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Abstract

We discuss a system of two coupled parabolic equations that have degenerate diffusion
constants depending on the energy-like variable. The dissipation of the velocity-like
variable is fed as a source term into the energy equation leading to conservation of
the total energy. The motivation of studying this system comes from Prandtl’s and
Kolmogorov’s one- and two-equation models for turbulence, where the energy-like
variable is the mean turbulent kinetic energy. Because of the degeneracies, there are
solutions with time-dependent support like in the porous medium equation, which
is contained in our system as a special case. The motion of the free boundary may
be driven by either self-diffusion of the energy-like variable or by dissipation of the
velocity-like variable. The crossover of these two phenomena is exemplified for the
associated planar traveling fronts. We provide existence of suitably defined weak
and very weak solutions. After providing a thermodynamically motivated gradient
structure, we also establish convergence into steady state for bounded domains and
provide a conjecture on the asymptotically self-similar behavior of the solutions in R¢
for large times.
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1 Introduction

On a smooth domain Q C R¥, we consider the degenerate parabolic system

v =div (n(w)Vv), for (z, x) € 10, oo[x 2, (1.1a)
w = div (K(w)Vw) + 77(w)|Vv|2 for (¢, x) € 0, oo[x €2, (1.1b)
0=nw)Vu-n, 0=«kw)Vw-n for (z, x) € ]0, oo[x0€2, (1.1¢)

where v(t, x) € R can be considered as a shear velocity and w(t, x) > 0 is an internal
energy. Here, the functions w — n(w) and w — k(w) describe the viscosity law for
v and the energy-transport coefficient for w. Throughout this work, we will mainly
restrict to the choice

n(w) = now® and «(w) = kow?, (1.2)

where «, 8, 19, ko > 0 are given parameters.

The main feature of the model is that the shearing dissipation n(w)|Vv|? is feeding
into the energy equation such that in addition to the total momentum V (v, w) also the
total energy £ (v, w) are conserved along solutions:

Vv, w) ::/ v(x)dx and &£(v, w) ::/ (%v2+w)dx
Q

Q

One difficulty of the coupled system is that the viscosity coefficient n(w) and the
energy-transport coefficient k (w) can be unbounded, but this problem will play a minor
role in our work. The main emphasis is on the degeneracies arising from the fact that
1(0) = «(0) = 0 and that the solutions of our interest have a nontrivial support. Thus,
we are deriving a theory for solutions that have (v(¢, x), w(¢, x) = (0, 0)) in regions
of the Q7 = [0, T]x 2 of full measure. In particular, we are interested in the free
boundary arising at the boundary of the time-dependent support of w(t, -). There is
already some existence theory for related models motivated by turbulence in fluids,
see Gallouét et al. (2003), Lederer and Lewandowski (2007) and Druet and Naumann
(2009) for stationary models and Naumann (2013), Mielke and Naumann (2015),
Bulic¢ek and Mélek (2019) and Mielke and Naumann (2022) for time-dependent mod-
els. However, there it is either assumed that w®(x) > w > 0 for all x € € or that
w9(x) = 0forall x € 32 and w®(x) > 0 a.e. in  such that fQ log wo(x)dx > —o0,
see Remark 5.6.

We provide a preliminary existence theory for our coupled system in Sect. 6 which
allows for solution with nontrivial support, i.e., €2 \ sppt(w(¢)) has nonempty interior.
However, we do this just for completeness and we rather focus on the growth behavior
of the support, i.e., the moving free boundary. Moreover, we emphasize that some of
the statements in this paper are still conjectures, and only a few results are formulated
rigorously as propositions or theorems. Nevertheless, we believe that the degenerate
coupled system is relevant in applications and opens up new avenues for developing
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the tools in applied analysis, in particular in the field of free-boundary problems. The
system is specific enough to analyze it in more detail, it is close enough to the porous
medium equation (PME) to lend some of the tools from there, but it displays a richer
structure of nontrivial effects stemming from the coupling between the two scalar
equations.

To start with, we remark that (1.1) contains the PME, when restricting to the case
v=0:

W = div (k(w)Vw) in]0,00[xQ, k(w)Vw-n=0 on]0,c0[xIQ, (1.3)
which is known for its solutions with time-dependent support. For @ = R? and k (w) =

(B+1)w” we have the celebrated self-similar Barenblatt solutions (see Vazquez 2007,
Eqn. (1.8))

N c kx| oWV ins— L %
it = G (max €= G 0]) T wio = s k= et

(1.4)

Here, C > 0 determines the conserved total mass fRd w(t, x)dx = Ep, see Sect.7.1.

For v # 0, there is a true coupling between the two scalar equations, and its structure
is discussed in Sect. 2. In addition to the conservation laws for momentum and energy
and symmetries, we show that all entropies of the form S (v, w) = f o 0 (w(x))dx with
nondecreasing and concave o are growing along solutions (v, w) of (1.1). Moreover,
we establish a gradient structure the coupled system: For given o with ¢’(w) > 0
and o”(w) < 0, there exists a state-dependent Onsager operator K = K* > 0
describing the dissipation mechanisms due to viscosity n(w) and to energy transport
via k (w):

<U> =K, w)DS (v, w) = K(v, w)( 0 ) with
W o'(w)

K(v, w)<§) =( div (p1(w)(V¢ SVU)') ) (L5)
5] \=piw)Vv - Ve + pi(w)|VoPé — div (pa(w) VE)
p1(w)=n(w)/o’'(w), and pr(w) =k (w)/(—c" (w)), see Sect.2.4.

Sections 2.2 and 2.3 are devoted to scaling invariances and self-similar solutions of
the coupled system (1.1). We argue that even for general n and « there are solutions of
the form (v(z, x), w(t, x)) = (V(x/E+DY?), W((x/(t+1)/?)) where (V, W) may
attain nontrivial limits for y — F00. For n(w) = k(w) = w, an explicit family of
solutions with nontrivial support of W is provided in Example 2.2.

In Sect. 2.4, we consider abounded domain 2 ¢ R andthecase = g € 10, 1[. By
exploiting the gradient structure we show that most solutions converge exponentially
to constant states (v(¢), w(t)) = (Vy,.g,1q, Wy,.E,1q), Where Uy, g, and Wy, g,
are given explicitly in terms of Vp = V(1°) and Eg = £(v°, w). The exponential
decay rate is quite explicit. However, we also show that the decay does not hold for
all solutions: for instance, because of non-uniqueness we may have v(z, x) = v0(x)
while w = 0, which is certainly not decaying to the thermodynamic equilibrium.

@ Springer



42 Page4of 55 Journal of Nonlinear Science (2023) 33:42

We also compare our model to the plasma model discussed (Rosenau and Hyman
1985, 1986; Hyman and Rosenau 1986) for the mass density p > 0 and the temperature
6 =>0:

pr = div (p? ¢1(p,0)Vp) and (p0), = div (0°¢2(p, 0)VEO + 0pY p1(p, )V p),
(1.6)
see Sect. 2.5 for more details.

Section 3 is devoted to steady states and traveling fronts. Because of the degeneracy,
it is obvious that all functions of the form (v, w) = (v, 0) are steady states, which we
call trivial steady states. Nontrivial steady states are necessarily spatially constant, i.e.,
(v, w) = (vy, wy) = const., which provides, for bounded domains, a unique steady
state (Vy,, gy, Wv;, E,) s introduced above.

In Sect.3.2, we study planar traveling fronts of the form

(v(t, x), w(t, x)) = (V(z), W(z)) withz = x1+cpt,

where cr € R is the front speed. It is well known that the planar fronts play an
important role in the theory of the PME (cf. Vazquez 2007, Sec.4.3), and we expect
a similar role for our coupled system (1.1), in particular, for the understanding of
the propagation of the boundary of the support. Inserting this ansatz into (1.1) and
assuming V (z) = W(z) = 0 for z < 0, which simulates a support propagating with
front speed cp, we obtain after integrating each equations once (see Sect. 3 for details)
the two ODEs

1
crV=nW)V', cp(W - EVZ) =k(W)W'.

We analyze all solutions of this system, for the different cases occurring for the choices
in (1.2). To highlight one of the results, we consider the case n(w) = w and k(w) =
kow, i.e.,a = B = 1. For kg > 1/2 all traveling fronts have the form (V (z), W(z)) =
(0, % cpz) for z > 0, which corresponds to the case of the pure PME with v = 0.
These solutions still exists for kg € [0, 1/2[, butnow additional, truly coupled solutions
exi1sts:

(V(2), W(2) = (2\/(1—2K0) o 2ch) for z > 0.

For these solutions, the propagation of the support of w is not only driven by self-
diffusion as for the PME, but it is driven also by the generation of w via the source term
n(w)|Vu|?. This is best seen in the limit ko — 0, where self-diffusion disappears but
propagation is still possible. In particular we obtain cp = max{kg, 1/2}W’(0), which
again shows that for k9 < 1/2 the propagation speed is no longer dominated by
self-diffusion alone.

In Sect.3.3, we conjecture that the typical behavior of w near the boundary of its
support is given by w(t, x) = wo(z4+)? with y = max{1/«, 1/8}, which clearly
shows that the front is driven by the v-diffusion in case of 8 > «. In the critical case
o = B the switch between the two regimes occurs for ng = 2«y.
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Our definitions of weak and very weak solutions are given in Sect.4 and are based
on a reformulation of the coupled system (1.1) in terms of (1.1a) and the conservation
law (2.1) for the energy density e = %vz + w, thus following the ideas in Feireisl and
Malek (2006) and Bulicek et al. (2009). This allows us to avoid defect measures. The
notion of very weak solutions is based on the weak weighted gradient G« v, where
w*Vu is defined in the sense of distributions via V(w*v) — vV (w®), thus avoiding
any derivatives of v but using Vw instead, see Definition 4.1, where G, v € L1(Q) is
defined for a € W'4() and v € L4 (). This idea seems to be known in applied
analysis, but it is difficult to track down a specific and clear reference. For example,
in Gallouét et al. (2003, Sec. 3) or Buli¢ek and Mdlek (2019, p. 116) closely related
arguments are used. Section4.3 provides an explicit example for non-uniqueness of
very weak solutions.

Before showing existence of solution, we provide a series of natural a priori
bounds for strong solutions satisfying w > 0in Q7 = [0, T]x Q. Section 5.1 estab-
lishes L? bounds for v and, in the case « = S, also for w. Section5.2 provides
comparison. Here, we also show that the case n = « is very special, as for this
case an estimate [v°(x)| < M,w’(x) for all x € Q propagates for positive time,
i.e., we have |v(f, x)| < M,w(¢, x) in all of Q7. The crucial dissipation estimates
are discussed in Sect.5.3. In particular, for ¢ € ]0, 1[ and bounded 2 we obtain
Jo. [Vu|?dxdr < C(Q, a, 0, w?).

In Sect. 6, we develop our (rather preliminary) existence theory for bounded €2. For
this, we approximate the initial data be smooth functions (v?, wg) which additionally
satisfy wg(x) > ¢. Using the comparison principles derived earlier, we find classical
solutions (vg, we) : Q1 — R2 still satisfying w.(t, x) > e. For passing to the
limit ¢ — 0T, we use the appropriate a priori bounds proving spatial and temporal
compactness such that a suitable version of the Aubin-Lions—Simon lemma provides
strong convergence. So far, we are only able to treat the case « € 0, 1[, where one can
exploit the L? a priori bound for Vv, which was also used in Naumann (2013). This
approach allows us to construct weak solutions. For « = 1 we only able to handle
the case n = k and we are only able to establish very weak solutions, where the
weak weighted gradient G« v is well defined but Vv may be not. From the expected
behavior of the solutions near the boundary of the support, it is clear that gradients
may have a blow-up, so that the difference between weak and very weak solutions
may be essential.

In the recent paper (Fanelli and Granero-Belinch6n 2021), local existence of smooth
solutions and blow-up of solutions are investigated for the regime «, 8 > 1 on the
one-dimensional periodic domain @ = T = St = R />27. Moreover, our existence
theory is different from the one developed in Bertsch and Kamin (1990) and Dal Passo
and Giacomelli (1999) for the plasma model (1.6), because we enforce global Sobolev
regularity, while the latter asks for local regularity of 6 on the support of p only.

Section 7 provides a few conjectures concerning the longtime behavior in the case
Q = R? and n(w) = now® and x(w) = kow?. The whole system does not have
any self-similar solution; however, we expect that in many cases v and w behave
self-similar in the limit # — o0. In these cases, we expect that v(¢) converges to 0
in L2($2) while the momentum is conserved V() = fg v(t, x)dx = V(@°). Then
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]Q w(t, x) = EWY, wY) and we expect that w behaves like the solution of the PME
obtained from (1.1) for v = 0, but now the total energy is fixed to £ (vo, wO).

Finally, in Sect.8 we show how our coupled model (1.1) is motivated by mod-
els from turbulence modeling, where w plays the role of the mean turbulent kinetic
energy, such thate = %vz + w denotes the total kinetic energy. Our model is obtained
when the solutions u of the Navier—Stokes equation are assumed to be parallel flows,
namelyu(t, x) = (0, ..., 0, v(z, x1, ..., xd))T € R¥* 1 withd € {1, 2}. Prandtl’s model
for turbulence (cf. Prandtl 1946; BuliCek et al. 2011; Naumann 2013) is discussed
in Sect.8.1 relating to our case ¢ = B = 1/2, while Kolmogorov’s two-equation
model (Kolmogorov 1942; Spalding 1991) is discussed in Sect.8.2 relating to our
case « = 8 = 1. For the rich theory of these models we refer to Lewandowski (1997),
Bulicek et al. (2011), Naumann (2013), Chac6n Rebello (2014), Mielke and Naumann
(2015); Bulicek and Malek (2019) and Mielke and Naumann (2022) and the references
therein.

2 The Model and Its Thermodynamical Formulation

Here, we discuss the basic properties of system (1.1), namely the conservation laws
of total linear momentum and the total energy, the symmetries and scalings, as well
as exact similarity solutions. Section2.4 provides gradient structures which allow us
to show convergence into steady state for the case « = 8 € ]0, 1[ and €2 bounded, see
Theorem 2.3.

We emphasize that the thermodynamical consideration for our system (1.1) are not
directly related to the fluid-dynamical models used as motivation, see Sect.8. The
common structure is the Galilean invariance of both systems and the transfer of the
dissipation in the equation for v into the equation for w, leading to the conservation of
the total energy. Moreover, both systems have an entropy functional S that increases
along solutions. However, our system (1.1) is indeed a gradient system, whereas the
fluid-dynamical models involving the full Navier—Stokes system include the term
u - Vu which cannot be generated by a gradient structure. In particular, this work does
not contribute directly to the much more complicated thermodynamics of turbulence
modeling.

2.1 Conservation Laws

We first observe that the divergence structure of the equation for v and the no-flux
boundary condition provide the conservation of the integral over v, namely

Vv, w) ::/ v(x)dx.
Q

We call this conserved quantity the a momentum because in the thermodynamical
interpretation below v should be considered as a velocity, and it should not be mistaken
for a concentration of a diffusing species.
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In fact, w should be considered as an internal energy such that the energy density

12
e—zv +w

plays an important role. It satisfies a conservation law without source term, namely
é = diV(K(w)Vw + n(w)vVv) = div(n(w)Ve + (/c(w)—n(w))Vw). 2.1

Integration over 2 and exploiting the no-flux boundary conditions gives conservation
of the total energy

E(,w) = /Q (%v(x)2 + w(x))dx = const.

2.2 Symmetries and Scaling Properties

The full set symmetries of system (1.1) are given for = R¢. For subsets  # R?
only those symmetries survive that are valid for 2. These symmetries hold for general
functions 7 and «.

