes are given in Fig. 3a and c. Figure3b and d is
the partial enlargement drawings of Fig. 3a and c.

In Fig. 3a, the points H1 and H2 on the a0-axis correspond to two supercritical Hopf
bifurcations of the model (1.1). These points are the initial points of period-one torus
curves h(1)

1 and h(1)
2 . h(1)

1 (h(1)
2 ) passes through a 1:3 resonanceC1 (C3) and terminates

at a 1:2 resonance B1 (B3). Besides, the period-one flip bifurcation f (1) also passes
through B1 and B2. At the point T on a0-axis, the period of the stable limit cycle of
model (1.1) is two. From T , two branches of tangent curves t (2)1 and t (2)2 originate;

and t (2)2 intersects with f (1). A period-two torus bifurcation curve h(2) starts at a point

of t (2)1 and terminates at a 1:2 resonance B2. There are a 1:3 resonance C2 and a 1:4
resonance D on it. There are flip curves f (2), f (4) in Fig. 3b.

The curve h(1)
1 is formed by the continuation of a Neimark–Sacker bifurcation of

Poincaré mapP . When the curve h(1)
1 is crossed to below (i.e., from region 1 to 2 in

Fig. 3b), a stable point of the Poincaré map P loses its stability and a stable closed
invariant curve appears. Besides, this invariant curve in region 2 can be destroyed via
a homoclinic structure near point B1, giving rise to chaotic solutions. The perturbed
stable limit cycle bifurcates a stable torus. And this fixed point becomes stable again
while crossing the curve h(1)

2 to the below and an unstable closed invariant curve
appears. If f (1) is crossed to the right, the unstable point becomes a saddle in the
region which is bounded by f (1) and ε = 1.
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Fig. 3 Bifurcation diagrams of the perturbed model with a0 = 16.51, b = 2, c = 1, d = 4, e =
3.559, f = 1, g = 27.425, h0 = 40, g1 = 1. b, d is the partial enlargement drawings of (a) and (c)

Case 2 The unperturbed model (1.1) undergoes one subcritical Hopf bifurcation
when a is varied. It undergoes two subcritical Hopf bifurcations if h is varied.

Taking a0 = 3, b = 6.788, c = 1.371, d = 4, e = 0.1697, f = 450.3, g =
1.948, h0 = 2.459, g1 = 0.72, model (1.1) undergoes one subcritical Hopf bifurca-
tion at aH = 0.999 when a0 is varied. It undergoes two subcritical Hopf bifurcations
at h1H = 3.158 and h2H = 2.459 when h0 is varied. For these values, the unperturbed
model has unstable limit cycles; the asymptotic period of the cycle (evaluated numer-
ically) is 2.093 when a0 approaches aH . It is 2.093 (0.897) while h0 approaching h1H
( h2H ). The bifurcation diagrams of the perturbed model on the (ε, a0) and the (ε, h0)
planes are given in Fig. 4a and b. Figure4c and d is the partial enlargement drawings
of Fig. 4b.

In Fig. 4a, the point H on the a0-axis represents the subcritical Hopf bifurcation
of the unperturbed model and is the origin of the period-one torus bifurcations curve
h(1). This torus curve terminates at B1, a codimension-two bifurcation point called 1:2
resonance, where themultipliers equal to -1. Curve f (1) passes through B and a period-
two torus bifurcation h(2) also starts from B. t (2)1 and t (2)2 are two fold bifurcations
with period two.
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Fig. 4 Bifurcation diagrams of the perturbed model with a0 = 3, b = 6.788, c = 1.371, d = 4, e =
0.1697, f = 450.3, g = 1.948, h0 = 2.459, g1 = 0.72. c, d are the partial enlargement drawings of b

The unstable period-one fixed point becomes stable while crossing h(1) from region
1 to region 2, and an unstable closed invariant curve appears. After that, the attracting
point loses stability across f (1) to region 4 bounded by f (1), h(2) and ε = 1.

