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Abstract
In the planar circular restricted three-body problem and for any value of the mass
parameter μ ∈ (0, 1) and n ≥ 1, we prove the existence of four families of n-
ejection–collision (n-EC) orbits, that is, orbits where the particle ejects from a primary,
reaches n maxima in the (Euclidean) distance with respect to it and finally collides
with the primary. Such EC orbits have a value of the Jacobi constant of the form
C = 3μ + Ln2/3(1 − μ)2/3, where L > 0 is big enough but independent of μ and
n. In order to prove this optimal result, we consider Levi-Civita’s transformation to
regularize the collision with one primary and a perturbative approach using an ad
hoc small parameter once a suitable scale in the configuration plane and time has
previously been applied. This result improves a previous work where the existence
of the n-EC orbits was stated when the mass parameter μ > 0 was small enough.
Moreover, for decreasing values of C , there appear some bifurcations which are first
numerically investigated and afterward explicit expressions for the approximation of
the bifurcation values of C are discussed. Finally, a detailed analysis of the existence
of n-EC orbits when μ → 1 is also described. In a natural way, Hill’s problem shows
up. For this problem, we prove an analytical result on the existence of four families of
n-EC orbits, and numerically, we describe them as well as the appearing bifurcations.
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1 Introduction

This paper studies the existence of ejection–collision orbits in the planar circular
restricted three-body problem (RTBP), which describes the motion of a particle (of
neglectable mass) under the attraction of two point massive bodies P1 and P2, called
primaries, restricted to circular orbits around their common center ofmass. Introducing
a rotating system of coordinates that rotates with the primaries, and using suitable units
of length, time andmass, an autonomous systemof fourODEs of first order are derived,
depending on a unique parameter μ ∈ (0, 1), in such a way that the primaries have
masses 1 − μ and μ, respectively. Such system of ODEs has the well-known Jacobi
first integral (equal to C along each solution) and is a regular system everywhere
except when the particle collides with each of the primaries.

n-ejection–collision orbits (n-EC orbits from now on) are orbits which eject from a
primary reaches nmaxima in the distancewith respect to it and finally collides with the
primary (seeDefinition 4.a). Fromaphysical point of view, for instance taking the earth
and themoon as primaries,wemay think of an n-ECorbit as that described by a satellite
ejecting from the earth, reaching a maximum distance away from the earth followed
by a passage close to the earth, repeating this motion n times and finally landing on
earth at the n-th close approach. Since the n-EC orbits are the main target of this paper
and collisions between the particle and one primary lead to singularities in the system
of ODEs, some kind of regularization, that transforms the original system to a new
one which is regular at collisions, is necessary. Among the different possible choices,
ranging from local to global regularizations (see Devaney 1981; Érdi 2004; Stiefel and
Scheifele 1971; Szebehely 1967) we will use along the paper the (local) Levi-Civita
regularization (Levi-Civita 1906), because it is conceptually simple, suitable for our
theoretical purposes and efficient for numerical simulations.

The main analytical result of this paper is Theorem 1, where we prove that there
exists an L̂ such that for L ≥ L̂ and for any value of μ ∈ (0, 1), n ∈ N and the Jacobi
constantC = 3μ+ Ln2/3(1−μ)2/3, there exist four n-EC orbits, and we characterize
them.

This improves a recent result (see Ollé et al. 2020) where the existence of four n-EC
orbits ejecting (and colliding) from the big primary (of mass 1−μ) is proved but only
for small enough μ > 0.

To prove this main result, we first consider a weaker version in Theorem 2where we
show that for all n ∈ N, there exists a K̂ (n) such that for K ≥ K̂ (n) and for any value
of μ ∈ (0, 1) and C = 3μ + K (1 − μ)2/3, there exist four n-EC orbits. This weaker
version also improves the result of Ollé et al. (2020) since we cover any value of μ,
so we can eject from (and collide with) any of the primaries, irrespective of its mass.
Another improvement is the proof’s approach. In the previous paper, a perturbative
approach for small enough μ > 0 and big enough C was considered. There, the
authors computed the series expansion, with respect to the mass parameter μ, of the
ejection (collision) manifold. So the explicit analytical expansion, up to certain order,
of this manifold integrated up to a suitable Poincaré section � (maximum distance
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to the ejecting primary) was obtained. For suitable number of crossings with �, i
for the ejection manifold and j for the collision one (with i + j = n + 1), the
resulting two curves C+

i and C−
j were computed. Achieving such curves required

some technicalities, in particular, the computation of terms up to order 9 (at least) in
such expansions and the expressions of them in the usual polar coordinates (instead of
the initial angle θ0). The application of the implicit function theorem (IFT) to analyze
the intersection of both curves gave rise to the existence of four n-EC orbits for any
n, C big enough and μ > 0 small enough.

In this paper, the perturbative approach considers a suitable small parameter, related
to the inverse of the Jacobi constant, regardless of the value ofμ. Moreover, instead of
computing the two curves C+

i and C−
j , we consider the angular momentum at the n-th

passagewith theminimumdistance to the primary (the particle ejected from).We char-
acterize an n-EC orbit by the zero value of that angularmomentum. This strategy to use
the angularmomentumsimplifies the computations in three directions: first only expan-
sions up to order 6 are required, secondobtaining just one function instead of twodiffer-
ent curves, and third the parametrization of the angular momentum directly in terms of
θ0 (thus avoiding the technical issue of the transformation to usual polar coordinates).

The second part of the paper focuses on the bifurcations thatmay appearwhen doing
the continuation of families of n-EC orbits. It is clear that, given any value of μ > 0,
and fixed n, we can continue the four families of n-ECorbits forC big enough, from the
IFT. According to previous papers (Ollé et al. 2018, 2020) we will name such families
as αn , βn , δn and γn . However, as long as C decreases, the IFT does not apply and
bifurcations may appear for suitable values of C . We analyze such bifurcations from
the analytical expressions obtained in the series expansions for order higher than 6. A
rich variety of bifurcations show up. They are discussed and numerically described.

Precisely the results derived from this numerical exploration provides inspiration
to obtain the main result: an explicit expression of the bifurcating value of C as
Ĉ = 3μ + L̂n2/3(1 − μ)2/3, i.e., we prove that K̂ (n) = L̂n2/3.

Finally, taking μ → 1 gives rise to the Hill problem. Quite naturally the same
kind of proof developed previously applies to the Hill problem. So as a corollary we
obtain an analytical result that establishes the existence of four families of n-EC in
this problem. Moreover, the existence of the successive bifurcations when decreasing
C for all n ∈ [1, 100] are also numerically discussed.

Concerning previous published results on this subject for the circular planar RTBP,
we distinguish between analytical and numerical results. Focusing on the theoreti-
cal analysis of n-EC orbits, only the case for n = 1 is considered in Llibre (1982),
Chenciner and Llibre (1988) and Lacomba and Llibre (1988). The general case n ≥ 1
is studied in Ollé et al. (2020), but for small enough values of μ > 0. Regarding
a numerical approach, and for n = 1, we mention the papers by Bozis (1970) and
Hénon (1965, 1969), where the authors compute some particular EC orbits that natu-
rally appear when doing the continuation of families of periodic orbits. For the general
case n ≥ 1, we mention Ollé et al. papers (Ollé et al. 2018, 2020), where the authors
compute and analyze the continuation of families of n-EC orbits for n = 1, . . . , 25 and
discuss the advantages and disadvantages of Levi-Civita’s versus McGehee’s (McGe-
hee 1974) regularization. Very recently, Ollé et al. (2021) analyze the global behavior
of the whole set of ejection orbits and the dynamical consequences resulting from
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the interaction between ejection orbits and the Lyapunov periodic orbit around the
collinear equilibrium point L1. In particular infinitely many (in a chaotic way) EC
orbits show up. Finally, we mention a recent preprint that studies ejection–collision
orbits between the two primaries (Capiñski et al.).

We remark that the EC orbits appear quite naturally in astronomical applications.
Let us mention that EC orbits allow to explain a mechanism of transfer of mass in
binary star systems (see Hurley et al. 2002; Modisette and Kondo 1980; Pringle and
Wade 1985; Witjers et al. 1995), to describe regions of capture of irregular moons by
giant planets (Astakhov et al. 2003) or to discuss temporary capture (Paez and Guzzo
2020). Other applications include the probability of crash motion (see Nagler 2004,
2005) or the role of ejection orbits to explain a mechanism for ionization in atomic
problems (see Brunello et al. 1997; Ollé 2018).

The paper is organized as follows: In Sect. 2, we recall some basics of the RTBP,
we introduce the Levi-Civita coordinates and the new normalized variables that will
become useful to prove the existence of the n-EC orbits for any value ofμ > 0. Section
3 recalls the topics described in Sect. 2 but for the Hill problem. In Sect. 4, we state the
two main theorems, Theorems 1 and 2, concerning the existence of n-EC orbits in the
RTBP.We provide the analytical proof of Theorem 2 in Sect. 5. Section 6 is devoted to
numerically analyze the bifurcations of families of n-EC orbits in the RTBP. In Sect. 7,
we provide the analytical proof of Theorem 1. Section8 is devoted to the Hill problem.

Finally, we observe that all the numerical computations have been done using
double precision and the numerical integration of the systems of ODE rely on an own
implemented Runge–Kutta (7)8 integrator with an adaptive step size control described
in Dormand and Prince (1980) and a Taylor method implemented on a robust, fast
and accurate software package in Jorba and Zou (2005). The absolute and relative
tolerances used with the numerical integrators are 10−16, and the tolerances used in
the Newton methods are in the range 10−15 to 10−14.