Euclidean symmetry: For all x, € R? and Q € O(d) := {R € Réxd | R'R=1 }
and solutions (v, w) of (1.1), the rigidly moved pair

@25, 2) (1, x) == (v(t, Qx+xs), w(t, Qx+xs))

is a solution again.
Time and Galilean invariance: For all t, > 0 and V,. € R the time and velocity shifted
pair

(@Y, @' V) (1, x) 1= (vt +Hg, X) + Vi, w(t+ty, X))

is a solution again.

Now we discuss scaling properties. Observing that all terms involve either one time
derivative or two spatial derivatives we have the following invariance of (1.1):
Scaling S1 (parabolic scaling): Assume Q = R?. If the pair (v, w) is a solution of
(1.1) and A > 0, then the pair (vy, w;) is a solution as well, where

(1, w) (1, x) = (v, W)(A’1, Ax).
A more complex symmetry occurs if the viscosity 1 and the diffusion constant
are of the same power-law type.
Scaling S2 (nonlinear scaling): Assume that n(w) = now® and k(w) = kow* for

some « > 0 and 7o, ko > 0. If the pair (v, w) is a solution of (1.1) and w, A > 0 and
A = 1in the case @ # R?, then the pair (v***, w***) is a solution as well, where

(v“’)‘, w“’)‘)(t, x) = (u (A%t ax), prw (%A%, Ax)). (2.2)
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Note that the energy density e = %vz + w scales similarly to w and the total conserved
quantities satisfy

2
V@t whty = A%V(v,w) and EWM*, whh) = ’;—de(v, w).

The main observation is that the two conserved functionals scale differently. Hence,
it is not possible to have exact similarity solutions with both, V (v, w) and £(v, w)
being finite and different from 0. As nontrivial solutions satisfy £(v, w) > 0 the only
choice for similarity solutions is V (v, w) = 0, see also Sect.7.

2.3 Exact Similarity Solutions

In general, the scaling symmetries can be used to transform into so-called scaling
variables via
T =log(t+ty), y = (t+1,)°x and

2.3
(v, x), w(t, x)) = ((t—i—t*)*”/z o(r,y), (t+8) 77 Wz, y)). @3

Parabolic Scaling S1  According to scaling S1 have to choose y = 0 and § = 1/2
and arrive at the transformed parabolic equation

3.V — %y.vﬁ = div(n(@)V7), 8w — %y-Vﬁ = div(k (W) VD) + n(w)|v’5|2.
(2.4)

Exact similarity solutions are steady states of this coupled system; however, the

existence of nontrivial steady states (i.e., with ¥ # 0 and w # 0) is largely open.
Note that (2.4) cannot have steady states with compact support (or more generally

finite energy), because ¢ = w + %EQ satisfies 9, ¢ — % y-Ve = div(- - - ) and integrating

over R? and setting g(r) = fRd e(z,y) dy gives (%g(r) = —% ra y-Ve dx =
—%5(1’).
For the case d = 1, one can obtain some results for steady states

W(z, y), w(r,y)) = (V(y), W(y) for y € R, because the problem reduces to the
ODE system

- %v’ = (n(w)V'Y, —%W’ = (k(W)W') + n(W)(V')? fory eR. (2.5

We first introduce c(y) = n(W(y))V’'(y) such that the first equation reduces
to ¢'(y) = —(y/n(W(y)))c(y). Thus, ¢ cannot change sign, which implies that V'
doesn’t change sign because (W) > 0. Hence, for any solution (V, W) the function
y = V(y) must be monotone. This implies that for any nontrivial solution V cannot
liein L?(R) for any p < oco. Nevertheless, the function W may be integrable (or even
have compact support); then we can integrate the second equation in (2.5) over R and
find
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1
3 / W(y)dy = / n(W) (V' (1)) dy.
R R

Typical solutions of (2.5) will be such that W and V' are even functions. By Galilean
invariance we may assume V (0) = O such that V isodd and £ = W + %Vz is even
again. A special case is given by n = «, because by (2.1) we then have —% E' =

(n(W)E ! )/ which has the unique even solution £ = E(0).

Theorem 2.1 (Similarity solutions) Consider the case n = «. Then, for each pair
V-, Vy) e R? and each Ey > % max{VE, V_%_} there exists a unique solution (V, W)
of (2.5) satisfying

1
V(y) = Vaforx — Z00 and W)+ 5V ()® = Eo.

In particular, if V_ # V4, then y +— V(y) is strictly monotone and W(y) > Ey —
%maX{VE, V_%} > 0.

Proof 1t suffices to solve the scalar ODE for V namely
Yy _ 1 2y ,7Y
—5V'= n(Eo—§V )V') fory e R,  V(y) = Vi fory — =+oo.

Then, setting W(y) = Eg — %Vz, the pair (V, W) solves (2.5).
The existence and uniqueness of V follows by applying (Gallay and Mielke 1998,
Thm. 3.1) or (Mielke and Schindler 2021). For this may assume V_ < V, and define
1,Lip .
A€ Cl. " (R) via

1%
1
A(V) = / n(EO—EUZ) dv for V e [V_, V ] and
V_

1
A(V) = n(Eo—E(Vi)z) F(V=Vy)for £V > +Vy.

Thus, A is uniformly convex with upper and lower quadratic bound, and the above-
mentioned results are applicable. Since V is monotone, its range stays inside [V_, V,];
hence, the choice of A outside of [V_, V] is irrelevant. O

For an illustration of these solutions, we refer to the left plot in Fig. 1.

Unfortunately, the previous result does not apply to the degenerate case. For this,
we would need Eg = %max{Vf, V_%}. which implies W(y) — 0 for y — oo or
y — —oo. We expect that in the case V_ = —V, and Ey = %VE = %Vf we
still have a solution (V, W) and that W has compact support. For the special case
n(w) = k(w) = w this can be confirmed by an explicit solution.

Example 2.2 (The case n(w) = x(w) = w) In this case, we exploit that E(y) = B?
for all y, where B is arbitrary. Indeed, (2.5) has a one-parameter family of explicit
solutions:
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T

Fig. 1 Solutions y — (V(y), W(»)) (blue,orange) of (2.5) for V(0) = W/'(0) = 0, W(0) = 1, and
V'(0) € {0.5, 1/+/2, 1.0} (left, middle, right). The green curve displays W (y) V' (y), which for V/(0) = 1.0
has a positive limit at y, where W () = 0 (Color figure online)

_ | (b2, B*=y*/4) for|y| <2B,
(Vo) W) = { (£v2B.0) for £y = 2B, (2.6)

However, this solution is untypical even for our special case n(w) = «(w) = w.
To see this, we solve (2.5) as an initial-value problem for y € [0, oo[ with
(V(0), W(0), W (0))) = (0,B?,0) and V'(0) > 0. As V'(y) > 0 and B> =
W (y)+1 V (y)? the solutions stay bounded with W (y) € [0, B2]and V (y) € [0, v2B]
as long as they exist.

Starting with V/(0) € 10,1 /«/E[ we find smooth solutions with W(§) >
W(+00) > 0. These are the solutions given by Theorem 2.1. When starting with
V'(0) > l/ﬁthe solution (V, W) reaches the point (\/5 B, 0) atapoint y, € ]0,2B[
with a square-root type behavior, see Fig. 1 for some plots. In particular, W (y)V'(y)
remains bounded from below by a positive constant, which means that the solution
cannot be extended by (V (y), W(y)) = (/2 B, 0) for Y > Ve

Returning to the case of general n and «, it remains an open question to discuss
whether for all pairs (V (c0), W(00)) € ]0, ool there exists a unique solution (V, W)
(V odd and W even) of (2.5) that attain these limits for § — oo. Moreover, one may
prescribe the limits (V (00), 0) and the integral fooo W (y)dy € ]0, oo[. Clearly none
of these solutions will have finite energy E(V, W) = fR(W+% V2)dy.

Parabolic Scaling S2  In the case n(w) = now® and x(w) = kow®, it is natural to
search for similarity solutions induced by the nonlinear scaling S2. We again can use
the transformation (2.3), where we are no longer forced to use y = 0 because we can
exploit the scaling properties of 1 and k. It suffices to chose 2§ + ay = 1 to obtain
an equation that is autonomous with respect to t:

39,7 — %5 —8y-V¥ =div(no@® V), where28 +ay =1,
.7
3, — yi — 8 y-Vib = div(ko VD) + now®|V7|”.

Again, the existence for nontrivial steady state solutions is totally open.

However, we can say something for finite-energy solutions. If we look for
solutions respecting energy conservation, i.e., £(0(t), w(r)) = E@@®), w()) =
EW(0), w(0)) € ]0, o[, then we additionally have to impose y = d§. Together
with 26 + oy = 1 we obtain
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_ d
T 24da’

S =
2+da Y

Again we can show that there are no nontrivial steady states (v, w) with compact
support. To see this, we test the steady-state equation for ¥ in (2.7) by [9]~9% for
0 € ]0, 1[. Integrating by parts the convective part on the left-hand side and the
divergence term on the right-hand side leads to the relation

dé ~a ~ ~—0 |~
(—Z+—)/ [ 9dy=—/ noi” (1-0)[3]~| V7|2 dy.
R4 R4

The prefactor on the left-hand side equals 6d/(2(2—0)(2+dw«)) > 0, whereas the
right-hand side is non-positive. Thus, we conclude v = 0 for all compactly supported
steady states. For ¥ = 0 the system reduces to the scaled PME and it is well known
that all similarity solutions are given by (1.4).

In Sect.7, we provide some evidence for our conjecture that all finite energy solu-
tions (v, w) of (2.7) with y = d§ convergence to the corresponding steady state
(0, W)

2.4 Gradient Structures and Convergence into Steady State

We now show that the coupled system can be generated by a gradient system (Q, S, K),
where Q = LZ(Q)xL1(Q) is the state space, S is an entropy functional, and K is
the Onsager operator satisfying K = K* > 0. The latter defines the dual entropy-
production potential P*(v, w; &y, {y) = %(; ]K;). The aim is to show that the
coupled system (1.1) can be written in the form

<U) =K, w)DS(v, w)
w

for a suitable choice of S and K, see Peletier (2014) and Mielke (2016) for the general
theory on gradient systems. For this, we consider entropies in the form S(w) =
fQ o (w)dx and obtain, along solutions,

d
ES(w(I)) = /Q {—U”(w)/c(w)Ilez+G/(w)77(w)|Vv|2}dx =P, w). (2.8)

Thus, we have entropy production whenever o is nondecreasing and concave.
For finding suitable Onsager operators K, we consider dual entropy-production
potentials in the form

1
P o6 =5 [ ] a—cvof + pawive, R as
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with suitable mobilities p; and p;. Here, ¢, and ¢,, are the variables dual to v and w,
respectively. The conservation laws for V and £ are reflected in the properties

P*(w,w; DV(v,w)) =0 and P*(v, w; DE(w, w)) =0,

where we use DV(v, w) = (1,0)T and DE(v, w) = (v, ).
From the formula of P*, we calculate K via K(u, k) = D%P*(v, w; &), which
results in

;u) _ < — div(p1(w) (V& —Ew V) )
tw)  \=p1(w)Vv - V¢, + p1(w)|Vo|2se — div(pa(w) V)

_ —diV(pl(w)VD) diV(Dp](w)Vv) e
- < —p1(w)Vv - VO Opy(w)|Vo|> — div(pz(w)VD)) (§w>’

K(v, w)(

where [J indicates the position into which the corresponding component of { =
(Zv, Cw) " has to be inserted.

Now, calculating K (v, w)DS (v, w) with DS(v, w) = (0, o’ (w)) " we see that we
obtain our coupled problem (1.1) if the relations

n(w) =o' (w)p;(w) and «(w)=—c"(w)pa(w) forallw > 0

hold. Moreover, we see that the above entropy-production relation (2.8) takes the
general form

j—té‘(v(z‘), w(t)) = (DS, w), K(v, w)DS(v, w)) = 2P* (v, w; (0, ' (w)) ")
= /;z (pl(w)’O - a’(w)Vv|2 + pz(w)}VU’(w)|2) dx

= /Q (;7(w)<7/(w)|Vv|2 + K(w)la/’(w)||Vw|2) dx =: P, w)
(2.9)

The gradient structure for general choices of o can be used to obtain a priori
estimates, see Sect.5.3. Moreover, it can be used to prove convergence into steady
state on bounded domains © C RY. For this, we observe that taking an increasing and
strictly convex o given the momentum Vy := V(v(0), w(0)) and the initial energy
Eoy := £ (0), w(0)) there is a unique maximizer of the entropy S(v, w) on all states
inL2(Q) xL! ,(Q) satisfying the constraints V(v, w) = Vpand £(v, w) = Ep, namely
the spatially solutions

i ! . 1 . 1
UV(),EO = @ 0 and on,EO = @WO Wlth WO — (EO — _2|Q| VOZ) Z O
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By integrating the equation for w over €2 and using n(w)|Vv|> > 0 and the no-flux
boundary conditions, we easily obtain

0 §f w(0, x)dx 5/ w(ty, x)dx 5/ w(t,x)dx < Wy for0 <t <t < o0,
Q Q Q
(2.10)

where we used energy conservation for the last estimate.

Moreover, under natural conditions all solutions of (v, w) = 0 are given by the
constant function pair (v, w) = %, w% or by pairs of the form (v(-), 0) for arbitrary
¥ € L2(). The latter solutions will be excluded by assuming fQ w(0, x) dx > 0.
Hence, in good situations one can hope for convergence of all solutions into the unique
thermal equilibrium state (Vy,, k,, Wv,,E,) depending on the constraint given by the
initial conditions.

The following results provide first results and explains the main idea in the simplest
case, but we expect that this method generalizes to more general situations, see Mielke
and Mittnenzweig (2018) and Haskovec et al. (2018) for related convergence results
for systems of diffusion equations or Bfezina et al. (2021) and Dostalik et al. (2021)
and the references therein for viscous fluids. While the latter approaches are quite
general, they only provide convergence to the equilibrium without information on the
convergence speed. For our special system, we are able to prove exponential decay
with an explicit decay rate A that is even close to optimal, because we can compare it to
the first nontrivial eigenvalue of the linearization. It is surprising that this exponential
decay holds globally for our degenerate parabolic system, where the trivial solution
(@), w(®)) = (W2, 0) exist and has no decay toward the equilibrium.

We define the entropy density functions Uy : [0, oo[ — [0, oo[ defined via U,/ (r) =
r5=2 > 0and Uy (1) = U!(1) = 0 giving the explicit form

Us (r)

= s(sl—l) (r‘Y —sr—1 +s).

To treat the case « = B € ]0, 1[, we consider the relative entropy functionals

_ 1 9~ w
Hp (v, w)_/Q(E(v—TD +wﬂU1_ﬁ(5)>dx, @.11)

where we set (v, W) = (Vy,, . Wv,,E,) to simplify notation. Observe that Hg is a
linear combination of the conserved functionals V and £ and the entropy S(w) =
fQ w!'~# dx. In particular, along positive solutions we have

%’H;}(v, w)=—o’ Pp (v, w)
Br(w)

wﬁ+1

n(w)
“wh

with B (v, w) ;=/ ( Vol + |Vw|2> dx 2.12)
Q

@ Springer



42 Page 14 of 55 Journal of Nonlinear Science (2023) 33:42

Moreover, we have Hg (v, w) > 0 with equality if and only if (v, w) = (v, ). Thus,
exponential convergence follows by estimating B4 from below by Hg.