Twopairs of period-twopoints appearwhile crossing t (2)1 . The two saddles only exist

in the region bounded by t (2)1 and ε = 1. These two unstable points become unstable
when crossing h(2) to region 3, and disappear when crossing f (1) from region 3 to 1
or from 4 to 2.

In Fig. 4b, the points H1 and H2 on the h0-axis correspond to two subcritical Hopf
bifurcations of the unperturbed model (1.1), and are the roots of the period-one tours
bifurcation curves h(1)

1 and h(1)
2 . The curve h(1)

2 terminates at B1, a 1:2 resonance.

A period-one flip curve f (1)
1 passes through B1 and B2. Another period-one tours

bifurcation h(1)
1 curve passes through C (a 1:3 resonance), D (a 1:4 resonance) and

terminates at B2. In Fig. 4d, at T1 and T2, the period of limit cycles is 1 and 2, respec-
tively. They are the roots of the period-one fold bifurcation t (1) and two period-two
fold bifurcations t (2)1 , t (2)2 . There also exists a period-two flip bifurcation f (2).
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Fig. 5 Bifurcation diagrams of the perturbed model with a0 = 60, b = 2, c = 1, d = 5, e = 10, f =
20, g = 0.6, h0 = 0.177, g1 = 2.14 × 10−3

Two unstable period-one fixed points collide on t (1) then disappear while crossing
t (1) to the below. One point changes its stability, and an unstable closed invariant curve
appears while crossing h(1)

2 to the above. Then, it becomes unstable once again while

crossing h(1)
1 , and a stable closed invariant curve appears. Besides, it becomes unstable

inside the region bounded by f (1) and ε = 1.
Two pairs of period-two fixed points (two saddles, two non-saddles) appear when

t (2)1 or t (2)2 is crossed to the right. The two saddles disappear through the part of f (1)

between t (2)1 and t (2)2 . The other two points become unstable in the region bounded
by f (2) and ε = 1 and then disappear through the part of f (1) on the right of the
intersections of t (2)1 with f (1), i.e., from region 1 to region 2 in Fig. 4d. Besides, while

crossing f (1) (on the above of the intersection of t (2)3 with f (1)) to the right, two

unstable points appear and then disappear above t (2)3 .
Case 3 The unperturbed model (1.1) undergoes one supercritical Hopf bifurcation

when a or h is varied.
Taking a0 = 60, b = 2, c = 1, d = 5, e = 10, r = 20, g = 0.6, h0 = 0.177, g1 =

2.14×10−3, the unperturbedmodel (1.1) undergoes one supercritical Hopf bifurcation
at aH = 60 when a0 is varied; it undergoes a supercritical Hopf bifurcation at hH =
0.1754 when h0 is varied. For these values, the unperturbed model (1.1) oscillates on a
stable limit cycle; the asymptotic period of the cycle (evaluated numerically) is 1.612
when a0 approaches aH . It is 1.621 when h0 approaches hH . The bifurcation diagrams
of the perturbed model on the (ε, a0) and the (ε, h0) planes are given in Fig. 5a and b.

In Fig. 5a, the point H on the a0-axis corresponds to a supercritical Hopf bifurca-
tion of the unperturbed model (1.1). It is the initial point of period-one torus curve
h1. At T , the period of the unstable cycle is 2. Two branches of period-two tangent
bifurcation curve, t (2)2 and t (2)3 , originate from T . A period-two torus bifurcation curve
h(2) originates from A, a 1:1 resonance. While crossing h(1) to the above, the unstable
period-one fixed point changes its stability, and an unstable closed invariant curve
appears. It becomes a saddle while crossing the region f (1) and ε = 1.
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Two pairs of period-two fixed points (two saddle points, two attracting points)
appear while crossing t (2)1 to the above. The two saddles only exist in the region
bounded by f (1) and ε = 1. The two attracting points become unstable and disappear
through t (2)2 . Two pairs of period-two points (two saddles, two non-saddles) appear