2 The Planar RTBP and the Levi-Civita Regularization

As mentioned in Introduction, we consider the RTPB. In the rotating (synodical)
system, the primaries with mass 1− μ and μ, μ ∈ (0, 1), have positions P1 = (μ, 0)
and P2 = (μ − 1, 0), respectively, and the period of their motion will be 2π . In such
context, the equations of motion for the particle in the rotating system are given by{

ẍ − 2 ẏ = 	x (x, y),

ÿ + 2ẋ = 	y(x, y),
(1)

where˙= d/dt and

	(x, y) = 1

2
(x2 + y2) + 1 − μ√

(x − μ)2 + y2
+ μ√

(x − μ + 1)2 + y2
+ 1

2
μ(1 − μ)

= 1

2

[
(1 − μ)r21 + μr22

]
+ 1 − μ

r1
+ μ

r2
,

(2)
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with r1 = √
(x − μ)2 + y2 and r2 = √

(x − μ + 1)2 + y2. So, the equations become
singular when r1 or r2 → 0.

The main properties of this system used later on are the following (see Szebehely
1967 for details):

1. There exists a first integral, defined by

C = 2	(x, y) − ẋ2 − ẏ2, (3)

and known as Jacobi integral.
2. System (1) has the symmetry

(t, x, y, ẋ, ẏ) → (−t, x,−y,−ẋ, ẏ). (4)

A geometrical interpretation of it is that given an orbit in the configuration space
(x, y), the symmetrical orbit with respect to the x axis will also exist.

3. The simplest solutions are 5 equilibrium points: the so called collinear ones Li ,
i = 1, 2, 3, and the triangular ones Li , i = 4, 5. On the plane (x, y), L1,2,3 are
located on the x axis, with xL2 < μ − 1 < xL1 < μ < xL3 and L4,5 forming
an equilateral triangle with the primaries. CLi will stand for the value of C at Li ,
i = 1, . . . , 5.

4. Depending on the value of the Jacobi constantC , the particle canmove on specific
regions of the plane (x, y), called Hill regions and defined by

R(C) =
{
(x, y) ∈ R

2 | 2	(x, y) ≥ C
}

. (5)

In order to deal with the singularity of the primary P1 = (μ, 0) (r1 = 0) we
will consider the Levi-Civita regularization (see Szebehely 1967). The well-known
transformation of coordinates and time is given by:⎧⎪⎪⎨

⎪⎪⎩
x = μ + u2 − v2,

y = 2uv,

dt

ds
= 4

(
u2 + v2

)
,

and we remark that, taking μ ∈ (0, 1) we are regularizing the big primary (if μ ∈
(0, 1/2]) or the small one (if μ ∈ [1/2, 1)). In this new system of coordinates, the
solutions of system (1) with Jacobi constant equal to C satisfy:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′ − 8(u2 + v2)v′ =
(
4U(u2 + v2)

)
u

= 4μu + 16μu3 + 12(u2 + v2)2u + 8μu

r2
− 8μu(u2 + v2)(u2 + v2 + 1)

r32
− 4Cu,

v′′ + 8(u2 + v2)u′ =
(
4U(u2 + v2)

)
v

= 4μv − 16μv3 + 12(u2 + v2)2v + 8μv

r2
− 8μv(u2 + v2)(u2 + v2 − 1)

r32
− 4Cv,

C ′ = 0
(6)
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Fig. 1 Levi-Civita transformation. Hill’s region for μ = 0.2 and CL1 . Left. Synodic (x, y) coordinates.
Right. Levi-Civita ones (u, v). The gradient of colors represents the angle with respect to the position of
the first primary in the original (x, y) synodical coordinates. In grey, the forbidden region

where ′ = d/ds, 	x and 	y are the partial derivatives with respect to x and y,
respectively, and

U = 1

2

[
(1 − μ)

(
u2 + v2

)2 + μ
(
(1 + u2 − v2)2 + 4u2v2

)]
+ 1 − μ

u2 + v2
+ μ

r2
− C

2
.

with r2 = √
(1 + u2 − v2)2 + 4u2v2.

The system of ODEs is now regular everywhere except at the collision with the
primary P2 (r2 = 0).

We observe that when studying the system of ODEs (6), a value of a Jacobi
constant C is fixed. Thus, to take an initial condition of this system, we will take
(u(0), v(0), u′(0), v′(0),C(0)). Nevertheless, along the paper, we will actually study
system (6) removing the last equation in C , and we will consider the corresponding
solution for a fixed C and initial condition simply given by (u(0), v(0), u′(0), v′(0)).

In this new system of variables, the previous properties of the RTBP are translated
as:

1. Jacobi Integral:

u′2 + v′2 = 8
(
u2 + v2

)
U , (7)

which is regular at the collision with the primary P1. In particular (see Szebehely
1967), the velocity at the position of the first primary (u = 0, v = 0) satisfies:

u′2 + v′2 = 8(1 − μ), (8)

and therefore the velocities at the collision lie in a circle of radius
√
8(1 − μ).

2. As the Levi-Civita transformation duplicates the configuration space (see Fig. 1)
the equations of motion satisfy two symmetries, (9a) as a consequence of the
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duplication of space and (9b) due to (4):

(s, u, v, u′, v′) → (−s, u,−v,−u′, v′), (9a)

(s, u, v, u′, v′) → (−s,−u, v, u′,−v′). (9b)

3. The equilibrium points are now duplicated, and they are located on the plane
(u, v). In particular, the collinear points now are located in the u axis and in the
v axis. See Fig. 1.

4. Similarly, given a value of the Jacobi constant C , the Hill’s region in variables
(u, v) now becomes

R(C) =
{
(u, v) ∈ R

2 | (u2 + v2)U ≥ 0
}

. (10)

In particular, we will consider values of the Jacobi constantC ≥ CL1 , the value of
the Jacobi constant associated to the equilibrium point L1. In this way, it will be
enough to regularize only the position of P1 because the Hill’s region associated to
these values ofC avoids collisions with the second primary (assuming the particle
moves in a neighborhood of P1), see Fig. 1).

3 The Hill Problem and the Levi-Civita Regularization

The Hill problem is a simplified limiting case of the RTBP that allows to study the
vicinity of the small primary when this mass tends to 0 (when mass parameter μ is
very small or very close to 1). We can obtain easily the equation of Hill problem
making a translation of the small primary (denoted by Ph) to the origin, and rescaling
the coordinates by a factor μ1/3 if μ → 0 or (1 − μ)1/3 if μ → 1.

For our purpose, we will consider this second case, so the first step is to introduce
new variables (xh, yh) defined by the relation

x = μ + (1 − μ)1/3xh, y = (1 − μ)1/3yh .

In this way, the expression (2) becomes

1

(1 − μ)2/3

(
	(x, y) − 3

2

)
= 3

2
x2h + 1√

x2h + y2h

+ O
(
(1 − μ)1/3

)
, (11)

and taking the limit μ → 1 we obtain the Hill’s potential


(xh, yh) = 3

2
x2h + 1√

x2h + y2h

. (12)
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Thus, the equations of motion are given by

{
ẍh − 2 ẏh = 
xh (xh, yh),

ÿh + 2ẋh = 
yh (xh, yh).
(13)

The Hill problem also has some interesting properties for our purposes:

1. The system (13) has a first integral defined by

K = 2
(xh, yh) − ẋ2h − ẏ2h , (14)

where K is related to the Jacobi integral by:

C = 3μ + (1 − μ)2/3K + O(1 − μ). (15)

2. The Eq. (13) not only inherit the symmetry of the problem, that is a symmetry
with respect to the xh-axis, but also has an extra one with respect to the yh-axis.
In this way, the system (13) has the symmetries:

(t, xh, yh, ẋh, ẏh) → (−t, xh,−yh,−ẋh, ẏh), (16a)

(t, xh, yh, ẋh, ẏh) → (−t,−xh, yh, ẋh,−ẏh). (16b)

3. The Hill problem only preserves two equilibrium points, which are those that are
in the vicinity of the small primary Ph . That is L1 and L2 if we consider μ → 0
or L1 and L3 if μ → 1. For historical consistency, we will call these equilibrium
points L1 and L2, which have positions (±1/31/3, 0) (see Fig. 2) and we will
denote by KL = 34/3 the value of K at L1 and L2.

4. In a similar way, from the first integral and taking into account that 2
(xh, yh)−
K ≥ 0, given a value of K , the motion can only take place in the Hill’s region
defined by

Rh(K ) =
{
(xh, yh) ∈ R

2 | 2
(xh, yh) ≥ K
}

. (17)

We notice that, similarly aswe do in the RTBP,wewill consider values of K ≥ KL

to guarantee that if the particle starts in a region around Ph , it will always remain
there.

In order to regularize the Hill problem, we only have to consider the Levi-Civita
regularization

⎧⎪⎪⎨
⎪⎪⎩
xh = u2h − v2h,

yh = 2uhvh,

dt

ds
= 4

(
u2h + v2h

)
,
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Fig. 2 Levi-Civita transformation. Hill’s region for K = KL = 34/3. Left. Synodic (xh , yh) coordinates.
Right. Levi-Civita ones (uh , vh). The gradient of colors represents the angle with respect to the position of
the first primary in the original (xh , yh) synodical coordinates. In grey the forbidden region

and the system (13) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
h − 8(u2h + v2h)v

′
h =

(
4Uh(u

2
h + v2h)

)
uh

= −4Kuh + 12
(
2(u4h − 2u2hv

2
h − v4h) + (u2h + v2h)

2
)
uh,

v′′
h + 8(u2h + v2h)u

′
h =

(
4Uh(u

2
h + v2h)

)
vh

= −4Kvh + 12
(
2(v4h − 2u2hu

2
h − u4h) + (u2h + v2h)

2
)

vh,

(18)
with

Uh = 3(u2h − v2h)
2

2
+ 1

u2h + v2h
− K

2
. (19)

Under this transformation, the previous properties of the Hill problem are translated
as:

1. The first integral of (18) is given by

u′2
h + v′2

h = 8
(
u2h + v2h

)
Uh, (20)

which is regular at the collision with Ph . In particular, the velocity at the position
of the primary (uh = 0, vh = 0) satisfies

u′2
h + v′2

h = 8. (21)
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2. As the transformation duplicates the configuration space (see Fig. 2), Eq. (18) has
an extra symmetry:

(s, uh, vh, u
′
h, v

′
h) → (−s, uh,−vh,−u′

h, v
′
h), (22a)

(s, uh, vh, u
′
h, v

′
h) → (−s,−uh, vh, u

′
h,−v′

h), (22b)

(s, uh, vh, u
′
h, v

′
h) → (−s, vh, uh,−v′

h,−u′
h). (22c)

3. For the same reason, the equilibrium points are duplicated, and we have L1 =
(±3−1/6, 0) and L2 = (0,±3−1/6).

4. In a similar way, depending on the value of K we can define the valid region of
motion (see Fig. 2) in the plane (uh, vh) as:

R(K ) =
{
(uh, vh) ∈ R

2 | (u2h + v2h)Uh ≥ 0
}

. (23)

4 n-EC Orbits in the RTBP andMain Theorems

In this paper, we will focus on a specific type of EC orbits, the n-EC orbits, formally
defined as

Definition 4.a. We call n-ejection–collision orbit of a primary, simply noted by n-EC
orbit, to the orbit that the particle describes when ejects from a primary and reaches n
times a relative maximum in the distance with respect to this primary before colliding
with it.