Theorem 2.3 (Convergence to steady state) Consider a bounded Lipschit; domain
Q c R and B €10, 1[, and assume that

ep, 00 >0Yw>0: n(w) > cyw? and k(w) > cewb. (2.13)

Then all positive solutions converge exponentially to a spatially constant equilib-
rium. More precisely, for solutions with V(v(0)) = Vp, EWw(0), w(0)) = Ey, and
w(0,x) > & > 0 ae in Q define the relative entropy Hg as in (2.11) with
@, W) = (Vvy.Ey» Wyy.E,) and set A = P min{c,, 2Bc,} min{l, (1-8)/8} An,
where AN 1= AN(R2) > 0 is the first nontrivial eigenvalue of the Neumann Laplacian
on 2, then for all t > 0 we have the estimates

Hp(u(t), w(t)) < e M Hg(w(0), w(0)) and (2.14a)
1
5 O + [V — Va1,

1—
§max{l_ﬂ’3, ﬂﬁ} —A’< |v© =375 + |Vw(©) - f||L2) (2.14b)

Proof To derive (2.14a), we first observe that (2.12) holds along the whole solution
because w(0, x) > § > 0 implies by Sect.5.2 (C2) that w(t,x) > § > 0 for all
(¢, x) € [0, 0o[x 2. Thus, it suffices to estimate B from below by Hg. For this, we
define z(x) = +/w(x) and use assumption (2.13) to obtain

P (v, w)z/ (c,,|w|2 pe “|V |2)dx_f (CU|VU|2+4,3CK|VZ|2)dx
Q Q

1
E)LN/ (Cn(v—'ﬁ)z—l-‘lﬂcx(z—i)z) dx withz = —/ zdx.
Q 12| Jo

(2.15)

For Poincaré’s inequality, we used the first conservation law giving fQ vdx = V() =
V((0)) = |Q[v = Vy. The same does not hold for z because z = /w and & (v, w)
mixes v and w, namely Eg = £(v, w) = [, (3v? + z%) dx. This quadratic structure
allows us to exploit the relative entropy H 2, where the exponent 1/2 is used instead
of 1—-5:

1
Hip (v, w) =/Q(5(v—?)2+(\/5—¢5)2)dx = 1QI(A@w, 2) + VD —2)°)
it Aw.2) = o [ (309 + (7))

To estimate the last term, we use energy conservation as follows:

1 1
—Ey="+ 0% ——E(U ) = Av, Z)+—U +72
fe] 2 12|
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From A(v, z) > 0, we conclude 7 < /@ and obtain (ﬁ—f)z <w -2 < A(v, 2).
Thus, Hy2(v, w) < 2|R|A(v, z) and comparing with (2.15) gives the lower estimate

P, w) > AncHijpp(v, w) with €= min{c,, 2B¢,}.

It remains to correct the error from replacing H g by H 2. For this, we use the estimate

1
min{s, 1—s} Us(z) < 3 Ui/2(z) < max{s, 1—s} Us(z) forallz > Oands € ]0, 1[.

which immediately implies the estimate
. B B
min {1, W Hipp(w, w) < Hg(v, w) < max 1, W Hipz(v, w). (2.16)

Combining these results, we have obtained Bg(v, w) > Anc min{l, (1-p)/B}
‘Hp(v, w), and the exponential decay estimate (2.14a) follows from (2.12) by
Gronwall’s estimate.

To obtain the L2 decay estimate (2.14b) we observe that this is an estimate for H /2,
which follows by combining (2.14a) and (2.16). m]

We emphasize that the global decay rate A obtained in Theorem 2.3 is optimal up
to a possible factor of 2, because the linearization of the coupled system at the steady
state (V. Ey> Wvy, E,) Teads

¢ = n(Wyy,Ey) ANC, W = Kk Wy, £,) AN, /

’c“dx:O:/ wdx.
Q Q

Thus, the decay rate A cannot be larger than Ajyn = 2 min{n(Wvy,, £,), £ (Wy,.E£,)}
AN(2), because (2.14a) measures quadratic distances from equilibrium. Indeed,
assuming n(w) = ngwﬂ and «(w) = kow?, which gives ¢; = no and ¢, = Ko,
we obtain the estimate

. 1-8 o1 1
min {/3, W}Alin < A < min {E’ l—ﬂ}Alin < EAH“ forall 8 € 10, 1[.

This shows that for 8 =~ 1/2 the result is optimal up to a factor of 2.

Example 2.4 (Worse decay if supports are disjoint) We want to emphasize that some
assumption on the positivity of w(¢, x) is necessary in Theorem 2.3, since otherwise
the stated decay may not hold. As an example consider the case Q2 = ]—¢, {[ for
fixed £ > 1, n(w) = k(w) = %wlﬂ such that ¢, = ¢; = 3/2, and initial data
%, w? e HY()%:

v0(x) = sign(x)(max{0, 2|x|—¢}) and w’(x)= (% max {1-x%, O})2 forx € Q.
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Weset T, = (¢/ 2)5/ 2 _ 1 and observe that for 7 € [0, T;] we have the explicit solution

x2

=0 d ! ! 1 0 ’
v(t,x) =v (x) an w(t,x)—m<ﬁmax{ _W’ }) .

We observe that we have sppt(v(t,-)) = Q\]—€/2,¢/2[ and sppt(w(t,-)) =
[—(t+1)?/3, (t+1)3/3], such that the supports are disjoint for r < T,. Hence, it is
easy to see that both equations are satisfied because of n(w) = 0 on the support of
v(t, -): in the equation v the dynamics is trivial with v = 0, and in the equation for w
we simply have the similarity solution for the PME with 8 = 1/2, see (1.4).

To see that this solution contradicts the exponential decay estimate, it is sufficient

to calculate the involved terms only in their main term in £, which we indicate by
~ L%

a2
NT g2

, Vo=0, Eo~€% Vyp =0, g ~

With this, we find the exponential decay rate A ~ £~!. Because in (2.14a) the integrals
over 2 on both sides are of order ¢3 for all ¢ € [0, T;] and Ty ~ £7/%, we easily obtain
a contradiction because ATy ~ £3/2 such that e~ 27¢¢3 is smaller than 1, whereas it is
still of order £ for the given solution.

Nevertheless, we conjecture that the above decay estimate can be extended to
solutions with sppt(w?) ; Q. The point is that solutions are not unique because
of the nonlinearity w'/?|Vv|?. Constructing solutions by approximating the initial
conditions from above as sketched in Sect.6, one may obtain solutions satisfying
sppt(w(t, -)) D sppt(Vu(t, -)) for all t > 0, which then satisfy the exponential decay
estimate (2.14a).

2.5 A Related Plasma Model

In a series of papers starting with Rosenau and Hyman (1985, 1986) and Hyman and
Rosenau (1986) a model of the diffusion of the mass density p > 0 and the heat
transport for the temperature in a plasma is developed:

pr =div (p? ¢1(p.0)Vp) and (p0), = div (p°¢2(p, )V + 0p” $1(p, )V p),
(2.17)

that conserves mass and energy, namely fQ p(t,x) dx = My and
Jo p(t,x)6(t, x)dx = Ej.

Note that the model is such that it allows one to consider a constant temperature
0(t, x) = by, and it is then sufficient to study the remaining PME for p:

p = div (0" ¢1(p, 0:)Vp). (2.18)
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Thus, asymptotic self-similar behavior follows if ¢ (, 6;) # 0. Moreover, if ¢ (p, 6y)
is constant, we even have Barenblatt solutions as in (1.4), see Rosenau and Hyman
(1986, Eqn. (5)—(7)).

To have better comparison with our model, we can introduce the energy density
e = pb and obtain the system,

p =div(p”@1(p,e)Vp) and

o - B (2.19)
¢ =div (p‘s Yor(0, ) Ve +e(p? o1 (p, e) — p° 2</>2(p,e))Vp),

where ¢;(p,e) = ¢;(p, e/p). Thus, our case n(w) = « (w) corresponds here to the
case p? @1 = p® ¢, leading to the special system

p =div(p"¢i(p,e)Vp) and é=div(p”¢i(p,e)Ve)
which obviously has solutions with e(f, x) = p(t, x)0, if p satisfies (2.18).

For an existence theory for the model (2.17), we refer to Bertsch and Kamin (1990)
and Dal Passo and Giacomelli (1999). However, to the best of the knowledge of the
author a systematic study of the motion of the moving front does not exist.

3 Steady States and Traveling Fronts
Here, we provide a few special solutions that will highlight the coupling between
the two degenerate equations. To obtain a first feeling about the nontrivial interaction

between the two equations we study some simple explicit solutions, namely steady
states and traveling fronts.

3.1 Steady States

Steady states are all the solutions of the coupled degenerate elliptic system

0= div(n(w)Vv), 0= div(/c(w)Vw) + 77(w)|Vv|2 in 2,

3.D
0=nw)Vv-n 0=«k(w)Vw-n on 0L2.
Because of n(0) = 0, it is easy to construct steady states in the form
(v, w) = (Vi, 0) where V is arbitrary. (3.2)

Thus, there is an infinite-dimensional family of trivial steady states, but this family
is exceptional. If we assume w? # 0.1.e., fQ w¥dx > 0, we find Ew@), w()) >
£ (vo, wo) > fQ w?® dx > 0 and conclude that these solutions are not relevant any
more.

For bounded domains we have the following uniqueness result for nontrivial steady
states.
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Proposition 3.1 (Steady states for Q bounded) Assume that Q@ C R? is a bounded
Lipschitz domain. Then, all steady states are given either by the trivial ones in (3.2)
or by the spatially constant ones, namely

1 1
(v,w) = <|§|V0’ lﬁlW()), (3.3)

where Vy and Wy are uniquely given by the conserved quantities V (v, w) = Vy and
Ew,w) =Ey= Wy + ﬁvoz, see Sect. 2.4.

Proof We use the pressure function 7 (x) = IT(w(x)) with TT(w) = wa n(u) du
and observe that for a steady state (v, w) the function 7 satisfies the linear Neumann
problem

—AT =nW)|Vu>* nQ, VZ-n=0 ondQ.

The classical solvability condition for the Neumann problem requires
]Q n(w)|Vv|?dx = 0. Since the integrand is nonnegative we conclude n(w)|Vu|> =0
a.e.in Q and T = m, =const. Because of the strict monotonicity of IT, we obtain
w = w, =const. and deduce either w, = 0 given the trivial steady states (3.2) or
wy > 0 and v = v, = const. O

In the case of unbounded €2, we have to allow for solutions with infinite energy and
the result is less complete.

Proposition 3.2 (Steady states for @ = R?) Assume Q@ = R? withd € {1,2}. Then,
all steady states (i.e., solutions of (3.1)) are given either by the trivial ones in (3.2) or
by the spatially constant ones, namely (v, W) = (Vy, Wy) = CONSt.

Proof The pressure 7 introduced in the previous proof still satisfies —A7T =
77(w)|Vv|2 > (. Moreover, we know 7 > 0. Hence, —7 is a subharmonic function
that is bounded from above. For d = 1, the function —7 : R — ]—o0, 0] is convex
and hence can only be bounded if it is constant. For d = 2, we invoke (Ransford 1995,
Cor.2.3.4) which shows that bounded subharmonic functions on R? are constant. In
both cases we conclude n(w)|Vv |2 = 0 a.e. in R? and the result concerning v follows.

m}

It is unclear whether the last result is still true in R? with d > 3.
3.2 Traveling Fronts
The importance of traveling fronts in the PME arises from the fact that they can be
used as comparison functions and that they serve as models for the local behavior near
the boundary of the support of w. By isotropy of our system (1.1), it is sufficient to
study the one-dimensional case x € R'. We start from the traveling-wave ansatz

v(t,x) = V(x+cpt) and w(t, x) = W(x—+cpt),
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where cF is the front speed. We obtain a coupled system of ODEs for z = x + cp?
with the unknowns

eV = (W) V') and cgW' = (k(W) W) + n(W) (V)2 (3.4)

Clearly, the speed cp needs to be determined together with the nontrivial solution
(V, W) of (3.4). However, we observe that both right-hand sides in (3.4) contain two
derivatives, while both left-hand sides contain only one derivative and one factor cr.
Hence, we can rescale solutions in such a way that for a solution (cg, V, W) also
(Acp, V(X ), W(A-))is asolution for all A € R. Since the case cp = 0 leads to steady
states that were investigated already in Sect. 3.1, it suffices to consider the case cp = 1,
only.

To analyze the solution set of (3.4), we integrate the first equation obtaining the
integration constant v, and substitute the result for n(W)V’ in the second equation.
Then, the second equation can also be integrated with an integration constant w,:

1
Vov,=ngWV', W=—w,=x(W)W + E(V—v*)z. (3.5)

The integration constants were chosen such that (V, W) = (v, w,) is the only con-
stant solution. The system can be analyzed in the (V, W) phase plane. To see whether
(3.5) has other solutions that are defined for all z € R, we treat for the three cases
o =B,a < B,and o > B separately.

Case o = 8 : For n(w) = w* and x (w) = kow®, there is the following helpful
observation: the parabola

Pep: V> (V) i=w (V—v,)?

« 2(1—2k0)

is invariant by the flow of (3.5). In the case ko < 1/2 all points starting above P, stay
above, which means they cannot reach W = 0 in finite time and hence exist for all
zeR.

For w, > 0, the solutions lying above P, behave as follows (where p, = w; %)

%62:0*1
" 2(1—2x0)
(V(2), W(2) = (32, (£ 2)/*) + Lo.t. for 7 — oo,

(V(2), W) = (v, wy) + (Clep*z + CQCp*Z/KO) +h.o.t. for z = —o0,

where ¢y, c3 € R and ¢ > 0. The two solutions lying exactly on P, : W = w(V)
have a slightly different asymptotics. Still in the case ko < 1/2 one can show that all
solutions starting below of P, reach W = 0 in finite time and cannot be extended for
all z € R, see Fig. 2(right picture).

For the case k9 > 1/2, it can be shown that only one solution satisfies w(z) > 0
for all z, namely the one with V = v, and W(z) > w,, see Fig.2 (left picture).

@ Springer



42 Page 20 of 55 Journal of Nonlinear Science (2023) 33:42

Fig. 2 Phase portraits for (3.5) with k(w) = «on(w) including the parabola Py, . Left: ko = 1. Right:
ko =1/4

The situation w, = 0 is special, as now we can construct solutions with
(v(2), w(z)) = (v4, 0) for z < 0 (by Galileian invariance we can set v, = 0 subse-
quently). These solutions are in particular interesting, because they provide solutions
with time-dependent support. Of course, for all k9 we have the pure PME traveling
wave (V(2), W(z2)) = (0, (,ﬁ‘—oz+)1/“) where z, = max{0, z}.

For kg < 1/2, the two solutions lying on P, have the explicit form

(£ V2730 2a2) /Y (2az)V/*) forz >0,
V@, W) = { (00) for z < 0.
These solutions will serve as the prototype of solutions with time-dependent support.
As above, there are more traveling waves from the solutions lying above the parabola
Py,, which is now touching the axis w = 0 in the origin (V, W) = (0, 0). All these
other solutions have the asymptotics

(V(@). W@) = (e@) ™, (L2 + G (20)*0/) + hodt. forz — 0%,

where ¢ € R is a parameter for choosing the individual solutions above P, .
Case a < f8 : In the case n(w) = w® and k (w) = w” the ODE reads

Vi =Vwe, W’:(W—%Vz)w—ﬁ, (V(0)). W) = (0,0). (3.6)

In the cases with a # B, we may assume 1y = ko without loss of generality.