when t (2)2 or t (2)3 is crossed to the right. The two saddles only exist in the region which

is bounded by t (2)2 , t (2)3 , and f (1). The other two non-saddles are stable above h(2) and

disappear through the part of f (1) on the right of the intersections with t (2)3 .
In Fig. 5b, the point H on the h0-axis corresponds to the supercritical Hopf bifurca-

tion of the unperturbed model (1.1), and it is the root of curve h(1), which terminates
at B, a 1:2 resonance. A period-one flip bifurcation curve f (1) passes through B. T1
corresponds to the tangent bifurcation in the unperturbed model (1.1), and is the root
of t (1). A branch of period-two tangent bifurcation curve, t (2)1 and t (2)2 , originates from

T2. In addition, there is a period-two fold bifurcation curve t (2)3 originating from the
point O on f (1). F1 is the intersection of f (1) and ε = 1.

The unstable period-one point becomes stable while crossing h(1) to the above. It
becomes an unstable saddle while crossing the region bounded by the curve f (1) and
ε = 1. The saddle point and the non-saddle point collide on t (1) and then disappear
on the below of t (1).

Two pairs of unstable period-two fixed points (two saddles, two unstable points)
appear when t (2)2 is crossed to the above, and t (2)1 is crossed to the below. The two

saddle points disappear through f (1) between t (2)2 and t (2)1 to the right. The two unstable
points become attractive in the region surrounded by f (2) and ε = 1 and then disappear
through f (1) from region 2 to 1 and region 3 to 4. While crossing OF1 (the part of
f (1)) to the above, two attractive points appear. And these points disappear above t (2)3 .
Case 4 The unperturbed model (1.1) does not undergo Hopf bifurcation when a is

varied. It undergoes one supercritical Hopf bifurcation if h is varied.
Taking a0 = 58.81, b = 51.61, c = 1, d = 5, e = 10, f = 20, g = 0.6, h =

7.27× 10−2, g1 = 2.15× 10−3, the unperturbed model (1.1) does not undergo Hopf
bifurcations when a is varied; it undergoes a supercritical Hopf bifurcation at hH =
0.167when h0 is varied. For these values, model (1.1) oscillates on a stable limit cycle.
While h0 approaching hH , the asymptotic period of the cycle (evaluated numerically)
is 0.39. The bifurcation diagrams of the perturbed model on the (ε, a0) and the (ε, h0)
planes are given in Fig. 6a and c. Figure6a and d is the partial enlargement drawings
of Fig. 6a and c.

In Fig. 6a, a closed period-one flip bifurcation curve f (1) passes through two 1:2
resonances B1 and B2. And a torus bifurcation curve with period one h(1) originates
from B2 and terminates at a 1:1 resonance A. There are a 1:3 resonance C and a 1:4
resonance D on h(1). A tangent bifurcation with period-one curve t (1) passes through
A. h(2), a period-two torus bifurcation curve, is connected by B1 and B2.

Two period-one fixed points collide on t (1) and then disappear while crossing t (1)

to the above. One of the two fixed points is a saddle point. The other point loses
its stability while crossing to the below of h(1). Two pairs of period-two points (two
saddles, two non-saddles) appear when t (2) is crossed to the below. The two saddles
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Fig. 6 Bifurcation diagrams of the perturbed model with a0 = 58.81, b = 51.61, c = 1, d = 5, e =
10, f = 20, g = 0.6, h = 7.27 × 10−2, g1 = 2.15 × 10−3. b and d are the partial enlargement drawings
of a and c

exist in the closed region bounded by f (1). The other two points are unstable below
h(2), lose stability above h(2), and then disappear through f (1).