As we will consider any value of μ ∈ (0, 1), we will study only the n-EC orbits
associated with the first primary P1. Notice that from relation (8) it is easy to compute
the initial conditions of the ejection orbits (and the collision orbits):

(0, 0, 2
√
2(1 − μ) cos θ0, 2

√
2(1 − μ) sin θ0), θ0 ∈ [0, 2π) (24)

and we can compute the manifold of the ejection (collision) orbits integrating forward
(backward) in time. Observe that in this case it is enough to consider a value of
θ0 ∈ [0, π) due to the duplication of the configuration plane.

Remark In general, the n-EC orbits are not periodic or part of a periodic orbit. The
angle of ejection θ0 is usually different than the collision θ f . However, it can happen
that some n-EC orbits are periodic (or part of a periodic orbit) as we will see below.

Concerning the existence of n-EC orbits, we mentioned above that in Ollé et al.
(2020), the existence of four n-EC orbits ejecting from (and colliding with) the big
primary for any n ≥ 1, given C big enough and μ > 0 small enough, was proved. The
proof was based on a perturbative approach in μ and assuming that the orbits ejected
from the big primary of mass 1 − μ.

The first goal of this paper is to improve this previous result and prove the existence
of four n-EC orbits ejecting from (and colliding with) the big or small primary, for
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Fig. 3 n = 1, μ = 0.1 and C = 5. Left. Angular momentum M(1, θ0). Right. Three ejection orbits
corresponding to the initial values of θ0 labeled in colors on the left plot. The blue orbit is precisely a 1-EC
orbit (Color figure online)

any n ≥ 1 given and C big enough. So any value of the mass parameter μ ∈ (0, 1) is
possible in this context.

For analytical and numerical purposes, though, we will use a characterization for
an EC orbit, based upon the zero value of its angular momentum, defined from now
on as M := UV̇ − VU̇ (for some suitable variables (U , V ) to be defined later),
at a minimum distance with the primary the particle ejected from (see Lemma 1
below). So in order to obtain an n-EC orbit, for n ≥ 1, μ ∈ (0, 1) and C given,
first we will compute the corresponding ejection solution for each initial condition
(that is, for each value θ0). Second we will determine the precise time τ ∗ = τ ∗(θ0)
when the particle reaches the n-th minimum in the distance to P1. At time τ ∗ we
will compute the value of the angular momentum that is, (UV̇ − VU̇ )(τ ∗). Varying
θ0 ∈ [0, π) we will obtain the corresponding angular momentum, that will denote
by M(n, θ0) = (UV̇ − VU̇ )(τ ∗) (overlooking the additional dependence on μ). The
zeros of M(n, θ0) = 0 will provide us with the precise values of θ0 such that the
corresponding ejection orbit is precisely an n-EC orbit. Just to show this idea, we plot
in Fig. 3 left the behavior of the angular momentum M(1, θ0) for μ = 0.1 and C = 5.
In the right figure we plot the corresponding ejection orbits for three chosen values of
θ0: the red one and green one plotted for a range of time [0, τ ∗ + δ] (a small suitable
δ > 0) to see the change of sign in the angular momentum (shown in the zoom area)
and the blue one which is a 1-EC orbit.

Now, we proceed to state the main result of this paper about the existence, the
number and the characteristics of the n-ejection–collision orbits for any value of the
mass parameter and n ∈ N, for sufficiently restricted Hill regions (i.e., C big enough).

Theorem 1 There exists an L̂ such that for L ≥ L̂ and for any value of μ ∈ (0, 1),
n ∈ N and C = 3μ + Ln2/3(1 − μ)2/3, there exist four n-EC orbits, which can be
characterized by:

• Two n-EC orbits symmetric with respect to the x axis.
• Two n-EC orbits, one symmetric of the other with respect to the x axis.
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In order to prove Theorem 1, we will first state a weaker version of this theorem,
Theorem 2, but the proof of this second version will provide light on the approach,
mainly a suitable scaling in the configuration variables, time and the Jacobi constant
C , used to prove the more optimal result in Theorem 1.

Theorem 2 For all n ∈ N, there exists a K̂ (n) such that for K ≥ K̂ (n) and for any
value of μ ∈ (0, 1) and C = 3μ + K (1 − μ)2/3, there exist four n-EC orbits, which
can be characterized in the same way as in Theorem 1.

We remark that, in Theorem 2, we have a uniform constant K = K (n) for any value
of μ ∈ (0, 1). This implies that when μ → 1 the value of the Jacobi constant (for
which Theorem 2 holds) tends to 3, as CL1 does as well. Precisely, and as shown in
the proof of Theorem 2, the expansion of CL1 was the inspiration to choose a suitable
scaling in the variables, time and C . Finally in Theorem 1 an expression for K (n) as
Ln2/3 is provided.

5 Proof of Theorem 2

In order to prove Theorem 2, let us fix C ≥ CL1 and consider the following change
of variables and time: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u =
√
2(1 − μ)

C − 3μ
U ,

v =
√
2(1 − μ)

C − 3μ
V ,

τ = 2
√
C − 3μs,

(25)

that corresponds to the change that normalizes the linear term of (6) and the initial
condition of the ejection orbits. Denoting by˙= d

dτ the new time derivative the system
(6) transforms to the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ü = − (C − μ)U

C − 3μ
+ 8(1 − μ)

(
U2 + V 2

)
V̇

(C − 3μ)3/2
+ 12(1 − μ)2

(
U2 + V 2

)2
U

(C − 3μ)3
+ 8μ(1 − μ)U3

(C − 3μ)2

+ 2μU

(C − 3μ)R2
− 4μ(1 − μ)U (U2 + V 2)[2(1 − μ)(U2 + V 2) + (C − 3μ)]

(C − 3μ)3R3
2

,

V̈ = − (C − μ)V

C − 3μ
− 8(1 − μ)

(
U2 + V 2

)
U̇

(C − 3μ)3/2
+ 12(1 − μ)2

(
U2 + V 2

)2
V

(C − 3μ)3
− 8μ(1 − μ)V 3

(C − 3μ)2

+ 2μV

(C − 3μ)R2
− 4μ(1 − μ)V (U2 + V 2)[2(1 − μ)(U2 + V 2) − (C − 3μ)]

(C − 3μ)3R3
2

,

(26)

where R2 =
√
1 + 4(1−μ)(U2−V 2)

C−3μ + 4(1−μ)2(U2+V 2)2

(C−3μ)2
.

It is important to remark that the properties (7), (8), (10) are preserved (translated
to the new variables), and so are the symmetries obtained in the Levi-Civita regular-
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ization, i.e.,

(τ,U , V , U̇ , V̇ ) → (τ,−U ,−V ,−U̇ ,−V̇ ), (27a)

(τ,U , V , U̇ , V̇ ) → (−τ,−U , V , U̇ ,−V̇ ). (27b)

At this point, the twomain ideas to prove the theoremare: (i) a perturbative approach
taking δ = 1/

√
C − 3μ as a small parameter and (ii) the requirement of the angular

momentum to be zero at a minimum distance with the primary the particle ejected
from.

First of all, we observe that the functions 1/R2 and 1/R3
2 are analytic for U , V

bounded, 0 ≤ μ ≤ 1, and δ small enough. In fact, the expansions of 1/R2 and 1/R3
2

are of the form:

1

R2
= 1 − 2(1 − μ)(U 2 − V 2)δ2 + 8(1 − μ)2(11(U 2 − V 2)2 − 4U 2V 2)δ4

+
∑
k≥3

(1 − μ)k P2k(U , V )δ2k,

1

R3
2

= 1 − 6(1 − μ)(U 2 − V 2)δ2 +
∑
k≥2

(1 − μ)k Q2k(U , V )δ2k,

(28)

where P2k(U , V ) and Q2k(U , V ) are polynomials sum of monomials of degree 2k.
So if we expand the system (26) with respect to δ, we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ü = −U + 8(1 − μ)(U 2 + V 2)V̇ δ3

+ 12(1 − μ)2
[
2μ

(
U 4 − 2U 2V 2 − V 4

)
+ (U 2 + V 2)2

]
Uδ6

+ μ
∑
k≥4

(1 − μ)k−1 P̄2k−1(U , V )δ2k,

V̈ = −V − 8(1 − μ)(U 2 + V 2)U̇δ3

+ 12(1 − μ)2
[
2μ

(
V 4 − 2U 2V 2 −U 4

)
+ (U 2 + V 2)2

]
V δ6

+ μ
∑
k≥4

(1 − μ)k−1 Q̄2k−1(U , V )δ2k,

(29)

which is an analytical system of ODEs in δ and P̄2k−1(U , V ) and Q̄2k−1(U , V ) are
polynomials sum of monomials of degree 2k − 1.