As usual, there is the trivial solution with V = 0, but all nontrivial solutions of
(3.6) only exist on a subinterval of R, see the right phase plane in Fig. 3. Nontrivial
solutions first have to lie above the parabola W = %Vz to allow for W’ > 0, but after
finite time they return to the parabola and then W’ remains negative until W(z,) = 0
is reached in finite time, where the solution ceases to exist.
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Fig. 3 Phase planes for (3.6) with (o, B) = (2, 1) (left) and («, 8) = (1, 2) (right)

The solutions can be constructed in the form W(z) = w(V (z)) where w satisfies
the ODE @' (V) = @W(V) — 1 V2/(V@&(V)P~%). From this, one sees that all solutions
with w(0) = 0 satisfy the expansion

- 1
B(V) = EVZ 420 By20+p—a) L hot
Inserting this into V/ = Vw(V)™%, we obtain the expansion
(V(@), W) = ((az”a)l/ @) /G0 (o) fe zi/“) +hot  (37)

We observe that the local front behavior only depends on the smaller of the two values
o and B.

Case o > f : In this case, we again obtain a one-parameter family of traveling
fronts for (3.6) with half-line support.

Proposition 3.3 (Fronts for « > B) Assume n(w) = w® and k(w) = wf with
o > B. Then, for all v there exists a unique traveling front (V, W) solving (3.6),
(V(2), W(2)) = (0,0) forz < 0,and V(z) = v forz — 00. Moreover, for vy # 0,
the functions sign(veo) V () and W (-) are strictly increasing on [0, oo[ and we have
the expansion

W(z) ~ (Bz)"/P for z « 1 and for z > 1,

V(z) ~ cexp ( — %z_(“_ﬂ)/ﬂ) for z <« 1.

Moreover, there are two traveling fronts (£Vg, W) with the expansion

(VB(2), Wa(2)) ~ (Qa 2)"/ @, %(za V) forz > 1.
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All other solutions are not defined for all 7 € R, see Fig. 3 (left).

Again we see that the smaller of the two exponents & and 8 dominates the local
behavior of the traveling fronts.

3.3 Conjectured Behavior Near Boundary of Growing Supports

Here, we collect conjectured consequences of the above-established behavior of travel-
ing fronts. Throughout we assume that we are considering sufficiently smooth solutions
(v, w) that have the property that S(¢) := sppt(v(z)) = sppt(w(t)) € Q.

We conjecture that ¢t — S(¢) has similarly good properties as the support of solu-
tions of the PME, see, e.g., Vazquez (2007). In particular,  — S(#) is nondecreasing
and the boundary dS(¢) becomes smooth after a suitable waiting time. However, in
our coupled system the growth of the support can be steered by different mechanisms
depending on the relative size of n(w) and « (w) for w < 1.

To explain the conjectured behavior in more detail, we consider a point x,. € 9.5(#)
and assume that 9.S(,) is smooth. Without loss of generality we may assume x, = 0
and that the outer normal vector to S(,) at x is given by n, = —ej.

In the PME (1.3) with x(w) = kow” the typical behavior (after waiting time) is
that w(t,, x) = wo(xl)i/ﬁ + h.o.t. The support S(¢) is then growing with propagation
speed cp = Kowg/ﬂ.

The behavior for the coupled system depends strongly on the exponents « and

in n(w) = now?* and k(w) = kow?. In all cases we will address the question of
local integrability of Vv¥ and Vw? near the boundary of S(#). These integrability
properties will nicely fit together with the a priori estimates to be derived below, see
(5.17) in Proposition 5.5.
o > B :supportisdrivenbywasin PME. In the case ¢« > B and w < 1 the
energy-transport coefficient « (w) is much bigger than the viscosity coefficient n(w).
Hence, w will diffuse fast and v will try to keep up by following the growing support.
As in the PME the conjectured behavior (after waiting times) is

(v(ty, ), w(t, x)) = (0, wo (x1)}?) + hoot,

where v vanishes faster than O (|x|") for any m € N, see Proposition 3.3. Again the
front speed is solely controlled by w alone, namely c, = K()wg /B.

The expansion does not give any information about the integrability of VvY;
however, we see that VwY € L? (B, ((t4,0))) fory > B (1—1/p).
a < B :supportisdriven by v. Now n(w) > k(w) for w <« 1; hence, v can easily
diffuse to the boundary of the support and pile up there. We conjecture that the typical
behavior (after waiting times) is given by (3.7), namely

1
((ts, x), w(t, x)) = (vo 1)}, Evg (nY®) +hot.

The corresponding propagation speed is then given by ¢, = novg"“2 /(@291
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The reason of this behavior is that in the equation for w the energy transport via
k can be neglected and the growth of the support is controlled by the source term
n(w)|Vv|?. This leads to a equipartition of energy near the boundary of the support
giving w ~ Evz, or using e = %vz + w we have %vz ~ %e ~w.

In this case, we see that VvY € L?(B,((t4, 0))) for y > 2o (1—1/p) and Vw? €
LP (B ((t«, 0))) for y > a (1-1/p).

Critical case a = B. We now consider n(w) = w* and x(w) = kow® and will see
that the both previous cases appear, because x (w)/n(w) = ko may be large or small
depending on «y.

For k¢ > 1/2, the support is driven by w as in the PME; however, now v can follow
fast enough. The conjectured behavior is

(0(t, X), wts, X)) = o (x1) ™, wo(x) ) + hoo.t.

Here, vp € R is arbitrary, and the propagation speed ¢, = kow( /o depends only on
wyq as for the PME.

For kg < 1/2, the front is driven by a combination of v and w. The conjectured
expansion takes the form

1/Q2a) v%

_ 1/a
(vt 1), w(te, X)) = (UO SRR 2(1—2x0)

@Y ) +hot.

We observe that the leading terms of v and w are coupled together by the relation
w A v? /(2—4kg). Moreover, the limit kg — 0T is consistent with the equipartition
in the case @ < p. The propagation speed is given by ¢, = w/(2a) which is
different from ¢, = kow{/(2) in the case kg > 1/2. Thus, the interaction with the v
component prevents the deterioration of the wave speed for the limit kg — 0%,

In both subcases, we see that Vv¥ € LP(B,((t, 0))) for y > 2« (1—1/p) and
Vw? € LP (B, ((t«, 0))) fory > a (1—-1/p).

In summary, we find that the behavior of w near the boundary of the support is
given by w(t, x) = wo(xl)ﬁ with y = max{l/«, 1/8}, which clearly shows that the
front is driven by the v-diffusion in case of § > «. In the critical case alpha = B the
switch between the two regimes occurs for 1y = 2«p.

4 Weak and Very Weak Solutions

In general, we cannot expect to have strong solutions for our degenerate coupled
parabolic system. Hence, we define a suitable notions of weak and very solutions. The
problem is that the degeneracies of the viscosity n and the energy-transport coefficient
k, do not allows us to use parabolic regularity, which is most easily seen for the
trivial solutions (v (¢, x), w(t, x)) = (v°(x), 0) that do not regularize at all. Hence, we
provide a proper definition of weak and very weak solutions in Sect. 4.1, then discuss
a compactly supported explicit solution in Sect. 4.2, and finally show non-uniqueness
of very weak solutions in Sect. 4.3.
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4.1 Definition of Weak and Very Weak Solutions

Moreover, there is an intrinsic problem in passing to the limit in the “L!” source
term n(w)|Vv|?, which typically generates a nonnegative defect measure. This is
particularly difficult because of the degeneracies 1(0) = x(0) in the viscosity 1 and
energy-transport coefficient «. To avoid this problem, we use the strategy introduced
by Feireisl and Malek (2006) and Bulicek et al. (2009). This means we replace the
“partial energy equation” (1.1b) by the equation for the total energy e = %vz + w as
given in (2.1). Thus, we are studying suitably defined weak solutions of the coupled
system

v = div(n(w)Vv), BI(%v2+w) = div(k (w)Vw + n(w)vVv) 4.1

completed by no-flux conditions for v and w at the boundary 9£2.

Below, we will give two different solution concepts, the first being a classical weak
solution. However, since Vv only occurs together with n(w) itis difficult to obtain good
a priori estimates guaranteeing that a limit v° obtained from v, € L2(0, T; H (Q))
remains in that space. Hence, we define a second concept called very weak solutions,
which can be defined for v € L?(Q7). For the latter we use the notion of a weak
weighted gradient generalizing terms of the form a Vv, where a takes the role of n(w)
and may degenerate. We will generalize to a mapping G, v that is valid under weak
assumptions on v if a is sufficiently well behaved.

Definition 4.1 (Weak weighted gradient) Let ¢ € ]1,00[, a € Wh4(Q) and v €
L7 () with 1/g + 1/¢* = 1. We say that g € L”(Q) with p € [1, 00] is the
a-weighted weak gradient of v and write g = G v if

VW e Ch(RY) /g-\lldxz—/ v (¥ -Va + adiv¥)dr, 4.2)
Q Q

where CL (2 RY) := { W € C1(Q;RY) | W -n=00n0Q}.

The idea behind the notion of weak weighted gradients seems to used in analysis
for many years, see, e.g., the occurrences of the identity aVv = V(av) — vVa in
Gallouét (2003, Sec. 3) and Buli¢ek and Malek (2019, p. 116).

As in the classical definition of weak derivatives, we see that g is uniquely defined by
the pair (a, v) € Wh1(Q) xL4" (2). Moreover, for v € W14 (Q) we obviously have
G,v = aVv by applying Gaul}” divergence theorem and using W - n = 0. However,
function for which Vv does not exist may have a weighted gradient if a is canceling
the singularity. For instance, on Q2 = ]—1, I[ we may choose v : x > sign(x) and
a(x) = |x|* for « > 0, then G,v exists and equals 0.

The next result shows that the notion of weighted gradients is stable under limit
passages, which will be crucial for constructing weak and very weak solutions.
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Lemma 4.2 (A closedness result for weak weighted gradients) Let p, q € 11, oo[ and
consider a, € W'4(Q) and v, € LI (Q) such that

as—ap in WhH9(Q), v, — vg in Lq*(Q), and ge = G4 v:—g0 € LP(Q).

Then, we have gy = G 4, Vo.

Proof We simply consider the defining identity (4.2) for ¢ > 0 and observe that we
can pass to the limit & — 07 in all three terms. On the right-hand side, it is crucial to
have strong convergence of v,. O

We are now ready to give our two notions of solutions, where in the second definition
we have written out the definition of weak weighted gradients explicitly to emphasize
that the definition does not involve derivatives of v and that the test function must be
smoother. Moreover, as common in the PME we use the pressure function

M(w) := /w/c(s)ds for s > 0.
0

Definition 4.3 (Weak and very weak solutions) Given T € ]0,00] and
initial conditions (%, w® e LZQ)xLL(Q) we call a pair (v,w) €
L ([0, T];LZ(Q))XLOO([O, T];LL(Q)) a weak solution of system (1.1) if the
following holds: -

Vo, n(w)Vv, n(w)vVe, VII(w) € L'(Qr; RY), (4.32)
—/ v()(p(O, Jdx — // vorpdxdt
Q or
= — // n(w)Vv - Vedxdr forall g € CL([0, T[xQ), (4.3b)
or

—/ (1(v°)2+w0)s(0, -)dx—f/ (1u2+w)a,sdxdt
Q 2 Oor 2

= — /y (V (II(U))) . V%‘ + 7}(UJ)UV] . Vé)dxdt for all ‘;_- c C(I:([O, T[X_Q),
0
T ( | )

A pair (v,w) € L®([0, T]; L*(Q))xL>®([0, T]; LL(Q)) is called very weak
solution of system (1.1) if the following holds:

(w+vHnw) e L'(Q7), (wv+vH)V(n(w)), VII(w) € L'(Q7r; RY), (4.42)
— / v0<p(0, dx — // vorpdxdt = // v (n(w)A<p + V(n(w)) - V(p) dx dr
Q Or or
for all ¢ € Cg([O, T[xQ) with Vg -n = 0, (4.4b)

—/ (l(v0)2+w0)€(0, -)dx—// (1v2+w)agdxdz
Q 2 or 2

@ Springer



42 Page 26 of 55 Journal of Nonlinear Science (2023) 33:42

2
or

for all £ € C2([0, T[x ) with V& -n = 0. (4.4¢)

We first observe that functions of the form (v(¢, x), w(z, x)) = (v%(x), 0) with
v0 € L2(Q) are very weak solutions. Because of w = 0, it is trivial to see that (4.4) is
satisfied.

We remark that weak solutions are not necessarily very weak solutions, because
the degeneracies do not allow us to transfer the necessary integrabilities easily.

For both notions of solutions, we have conservation of momentum and energy.
To see this, we simply consider spatially constant test functions (¢, x) = ¢(¢) and
(t, x) = &(). As the spatial gradients of the test functions vanish, we obtain

t t
Ve(0) = f V@)gt)dr and E@°, w’)&(0) = f E(t), w(t))é(r)dr.
0 0

By the lemma of Du Bois—Reymond, we conclude V(v(t)) = V() and
Ew), w()) = EW°, w°) fora.a.r € [0, T].

Of course, weak or very weak solutions that are sufficiently regular are even strong
solutions.

4.2 An Explicit Compactly Supported Solution

We consider the case 2 = R and n(w) = «k(w) = w and provide a nontrivial solution
with compact support that grows in time. The solution is obtained by combining two
self-similar solutions as discussed in Example 2.2 in a suitable way.

We choose real positive parameters B, x,, and t, such that 7, < xf / (482) and set
T = xf/(4Bz) —ty > 0. For (¢, x) € [0, T]xR we define the functions (v*, w*) via

X+x,+2B/TFE,
NN for [x+x4| < 2B/t+t,,
vi(t, x) = 2V2 B for [x| < x4 — 2B/t+ty,
P T X A2BIF L —x
v forlr—xd = 2Byt
0 otherwise. 4.5)
2
B2 — (zf(ﬁ;:)z for [x+x,| < 2B/t +ty,
* p—
w*(t,x) =1 g2 _ % for [x—x,| < 2B/ITE.
0 otherwise.

For a plot of the functions v*(z, -) and w*(¢, -) we refer to Fig. 4.

A direct calculation shows that (v*, w*) is a strong as well as a weak solution.
Moreover, we have e* := %(v"‘)2 + w* = +/2B v*, which is consistent with the fact
that n = « implies that ¢* and v* satisfy the same equation, namely é* = (w*e}),
and 0* = (w*v})y.
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— Ty Tk z

Fig. 4 Graph of the explicit solution (v*, w*) from (4.5) having growing support [—&(7), £(t)] where
E(t) = xx + 2B/t+1x

A simple calculation using the piecewise linear structure of v*(¢,-) and the
piecewise parabolic structure of w*(z, -) gives the relations

*\2
/v*(l,x)dx = /32 Bx,, /(Uz) dx = 8B x,— ¥ B3 /i+1,,
R R

/w*(t,x)dx = % B3 /i+i, .

R

This confirms the conservation of the total momentum and the total energy.

We also note that the source term 7 (w*) (v;‘)2 reduces here to the simple expression
w*/(2t+2t,), which vanishes at the boundary of sppt(w™*(z, -)). Hence, in this case
the source term does not contribute to the growth of the support.

4.3 Non-Uniqueness of Very Weak Solutions

We now consider the pair (v°, w®) that is obtained from (v*, w*) by keeping B and
x. fixed but taking the limit #, — 0T. Then, (9, w) has the initial values (vg , w8) =
(2V2 B 1—y,.x1,0) € L2(Q2)xLL (Q). Next we observe that Vv = v, is piecewise
constant with values £1/ /2t in the intervals |x+x,| < 2B+/t and 0 otherwise. Hence,
we have Vv € LP(Q7) for p € [1, 3[. With IT(w) = w2/2 we find VIT(w) = ww, €
L7(Qr) for all g € [1, 2[. Using W0, w% € L*°(Q;) we have the conditions (4.3a)
and (4.4a). Moreover, inserting (v?, w) into the weak form (4.3b) + (4.3c) of the very
weak form (4.4b)+(4.4c) we can use the explicit formula for (v°, w9 to undo the
integrations by parts and see that (v°, w?) is indeed a weak solution as well as a very
weak solution.