In Fig. 6c, the point T1 (T2) on the h0-axis corresponds to a fold bifurcation of
model (1.1), and it is a root of the curve t (1)1 (t (1)2 ). The point H corresponds to a
supercritical Hopf bifurcation of the unperturbed model and is a root of the curve h(1).
A flip bifurcation curve f (1)

1 passes through B. A fold bifurcation with period two t (2)1
starts at point O . f (2) is a period-two flip bifurcation in the region, which is bounded
by f (2)

1 .

Two period-one fixed points collide on t (1)1 and then disappear while crossing t (1)1
to the below. One of the two fixed points is a saddle. The other point loses its stability
when crossing h(1) to the above, and a stable closed invariant curve appears. It becomes
a saddle point when f (1)

1 is crossed to the inside. Besides, two pairs of period-two fixed
points (two saddles and two non-saddles) appear when t (2) is crossed to the below.
The two saddles exist in the closed region bounded by f (1)

2 and t (2). The other two
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stable points become unstable while crossing f (2) to the inside, and then disappear
while crossing the part of f (1)

1 (above the point O) to the outside.

3.3 Bifurcations of PerturbedModel with Periodic with Periodic Mechanism 3 and
4

In this subsection, we consider the last two mechanisms of (3.1), which have periodic
and non-synchronous perturbations. To thoroughly analyze bifurcation diagrams, we
will not restrict the range of ε1 and ε2. For each periodic mechanism, we examine two
cases corresponding to those of the unperturbed model (1.1) (with stable or unstable
limit cycle).

The corresponding perturbed model with periodic mechanism 3 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ġ = a0(1 + ε1v) − (b + cI )G,

İ = dβG2

e + G2 − f I ,

β̇ = (−g + h0(1 + ε2v)G − g1G2)β,

v̇ = v + 2πw − v(v2 + w2),

ẇ = −2πv + w − w(v2 + w2).

(3.5)

In Fig. 7, these parameters are identical to those for case 2. For these values, the
model has unstable limit cycles. For the perturbed model (3.5), an unstable period-one
solution exists in region 1 and then becomes a saddle while crossing from region 1
to the region bounded by closed f (1). In addition, while crossing from region 3 to
region 2, two pairs of period-two solutions appear and then disappear on the t (2). The
two saddles only exist in the region bounded by closed f (1), and the other two points
become stable while crossing the closed curve f (2) and disappear while crossing f (1)

to the outside.
Taking a0 = 1, b = 5.9, c = 1, d = 4, e = 0.1, r = 1, g = 1.152, h =

1.83, g1 = 0.72, the bifurcation diagram on the (ε1, ε2) plane is illustrated in Fig. 8.
For these values, the unperturbed model (3.5) oscillates on a stable limit cycle. Three
nontrivial periodic solutions exist in the region bounded by the closed curve t (1).
Two nontrivial period-one solutions disappear while crossing the t (1) to the outside.
Besides, while crossing the curve h(1)

1 or h(1)
2 , the third fixed point changes its stability.

The corresponding perturbed model with periodic mechanism 4 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ġ = a0(1 + ε1v) − (b + cI )G,

İ = dβG2

e + G2 − f I ,

β̇ = (−g + h0(1 + ε2w)G − g1G2)β,

v̇ = v + 2πw − v(v2 + w2),

ẇ = −2πv + w − w(v2 + w2).

(3.6)
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Fig. 7 Bifurcation diagrams of the perturbed model of (3.5) with a = 59.278, b = 51.611, c = 1, d =
5, e = 10, f = 20, g = 0.6, h = 7.32 × 10−2, g1 = 2.14 × 10−3. b is the partial enlargement drawings
of a

Fig. 8 Bifurcation diagrams of the perturbed model of (3.5) with a0 = 1, b = 5.9, c = 1, d = 4, e =
0.1, f = 1, g = 1.152, h = 1.83, g1 = 0.72