Before proceeding, it is important to make two observations:

1. We can introduce the parameter ε = (1 − μ)1/3δ. So we have, using that δ =
1√

C−3μ
:

ε2 = (1 − μ)2/3δ2 = (1 − μ)2/3

C − 3μ
. (30)

2. We also know that C ≥ CL1(μ) since otherwise the Hill region of motion allows
transits between both primaries and, in this sense, Hill’s region is not regular
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anymore. As it is well known, the expansion of CL1(μ) is (see Szebehely 1967)

CL1(μ) = 3 + 9

(
1 − μ

3

)2/3

− 7
1 − μ

3
+ O((1 − μ)4/3), (31)

therefore, we would like to have a uniform parameter K in order to express the
value of the Jacobi Constant C with the same order in (1 − μ) as CL1(μ). So,
introducing the variable K as

C = 3μ + K (1 − μ)2/3, (32)

we have that the previous expression (30) becomes:

ε2 = 1

K
.

The change (25) using (32) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
√
2(1 − μ)1/6√

K
U ,

v =
√
2(1 − μ)1/6√

K
V ,

τ = 2
√
K (1 − μ)1/3s,

C = 3μ + K (1 − μ)2/3.

(33)

Note that the value K is related to the Hill constant by (15) when μ tends to 1.
So, in terms of ε = 1/

√
K the system (29) has the following expression:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ü = −U + 8(U 2 + V 2)V̇ ε3 + 12[2μ(U 4 − 2U 2V 2 − V 4) + (U 2 + V 2)2]Uε6

+ μ
∑
k≥4

(1 − μ)
k−3
3 P̄2k−1(U , V )ε2k,

V̈ = −V − 8(U 2 + V 2)U̇ε3 + 12[2μ(V 4 − 2U 2V 2 −U 4) + (U 2 + V 2)2]V ε6

+ μ
∑
k≥4

(1 − μ)
k−3
3 Q̄2k−1(U , V )ε2k .

(34)
Second let us prove the following characterization for an EC orbit, based upon the

zero value of the angular momentum at a minimum distance with the primary.

Lemma 1 Assume C large enough. An ejection orbit is an EC orbit if and only if it
satisfies that at a minimum in the distance (with the primary) the angular momentum
M = UV̇ − VU̇ = 0.
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Proof The minimum distance condition is given by:

UU̇ + V V̇ = 0,

UÜ + U̇ 2 + V V̈ + V̇ 2 > 0,
(35)

and the angular momentum condition M = UV̇ − VU̇ = 0:

UV̇ = VU̇ . (36)

We will distinguish between two cases:

1. V̇ 	= 0. Then, from (36):

U = VU̇

V̇
and by (35) 
⇒ VU̇

V̇
U̇ + V V̇

= 0 
⇒ VU̇ 2 + V V̇ 2 = V (U̇ 2 + V̇ 2) = 0 
⇒ V = 0,

and, by (36) also U = 0.
2. V̇ = 0, we will have two subcases:

3. if U̇ 	= 0, then by (35) and (36) we get U = V = 0.
4. U̇ = 0 then, using equations (34):

UÜ + V V̈ = −(U 2 + V 2)
[
1 + O

(
ε6(|U |4 + |V |4)

)]
,

but this quantity is negative for ε small enough, if U 2 + V 2 > 0, which
contradicts the second item of (35). We conclude that U = V = 0.

On the other hand, it is clear that if a collision takes place, i.e., U = V = 0 and
U̇ 2 + V̇ 2 = √

8(1 − μ), then conditions (35) and (36) are trivially satisfied. �


Remark The condition ε small enough comes from the perturbative approach chosen
to prove the lemma. Note that if we impose that U̇ 2 + V̇ 2 > 0 we can remove
this condition. This will be very useful when we study these orbits numerically. More
precisely, wewill check that an ejection orbit is an n-EC orbit if the angularmomentum
at the n-th minimum is zero and U̇ 2 + V̇ 2 > 0.

Now let us proceed. Using the vectorial notation U = (U , V , U̇ , V̇ )T , the second-
order system of ODEs (34) can be written as

U̇ = G(U) = G0(U) + ε3G3(U) + ε6G6(U , V ) +
∑
k≥4

ε2kG2k(U , V ), (37)
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where

G0(U) =

⎛
⎜⎜⎝

U̇
V̇

−U
−V

⎞
⎟⎟⎠ , G3(U) = 8

⎛
⎜⎜⎝

0
0

(U 2 + V 2)V̇
−(U 2 + V 2)U̇

⎞
⎟⎟⎠ ,

G6(U , V ) = 12

⎛
⎜⎜⎝

0
0[

2μ
(
U 4 − 2U 2V 2 − V 4

)+ (U 2 + V 2)2
]
U[

2μ
(
V 4 − 2U 2V 2 −U 4

)+ (U 2 + V 2)2
]
V

⎞
⎟⎟⎠ ,

G2k(U , V ) = μ(1 − μ)
k−3
3

⎛
⎜⎜⎝

0
0

P̄2k−1(U , V )

Q̄2k−1(U , V )

⎞
⎟⎟⎠ , for k ≥ 4.

(38)

We remark that G0 and G3 are the only functions that depend on U̇ and V̇ , the
remaining ones depending only onU andV .Moreover,we observe that the expressions
appearing in the expansions are polynomials. Both properties allow to significantly
simplify the computations.

The next natural step consists in obtaining a solution U = U(τ ) as a series expan-
sion in ε:

U =
∑
j≥0

U jε
j . (39)

As a usual procedure to obtain the functions U j , we plug U in system (37), and
comparing the powers in ε, we obtain a system of ODEs for U j .

Computation of the FunctionsU j

Now we proceed to compute the explicit expressions for U j (τ ) = (Uj (τ ), Vj (τ ),

U̇ j (τ ), V̇ j (τ )), for any j . Actually we will show that, in order to prove Theorem 2,
we only need to find explicitly the functions U j up to order j = 6.

From Definition 4.a and the scaling (33), any ejection orbit U(τ ) = U(τ, θ0), has
the initial condition

U(0) = (0, 0, cos θ0, sin θ0), θ0 ∈ [0, 2π), (40)

so we have

U0(0) = (0, 0, cos θ0, sin θ0), U j (0) = 0, j ≥ 1. (41)
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Solution for " = 0

We must solve the linear system:

{
Ü0 = −U0,

V̈0 = −V0,
(42)

which is a harmonic oscillator, with initial condition (40). Then, the ejection orbit U0
is given by U0 = (U0, V0, U̇0, V̇0), with:

U0(τ ) = cos θ0 sin τ,

V0(τ ) = sin θ0 sin τ,

U̇0(τ ) = cos θ0 cos τ,

V̇0(τ ) = sin θ0 cos τ.

(43)

Solution for " �= 0

In order to find the functions U j , we must solve the successive resulting ODEs when
substituting U by the series expansion in (34) up to the desired order.

We observe that, for j ≥ 1, the linear non-homogeneous system of ODEs to be
solved is

dU j

dτ
= DG0(U0)U j + F j (U0,U1, . . . ,U j−3) = G0(U j ) + F j (U0,U1, . . . ,U j−3),

where the homogeneous system is always the same but the independent term changes
and increases in complexity with j .

Since a fundamental matrix for the homogeneous system (the first-order variational
equations) is given by

X(τ ) =

⎛
⎜⎜⎝

cos τ 0 sin τ 0
0 cos τ 0 sin τ

− sin τ 0 cos τ 0
0 − sin τ 0 cos τ

⎞
⎟⎟⎠ , (44)

and the initial conditions areU j (0) = 0 for j ≥ 1,we obtain the followingwell-known
formula

U j (τ ) = X(τ )

∫ τ

0
X−1(s)F j (U0(s), . . . ,U j−3(s))ds. (45)

Remark that from (45) and the expression of (37), G1(U) = G2(U) = G4(U) =
G5(U) = 0, we know a priori that U j (τ ) = 0, for j = 1, 2, 4, 5.
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The corresponding explicit expressions are the following:

U3(τ ) = (τ sin τ − cos τ sin τ) sin θ0,

V3(τ ) = −(τ sin τ − cos τ sin τ) cos θ0,

U6(τ ) = − (τ − cos τ sin τ)2 sin τ − μ(15τ cos τ − (8 + 9 cos2 τ − 2 cos4 τ) sin τ)(1 − 2 cos4 θ0)

2
cos θ0,

V6(τ ) = − (τ − cos τ sin τ)2 sin τ − μ(15τ cos τ − (8 + 9 cos2 τ − 2 cos4 τ) sin τ)(1 − 2 sin4 θ0)

2
sin θ0,

(46)
andU7(τ ) = V7(τ ) = 0.Oncewehave the ejection solution up to order j = 6, the next
step consists of computing the n-th minimum in the distance to the primary (located
at the origin) the particle ejected from as a function of the initial θ0. Equivalently we
want to compute the n-th minimum of the function

(
U 2 + V 2

)
(τ ). This requires to

compute the precise time denoted by τ ∗, needed to reach the n-thminimum in distance.
We apply the implicit function theorem to the function (UU̇ + V V̇ )(τ ∗) = 0 in order
to obtain an expansion series in ε, i.e.,

τ ∗ =
6∑

i=0

τ ∗
i εi + O(ε7).

We can easily compute τ ∗
0 , since we have a harmonic oscillator:

τ ∗
0 = nπ.

Writing the function (UU̇+V V̇ )(τ ) as an expansion series in ε and collecting terms
of the same order, we can successively find the terms τ ∗

i (up to order 6, higher-order
terms in Appendix A):

τ ∗
6 (n) = 15μnπ(1 + 3 cos(4θ0))

8
, (47)

with τi (n, θ0) = 0 for i = 1, 2, 3, 4, 5(, 7).
Nowwe are ready to compute the angular momentumM(n, θ0) = (UV̇ −VU̇ )(τ ∗)

whose expansion is:

M(n, θ0) = με6
(

−15nπ sin(4θ0)

4
+ O

(
ε2
))

, (48)

or in short, sincewe look for the zeros ofM(n, θ0) = 0, wewrite, dividing the previous
equation by με6,

M̂(n, θ0) = −15nπ sin(4θ0)

4
+ O

(
ε2
)

. (49)

Now we apply the implicit function theorem and for ε > 0 small enough we obtain
that Eq. (49) has four and only four roots in [0, π) given by

θ0 = πm

4
+ O(ε2), m = 0, 1, 2, 3. (50)
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regardless of the value of the parameter μ. It is clear from (49) that the roots θ0 are
simple.