However, there is the trivial second very weak solution, namely (v(z, -), w(z, -)) =
(v8 ,0) = (Zﬁ B1[_,, x,1, 0). Thus, we definitely have non-uniqueness in the class
of very weak solutions.

Indeed, we have a two-parameter family of very weak solutions for the initial
conditions (v8, 0)= (2B 1|—x,.x,], 0). The point is that we may keep the solution
constant in time for an arbitrary £y > O for x > 0 and then start with a delayed
version of (v°, w®). Moreover, we may choose 7_ > 0 for starting a delayed version
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of (vo, wo) for x < 0. More precisely, we choose 7, 7_ € [0, T] and set

W3 (x), 0) forx > 0and € [0, £, ],
~ ~ ) @OC¢—t4, %), wO(t—t1,x)) forx >0andt € [t4, T],
W, x), (e, 1)) = W3(x). 0) forx < Oand 7 € [0, 7],

WO —t_,x), wO(t—1_,x)) forx <Oandr e [t_,T].

We emphasize that the different delays do not produce any nonsmoothness, because
we have (v°(¢,0), w%(z,0)) = (2+/2B,0) for all ¢+ € [0, T]. A direct calculation
shows that (v, w) is a very weak solution for all the choices of ¢, , r_ € [0, T'].

4.4 Case n] = k: Families of Solutions with Growing Support

In the case k = n, we have the additional simple equation for e = %vz + w, namely
é = div (/c(w)Ve), k(w)Ve-n=0.

Thus, we obtain exactly the same equation as for v and may restrict to a solution class
defined via the relation ¢ = Bv for some fixed constant B > 0. This leads to the
relation w = e — %vz = Bv—%vz, where we now have the restrictions v € [0, 2B]
and w € [0, 82/2]. With this, the pair (v, w) = (v, Bv—%vz) solves the coupled
system (1.1) if and only if v solves the scalar equation

V= diV(EB(v)Vv>, Kp(v)Vv-n=0, wherekp(v):= K(Bv—%vz). 4.6)

For this scalar equation, the general existence theory for the PME (cf. Vazquez 2007)
can be applied and a huge set of solutions with compact and growing support for v
are known to exist.

For example, we may choose 1 = « in the form

B —+/B2—2w forw € [0,3B?/8],

2w/B — B/4 forw > 3B3/8. @.7)

K (w) =n(w) = {

Then, for v € [0, B/2] we have ¥ (v) =  (Bv—v?/2) = v and arrive at the classical
PME v = div(vVv) = A(v?/2), which has explicit similarity solutions satisfying
v € [0, B/2] for sufficiently large ¢, see (1.4).

5 General A Priori Estimates

To provide a first existence theory for the coupled system (1.1), we restrict now to
the case that @ C R? is a smooth and bounded domain. This will simplify certain
compactness arguments. Moreover, throughout this section we will assume that the
solutions (v, w) are classical solutions.
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To derive general a priori estimate, we consider a smooth function (v, w) >
¢ (v, w) and find for solutions (v, w) of (1.1) the relation

(v, w) = div(n(w)gav(v, w)Vu + k(w)y (v, w)Vw)) + Ry(v, w, Vv, Vw),

(5.1a)
where the remainder R is given explicitly via

Ry (v, w, Vv, V) = n(w) (¢ (v, w)—y (v, w))| Vo]

— W)+ (W)) G (V, W) V-V — Kk (W) Py (v, W) | Ve |,
(5.1b)

Integrating (5.1a) and using the boundary condition we find along solutions
d
— | p(v,w)dx = Ry(v, w, Vv, Vw)dx. 5.2)
dr Jqo Q

5.1 Estimates for the LP Norms
Clearly, choosing ¢ (v, w) = v or (v, w) = %vz + w gives Ry, = 0, which is the

conservation of momentum )V and energy £ as discussed in Sect.2.1.
Moreover, choosing ¢(v, w) = ¢ (v) we obtain

d
d_/ ¢ ((t,x))dx = —/ qb”(v)n(w)|Vv}2dx
tJg o

Hence, for all convex functions ¢ we obtain that fQ ¢ (v(t, x))dx is nondecreasing in
t. This implies the decay of all L? norms, namely

Vpell,oo]lVt>0: v, ey < v, HllLecy. (5.3)

For the w > 0, we obviously have an a priori bound in L! (2) via
/ w(t)dx < E@@), w®)) = EW°, w?).
Q

However, because of the L!-right-hand side n(w)|Vv|? it is difficult to derive a priori
bounds for high L” norms.
The class ¢ (v, w) = ®(w) is also important and leads to the relation

d
E/ﬂcb(w(r))dx=fg{n(w)cl>/(w)|w|2—K(w)cb”(w)|Vw|2}dx. (5.4)

Thus, we have growth of the integral functional if ® > 0 and ®” < 0, e.g., for
(k) = —k“ with o € [0, 1]. Such functionals include the physically relevant
entropies discussed in Sect.2.4.

@ Springer



42 Page 30 of 55 Journal of Nonlinear Science (2023) 33:42

Remark 5.1 (L? norms for n = «) For the case n = «, we are in a special situation,
where we can use ¢(u, k) = ¢(%u2+k) to obtain

d

= ¢(1u2+k)dx=—/ r)(k)d)”(luz—i—k) uVu+Vk[Pde. (5.5
dr Jo Q 2

2

Thus, we have decay for all convex ¢, whereas concave ¢ leads to growth. This estimate
is also easily derived from the simple equation ¢ = div(n(w)Ve), which holds for
n = k. Together with (5.3) we find

Vpell,oo]lVt=>0: |lw®)lLr@ < lle®)lLr @

- < 10 L
< lleollLr(@) = lw”llLr(e) + lev 20 (-
5.6)

To see that L.” bounds for w can also be derived for cases without = « we consider
now the situation « (w) = «on(w). For this case, we can write R, as a multiple of
n(w) in the form

Ry(v, w, Vv, Vw) = — n(w) <§Z)> Ay (5;) with
1+k0

AKO — (ﬁolvv — Pw T¢vw> .
v %901)10 KoQww

Thus, it suffices to show that A'(;O (v, w) is positive semidefinite for all arguments to
obtain decay estimates for fQ o(v, w)dx.

Lemma 5.2 (Higher norms in Spec.1l) For all integers m € N and all ky > 0,
there exist cogﬁ‘igients aj > 0 for j = 1,...,m such that ¢,;(v, w) = W™ +
ZT:] ajw"/ v2/ satisfies Aé?n (v, w) > 0 forall (v, w) € Rx[0, ool.

Proof The case m = 1 is solved by ¢ (v, w) = w + %vz independently of «¢. For
case m = 2 a direct calculation for ¢ (v, w) = w? + ajwv? + apv? yields

a0 — (((12a2 = aDv? + a; —2)w (14 «kg)ajv
(22 (1 +«o)ajv 2k0 ’

which is positive semidefinite for all (v, w) if and only if a; > 1 and 2« (12a2—a;) >
(1+K0)2a%. Clearly, it suffices to choose a; = 1 andthenay > 1/124(1+k0)?/(24k0)
to fulfill all requirements in the case m = 2.

For general m > 3 wesete = w + %v2 and define qb;.”(v, w) = e’"‘jv2j,

m " . U2 MU 10
(pm(v’w):ij(ﬁj (U,LU), V*0 = (1+—2KO‘U IZC() ), E:= <O 0)

J=0
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With k, = (l—Ko)2 /(4kp) we obtain V¥0 > —k,2E in the sense of positive definite
matrices. Since A;‘) depends linearly, we first calculate the individual terms for ¢>;.":

Al =(m—=)m—j=De" v VO 4 (= j)4je" P +2j2j—1)e" T v¥ )R
J

> —k(m—j)(m—j—1)e" T2 2E + j(am—2j—1)e" I~ WE,

where we used e > %vz for the last term in the upper line. Summing the estimates
over j and using b; > 0, we obtain the estimate Ag}n > by (v, e)E with

m
be(v,e) = b; (j(4m—2j—1)em—f—‘u2/' - —/c*(m—j)(m—j—l)em_j_2v2j+2)
j=0
m
= > (i(4m=2i—1)b; — u(m—i+1)(m—i)b; )"~ ~v*.
i=1
Clearly, Ag?n (v, w) > 0 for all (v, w), if by (v, e) > 0 for all (v, ), and this is easily
reach by starting with by = 1 and then choosing iteratively b; via i (4m—2i—1)b; =
kx(m—i+1)(m—i)bj—y fori =1,...,m. m]

The following result follows easily by applying the previous lemma with (5.2) and
the fact that ¢,, can be estimated from above and below by v?" + w”.

Proposition 5.3 (L” bounds for (v, w)) For the case k = kon and p = m € N, there
exists a constant C(kq, p) such that all smooth solutions (v, w) of (1.1) satisfy

H”(t)”ihv(g) + ”w(t)’Ll’(Q) < Cko, p)(|J0° Hi%ﬁ(sz) + [’ “LP(Q))for allt € [0, T].

5.2 Estimates Based on Comparison Principles

As our system is given in terms of two scalar diffusion equations, we can apply
comparison principles when taking care of the interaction between the two equations.
(CI) We first observe that w%(x) > 0 immediately implies w(¢, x) > 0 for all > 0
and x € Q. Of course this similarly holds for v, but we do not need a sign condition
for u.

(C2) Moreover, if (v, w) is a smooth solution of our system and w solves the scalar
PME

= div (c()Vw), w0, =u’,

then we have w(r, x) > w(t, x) forall + > 0 and x € 2, see Vazquez (2007) for a
proof. In particular, if w?® > ¢ > 0 then w(t, x) > c forall (¢, x).
(C3)If vy < 19(x) < v*forallx € Q,then v(z, x) € [vy, v*]foralls > 0and x € Q.
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The next result is more advanced and truly uses the interaction of the two equations.
However, it is restricted to the case ¥ = n. Under this assumption, Eq. (5.1) gives

g = div(nVe) — nR  with R = (9uy =) |VI* 4 2040 Vo-Vw + @y | V|,

We are interested in the case R > (), for which initial conditions with gz)(vo, wo) <0
immediately implies ¢ (v, w) < 0 forall t € [0, T] and x € Q.

Proposition 5.4 (Comparison for n = k) Consider a, b, c € R with ¢ < 2b. If (v, w)
is a classical solution of our coupled system (1.1), then we have

av’ —i—b(vo)2 +cu’ <0onQ — av + bv? + cw <0on[0, T]xR.

Inparticular, |v°] < My,w® on Qimplies |v(t, x)| < Myw(t, x) for (t, x) € [0, T]1x .

Proof We simply observe that the function ¢ (v, w) = av +bv>+cw gives ﬁ(v, w) =
(2b—c)|Vv|? which is nonnegative because of ¢ < 2b. Then, the maximum principle
applied to ¢ (7, x) = @(v(z, x), w(t, x)) shows that £y < 0 implies ¢ (¢, x) < 0, which
is the desired result.

The last assertion follows by choosing (a, b, c) = (1,0, —M,) for finding v <
M, w and by choosing (a, b, ¢c) = (—1, 0, —M,,) for finding —v < M, w. O

5.3 Dissipation Estimates
Here, we provide space-time estimates for various quantities, which will allow us to
derive suitable compactness for approximating sequences.

We start with the estimate obtained in Sect.5.1 for the choice ¢(v, w) = %|v|”
with p > 1. Integration in time gives the estimate

// n(w)(p—l)|v|p_2|Vv|2dx§/ llvolpdx. (5.7)
or QP

The special case p = 2 shows that it is sufficient to use the initial energy, namely
1
ff n(w)| V| dx 5/ —[W01P dx < E°, w0). (5.8)
or Q2

This estimate shows that the right-hand side in the w-equation in (1.1) is always in
L'(Q7), but it will be difficult to obtain higher integrability.
Choosing ¢(v, w) = ®(w) leads to the dissipation relation

// (K(w)cb”(w)wu)P—n(w)d(w)|w|2)dxdr=/{q>(w°)—c1>(w(T))}dx,
or Q
(5.9)

which is obtained by integrating (5.4). Here, we additionally have to impose w(t, x) >
0 in the case that ®”(w) — oo forw — 0.

@ Springer



Journal of Nonlinear Science (2023) 33:42 Page33of 55 42

The last relation can be used in two different ways to obtain a bound (i) on Vw and
(ii) on Vu.
(i) Estimates for Vw: we observe that we may use (5.8) if ® satisfies

0=®(0) < d(w) < Cow, 0<d(w) <Co, 'k >0 (5.10)

for some C¢ > 0. Then, we find

f/ K(w)d>/’(w)|Vw|2dxdt§Cq>f/ n(w)|Vo|*>dx dr
or or

+ Cq>/ wldx < 2CoEW°, w?).
Q

In particular, one may want to make ®” (w) big for w ~ 0 such that « (w)®" (w) is large
there. Of course, we need integrability of ®” on ]0, oo[ to allow for 0 < &' (w) < C,.
Hence, generalizing (Boccardo and Gallouét 1989; Boccardo et al. 1997; Mielke and
Naumann 2022) we will use the family

d(w) = for w > 0, whered € ]0, 1[. 5.11)

wd (14w)
The case 0 < § « 1 provides good results for large w, while 0 < 1—3§ < 1 produces

good results for small w: Thus, for all § € ]0, 1] there exi_sts C(8) > 0 such that for
all classical solutions (v, w) with w(z, x) > 0 on [0, T]x 2 we obtain the estimate

V8 €10,1[3Cs >0 // SK(w) IVw|*dxdr < C;€0°% w0).  (5.12)
or w°(14+w)

Alternatively, we may also consider a function ¢ (v, w) = W(w) such that
0>V¥(w)>-Cg(l+w), ¥ (w)<0, V' (w)>0 forallw >0, (5.13)
where W (w) = —w? with y € ]0, 1[ is a typical candidate. We can then drop the
term —n(w) W’ (w)|Vv|?> > 0 and take advantage of the fact that W” (w) can be much

bigger than ®'(w) for ® satisfying (5.10). The estimates for ¥ and the identity (5.9)
show that positive classical solutions satisfy

// (W”(w)t<(w)|Vw|2—‘ll/(u))n(w)}Vv|2)dxdt=/{‘lf(w0)—\ll(w(T))}dx
or Q

< / Cy(1 4+ w(T))dx < Cy(IQ] + EQ°, w?)), (5.14)
Q

where we used that Q@ C R has a finite Lebesgue volume.
(ii) Estimates for Vuv: The best estimate for Vv can be obtained if the function w
1/n(w) is integrable near w = 0, which is certainly the case for n(w) = w® with
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a € 10, 1[. In this case, we define the negative function W, via

Yol
\IJ;’(IU) :Z—A @d

The choice leads to the relation \Il,;(w) = —1/n(w) and \IJ,’7/(w) =71 (w)/n(w)? > 0,
such that the conditions (5.13) hold and (5.14) leads to the special case

// Vo +”(u(’)'c)(zw)|Vw|2)dxdtgc%(|sz|+8(v0,w°)), (5.15)

see Naumann (2013, Eqn. (4.6)) for an earlier occurrence for the case o« = 1/2.