In Fig. 9, these parameters are identical to those for case 2. For these values, the
perturbed model (3.6) has unstable limit cycles. There exist two nontrivial period-one
solutions between t (1)1 and t (2)1 , one of which is stable. When f (1) is crossed into the
region bounded by f (1) and ε1 = 1, the stable point becomes a saddle, and a pair
of stable period-two solutions appear. When t (2) is crossed to the above, two pairs of
period-two solutions (two saddles, two stable points) appear. The saddle points only
exist in the region bounded by t (2) and f (1). The other two stable points lose their
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Fig. 9 Bifurcation diagrams of the perturbed model (3.6) with a0 = 3, b = 6.788, c = 1.371, d = 4, e =
0.1697, f = 450.3, g = 1.948, h0 = 2.459, g1 = 0.72

Fig. 10 Bifurcation diagrams of the perturbed model (3.6) with a0 = 5.05, b = 2, c = 1, d = 4, e =
3.559, f = 1, g = 27.425, h0 = 40, g1 = 1. b is the partial enlargement drawings of a

stabilities through the part of f (2) (on the right of the intersections of f (2) and t (2)),
and then disappear through f (1).

Taking a0 = 5.05, b = 2, c = 1, d = 4, e = 3.559, f = 1, g = 27.425, h0 =
40, g1 = 1, the bifurcation diagram on the (ε1, ε2) plane is illustrated in Fig. 10. For
these values, the unforced model (3.6) oscillates on a stable limit cycle. The unstable
period-one fixed point becomes stable crossing h(1)

1 to the below, and an unstable
closed invariant curve appears. After that, the attracting point loses its stability across
h(1)
2 to the below, and a stable closed invariant curve appears. Two pairs of period-

two points (two saddles, two stable points) appear while crossing to the outside of
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Fig. 11 Time series of model (3.3) with a h = 15, ε = 0.4, b h = 15.54, ε = 0.01, c h = 15.4, ε = 0.17

the closed curve t (2). The two saddle points disappear through the part of f (1). The
other two stable points change their stability while crossing h(2) to the above and then
disappear while crossing f (1).

3.4 Solutions and Chaos

In this subsection, we take case 1 of mechanism 1 as an example to demonstrate the
more complex dynamics.

Periodic mechanism leads to multiple attractors. Indeed, the model without pertur-
bation (ε = 0) only has attractors like attracting equilibria and limit cycles. Under the
periodic perturbation (ε �= 0), the model has multiple attractors. For instance, the sta-
ble cycle of period four (for h = 15, ε = 0.4) coexists with the quasiperiodic solution
(for h = 15.54, ε = 0.01) and then with the chaotic solution (for h = 15.4, ε = 0.17)
(see Fig. 11). Besides, homoclinic structures near strong resonances can destroy the
closed invariant curves of a quasiperiodic solution (for h = 15.54, ε = 0.01), leading
to the appearance of a chaotic solution (for h = 15, ε = 0.04), as in Fig. 12.
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Fig. 12 Phase portraits (left) and corresponding Poincaré map portraits (right) of different solutions of
model (3.3). a and b Quasiperiodic solution, c and d chaotic solution through torus destruction

Fig. 13 Bifurcation diagrams in (h,G) plane of model (3.3) with ε = 0.4 under initial value (4, 3, 1.5).
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Fig. 14 Phase portraits (left) and corresponding Poincaré map portraits (right) of different solutions of
model (3.3). a and b Periodic solution with period two, c and d periodic solution with period four

Moreover, periodicity gives rise to stable cycles of different periods. The cor-
responding two-dimensional bifurcation diagram in the (h,G) space is plotted in
Fig. 13 for ε = 0.4. Phase portraits and corresponding Poincaré map portraits of
the period-two solution (for h = 29.4, ε = 0.4) and the period-four solution
(for h = 26.27, ε = 0.4 ) are shown in Fig. 14. We also present two chaos (for
h1 = 26, h2 = 18, ε = 0.4) with different topologies which correspond to different
periods in Fig. 15. These chaotic solutions are further corroborated by calculating the
positive value of the maximum Lyapunov exponent. The spectrums of the Largest
Lyapunov exponents are presented in Fig. 15e, f.