So we have proved that there exist four n-EC orbits. Moreover, applying the sym-
metries of the system we can conclude that those EC orbits with an intersection angle
with m = 0, 2 correspond to symmetric n-EC orbits (in the sense that the (x, y) pro-
jection is symmetric with respect to the x axis). Those EC orbits with an intersection
angle with m = 1, 3 correspond to symmetric n-EC orbits (in the sense that the (x, y)
projection is symmetric one with respect to the other one).

This finishes the proof of Theorem 2.
In order to illustrate the results of Theorem 2, in Fig. 4 top we plot the function

M(n, θ0) for μ = 0.1, C = 6 and the values of n = 2 (continuous line) and n = 4
(discontinuous line). We remark its sinusoidal behavior in accordance with Eq. (49).
Consistently with Theorem 2, the curve M(n, θ0) intersects four times M(n, θ0) = 0.

The four specific values of θ0 give rise to four n-EC orbits. When varying ε (or,
equivalently, K and thereforeC in (32)), we obtain four families denoted by αn , βn , γn
and δn . In particular, γn and αn correspond to the families of orbits that are themselves
symmetricwith respect to the x axis thatwhenC → +∞ have initial angles 0 andπ/2,
respectively, and δn and βn correspond to the families of orbits that are one symmetric
to the other with respect to the x axis that when C → +∞ have initial angles π/4
and 3π/4, respectively. The corresponding EC orbits are shown in the bottom figure
in usual synodical coordinates (x, y).

6 Analysis of Bifurcations

So far we have applied the implicit function theorem to infer the existence of four and
only four n-EC orbits, for any value of μ and C = 3μ + K (1− μ)1/3 (see (32)) with
K big enough, that is ε = 1/

√
K small enough. In this procedure, the minimum order

required in the ε expansions for both the functions U j and τ ∗
j was order 6. Of course,

when ε becomes bigger, the implicit function theorem may not be applied anymore
and bifurcations can appear. This section is focused on such bifurcations.

We will focus on two purposes: on the one hand, the illustration of the appearance
and collapsing of bifurcating families of n-EC orbits when doing the continuation of
families varying C as parameter; and on the other hand, the behavior of K̂ (n) and its
associated value Ĉ(μ, n) = 3μ + K̂ (n)(1 − μ)1/3 provided by Theorem 2, for any
value of μ ∈ (0, 1) and varying n.

6.1 Bifurcating Families

The first task is to compute the angular momentum M(n, θ0) to higher order. To do
so, we need higher-order terms for both the functions U j and τ ∗

j . We have proceeded
as in the previous section; however, there, expressions up to order 6 were enough. To
analyze the bifurcations, we provide their expressions for j up to order 10 inAppendix.
Now we are ready to compute the explicit expression for the angular momentum
M(n, θ0) = (UV̇ − VU̇ )(τ ∗) up to order 10 which is the following:
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Fig. 4 μ = 0.1, C = 6. Top. Angular momentum M(n, θ0) for n = 2 (continuous line) and n = 4
(discontinuous line). Bottom. The corresponding four n-EC orbits in the plane (x, y) (left for n = 2 and
right for n = 4)

M(n, θ0) = −15μnπ sin(4θ0)

4
ε6 + 105μ(1 − μ)1/3nπ (sin(2θ0) + 5 sin(6θ0))

64
ε8

+ 15μn2π2 cos(4θ0)

2
ε9

− 315μ(1 − μ)2/3nπ(2 sin(4θ0) + 7 sin(8θ0))

128
ε10 + O(ε11).

(51)
It is clear that if ε is small enough, the dominant term is ε6, and the zeros ofM(n, θ0)

are related to the term sin(4θ0). Therefore, we obtain four n-EC orbits.
However, let us discuss what happens for bigger values of ε, or equivalently for

smaller values of C . We will illustrate two different kind of bifurcations that take
place when doing the continuation of families of n-EC orbits and that can be explained
precisely from the analytical expression of M(n, θ0) to higher order just obtained.

The first kind of bifurcation can be inferred just taking into account the terms of
M(n, θ0) up to order 8 in (51). The bifurcation is associated with the term sin(6θ0).
See Fig. 5 top forμ = 0.1 and n = 2.We can clearly see how increasing ε (decreasing
C), the bifurcation takes place. Let us describe the bifurcation close to the 2-EC orbit
belonging to family α2. See the zoom area in Fig. 5 top. Locally, at a neighborhood
of the value of θ0 of such EC orbit, for some value of C the angular momentum has a
unique transversal intersection with the x-axis (that is M(2, θ0) = 0, M ′(2, θ0) = 0).
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Fig. 5 μ = 0.1, Top.We plot the angular momentum M(2, θ0). Notice the zoom area where the appearance
of two new bifurcating orbits (in green), besides the family α2 is observed when decreasingC . Bottom. Left,
middle and right. Four 2-EC orbits (the color code corresponds to the top figure) for C = 3.76 (in blue),
Cbi f = 3.72442505 (the bifurcating value, in red), C = 3.69 (in green). Darker color: those 2-EC orbits
belonging to family α2. In the right plot, also the two new bifurcated 2-EC orbits are plotted in continuous
and discontinuous purple color (Color figure online)

ForC = 3.76 this intersection corresponds to the 2-ECorbit belonging to the familyα2
(see the blue curve). For the bifurcating value Cbi f = 3.72442505, M(2, θ0) crosses
tangentially the x axis (see the red curve). For smaller values of C , M(2, θ0) crosses
the x axis three times, giving rise to two new bifurcating families of 2-EC orbits (see
the green curve) besides family α2 which persists. The new 2-EC orbits are (obviously
due to symmetry (4)) one symmetric with respect to the other. From a global point
of view, for a range C < Cbi f , varying θ0 ∈ [0, π), M(2, θ0) crosses six times; that
is, we obtain six 2-EC orbits, and this is related to the term sin(6θ0), which becomes
the dominant term in M(2, θ0). We show these 2-EC orbits in Fig. 5 bottom. More
precisely, on the three plots, the four 2-EC orbits are shown (in the plane (x, y)) and
those 2-EC orbits of family α2 are plotted in a darker color. Since the family α2 persists
after the bifurcation, the 2-EC orbits are plotted in the left, middle and right plots. The
two new bifurcating 2-EC orbits after the bifurcation are also shown on the right plot
in continuous and discontinuous purple color.

The second kind of bifurcation can be inferred from the expression ofM(n, θ0) up to
order 10 given in (51). The bifurcation is associated with the term sin(8θ0). See Fig. 6
top for μ = 0.1 and n = 3. We can clearly see how increasing ε (decreasing C), the
angular momentum M(3, θ0) typically crosses four times the x-axis (for θ0 ∈ [0, π)),
as expected (see the blue curve in the top figure). However, at some bifurcating value
Cbi f there appear two tangencies (say fromnowhere, see the red curve in the zoom area
in Fig. 6 top); each tangency gives rise to two families when doing the continuation of

123



17 Page 22 of 53 Journal of Nonlinear Science (2023) 33 :17

Fig. 6 μ = 0.1, n = 3. Top. We plot the angular momentum M(n, θ0). Notice the zoom area where the
appearance of four new bifurcating orbits (in green), besides the family α3 is observed when decreasing C .
Bottom. Left, middle and right. Four 3-EC orbits (the color code corresponds to the top figure) for C = 3.9
(in blue), Cbi f = 3.80644009 (the bifurcating value, in red), C = 3.7 (in green). Darker color: those
3-EC orbits belonging to family α3. In the middle plot, also the two tangent new bifurcated 3-EC orbits
are plotted. In the right plot, also the four new bifurcated 3-EC orbits are plotted. The bifurcated orbits are
plotted in continuous and discontinuous purple color (Color figure online)

families decreasing C . See the green curve in the zoom area in Fig. 6 top. So from a
global point of view, for a range of C < Cbi f and θ0 ∈ [0, π), the angular momentum
M(3, θ0) = 0 crosses eight times the x-axis, giving rise to eight 3-EC orbits related
to the term sin(8θ0). We show these 3-EC orbits in Fig. 6 bottom. More specifically,
on the three plots, the four 3-EC orbits are shown (in the plane (x, y)) and those 3-EC
orbits of family α3 are plotted in a darker color. The two 3-EC orbits that appear due
to the tangency of M(3, θ0) with the x-axis are also plotted on the middle plot, in
purple color. Moreover, the four new bifurcating 3-EC orbits after the bifurcation are
also shown on the right plot, in purple color. A continuous and discontinuous line
with the same color correspond to EC orbits that are symmetric one with respect to
the other one. In fact, due to the symmetry of the problem, we might only consider
the two intersection points (those on the left hand side or on the right one of the value
of θ0 in α3), and the other two intersection points would be obtained by symmetry.