Another way of estimating Vu can be derived from (5.8) if we additionally have a
pointwise estimate of the form |v(¢, x)| < M,w(¢, x), which was derived in Propo-
sition 5.4 for the special case k = 5. Using the monotonicity n'(w) > 0 we have
n(jv|/My) < n(w) and conclude

€ 2 0,0
//QT”(M*'”')'V”' dxdr < £00, w0). (5.16)

We summarize the dissipation estimate by restricting to the homogeneous case
n(w) = now® and k (w) = kow?. More general cases can easily be deduced in the
same fashion. We explicitly show the dependence on |€2| such that unbounded domains
like 2 = R can be treated as well in cases where no dependence on || is indicated.

Proposition 5.5 (Dissipation estimates) Consider the case n(w) = now® and k (w) =
kow? with a, B, no, ko > 0 and bounded 2 C R4, Then for all § € 10, 1] there exists
a constant Cy > 0 such that smooth solutions (v, w) of (1.1) with w(t,x) > w > 0

satisfy
2
// 1+(ﬂ—5>/2)‘ dedr < C.EQY, w0,  (5.17a)
or 1+w
2
B>0: [[ ‘V(w@“)/z)‘ dxdr < C.(1Q1+£0°% %), (5.17b)
or

o el0,1]: // |Vv|2dxdtgc*(|sz|+5(v°,w°)). (5.17¢)
or

If we additionally have k = 1 (i.e., « = B and ko = no) and |V°(x)| < M,w°(x),
then for Cy now depending on § and M, only, we further have

o= ], I
a=B8>1-6: //QT V(v

Throughout, the constant C, is independent of the lower bound w.

1+°‘/2 dx dr < CLEQY, wY), (5.17d)

2
<1+“+3>/2)’ dxdr < C, (121 + £ w0).  (5.17¢)
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Proof The results are obtained by applying the above estimate for suitable functions
® and V. Throughout use w” [Vw|? = cy |V(wH‘V/2)|2 for the smooth solutions.
Estimate (5.17a) follows directly from (5.12).
For (5.17b), we exploit (5.14) with ¥ (w) = —w?.
Estimate (5.17c¢) is a consequence of (5.15), because 1/w is integrable for ¢ < 1.
For (5.17d), we simply use (5.16).
Finally, (5.17¢) follows by combining (5.14) with W (w) = —w?, the estimate |v| <
M, w from Proposition 5.4, and the monotonicity of w — |¥'(w)|n(w) = cw? 143,
O

Based on the conjectures concerning the typical front behavior, which were dis-
cussed in Sect. 3.3, we see that Vv € LZ(QT) can be expected only in the case & < 1,
i.e., the restriction o € ]0, 1[ in (5.17c) seems to be sharp. Similarly, Sect. 3.3 show
that Vw? e L?(Q7) implies y > B/2, which corresponds to the restriction § > 0 in
(5.170b).

Remark 5.6 ( fQ logw® dx finite) In their treatment of Kolmogorov’s two-equation
model in Buli¢ek and Malek (2019), the authors consider the situation corresponding
to n(w) = now and xk(w) = kow, i.e., « = B = 1. Moreover, they assume that w?
is positive almost everywhere such that Lo := — fQ logw® dx < oo. Choosing the
convex functional W (w) = — log w the dissipation relation (5.9) leads to

// (K_O|vw|2+n0|vv|2)dxdt:/(logw(T)—long)dx
or w Q
5/ w(T)dx + Ly < £E@°, w°) + L.
Q

Of course, the assumption Lo < oo does not allow to study solutions with nontrivial
support, i.e., it implies sppt(w(z)) = Q for all t > 0.

6 Existence of Solutions
Through this section, we use the following standard assumptions:

Q c RY is bounded with C? boundary, (6.1a)
Ja, B, 00, ko> 0Vw >0: n(w) = now* and k (w) = kow?. (6.1b)

Below, we will derive three different results on the global existence of weak or very
weak solutions. A local existence theory for smooth solutions is established in Fanelli
and Granero-Belinchén (2021) in the one-dimensional periodic domain 2 = T =
S! = R/57. Moreover, there it is also shown that smooth solutions may blow up in
finite time. All these results are valid for the exponents «, 8 satisfying o, § > 1 and
maybe further conditions, whereas our results are restricted to the case « € ]0, 1[ or
o = B > 0. Of course, global existence of weak solutions and blow-up of smooth
solutions may occur in one equation.
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6.1 Three Prototypical Existence Results

For given initial conditions W%, w0 € LZ(Q)XLIZ(Q), we choose a sequence of
smooth initial data (vg, wg) € C*®(22)? such that

wg(x) >¢e>0o0nQ, (6.2a)
@, wd) - °, w’) e L2(Q)xL (%), (6.2b)
W0 e LP(Q) and v? — v¥in LPO(Q). (6.2¢)

Condition (6.2b) implies the convergence of the conservation laws V(vg) — V%)
and E(vg, wg) — £@Y, wY). Condition (6.2¢) with py € [1, 2] follows from (6.2b),
hence, it will only be an extra condition for pg > 2.

With this, we have a classical parabolic system with positive viscosity such that
local existence of solutions (vg, wy) is classical, see, e.g., Amann (1989) and Wiegner
(1992) or Lunardi (1995, Cha.8). Of course all these solutions satisfy our a priori
bounds, in particular, we have w, (¢, x) > ¢ as long as the solution exists, cf. Sect.5.2
(C2). This implies that the solution stays as smooth. Moreover, the structure of the
equation for v implies the global L* bound ||ve(¢)||Lo¢y < ||vg||Lo<>(--), see (5.3).
Finally, the energy conservation &(ve(¢), we(t)) = &€ (vg, wg) which also implies
foT n(we)|Vug |2 dxdr < 5(1)2, wg). Thus, blow-up is not possible and the classical
solutions exist for all time.

The aim is now to show that the solutions (v,, w,), or better a suitable subsequence
thereof, converge to a limit (v, w) that is a weak or very weak solution of our coupled
system. The problem here is that the limit w may have a nontrivial support strictly
contained in 2. As a consequence, an integral bound

//Q (WY |Vw|? + wl| Vv, ) dx dr < C, (6.3)
T

does not necessarily imply spatial compactness for v,. Thus, we will provide two
different existence results, in the case n(w) = now® with @ < 1 one may obtain the
exponent § = 0 and a bound for Vv, in LZ(QT) follows. In the case, o > 1, we can
only treat the case 7 = « under the additional assumption [v°(x)| < M,w°(x), which
allows us to obtain a bound on V(v,)' ™%/ in L2(Q7).

Another way of obtaining weak solutions with a positive lower bound & > 0 would
be to adapt the methods in Naumann (2013), Bulicek and Mélek (2019) and Mielke
and Naumann (2022) to the present case. Our approach is different is similar to the one
taken in Bertsch and Kamin (1990) and Dal Passo and Giacomelli (1999); however,
our goal is more restrictive. There, for the solutions (p, ) of the plasma model (1.6)
one only asks for p%/2V6 € L?(P) where P := { (t,x) € [0, T]xQ | pt,x) >0 }

Throughout the rest of this section, we use the following short-hand notations:

(@ u "X & 3IC>0Veel01[: use Xand|lusllx <C,

(b) LPLY := LP([O, TI; Lq(Q)) and similarly LIH' or LPW*4,
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We will use the following standard interpolation in L°L? (cf. Mielke and Naumann
2022, Lem.4.2):

VO (0,11, s,51,52, p, p1, p2 € [1, 00 with { = =8 - Zand £ = 120 4 2
3C>0Vu e LLP OAL2LP2 ¢ uflisee < Cllull{s o llullf sy 6.4)

Moreover, we define 2} as the optimal exponent in the embedding HY(Q) C L% (2),
ie.,2) =2d/(d-2)ford > 3,2 = 00, and 25 < oo.

We are now ready to state three different existence results. The first result provides
weak solutions and relies on the restriction (6.5) concerning the exponents « and S
as well as the integrability power pg for v°. We do not expect that condition (6.5) is
sharp.

Theorem 6.1 (Existence of weak solutions for « < 1) Assume that (6.1) holds with
a € 10, 1[. Moreover, consider po > 2 such that

o 1 1

+ < — 6.5
Fr2-22 oot 2-2p0/2 2 ©

Then, for all initial data 0, w% e Lo (Q)xLlZ (Q2) there exists a weak solution
(v, w) in the sense of Definition 4.3. Moreover, this solution satisfies

Vv eL2(Qr) and w e LPY222i(Qr).

Condition (6.5) is somehow restrictive and shows that small « and large B are
desirable. Even assuming v° € C(Q) C L®(RQ), i.e., pg = 0o, we still have to satisfy

200 < B+ 2 —max{0, 1-2/d}.

Because of o € ]0, 1[, this is always satisfied for d < 2, but may provide a nontrivial
lower bound for d > 3 and @ > 1/2. However, the important case « = 8 € 10, 1] is
always possible, even for finite py € [2, ool.

For example, assumingo = B = 1/2 (asin Kolmogorov’s one-equation or Prandtl’s
model discussed in Sect. 8.1) we obtain, after some computation, the restriction

14 >2 d 14 —_—
an > .
0 = 0 I+ 4

For the next result, we stay in the case « € ]0, 1[ and show that very weak solu-
tions can be obtained in a previously inaccessible regime. However, the usage of the
weighted gradients as introduced in Definition 4.1 forces us to control Vw¢ in L'(07),
whereas the equation provides control on wa /2 only. Thus, the restriction 8 < 2«

will be needed.
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Theorem 6.2 (Existence of very weak solutions for @ < 1) Assume that (6.1) holds
with0 < B < 2a < 2. Moreover, consider py > 2 such that

20+ 1-2/2% 1

- — <1 (6.6)
2(8+2-2/2%)  po+2—2po/2;

Then, for all initial data (v°, w°) € LPO(Q) ><L1Z (R2) there exists a very weak solution
(v, w) in the sense of Definition 4.3. Moreover, this solution satisfies

Vv eLX(Qr) and w e LAY (Qr).

We emphasize that condition (6.6) is weaker than (6.5). Indeed, consider the case
po = oo for simplicity, then (6.6) is equivalent to 20 < 28 + 3 — 2/2%, which is
automatically satisfied for 0 < 8 < 2a < 2, because of 200 <+ 1 <28+ 1 <
28+3-2/2].

However, for pg = oo (6.5) reduces to 2a < 8 + 2 — 2/2} which is violated for
d > 3 and suitable « and g, e.g., for (d, «, B) = (4, 7/8, 1/8) we have

0<p=1/8<2a=7/4<2, and 20 =7/4 £13/8 =2+1/8—1/2 =2+-2/2].
Thus, there are cases where Theorem 6.2 can be applied but Theorem 6.1 cannot.
Finally, we treat the case n = « which is special in two ways: first the energy
density e = %v2 + w satisfies the simple equation ¢ = div(n(w)Ve), and second
we can pointwise bound v by w, see Proposition 5.4. The case k = n = w* is very

special, but it is presently the only case where o > 1 can be handled.

Theorem 6.3 (Existence of very weak solutions for n = «) Assume that (6.1) holds
with n(w) = k(w) = w* with @ > 0. Moreover, consider py > 2 such that

po(1=2) > /8 + 4o +a2/a — 2. (6.7)
0 2; 2

Then, for all My, > 0 and all initial data (v°, w®) € LP($2) XLQO/z(Q) satisfying
W) < Muw®(x) foraa x € Q (6.8)

there exists a very weak solution (v, w) in the sense of Definition 4.3. Moreover, this
solution satisfies

lv(t, x)| < M,w(t,x) fora.a. (t,x) € Or.

The right-hand side in (6.7) is strictly increasing with range ]2, 4[. Hence, the
assumption pg > max{4, 2d} is sufficient for all @ > 0.
The proofs of these three results are the contents of the following three subsections.
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6.2 Limit Passage to Weak Solutions in the Case a < 1

Here, we provide the proof of existence of weak solutions first, and then show what
has to be changed for obtaining very weak solutions.

Proof of Theorem 6.1 We proceed in three steps: 1. a priori estimates, 2. compactness,
and 3. identification of nonlinear limits.

Step 1: A priori estimates.

Because of £ (v, (t), we(t)) = Eg and (5.17c), we obviously have v, bdd 1 2!,

For w,, we use (5.17b) to obtain Vw§ﬁ+8)/2 b‘éd L2L2forall § € 10, 1[. Since energy
conservation implies w, P4 L°L!, we conclude wgﬂ +6)/2 54 1 241 For bounded Lip-
schitz domains Q C R? we have the embedding H'(Q) C L2§(Q) with 2] = oo,
2% < oo, and 2% = 2d/(d—2) for d > 3. We obtain w2 *¥ 1212 or
equivalently w, °&' LAT9LY for ¢ = (8+6)2%/2. Using the interpolation (6.4) with

we "M Loop ! gives
we "€ LP(Qr) = LPLP with p = p(8) == B+ 8 + 1 —2/25. 6.9)

For controlling the gradient of IT(w) = ﬁw‘”l in L' (Q7) = LILI for
some 1 > 0, we use the simple identity

1
V(II(w)) = wVw = —w"V(w?) foryi +y =g+ 1.
V2

Choosing = (B+5)/2 and using Vw§ﬁ+8)/2 PM 122 we find
VIT(w,) *& LH7(Q7) if wehave w!" " LILY or w, "& LM9L149 with1/2+1/q <
1. Hence, it suffices to show p(8) > 2y1(§) =: B + 2 — &, which holds for
some 6 € ]0, 1[ because of the continuity of 6 +— (y2(8), p(5)) on [0, 1] and
p() =B +2—2/2% > 2y(1) = B + 1. In summary, we have established

In>0:  V(I(w)) "¢ L*(Qp). (6.10)

Clearly, the classical dissipation estimate (5.8) for the v-equation gives

Us := n(we) Vv, = w>vo, & L2(Q7) (6.11)

Similarly, using w%/* °¥ L®L2/® < L2%(Q7) and n(w:) Vv, = w? w?*Vu,

yields

n(we) Vv, = wVo, & LY+ (0p). (6.12)
Step 2: Compactness.
As usual we apply an Aubin—Lions—Simon theorem, see Simon (1987, Cor.4, Lions

1969, Thm. 5.1, Roubicek 2013, Lem.7.7) and for nonlinear versions see Moussa
(2016, Thm. 1).
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For this, we first create spatial compactness, which is trivial for v, because of
Ve b 1 21! with H! = H! (£2) compactly embedded into L2(Q).
For w,, we have the difficulty that we only control the derivative of power of w in

(6.10), namely wi # & L 1+nw 1141 However, employing the fact that the Nemitskii
y ploying

operator u > u? maps W* P () into WOs.2/9(Q) for all s € 10, 1[ and p € 11, o[,
see Proposition 6.4. This leads to

Wy bdd 1 A+mA+A ywo.A+mU+E)  for a]l o € [0, ﬁ[

Clearly, Wo (+mU+8) (Q) is still compactly embedded into L'+ ().

To derive temporal compactness, we use the PDEs for v, and ., see (1.1). From
(1.1a) and (6.12) we obtain

0p € LYoy h2/(He) 1 2/ ke (w1.2/(=e) ()", (6.13)

Starting from VIT(w,) *& LI*7(07) and n(w,)|Vve|* "& L1(Q7) the PDE (1.1b)
for w, gives

e € LW MLt ¢ LY (whHnq)) (6.14)

Now applying Banach’s selection principle for weak convergence and Aubin-Lions-
Simon theorem strong convergence we obtain a limit pair (v, w) with

v e Cy([0, TT;L*(2)) NL?H' and w € L¥L! n LD UI+Awe. (e d+H)

and, along a suitable subsequence, the convergences

(Ve (x), we(x)) = (V(x), w(x)) a.e.in ; (6.15a)
(Ve, we) — (v, w) in L*(Qr)xL'"*(Qr);  (6.15b)
Ve—v inL?H!, (6.15¢)

We—w in LItAW/CHA). 146 (6.15d)

Step 3: Identification of nonlinear limits.
It remains to pass to the limit in the nonlinear terms of the weak formulation, namely
in

@ n(we) Ve, (i) VIT(w),  (iii) n(we)ve V.