Furthermore, even a tiny change of periodicity can lead to bifurcation and a new
periodic solution. There exists a stable cycle with period one near the curve h(1)

1 .
If ε is slowly increased with h0 is fixed, the stable cycle varies smoothly and loses
stability through f (1)

1 . After f (1)
1 is crossed to the right, themodel oscillates on another

attractor, i.e., a stable cycle of period two. On the other hand, if ε is fixed with h0 is
increased, a new period-one solution occurs when h(1)

2 is crossed (Fig. 3c).
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Fig. 15 Phase portraits (left) and corresponding Poincaré map portraits (right) of chaos with different
topologies of model (3.3). d and e The largest Lyapunov exponents corresponding to (a) and (c)

4 Application and Discussion

In this paper, we thoroughly explore the bifurcations and the related dynamics of
the GIβ model. The model (1.1) undergoes Hopf, degenerated Hopf, saddle-node,
transcritical bifurcations of codimension 1; cusp, zero-Hopf, Bogdanov–Takens bifur-
cations of codimension 2; and a Bogdanov–Takens bifurcation of codimension 3.
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Table 1 Standard parameter values

Symbol Value Unit Source

a 15 mg dl−1 d−1 Wake et al. (2011)

b 1.44 d−1 Topp et al. (2000)

c 0.72 ml mu−1 Ud−1 Topp et al. (2000)

d 0.01 mu Uml−1 d−1 Topp et al. (2000)

e 1 mg2 dl−2 Wake et al. (2011)

f 0.75 d−1 Topp et al. (2000)

g 0.84 × 10−3 mg dl−1 d−1 Topp et al. (2000)

h 0.06 d−1 Topp et al. (2000)

g1 0.24 × 10−5 mg2 dl−2 d−1 Topp et al. (2000)

Note that 1 nmol/l = 18 mg/dl

Moreover, considering that blood glucose homeostasis is strongly regulated and con-
trolled by internal or external periodically varying environments, we also further
investigate the dynamics of the periodic perturbed GIβ model with synchronous
and/or non-synchronous variations of a and h. The periodicity results in multiple
attractors, including stable and unstable cycles of different periods, quasiperiodic
solutions, and chaos. The glycemic metabolic system shifts abruptly from one state to
another at various bifurcation points rather than switched points, such as euglycemia/
hypoglycemia, euglycemia/ hyperglycemia, and hyperglycemia/diabetes. Thus, regu-
lations and therapeuticmeasures near the various bifurcation curves and the conversion
regionwould be clinicallymeaningful. It should bementioned that high codimensional
bifurcation (Zhu et al. 2003; Shan et al. 2016; Ren and Yu 2016) and the periodic per-
turbation (Ren and Yuan 2017; Tao et al. 2018; Li et al. 2018) are important issues
in dynamical system theory. Our works can be seen as supplements to these issues,
especially for codimension 3 bifurcation and non-synchronous periodic perturbation.

A local sensitivity analysis is performed for the standard set of parameters given in
Table 1. Parametric sensitivity analysis investigates the effects of parameter changes
on the model output, in this case, the glucose concentration, the insulin concentration,
and β cell mass. In this study, we use relative sensitivity indices at a range of parameter
values (10% of the baseline values) computed bymultiplying the partial derivative (the
absolute sensitivity function) by the nominal value of the input and dividing by the
output value. The relative sensitivity index (SI (Ui , Pj )) of the model output Ui (G,
I , β) to variations in the parameters Pj (a, b, c, d, e, f , g, h, g1) is given by,

SI (Ui , Pj ) = 1

K

K∑

k=1

Pj + ΔPj

Uik (Pj + ΔPj )