So far we have described two specific kinds of bifurcations that take place for n = 2
and n = 3, for μ = 0.1. But from the expression of the angular momentum (51) and
the previous discussion, we can foresee a great and rich variety of bifurcations. To
have a global and exhaustive insight, we have done massive numerical simulations
in the following sense: we have fixed a value of μ, and, for a range of values of
C ≥ CL1 (for example C ∈ [CL1 , 8]), we have taken a mesh of 2000 × 2000 points
in the plane (θ,C) ∈ [0, π ] × [CL1, 8], and for each point we have computed the
function MLC (n, θ0) = 4(1−μ)√

C−3μ
M(n, θ0), i.e., the angular momentum in the original
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Fig. 7 Bifurcation diagrams for μ = 0.1, n = 1, . . . , 8 and C in [CL1 , 8]. The color indicates the value

of MLC (n, θ0) and the black curves correspond to the values MLC (n, θ0) = 0. The value of Ĉ(μ, n), for
μ = 0.1 is indicated in each plot with an arrow in the vertical axis (see also Table 1) (Color figure online)
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Fig. 8 Bifurcation diagrams for μ = 0.8, n = 1, . . . , 8 and C in [CL1 , 8]. The color indicates the value
of MLC (n, θ0) and the black curves correspond to the values MLC (n, θ0) = 0. The value of Ĉ(μ, n), for
μ = 0.1 is indicated in each plot with an arrow in the vertical axis (see also Table 1) (Color figure online)
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Table 1 Values of Ĉ(μ, n)

computed for μ = 0.1, μ = 0.8
and n = 2, . . . , 8

n μ = 0.1 μ = 0.8

2 3.72442505

3 3.80644009

4 4.46458918

5 4.98305580 4.10028567

6 5.54170719 4.29693486

7 6.06561273 4.48498073

8 6.56667290 4.66568948

Levi-Civita variables, for n = 1, . . . , 8. In Figs. 7 and 8, we plot the obtained results
for μ = 0.1 and μ = 0.8, what we call bifurcation diagrams. For n fixed, we plot
the diagram (θ0,C) and the color standing for the value of MLC (n, θ0). The drastic
change of color (from yellow to green) describes the change of sign ofMLC (n, θ0) and
therefore the existence of an n-EC orbit. So for anyC fixed, we clearly see the number
of n-EC orbits. Some comments about Fig. 7 must be made: (i) for big values ofC , the
bifurcation diagrams show clearly four n-EC orbits for any value of n, in accordance
with Theorem 2. See any plot in the figure. (ii) In the first row, right plot, andC close to
3.7, we see the first kind of bifurcation described above for n = 2. In the second row,
left plot, and C close to 3.9, we recognize the second kind of bifurcation described
above for n = 3. (iii) It is clear from such diagrams that, when we decrease C and
increase the value of n, several phenomena of collapse of families and bifurcation of
new families are more visible. See for example the third row plots, when decreasing
C , for θ0 < π/2, the collapse of two families, and the appearance of two new ones
for θ0 > π/2. Even richer are the diagrams on the last row of the figure. (iv) We
have also plotted on each bifurcation diagram the value of the first bifurcation value
of C (decreasing C), which is precisely the value Ĉ(μ, n), for μ = 0.1 mentioned in
Theorem 2. We notice in the plot how this value Ĉ(μ, n) increases when n increases
(see Table 1).

When we take a bigger value of μ, for example, μ = 0.8, we obtain Fig. 8.
Comparing the plots obtained with those of Fig. 7, we observe two effects: the value
of Ĉ(μ, n) is smaller, for the same value of n, and moreover, for n = 2, 3, 4, a value of
Ĉ(μ, n) really smaller than CL1 is required (compare the four first plots in Figs. 7 and
8 and see also Table 1.). For bigger values ofμ and for the same value ofC ≥ CL1 , the
Hill region gets really smaller, when increasing μ, so quite naturally, the probability
of bifurcations decreases. On the other hand, taking C < CL1 represents an enlarging
of the Hill’s region and therefore a more powerful influence of the big primary, so an
easier scenario to have bifurcations.

Remark We notice that Lemma 1 provides a characterization of an EC orbit if C is
large enough. Along the numerical simulations done, where the values of C are not
so large, we have also used the same characterization, but additionally checking that
when M = 0 at a minimum distance U̇ 2 + V̇ 2 > 0 so U = V = 0.
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Fig. 9 Ĉ(μ, n)

6.2 Behavior of Ĉ(�, n)

As a final goal, we want to describe (numerically) the behavior of Ĉ(μ, n) = 3μ +
K̂ (1 − μ)2/3 for any value of μ ∈ (0, 1) and n. More precisely, for each value of μ

and n, and C big enough, Theorem 1 claims that there exist exactly four families of
n-EC orbits. As discussed in the previous subsection, when decreasing C bifurcations
appear in a natural way. So for fixed μ and n, the first value of C (decreasing C) such
that there appear more than four n-EC orbits is precisely the value Ĉ(μ, n) formulated
in Theorem 1.

In the previous subsection, we have computed the value Ĉ(μ, n), just for μ = 0.1
and n = 1, . . . , 8. Our purpose now is to compute Ĉ(μ, n) for any μ ∈ (0, 1) and
n. We will always assume that any value of C considered satisfies C ≥ CL1 (recall
the Hill regions in Fig. 1, there is no possible connection between P1 and P2, and
therefore, the dynamics around each primary is the simplest possible).

The strategy to compute numerically Ĉ , for a fixed μ ∈ (0, 1) and given n, is the
following: we take the interval I = [CL1,Cb] of values of C , and for each C ∈ I
(starting at Cb) we vary θ0 ∈ [0, π) (that defines the initial conditions of an ejection
orbit in synodical Levi-Civita variables) and find the four specific values of θ0 (such
that M(n, θ0) = 0) corresponding to the expected four n-EC orbits. So we have four
n-EC orbits for that value of C and decreasing C we obtain four families of n-EC
orbits. However, as we decrease C , we find a value of C ∈ I such that more than four
n-EC orbits are found. This means that new families have bifurcated. Next we refine
the value of C such that it is the frontier before appearing new families of n-EC orbits.
That is precisely the specific value of Ĉ .

In Fig. 9, we show the results obtained for μ ∈ (0, 1) and n = 2, . . . , 10. Also, the
curve (μ,CL1) has been plotted (in black). Recall that, as mentioned above, we are
focused on values of C ≥ CL1 . We remark that for n = 1, the value Ĉ(μ, 1) is less
than CL1 and therefore is not considered. Moreover for the specific values of μ = 0.1
and μ = 0.8 we recover the indicated values in Figs. 7 and 8, respectively. From
Fig. 9, it is clear that the value of Ĉ(μ, n) increases when n increases. This means that
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for higher values of n, that is longer time spans integrations, the effect of the other
primary is more visible.

We remark that the shape of the curves in Fig. 9 provides a hint about the dependence
of K (n) in the expression Ĉ(μ, n) = 3μ + K̂ (n)(1 − μ)2/3 obtained in Theorem
2, more specifically K̂ (n) = L̂n2/3. We will prove rigorously this dependence in
Theorem 1 in the next Section.

7 Proof of Theorem 1

The proof of Theorem 1 is also based on a perturbative approach. Let us introduce a
new parameter L defined as K = Ln2/3 in (32). In this way, we perform the change
(33) and a new time T̂ = τ/n:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
√
2(1 − μ)1/6√

Ln1/3
U ,

v =
√
2(1 − μ)1/6√

Ln1/3
V,

T̂ = 2
√
L(1 − μ)1/3

n2/3
s = τ

n
,

C = 3μ + Ln2/3(1 − μ)2/3,

(52)

where we introduce the functions in the new time:

U(T̂ ) = U (τ ), V(T̂ ) = V (τ )

The system (6) becomes, denoting˙= d
dτ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ü = − n2U + 8(U2 + V2)V̇
L3/2

+ 12(U2 + V2)2U
L3

+ 2μ

[
n4/3

L(1 − μ)2/3

(
1

r2
− 1

)
− 4(U2 + V2)2

L3r32
− 2n2/3(U2 + V2)

L2(1 − μ)1/3r32
+ 4n2/3U2

L2(1 − μ)1/3

]
U ,

V̈ = − n2V − 8(U2 + V2)U̇
L3/2

+ 12(U2 + V2)2V
L3

+ 2μ

[
n4/3

L(1 − μ)2/3

(
1

r2
− 1

)
− 4(U2 + V2)2

L3r32
+ 2n2/3(U2 + V2)

L2(1 − μ)1/3r32
− 4n2/3V2

L2(1 − μ)1/3

]
V,

(53)
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with r2 =
√
1 + 4(1−μ)1/3(U2−V2)

Ln2/3
+ 4(1−μ)2/3(U2+V2)2

L2n4/3
. Let us introduce the parameter

ξ = 1/
√
L , in this way the system (53) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ü = − n2U + 8(U2 + V2)V̇ξ3 + 12(U2 + V2)2Uξ6

+ 2μ

[
n4/3

(1 − μ)2/3

(
1

r2
− 1

)
ξ2 − 4(U2 + V2)2

r32
ξ6 − 2n2/3(U2 + V2)

(1 − μ)1/3r32
ξ4

+ 4n2/3U2

(1 − μ)1/3
ξ4
]
U ,

V̈ = − n2V − 8(U2 + V2)U̇ξ3 + 12(U2 + V2)2Vξ6

+ 2μ

[
n4/3

(1 − μ)2/3

(
1

r2
− 1

)
ξ2 − 4(U2 + V2)2

r32
ξ6 + 2n2/3(U2 + V2)

(1 − μ)1/3r32
ξ4

− 4n2/3V2

(1 − μ)1/3
ξ4
]
V,

(54)
with

r2 =
√
1 + 4(1 − μ)1/3(U2 − V2)

n2/3
ξ2 + 4(1 − μ)2/3(U2 + V2)2

n4/3
ξ4. (55)

Let us introduce the vectorial notation U = (U ,V, U̇ , V̇). The system (54) can be
written as

U̇ = F0(U) + μF1(U), (56)

where

F0(U) =

⎛
⎜⎜⎝

U̇
V̇

−n2U + 8(U2 + V2)V̇ξ3 + 12(U2 + V2)2Uξ6

−n2V − 8(U2 + V2)U̇ξ3 + 12(U2 + V2)2Vξ6

⎞
⎟⎟⎠ ,

F1(U) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

2

[
n4/3

(1−μ)2/3

(
1
r2

− 1
)

ξ2 − 4(U2+V2)2

r32
ξ6 − 2n2/3(U2+V2)

(1−μ)1/3r32
ξ4 + 4n2/3U2

(1−μ)1/3
ξ4
]
U

2

[
n4/3

(1−μ)2/3

(
1
r2

− 1
)

ξ2 − 4(U2+V2)2

r32
ξ6 + 2n2/3(U2+V2)

(1−μ)1/3r32
ξ4 − 4n2/3V2

(1−μ)1/3
ξ4
]
V

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(57)

Remark Note that F1(U) only depends on the position variables, F1(U) =
F1(U ,V).