In the trivial nonlinear term f f or vs2 0;& dx dt in the left-hand side of (4.3c), the limit

passage follows easily from the strong convergence of v, in L2(Q7).
Concerning the term (i) we recall the decomposition

wyVo, = wg‘ﬂUg with U, = wg‘/Zva.
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By (6.15b) we have wg‘/z — w2 in L%®, On the one hand, we have U,—U in
L%(Q7) because of (6.11). On the other hand, the strong convergence of w?/ 2 and
Vv,—Vuv in L>(Q7) implies U,—w®?*Vv in L¥ 149 (7). Thus, U = w*/*Vv
and, with the same argument we find

WV, = w U, —w*?U = w*Vu in L7, (6.16)

For term (ii), we use [T1(w) = ﬁ w!*# and the a priori estimates from Step 2, such

that along a further subsequence (not relabeled) we have, for all ¢ € [1, 1+,32;‘l /21,
we—w inLY(Q7), wP—=ginL™(Qr), Vw!P~GinL'"(Qr).

Together with the strong convergence (6.15b), we obtain w, — w in LY(Qr) for the
same ¢ such that w;+’3 — w!™# in LY(Q7r), which implies g = w!*P as desired,
and G = Vg = VII(w) follows.

For the term (iii), we may need the extra condition 0 e LPo(Q), which implies

vp P& Lo P, Interpolation with v, U 121! ¢ L2L2% via (6.4) we obtain

ve "¢ LY(Q7) with go := po + 2 — 2po/2};, and
ve = vin LY(Qr) for g € [1, qol,

where the second statement uses (6.15b). Similarly, (6.9) and (6.15b) yield
w? — w® in LP/%(Qr) for p € [1, f4+2-2/25[.

Combining these two strong convergences and exploiting the condition (6.5),
we conclude n(wg)ve — n(w)v in L2(Q7). Together with the weak convergence
Vv, — Vo (cf. (6.15¢)), we obtain the desired weak convergence for term (iii), i.e.,
N(we)ve Ve — n(w)vVo in LI(QT). Thus, the limit passage for all terms on the
weak formulation (4.3), which shows that (v, w) is indeed a weak solution.

This finishes the proof of Theorem 6.1. O

6.3 Limit Passage to Very Weak Solutions for a < 1

Proof of Theorem 6.2 We follow the same three steps as in the proof of Theorem 6.1.
Step 1 and Step 2 are in fact identical, and in Step 3 we have to exploit the idea of
weighted gradients for n(w) Vv, which means that we have to prove weak convergence
in L1(Q7) for the following five terms:

() veV(we), (i) VIT(we), (i) 07 Vip(we), () ven(we), (i) vZn(we).

Clearly, (ii) works as before and (i)’ and (iii)’ look as (i) and (iii) above, but the gradient
is moved from v, to n(w,), while in (i)” and (iii)” there are no gradients at all.

It is easy to see that the most critical term (iii)’. If the convergences work for this
case, then they also work for all the other ones.
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The problem is now that we need to control Vw which is nontrivial if « is small,
because (5.17a) and (5.17b) provide bounds for Vw/ for y defined in terms of 8. We
hence assume

B <2a <?2.

Using Vw?® = %w“’VVwV for y € ]0, o[ and choosing y = (B+6)/2 for some
6 € ]0, 1[, we obtain from (5.17b) and (6.9) the boundedness

R

"¢ L2(0r)

. 2(B+2-2/2)
1 . bdd 5
ae B[ vu *¥ L(Qr) fOFal”E[l’rO[WlthrO:m.

ae]g,%[: Vwg

Because of ryp > 1 and the strong convergence (6.15b), we obtain VwY —Vw? in

L"(Qr).

As before, we have the strong convergence vs2 — % in LY/ 2(QT) for all

q € [1, gol and now condition (6.6) is exactly made to allows us to conclude that
v?Vn(wE)szvmw), as desired. This finishes the proof of Theorem 6.2. ]

6.4 Limit Passage intheCase n = k
Fora € R and y > 0 we set {a}” := sign(a) |a|”.

Proof of Theorem 6.3 We proceed along the same three steps as in Sect. 6.2 but now
use that it is easy to construct smooth initial conditions (vg, wg) such that (6.2) holds
together with |vg(x)| < M*wg(x) for x € Q. For this one simply mollifies the
nonnegative functions a* := M,w?+v° to obtain smooth and nonnegative asi. Then,
we setv? = (af —a;)/2and w? = (af +a;)/(2M.). With Proposition 5.4 we obtain

[ve(t, X)| < Myw,(t, x) forall (¢,x) € Q7. 6.17)

Step 1: a priori bounds. We first observe ¢¥ := %(vo)2 + w? e LP/2(Q), and
¢ = div(w®e) implies [le(t)[l o2 < 1l€°]lpor2. Thus, we have ve "& LLP and
we "M L.°LP0/2 and using (5.7) and (6.17) we obtain {v, }(Pote)/2 P¥ [ 21 < 1212
and conclude v, bdd 1 potay (pot+a)2/2, Using v, bdd 1 201 P0 and the interpolation (6.4)

we arrive at

ve " LR (Qr) with gy ==+ 2po(} — ). 6.18)

=
d

From (5.17b) witha = B we find w(©@+9/2 b1 2H! forall s € 10, 1[ and interpolation
with w, " LLPro/2 yields
bdd

we "¢ L9(Q7) forall g € [1, gyl with gy == 1 +a + po(5 — %). (6.19)
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Step 2: compactness. From {v, }(P0+@)/2 ?¥ [ 211 and wo+9 * [ 2H! we again obtain

ve P L potay2s/(pote). poter g gy DY 20a8) yys/ (ets). 2 )

fors € 10, I[and § € ]1/2, 1],

where we used Proposition 6.4. Thus, compactness works as in Step 2 of Sect.6.2. In
particular, we have

ve — v in L?(Qr) for p € [1,qy[ and w, — w in LY(Q7) forq € [1, gw[.
(6.20)

Using the pointwise convergence a.e. in Q7, the limits (v, w) still satisfies (6.17).
Step 3: Identification of nonlinear limits. We have to show that the five terms

() veVn(we), (i) VIT(we), (i) v2Vp(we), Q) ven(we), (i) vin(we)

converge to their respective limits.
Clearly, wé*‘”‘ bgd LP(Qr) for all p € [1,qw/(14+a)[ and by compactness
converges strongly to w!+%. Moreover, ngaJr(S)/ 2 bdd L?(Q7) and (6.19) imply

2qw

Vgt = w OV L Q) for 1 < p < pn = o >
w

Here, we need to choose § ~ 1. With this Vw!T*—~Vw!*® in L"(Qr) follows, and
the case (ii) is settled.
In exactly the same way with n(w) = w®, we obtain

2qw

Vi(wg)—Vn(w) inL?(Qr) forall p € [1, p,[ with p;) := ——— >
qwta—1

pm-
(6.21)

By (6.20), we also have n(wg;) — n(w) in LP?(Qr) for all p € [1, gw/«[. Thus, for
the four weak convergences of the terms in (i)’, (iii)’, (i)”, and (iii)” in L't 0r)
for some ¢ > 0, we need the four relations 1/qv + 1/p, < 1,2/gy + 1/py < 1,
1/gy +a/qw < 1,and 2/gy + a/qw < 1, respectively. Because of gw/a < py, all
four inequalities follow if the second holds. Inserting the definitions of gy and p,, into
2/qy + 1/ p; < 1 shows that this condition is equivalent to our assumption (6.7).
Thus, the proof of Theorem 6.3 is finished. O

6.5 Fractional Sobolev Spaces

Here, we provide a result that was used in the compactness arguments.
For y > 0, we set {u}¥ : u +> sign(u)|u|”. Then, we have the relations

Vy>1Va,beR: |{a}'/v — /7| <27 a—b|. (6.22)
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With this, we easily obtain the following statement.

Proposition 6.4 (Fractional powers) For all y > 1, s € 10,1[, p € 11, oo|, and
u € WP (), we have {u}!/v € WS/v-PY (Q) with the estimate

[0 ey = 277 Juay €29

Proof Clearly, we have ||[{u}!/” |/} = ||u||¥,. For the Sobolev-Slobodeckij semi-norm
[[-1]s,p we apply (6.22) and obtain

Vy_ 1y |PY
[, = //QXQHu(x)} Y —{u()}'7| axdy = 2 '[u]” .

s/y.py * |x_y|d+(S/y)m/

This proves (6.23). ]

7 Conjectures on the Self-Similar Behavior

In this section, we speculate about the longtime behavior of solutions on the full
space Q = R<. First, we recall the similarity solution wpymg for the classical PME
in Sect.7.1. In Sect.7.2, we discuss the case « = B, where we have full scaling
invariance. We expect [pq %v(t, x)?dx — 0 such that fpg w(t, x) dx — E£Q°, w)
for t — oo. Moreover, we conjecture that w(z, -) behaves like the wpypg for the
corresponding mass £(v°, w®), while v(r) behaves like 17 (wppmg)</™, which again
shows that 19 > ko leads to singular behavior of v at the boundary of the support.
Finally, Sect.7.3 addresses the cases @ > 8 > 0 and 8 > « > 0. In the latter we still
expect that w(¢) behaves like wppg while v(#) should behave like ct~481 Bté/b(o)(')'
In the former case, a similar result should not be expected.

7.1 Similarity Solution for the Classical PME
To describe the exact similarity solutions, we introduce the shape functions
Wo(y) = (1-1y1%) 7.

We have the obvious relations

WY =W,,. W, W, =W O(o. d) / W, (y)d n‘P°L (1 +o)
et = ile} = = =,
o = Woy,  Wolly = Woty, : et 7YY T Tto+d/2)
(7.1a)
VWe (y) = =20 Ws_1(y) y, (7.1b)

div(W, VW, ) (y) = =2do W, 15 1(y) =20 y- VW, 51 (y) for [y| # 1.
(7.1¢)
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With this, we easily obtain the following well-known, explicit form of the similarity
solution for the PME.

Lemma 7.1 (Similarity solution for PME) The function wpMmg defined via
wpME (¢, X) = c(t+1,) "W, (b(t+1,) ~°x) is a solution of the PMEg given by

w = diV(KowﬁVw), f w(t, x)dx = Ey
R4

if and only if the we choose the parameters such that
Eo=cb™0O(1/8,d), o =1/, §=1/Q2+dB), 2kobc® =68. (1.2

Proof The first relation stems from the integral constraint for w.
A direct calculation using y = bt ~%x gives

W= —cst PN dWo (y) + y - VW, (),
div(kow” Vw) = —20kob> P~ P25 (q Wy, o 1 (3) +y - VWoioo1()).

Thus, we first see that matching the two lines needs fo = 1 and §(2+dB) = 1.
Finally, we compare the prefactor which gives the last relation. O

The convergence of all nonnegative solutions w to the self-similar profile is one of
the major achievements in the theory of PME, see Vazquez (2007, Cha. 16), Carrillo
and Toscani (2000), or Otto (2001, Sec. 3). We believe that a corresponding result on
asymptotic self-similarity for our system, at least if « = 8. However, in the following
we only present conjectures together with some supporting observations, including a
numerical simulation.

7.2 Conjectured Longtime Behavior for 8 = a

To substantiate our conjecture, we use the scaling properties of the coupled system
for 8 = «. Slightly generalizing (2.3) we consider the two possible transformations,
namely

T =log(t+1), y= (t+1)_‘sx and

(vt x), w(t, x)) = ((t+l)7d98 V(r,y), (t+1) "D (e, ).

where § = 1/(2+dp) as above, and the new parameter 9 either equals

(7.3)

o 0 = 1/2: the “energy-conserving scaling” or
e 0 = 1: the “momentum-conserving scaling.”

The reason for these two choices is that the variable v occurs with different powers in
the two conserved quantities V(v, w) = fRd v(x)dx and E(v, w) = fRd (%v2+w) dx.
Thus, a given scaling can conserve at most one of the two functionals.

The transformed coupled PDE system for (U, w) reads

;0 = div(8 0y + o V) — (1-6)8d v, (7.42)
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810 = div(8W y + ko WP Vi) + eI 72937 o 5P |V, (7.4b)
The conserved total momentum V and total energy £ transform as follows:

V(z,7, w):zf e“*"”dff;“(y)dy:/ v(x)dx =V, w) = V@, w’) =V,
xeRd

yeR
(1.52)
E(r. (), B(v)) = /d(% =257 (7, y)2 48 (7, y)) dy
R
=E(vEe™=1), we'=1) = E°, w°) = Eo. (7.5b)

Thus, the linear momentum ) remains a conserved quantity (i.e., V(z, ~) =) for
6 = 1 only. In contrast, the energy £ remains a conserved quantity (i.e., £(t, ) = &)
for & = 1/2 only. Moreover, system (7.4) is a autonomous system if and only if
0 =1/2.

7.2.1 Energy-Conserving Scaling with 8 = 1/2

For 6 = 1/2 the transformed system (7.4) takes the explicit form

~ e e~ JOPEU
0V = d1v(8 vy + nowﬁVv) — ESd v, (7.6a)
3 = div(8i y + koW V) + noi? VT2, (7.6b)

which is an autonomous evolutionary system with the conserved quantity £ (v, w). To
understand the longtime behavior, we can test (7.6a) by |v|? 2% for p € 11,2] and
find

d I . B i D e -1 1 ~
o [ trdy = —o-n) [ i o v aysa (-2 [ aray.
dr Rd P R4 )4 2 R4

(1.7)

This implies exponential decay of ||v(z, -)||Lr for p € 11, 2[. Moreover, for p = 2 all
steady states (where the left-hand side in the above relation is 0) satisfy VU = 0. As
E(@, w) = Eg < oo we conclude v = 0 and obtain the following result.

Corollary 7.2 (Unique nonnegative steady state) Given arbitrary Ey > 0 there
is exactly one nonnegative steady state for (7.4)g—1,2, namely (550, ﬁgo) =
(0, cWiyg (b~)) where b and c depend on Eq as given in (7.2).

We conjecture that all solutions of (7.4)g—1/2 with initial condition satisfying
EWY, w = E converge to (’1750, 1?50). The reasoning is simple because we know
the convergence of v to 0, so we expect that for large times the dynamics of the PME
for w (now in transformed variables) and v = 0 will determine the longtime behavior.
However, to show this one needs to show that all kinetic energy is converted to heat,
i.e., [|v(z, )|l;2 — O for T — oo, which would need a more careful analysis than the
simple estimate (7.7).
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7.2.2 Momentum-Conserving Scaling with @ = 1

For 6 = 1 the transformed system (7.4) takes the explicit form

3.0 = div(8 0 y + noiwf Vo), (7.82)
3 = div(8% y + koW’ V) + e Ty’ | V)2, (7.8b)

We now use v which is related to ¥ in Sect. 7.2.1 by v(7) = e*?*/2%(z). It is important

to keep in mind that the component W remains exactly the same in both systems, (7.6)
and (7.8).

The new system is no longer autonomous but the time dependence occurs via an
exponentially decaying term, which hopefully does not influence the longtime behavior
even if U is not decaying but stays suitably bounded. From Sect. 7.2.1, we still expect
that w(t) converges to wgo.