[Uik (Pj + ΔPj ) −Uik (Pj )]
ΔPj

,

where k is the time step grid, 1 ≤ k ≤ K . From Fig. 16, for the unperturbed model,
sensitivity analysis (SA) shows that the sensitivities for a (hepatic glucose produc-
tion), b (insulin-independent glucose utilization), and h (glucose tolerance) to glucose

123



49 Page 32 of 39 Journal of Nonlinear Science (2023) 33 :49

Fig. 16 Sensitivity indices (SI) forG, I , and β with the standard parameters set in Table 1. a–cUnperturbed
SI for G, I , β. d–f Perturbed SI for G, I , β

Fig. 17 The correlation values (rN J ) between the dynamic sensitivities for all parameters with the standard
set in Table 1. a–c Unperturbed rN J for G, I , β. d–f Perturbed rN J for G, I , β

metabolism are more significant than other physiological parameters. While under the
periodic perturbation (ε1 = 0.2), SI (G, h), and SI (I , c), respectively, change from
1.512 and −0.53 to almost equal to 0, but both SI (I , a) and SI (β, a) show trends
of sharp growth. SA not only provides a way to reduce the complexity of glucose
metabolism and identifies the potential high-impact factors but also reveals that a
small perturbation may hide some high-impact factors.
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Fig. 18 Chaotic evolution of the proposedmodel shows the effect of a tiny difference in the initial conditions.
The initial conditions are I0 = 0.1 and I ′0 = 0.2. (G0 = G′

0 = 5, β0 = β ′
0 = 1.5 ). The parameter values

are a0 = 16.51, b = 2, c = 1, d = 4, e = 3.559, f = 1, g = 27.425, h = 15.5, g1 = 1, ε = 0.4

Meanwhile, the correlation between parameters, which is in order to explain param-
eter inter-dependency, is studied by computing the correlation between the dynamic
sensitivities as described in Sriram et al. (2012). The correlation matrix is generically
defined by the term as

rî ĵ =

m̂∑

1
(SIî − SI î )(SI ĵ − SI ĵ )

√

(
m̂∑

1
(SIî − SI î )

2)(
m̂∑

1
(SI ĵ − SI

2
ĵ )

,

where m̂ is the time grid step, 1 ≤ î, ĵ ≤ 9, î, ĵ ∈ N
+. The correlation values

between the dynamic sensitivities of all parameters for G, I , and β in perturbed and
unperturbed cases are shown in Fig. 17 with the diagonal being self-correlated. The
levels of correlation are differently shaded, as shown on the horizontal bar on the
right that ranges from highly correlated (+1) to anti-correlated (−1). We find that
periodic perturbation can change correlation by comparing the perturbed correlation
matrix and the unperturbed one. For example, the insulin’s correlation values between
the sensitivities of the parameter a and other parameters vary to different degrees
under the perturbation. When specific parameters are difficult to regulate during the
therapeutic process, doctors can resort to the correlation results to explore a new
treatment approach by adjusting the relevant parameters.

Apart from the theoretical meaning, the perturbed results can appropriately explain
some experimental phenomena and effectively fit clinical data.

In Markus et al. (1985), experimental evidence of quasiperiodic and chaotic oscil-
lations is observed by monitoring the fluorescence in glycolyzing bakers yeast under
sinusoidal glucose input. Such chaotic biorhythms which have irregular periods or
no period completely were also found in this paper (see Figs. 13, 15, 12). Under
some parameters, periodic perturbation may destruct the homeostasis of glucose
metabolism, leading to glucose disorder. And this glycemic instability may confer
additional risk on endothelial function and oxidative stress, two key players in favor-
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Fig. 19 Glucose levels in subjects with standard glucose tolerance (blue line, ε1 = 0.4), impaired glucose
tolerance (green line, ε2 = 0.405), and type 2 diabetes (red line, ε3 = 0.42) with a = 16.51, b = 2, c =
1, d = 4, e = 3.559, f = 1, g = 27.425, h0 = 26.4, g1 = 1