At this point, our next goal is to find the solution as U = U0 + U1 where

U̇0 = F0(U0), (58a)

U̇1 = μF1(U0 + U1) + F0(U0 + U1) − F0(U0). (58b)
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Notice thatU0 is the solution of the 2-body problem (μ = 0) in synodical (rotating)
Levi-Civita coordinates. That is, we consider system (56) as a perturbation of the 2-
body problem (58a) where the perturbation parameter is ξ which will be small enough
and for any value ofμ ∈ (0, 1). Roughly speaking, for big values of the Jacobi constant
the problem is close the two body problem of the mass-less body and the collision
primary, regardless the value of the mass parameter μ.

Note that we are interested only in the ejection orbitsU e = Ue
0 +U e

1 and the initial
conditions of these orbits are given by

Ue
0(0) = (0, 0, n cos θ0, n sin θ0) and Ue

1(0) = 0. (59)

To prove the theorem, we will use the same strategy of computing the angular
momentum M(n, θ0) at the n-th minimum of the distance to the origin and find the
values of θ0 such that M(n, θ0) = 0.

Thus, we will compute U e and the time needed to reach n-th minimum solving[
UeU̇e + VeV̇e

]
(θ0, T̂ ∗) = 0. The last step will be to calculate M(n, θ0).

The Unperturbed System

As a first step, we must solve system (58a)

⎧⎪⎨
⎪⎩
Ü0 = −n2U0 + 8

(
U2
0 + V2

0

)
V̇0ξ

3 + 12
(
U2
0 + V2

0

)2
U0ξ

6,

V̈0 = −n2V0 − 8
(
U2
0 + V2

0

)
U̇0ξ

3 + 12
(
U2
0 + V2

0

)2
V0ξ

6,

(60)

with initial conditions U0(0) = (0, 0, n cos θ0, n sin θ0).
In order to obtain the solution of this system, we first consider the 2-body problem

in sidereal coordinates:

⎧⎪⎨
⎪⎩

¨̄U0 = −
[
n2 − 4(Ū0

˙̄V0 − V̄0
˙̄U0)ξ

3
]
Ū0,

¨̄V0 = −
[
n2 − 4(Ū0

˙̄V0 − V̄0
˙̄U0)ξ

3
]
V̄0,

(61)

and the change of time
dt

dT̂
= 4

(
Ū2
0 + V̄2

0

)
ξ3. (62)

being (Ū0(T̂ ), V̄0(T̂ )) the associated solutions.
We recall that for the two body problem the angular momentum is constant, con-

sequently [
Ū0

˙̄V0 − V̄0
˙̄U0

]
(T̂ ) =

(
Ū0

˙̄V0 − V̄0
˙̄U0

)
(0), (63)
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and therefore the solution of (61) is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ū0(T̂ ) = Ū0(0) cos(ωT̂ ) +

˙̄U0(0)

ω
sin(ωT̂ ),

V̄0(T̂ ) = V̄0(0) cos(ωT̂ ) +
˙̄V0(0)

ω
sin(ωT̂ ),

(64)

whereω =
√
n2 − 4(Ū0

˙̄V0 − V̄0
˙̄U0)(0)ξ3.Moreover the value t(T̂ ) is simply obtained

from (62) and (64):

t(T̂ ) = 2

[ (
Ū2
0 + V̄2

0

)
(0)

(
T̂ + cos(ωT̂ ) sin(ωT̂ )

ω

)
+

2
(
Ū0

˙̄U0 + V̄0
˙̄V0

)
(0)

ω2 sin2(ωT̂ )

+
( ˙̄U2

0 + ˙̄V2
0

)
(0)

ω2

(
T̂ − cos(ωT̂ ) sin(ωT̂ )

ω

)]
ξ3,

(65)
Now we apply the rotation transformation to (64) to obtain the solution of system

in synodical coordinates(60),

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U0(T̂ ) = Ū0(T̂ ) cos(−t/2) − V̄0(T̂ ) sin(−t/2),

V0(T̂ ) = Ū0(T̂ ) sin(−t/2) + V̄0(T̂ ) cos(−t/2),

U̇0(T̂ ) =
[ ˙̄U0 + 2

(
Ū2
0 + V̄2

0

)
V̄0ξ

3
]
cos(−t/2) −

[ ˙̄V0 − 2
(
Ū2
0 + V̄2

0

)
Ū0ξ

3
]
sin(−t/2),

V̇0(T̂ ) =
[ ˙̄U0 + 2

(
Ū2
0 + V̄2

0

)
V̄0ξ

3
]
sin(−t/2) +

[ ˙̄V0 − 2
(
Ū2
0 + V̄2

0

)
Ū0ξ

3
]
cos(−t/2),

(66)

Notice that the relation between the sidereal initial conditions and the synodical
ones (U0V0, U̇0V̇0)(0), is obtained simply from (66) putting T̂ = 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U0(0) = Ū0(0),

V0(0) = V̄0(0),

U̇0(0) = ˙̄U0(0) + 2
(
Ū2
0 + V̄2

0

)
(0)V̄0(0)ξ3,

V̇0(0) = ˙̄V0(0) − 2
(
Ū2
0 + V̄2

0

)
(0)Ū0(0)ξ

3,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ū0(0) = U0(0),

V̄0(0) = V0(0),
˙̄U0(0) = U̇0(0) − 2

(
U2
0 + V2

0

)
(0)V0(0)ξ3,

˙̄V0(0) = V̇0(0) + 2
(
U2
0 + V2

0

)
(0)U0(0)ξ

3.

(67)
Since we are interested in the particular case of ejection orbits, which have as their

initial condition
Ū0(0) = (0, 0, n cos θ0, n sin θ0), (68)

the corresponding ejection solution is given by Ue
0 = (Ue

0 ,Ve
0 , U̇e

0 , V̇e
0), where:

{
Ue
0 (θ0, T̂ ) = [

cos θ0 cos (−t/2) − sin θ0 sin (−t/2)
]
sin(nT̂ ) = cos(θ0 − t/2) sin(nT̂ ),

Ve
0(θ0, T̂ ) = [

cos θ0 sin (−t/2) + sin θ0 cos (−t/2)
]
sin(nT̂ ) = sin(θ0 − t/2) sin(nT̂ ),

(69)
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with

t = 2

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
ξ3. (70)

If we denote by T̂ ∗
0 the time needed by U e

0(T̂ ) to reach the n-th minimum distance to
the origin, it is clear from (69) that

T̂ ∗
0 = π. (71)

The Perturbed System

In order to solve the perturbed problem (i.e., μ 	= 0), we rewrite system (58b) as

U̇1 = DF0(U0)U1 + G(U1), (72)

where U0 = U e
0 is the ejection solution (69) of the two-body problem and

G(U1) = μF1(Ue
0 + U1) + F0(Ue

0 + U1) − F0(Ue
0) − DF0(U e

0)U1. (73)

Note that the ejection solutionU e
1 has zero initial condition and therefore is the solution

of the implicit equation
Ue

1 = H{Ue
1}, (74)

where we define

H{U}(T̂ ) = X(T̂ )

∫ T̂

0
X−1(T̂ )G(U(T̂ )) dT̂ , (75)

and X(T̂ ) is the fundamental matrix of the linear system:

U̇1 = DF0(U e
0)U1. (76)

We will apply a fixed point theorem to prove the existence of the solution U e
1. Thus,

we consider the space

χ = {U : [0, T ] −→ R
4, U continuous},

for a given T , for example, T = 2π .
For a given function U = (U ,V, U̇ , V̇) ∈ χ we consider the norm:

||U || = sup
T̂ ∈[0,T ]

(n|U(T̂ )| + n|V(T̂ )| + |U̇(T̂ )| + |V̇(T̂ )|). (77)

With this norm χ is a Banach space.
As usual, given an R > 0, we define the ball BR(0) ⊂ χ as the functions U ∈ χ

such that ‖U‖ ≤ R.
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Next lemmas show that the required hypotheses for the fixed point theorem to be
applied are satisfied.

Lemma 2 There exist ξ0 > 0 and a constant M1 > 0 such that, for 0 < ξ < ξ0,
0 < μ < 1 and n ∈ N,

‖H{0}‖ ≤ M1μξ6.

Proof See Appendix B.1. �

Lemma 3 There exist 0 < ξ1 ≤ ξ0 and a constant M2 ≥ M1 such that, for 0 < ξ < ξ1,
0 < μ < 1 and n ∈ N, given U⊕, U� ∈ BR(0) with R = 2M1μξ6 then

‖H{U⊕} − H{U�}‖ ≤ M2μξ6‖U⊕ − U�‖.

Proof See Appendix B.2. �

At this point, we select ξ1 s.t. M2μξ61 < 1/2, so we have the following result

Lemma 4 Under the same hypotheses of Lemma 3 if we reduce ξ1 such that M2μξ61 <

1/2, one has that the operator H : BR(0) → BR(0) and it is a contraction and
therefore there exists a unique Ue

1 ∈ BR(0) which is solution of Eq. (74) in χ .

Proof If U ∈ BR(0), then:

‖H{U}‖ = ‖H{0} + H{U} − H{0}‖ ≤ ‖H{0}‖ + ‖H{U} − H{0}‖ ≤ R

2
+ R

2
= R,

and we already know by Lemma 3 that H is Lipschitz with Lipschitz constant
M2μξ6 < 1/2.

By the fixed point theorem, there exists a unique Ue
1 ∈ BR(0) which is solution of

Eq. (74). �

Observe that oncewe know the existence and bounds of the functionU e

1, its smooth-
ness is a consequence of being solution of a smooth differential equation.

The results of the previous lemmas give us the following properties:

• ‖U e
1‖ ≤ R = 2M1μξ6,

• ||Ue
1 − H{0}|| = ||H{Ue

1} − H{0}|| ≤ M2μξ6||Ue
1|| ≤ 2M1M2μ

2ξ12.

Writing these inequalities in components, and using the definition of the norm (77),
we have

• Ue
1 = H1{0} + μ2

n
O(ξ12),

• Ve
1 = H2{0} + μ2

n
O(ξ12),

• U̇e
1 = H3{0} + μ2O(ξ12),

• V̇e
1 = H4{0} + μ2O(ξ12),

where H = (H1,H2,H3,H4).
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Lemma 5 With the same hypotheses of Lemma 4, the value of H{0} is given by

H1{0} = Ue
6 (T̂ )ξ6 + μ

n
O(ξ8),

H2{0} = Ve
6(T̂ )ξ6 + μ

n
O(ξ8),

H3{0} = U̇e
6 (T̂ )ξ6 + μO(ξ8),

H4{0} = V̇e
6(T̂ )ξ6 + μO(ξ8).