However, the new feature of (7.8) is that U again satisfies a PDE in divergence
form, namely (7.8a), which implies that V(w(z) = Vy for all T > 0. Moreover, as
we already expect w (1) — wSIfO we may expect that () converges to a steady state
of the linear diffusion equation obtained from (7.8a) by replacing w by its limit wa;o'
The surprising fact is that this equation has a unique steady state which is given by an
explicit formula.

Proposition 7.3 (Similarity solutions (Vg, Ws;)) For each pair (Vy, Eg) € Rx]0, oo[
there is a unique solution (Vg, W) of the system (where § = 1/(2+dpB) )

0 =div(s0y + now? Vo), 0=div(sdy + koi? ViD),

f vdy = Vp, f wdy = Ej.
R4 R4

This solution is given explicitly in the form

- o . Ko k)
(Ba(y), Wt (1)) = (an(by), W, /,g(by)) witho = 2, 2 _ 2:; .

Vo = ;—d@)(xo/(ﬂno),d), Eo = b%@(l/ﬂ,d).

Proof The result follows easily with (7.1b). Indeed, we even have §v y +now Bvo =0
and 8@ y + ko Vi = 0 on RY. O

Of course, justifying the convergence to the steady states (vy, wg) for a suitable
solution class (v, w) of the full system (7.4) is a nontrivial task. This can be seen
by inserting the steady state into the exponentially decaying term which gives the
perturbation

e T Vg |* = Te P Wary /(gngy—1(BY) I

This term lies in L>°(0, T'; L' (R)) but is singular at b|y| = 1 for 8 > 2«o/1no.
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Fig.5 The solution v(¢, x) (left) and w(z, x) (right) for ¢ € [0, 0.1] and x € [-5, 5]

Fig.6 The solution v(z, x) (left) and w(z, x) (right) for ¢ € [0, 10] and x € [—10, 10]

7.2.3 A Numerical Simulation Showing Convergence

A simple numerical experiment covers the one-dimensional case @ = R! with a =
B =1,n0 =2, and kg = 1/2. We start with initial conditions vo(x) = max{0, 10 —
10(x4+2)?} and w°(x) = max{0, 15— 15(x—2)2}. In Fig. 5, we show that solution for
the short initial time interval ¢ € [0, 0.1] which shows that kinetic energy is dissipated
fast and turned into heat.

In Fig. 6, we show that (unscaled) solutions on the longer time interval ¢ € [0, 10],
where the self-similar behavior becomes visible.

In Fig.7, we show that the rescaled solutions (¢, y) — (14+1)%v(zt, (141)°y) and
(t,y) = (1+)%w(r, (1+1)%y) for r € [0, 1.5] where convergence into a self-similar
profile is already evident. It is clearly seen that w develops the simple Barenblatt profile
cw max{0, b—y?}, whereas v develops the more singular profile ¢, max{0, b— y2i/4
because of ko/n9 = 1/4.

@ Springer



Journal of Nonlinear Science (2023) 33:42 Page 49 of 55 42

Fig. 7 Scaled solutions (1+6)%v(z, (14+6)%y) (left) and (1+0)°w(z, (14+)% y) (right) for ¢ € [0, 1.5] and
y € [-10, 10]

7.3 Conjectured Longtime Behavior for § # a

With the transformation (7.3) with § = 1/(2+dp), we now find the transformed
system

97 =div(8 Ty + e’ Vy)  withy = (B—a)ds, (7.92)
3 = div(8i y + koW V) + ¥ 4o | VT2, (7.9b)

We consider the cases @ > B > 0 and B > o > 0 separately.

Casey = (B—a)dé > 0 : The chosen scaling leads to the exponentially growing pref-
actor for the diffusion in (7.9a). Hence, it is dominating the concentration term such
that we expect for large t that Vv(r) is small. This can also be seen by testing (7.9a)
by e =47y (r) which leads to

de, B 1
f f ¥ =gt |V dydr < T2 ga)-
or

Thus, it is reasonable to expect that v(¢) converges to ¢ 1p, /5(0) (+) while w converges
to Wg as for the case a = B.

A proof of this conjecture will be even more difficult, because Vv (r) must develop
a singularity near the boundary of By ,(0) C R4 to allow for the convergence v(t) —
c1p,,,0)() in L2RY).

Casey = (B—a)ddé < 0 : In this case we expect a different behavior because of the
decaying diffusion in the equation for v. For large 7 the dominating term in (7.9a) is
the transport term div (Sﬁy) which is simply due to the similarity rescaling. Hence,
for T > 79 > 1 one expects U(z, y) ~ e~ (1), e**=™)y), which in the original
physical coordinates means the same as v (¢, x) =~ v(fy, x) for t > f9 > 1. Thus, it is
likely that ||v(f) ”12} = e 7 ¥(7) ”12} does not converge to O for 7 = log(r+1) — oo.

Consequently, the nondecreasing function E@) = fRd w(t, y) dy is converging to
some Eo € [E(0), Eg] with Eg = 5(1}0, wo). There is still a chance that w converges
to some Wy but now with mass E instead of Ej.
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8 Parabolic Systems in Turbulence Modeling

The author’s motivation for studying the given class of coupled degenerate parabolic
equation comes from turbulence modeling. However, for the sake of a concise pre-
sentation the model was simplified considerably, but still keeping the main feature
of a velocity-type variable with a degenerate viscosity depending on the energy-like
variable, which is now the mean turbulent kinetic energy k > 0 playing the role of w.
We refer to Lewandowski (1997), Gallouét et al. (2003), Lederer and Lewandowski
(2007), Druet and Naumann (2009), Naumann (2013) and Chacén Rebello (2014) for
a mathematical exposition of the ideas behind of such a turbulent modeling and to
Wilcox (1993, Ch. 4) for a fluid mechanical approach.

We first introduce Prandtl’s model for turbulence and then Kolmogorov’s two-
equation model. In both cases, we introduce the full model with the macroscopically
mean velocity u € R?*! satisfying the incompressibility diva = 0, the pressure p,
and the turbulent kinetic energy k > 0. Then, we show that restricting to

simple shear flows  u(¢,x) = (O, 0,0 X, .. xd))T e RI*! (8.1)

we obtain a system that has the form of our coupled system (1.1) with some simple
extra terms.

In both models below, we consider a fluid viscosity k — n(k) and a diffusivity
k + (k) with the properties n(0) = 0 = «(0). This means that the model is
physically valid on very large spatial scales such that the molecular viscosity 7(0)
or diffusivity « (0) can be neglected, i.e., set to 0, in comparison to the viscosity and
diffusivity induced by turbulent mixing. In practice it only means that the ratio between
a 11(0) and a typical n(k) should be very large. Indeed, the numerical simulations in
Figs.5 and 6 were done with n(0) = «(0) = 10~ > 0, and one still observes a sharp
transition between the region w (¢, x) ~ 0 and the effective support with w(t, x) > w;
for a fixed small and positive ws.

8.1 Kolmogorov’s One-Equation Model = Prandtl’s Model

Prandtl’s one-equation model for turbulence was developed from 1925 to 1945, see
Prandtl (1925, 1946) and the historical remarks in Bulicek et al. (2011, Sec. 1.2) and
Naumann (2013, p. 20).

i+u-Vu+Vp=div(evkDw) + f, divu=0,

. - _ Kk
k+u-Vk=Kd1v(z«/EVk)+£JE|D(u)|2—aT‘/_,

where a > 0 is a dimensional parameter and £ > 0 is a constant characteristic
length that may depend on position (e.g., via the distance to the wall). Moreover, V,
D, and div stand for the differential operators in R*t! with d € {1, 2}. We refer to
Bulicek et al. (2011) for a general existence theory in bounded domains for dissipation
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n(k) ~ (1+k)* (in the Navier—Stokes equation) and « (k) ~ (14k)#) (in the heat
equation).

Looking for shear flows as in (8.1), assuming that the external force vanishes, i.e.,
f =0, and that k is independent of x4 we first observe that the pressure gradient
has the form ?p =,...,0,g(,x1,..., xd))T € R4*! for some function g. As
D?p € RUHD*@+D myst be symmetric, we conclude that the downstream pressure
gradient 0y,,, p = g can only depend on ¢ but not on (xi, ..., xg). Such a pressure
gradient is important for pipe flows in a pipe with a bounded cross-section ¥ C R? to
compensate for the friction of the walls when using no-slip boundary conditions. We
refer to the derivation of the pipe-flow models in Naumann and Wolf (2013, Eqn. (2.1))
for the stationary case and Naumann (2013, Eqn. (1.12)) for the time-dependent case,
where f and g, respectively, are exactly the pressure gradient.

In the case of unbounded cross sections, like ¥ = R? in our case, it is commonly
assumed g = 0 without loss of generality. Indeed, for ¥ = R the case of a spatially
constant g(t) # 0 can be transformed by to the case g = 0 by Galileian invariance,
namely be replacing v(t, x) by v(¢, x) — f(; g(s)ds. Hence, assuming g = 0, we obtain
the coupled system

b = div(nok/2Vv), k= div(xok'/2Vk) + nok'/2|Vu]? — %k3/2 (8.2)

with 9 = £/2 and ko = k€. Clearly, when neglecting the term involving a, we arrive
at our coupled system in the case « = 8 = 1/2.

The case a > 0 does not pose any additional problem when constructing solu-
tions. In particular, the term reduces the total energy in the form %5 v, k) =
—% fQ k3/2 dx < 0. Hence, the a priori estimates of this equation remain the same,
such that existence of weak solutions with k(¢, x) > k > 0 was shown already in
Naumann (2013). Our existence result for weak solutions in Theorem 6.1 works for
po =2becauseof « = B = 1/2.

The general scaling (2.3) leading to (2.7) can still be applied, but to have the same
scaling behavior for the terms & and k3/2 we have only one choice, namely y = 2 and
with @ = 1/2 and 26 + ay = 1 we find § = 0. Hence, for (D, 0) = (%v, l%w) we
find the rescaled equation

(8.3)

=5

ok — 2k = div(xok'/>VE) + ok 2| Vo|* - %%3/2.

We may still consider the conserved quantities and find the relations

d d 1 1 a
— [ 3dy = | 9dy and — | (=0%+k)dy =2 —Azkd—/—P/zd.
i Jov= [ pavana O [ GERav=2 [ GPeDa - [ {02

Thus, we may expect that (8.3) has steady states (vg, kg) with nontrivial kg > 0 (but
necessarily with f o Vstdy = 0) that correspond to solutions of (8.2) that decay, namely

((t, x), k(t, X)) = (Fvg(x), ke (x)).
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8.2 Kolmogorov’s k-@ Model

Kolmogorov’s model Kolmogorov (1942) (see Buli¢ek and Malek 2019, Sec. 1.2 for
historical remarks and Spalding (1991) for a full translation, sometimes also called
Wilcox k-w model because of Wilcox (1993)) consists of the Navier—Stokes equation
for the velocity v € R4+! and the pressure p coupled to two scalar equations, namely
for the specific dissipation rate w > 0 (or better dissipation per unit turbulent kinetic
energy) and the turbulent energy k > 0:

u+u-Vu+Vp =y E(gﬁ(u)), divu =0, (8.4a)
®+u-Vo = pdiv(iVe) — aj0?, (8.4b)
ftu- Vi = pu3 div(EVk) + 01 £ P - wsko. (8.4¢)

The main point is that all quantities are convected with the fluid velocity v and that all
quantities diffuse with “viscosities” that are proportional to k/w by the dimensionless
factors ;> 0. There are sink terms in the equations for w and k, namely —o w? and
—azkw with dimensionless nonnegative constants « ;. The nonlinearities in system
(8.4) are devised in a specific way to allow for a two-dimensional scaling group, see
Bulicek and Malek (2019, p.115) and Mielke and Naumann (2022, Sec.2), which
exactly corresponds to our Scaling S2 in (2.2). In the former reference the scaling was
mainly used to argue about regularity properties of the solutions on bounded domains,
while here and in Mielke and Naumann (2022) the scaling is used to study self-similar
behavior on = R?.

The existence of weak solutions to the above coupled system is studied in Mielke
and Naumann (2015), Buli¢ek and Malek (2019) and Mielke and Naumann (2022).
However, in both of these papers the construction of the solutions for (8.4) strongly
relies on lower bounds on k (¢, x). In Mielke and Naumann (2015) and Mielke and Nau-
mann (2022), the assumption ko(x) = k(0, x) > k, > 0 a.e. in Q2 was used, whereas
Bulicek and Mélek (2019) shows that the weaker assumption fQ | logko(x)|dx < oo
is sufficient.

Here, we are interested in solutions that may have compact support, i.e., k(¢, x) = 0
is allowed on a set of positive measure. In those regions, the regularizing diffusion
terms u div(g V .) disappear. Moreover, we restrict to shear flows (without pressure
gradient) as above:

o= div(EVe), o= div(EVe) - o,

. (8.5)
k= us diV(éVk) + & §|Vv|2 — akw.

The special symmetry of the nonlinearities allows for more scalings than in the Prandtl
equation (8.2), because (8.5) only contains the dimensionless parameters ; and a,
whereas (8.2) contains the Prandtl length £.

We can look for solutions in the following form (cf. (2.3)):

r =log(t+1), y= (t+1)7%x, and
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Ur,y) @y k, y>)

(v(f’x)vw(f’x”‘(“‘))Z((z+1)y/2’ (+DU (1)

If the exponents y and § are chosen with y 428§ = 2, we are led to the rescaled system

9,7 — %ﬁ— 5y.-Vi= % div(£ vD), (8.62)
@o— ®—8y- Vo = udiv(s vo) — &%, (8.6b)
bk —yk—6y. Vk= usdiv(k V&) + %ﬂvﬂz _dk. (8.6¢)

The case (y, §) = (2, 0) can be applied in bounded domains €2 and it corresponds to
the scaling used for the Prandtl equation to obtain (8.3).

In principle, it would be interesting to investigate the system for (v, o, 7<\) for steady
states, which correspond to self-similar solutions for (8.5). However, the singularity
occurring via 75/ @ will create difficulties; thus from now on we restrict to the case
@ = 1 which is always a solution of (8.6b) independently of ¥ and k. The choice
@ = 1 can also be justified by the upper and lower estimates for w that are derived in
Mielke and Naumann (2022, Eqn. (4.3)). They imply uniform convergence of &(z, -)
to 1 for T — oo if the initial condition @(0, -) has positive lower and upper bounds.

The reduced system with @ = 1 takes a form similar to our coupled system (7.8):

9,7 — %ﬁ— 5y-Vi= % div(k V), (8.7a)
a,E—yE—sy.V?=u3div(?vE+%ﬂvmz—ai (8.7b)

Clearly, we are in the case « = 8 = 1 with two additional linear terms. Thus, the
existence theory of very weak solutions in Theorem (6.3) only applies in the case
n1 = 2u3.

For the case § > 0, we consider @ = R, such that the rescaled momentum
V@, k) = Jga V(y) dy and the rescaled energy E (9, %) = Jra (%T)‘z—l—?) dy now
satisfy, along solutions (0(t), 7c\(r)), the linear relations

d - - d - -~ -~

—V(ﬁ,k):(z—dS)V(ﬁ,k) and —E(ﬁ,k)z(y—da)E(ﬁ,k)—a/ kdy.

dr 2 dr Rd
(8.8)

Because of 2 = y + 2§, the case (y, §) = (%, 14+d) is special as it leads to

d ~ d ~ d - ~
1 (2d o~ ~ o~
G=my) = EV(v,k)=0 and EE(v,k)= —1+dE(v,k)—a/dedy-
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Fora < we obtain % E(v, 75) > O aslongas E(v, 75) > 0, so no steady state can

d_
1+d>
exist. However, for a > lj-_d one can expect the existence of a family of state states
(vst, kst) such that V (vg, k) = Vo € R.
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