Fig. 20 Time series of a period-two solution with a = 16.51, b = 2, c = 1, d = 4, e = 3.559, f = 1, g =
27.425, h0 = 40, g1 = 1, ε = 0.2

ing cardiovascular complications in diabetes (Ceriello et al. 2008). Besides, in chaotic
dynamics, a minor variation in initial conditions may cause significantly different
dynamic behavior. Even a slight fluctuation in the insulin concentration may result
in unpredictable outcomes over time. Tiny changes of the initial insulin concentra-
tion lead to different glucose time series, which can be observed in Fig. 18. Therefore,
such patientswho use an integration of scheduled nutrition and exercise and timetabled
insulin administration need to consider the effect of apparent irregular alterations. The
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Fig. 21 Diabetic clinical data and fitted time series with a = 16.5, b = 2, c = 1, d = 4, e = 4, f = 1, g =
27.4, h = 16.5, g1 = 1, ε = 0.6

administration of insulin through an appropriate program is necessary and worthwhile
in some therapeutic processes.

In Mari et al. (2008), Mari et al. studied the response of acute insulin release
in diabetic subjects by examining the relationships between fasting plasma glucose
and the secretory responses. To elucidate this response, they measured the plasma
glucose after the glucose test for three types of people: standard glucose tolerance,
impaired glucose tolerance, and Type 2 diabetes. The plasma glucose of three subjects
is presented in Figure 1 inMari et al. (2008). In this paper, we choose three amplitudes
of perturbation (ε1 = 0.4, ε2 = 0.405, ε3 = 0.42) on the glucose tolerance h, which
adequately represents the three groups above, to see the fluctuation trend of plasma
glucose. The glucose levels are presented in Fig. 19. Comparing the result of Mari
et al. (2008), the numerical fluctuation trends are generally in agreement with the
experimental data.

In Ceriello et al. (2008), Ceriello et al. proposed that the oscillating glucose, over
1 day, has more harmful effects on endothelial function than stable constant high
glucose. When they investigated whether vitamin C can counterbalance the effect
of oscillating glucose, they presented the glucose levels of diabetic patients with or
without vitamin C infusion in Figure 4A in Ceriello et al. (2008). In the first period,
glucose levels peaked and bottomed two times, returning to the original story in the
next period. For the observed oscillations, we can draw an analogywith the bifurcation
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Fig. 22 Standard clinical data and fitted time series with a = 18, b = 2, c = 1, d = 6, e = 3.56, f =
1, g = 27.4, h = 11, g1 = 1, ε = 0.61

results of the periodically perturbed model (3.3). A stable period-two solution gener-
ated by the Neimark–Sacker bifurcation in the periodically perturbed model results in
the phenomena above. To be precise, we show the time series of a period-two solution
in Fig. 20.

To gain further clinically practical dynamics, we fit the diabetic and normal glucose
concentration data with the perturbed and unperturbed time series in Figs. 21 and 22.
The clinical data is recorded using a capillary fingertip blood sample by a portable
glucose monitor from a volunteer with Type 2 diabetes and a regular volunteer for
400h. The data is sampled approximately every 3 h during the hospital stay. It is
shown that clinical data has prominent diurnal variation rhythms, which peak at noon
and then decrease to the lower level. Besides,mixed values of glucose peaks occur after
the three meals. Though circadian rhythm is also presented by the Hopf bifurcation of
model (1.1), this single rhythm neglects the postprandial floating upward tendencies
in the daytime. The agreement of the perturbed model is much better than that of the
unperturbed one since it appropriately describes the postprandial glucose fluctuations
three times a day.

Further factors could be added to the model by considering nonlocal delay and
stochastic process of the metabolism. It may be more clinically useful for the variables
to have a stabilization control algorithm and the parameters to have delay dependence
and/or age dependence, as in Liu et al. (2020), Zhang et al. (2016), Wang et al. (2018),
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Chakraborty et al. (2009). Thus, it would be intriguing to see how perturbation affects
such glucose metabolism.
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