(78)

where U e
6(T̂ ) = (Ue

6 ,Ve
6 , U̇e

6 , V̇e
6)(T̂ ) are the coefficients of U e

1 of order 6 in ξ . They
are given by:

Ue
6 (T̂ ) = −

μ cos θ0(2 cos4 θ0 − 1)
(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
,

Ve
6 (T̂ ) = −

μ sin θ0(2 sin4 θ0 − 1)
(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
,

U̇e
6 (T̂ ) = −

μ cos θ0(2 cos4 θ0 − 1)
[(

33 − 35 cos2(nT̂ ) + 10 cos4(nT̂ )
)
cos(nT̂ ) − 15nT̂ sin(nT̂ )

]
2n

,

V̇e
6 (T̂ ) = −

μ sin θ0(2 sin4 θ0 − 1)
[(

33 − 35 cos2(nT̂ ) + 10 cos4(nT̂ )
)
cos(nT̂ ) − 15nT̂ sin(nT̂ )

]
2n

.

(79)

Proof See Appendix B.3. �

With this notation, we have

• Ue(T̂ ) = Ue
0 (T̂ ) + Ue

6 (T̂ )ξ6 + μ

n
O(ξ8),

• Ve(T̂ ) = Ve
0(T̂ ) + Ve

6(T̂ )ξ6 + μ

n
O(ξ8),

• U̇e(T̂ ) = U̇e
0 (T̂ ) + U̇e

6 (T̂ )ξ6 + μO(ξ8),
• V̇e(T̂ ) = V̇e

0(T̂ ) + V̇e
6(T̂ )ξ6 + μO(ξ8).

From Lemma 5, we have that:

Ue
6 (T̂ ∗

0 ) = −15(−1)nμπ cos θ0(2 cos4 θ0 − 1)

2n
,

Ve
6(T̂ ∗

0 ) = −15(−1)nμπ sin θ0(2 sin4 θ0 − 1)

2n
,

U̇e
6 (T̂ ∗

0 ) = −4(−1)nμ cos θ0(2 cos4 θ0 − 1)

n
,

V̇e
6(T̂ ∗

0 ) = −4(−1)nμ sin θ0(2 sin4 θ0 − 1)

n
.

(80)

The time needed to reach the n minimum in the distance with the first primary can
be obtained from the following lemma:
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Lemma 6 With the same hypotheses of Lemma 4, the time T̂ ∗ needed for the ejection
solution U e to reach the n minimum in the distance with the first primary is given by
T̂ ∗ = T̂ ∗

0 + T̂ ∗
1 , where T̂ ∗

0 = π and:

T̂ ∗
1 = 15μπ(3 cos(4θ0) + 1)

8n2
ξ6 + μ

n2
O(ξ8). (81)

Proof In order to compute the n minimum in the distance with the first primary, we
have to solve

0 = (
UeU̇e + VeV̇e) (T̂ ∗)

= ([
Ue
0 + Ue

1

] [
U̇e
0 + U̇e

1

]+ [
Ve
0 + Ve

1

] [
V̇e
0 + V̇e

1

])
(T̂ ∗)

= (
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗) + ξ6

(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗) + μO(ξ8)

+ ξ12
(
Ue
6 U̇e

6 + Ve
6 V̇e

6

)
(T ∗) + μ2

n
O(ξ14)

= (
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗) + ξ6

(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗) + μO(ξ8)

= (
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗

0 + T̂ ∗
1 ) + ξ6

(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗

0 + T̂ ∗
1 )

+ μO(ξ8)

= (
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗

0 ) + T̂ ∗
1

(
Ue
0 Üe

0 + U̇e2
0 + V0V̈0 + V̇e2

0

)
(T̂ ∗

0 )

+ ξ6
(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗

0 ) + μO(ξ8)

= T̂ ∗
1 n

2 + ξ6
(
Ue
6 U̇e

0 + Ve
6 V̇e

0

)
(T̂ ∗

0 ) + μO(ξ8),

and therefore we have

T ∗
1 =

(
Ue
6 U̇e

0 + Ve
6 V̇e

0

)
(T ∗

0 )

n2
ξ6 + μ

n2
O(ξ8) = 15μπ(3 cos(4θ0) + 1)

8n2
ξ6 + μ

n2
O(ξ8).

(82)
�


Finally, the angular momentum at T̂ ∗ is given by

Lemma 7 With the samehypotheses of Lemma4, the angularmomentumof the ejection
solution U e at time T̂ ∗ is given by:

M(n, θ0) = −15μπ sin(4θ0)

4
ξ6 + μO(ξ8).
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Proof

M(n, θ0) = (
UeV̇e − VeU̇e) (T̂ ∗)

= (
Ue
0 V̇e

0 − Ve
0 U̇e

0

)
(T̂ ∗) + ξ6

(
Ue
0 V̇e

6 + Ue
6 V̇e

0 − Ve
0 U̇e

6 − Ve
6 U̇e

0

)
(T̂ ∗) + μO(ξ8)

= (
Ue
0 V̇e

0 − Ve
0 U̇e

0

)
(T̂ ∗

0 ) + T̂ ∗
1

(
Ue
0 V̈e

0 − Ve
0 Üe

0

)
(T̂ ∗

0 ) + μ2

n
O(ξ12)

+ ξ6
(
Ue
0 V̇e

6 + Ue
6 V̇e

0 − Ve
0 U̇e

6 − Ve
6 U̇e

0

)
(T̂ ∗

0 ) + μO(ξ8)

= (
Ue
0 V̇e

0 − Ve
0 U̇e

0

)
(T̂ ∗

0 ) + ξ6T̂ ∗
6

(
Ue
0 V̈e

0 − Ve
0 Üe

0

)
(T̂ ∗

0 )

+ ξ6
(
Ue
0 V̇e

6 + Ue
6 V̇e

0 − Ve
0 U̇e

6 − Ve
6 U̇e

0

)
(T̂ ∗

0 ) + μO(ξ8)

= ξ6
(
Ue
6 V̇e

0 − Ve
6 U̇e

0

)
(T̂ ∗

0 ) + μO(ξ8)

= −15μπ sin(4θ0)

4
ξ6 + μO(ξ8).

In this way, applying the implicit function theorem, we have that for ξ ≥ 0 small
enough we obtain that M(n, θ0) has four and only four roots in [0, π) given by

θ0 = πm

4
+ O(ξ2), m = 0, 1, 2, 3

regardless of the values of the mass parameter μ and n. We can characterize this n-EC
orbits in the same way as in Theorem 2.

This concludes the proof of Theorem 1.

8 Results for the Hill Problem

As we have seen in Section 3, Hill problem is a limit case of RTBP. In this way, the
results obtained in the previous sections can easily be extrapolated to the case of Hill
problem. In particular, if in (18) we introduce the new variables

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uh =
√

2

K
Uh,

vh =
√

2

K
Vh,

τ = 2
√
Ks,

(83)

we obtain the system

⎧⎪⎪⎨
⎪⎪⎩
Ü = −U + 8(U 2 + V 2)V̇

K 3/2 + 12
[
2
(
U 4 − 2U 2V 2 − V 4

)+ (U 2 + V 2)2
]
U

K 3 ,

V̈ = −V − 8(U 2 + V 2)U̇

K 3/2 + 12
[
2
(
V 4 − 2U 2V 2 −U 4

)+ (U 2 + V 2)2
]
V

K 3 ,

(84)
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Fig. 10 Trajectories of the four n-EC orbits αn (yellow), βn (green), γn (blue) and δn (red) for n = 1, 2, 3
(from left to right) and K = 8 (Color figure online)

which is the same system of equations that we have obtained in (34) imposing now
μ = 1 and recalling that ε = 1/

√
K . So we already know the solution of system (84)

which is the one obtained for system (34) with μ = 1.
In this way, using the extra symmetry (16b) of the Hill problem we obtain the

following corollary of Theorem 2:

Corollary 8.1 In the Hill problem, for all n ∈ N, there exists a K̂ (n) such that for
K ≥ K̂ (n) there exist exactly four n-EC orbits, which can be characterized by:

• Twon-ECorbits themselves symmetricwith respect to the x axis and one symmetric
to the other over the y axis. The corresponding families are γn and αn and, when
C → +∞, have initial angles 0 and π/2, respectively.

• Twon-ECorbits themselves symmetricwith respect to the y axis and one symmetric
to the other over the x axis. The corresponding families are δn and βn and, when
C → +∞, have initial angles π/4 and 3π/4, respectively.

It is important to note that the proof is exactly the same with the observation, as we
have said before, that the families of orbits that were symmetric with respect to the x
axis in the RTBP (αn and γn) are now also symmetric one of the other with respect
to the y axis, and the families that were symmetric one of the other in the restricted
problem (βn and δn) are now also symmetric themselves with respect to the y axis
(see Fig. 10).

Furthermore, thanks to the fact that the polynomials P̄2k and Q̄2k disappear, it is not
necessary to consider an expansion in terms of ε = 1/

√
K and it can be considered

directly an expansion on ε = 1/K 3/2.
Similarly, if we introduce K = Ln2/3, that is, we consider the change

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh =
√
2√

Ln1/3
Uh,

vh =
√
2√

Ln1/3
Vh,

T̂ = 2
√
L

n2/3
s,

(85)
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Fig. 11 Value of the angularmomentumof the ejection orbits at the n intersectionwith�m for K ∈ [KL1 , 8]
and n = 3, . . . , 10. In black the values corresponding to n-EC orbits
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Fig. 12 Top. Initial conditions for the 5-EC orbits corresponding to the families αn (yellow), βn (green),
γn (blue), δn (red) and the new families of orbits (purple) as function of K . Bottom. The trajectories of the
orbits (in correspondence with the previous color) that exist for the values of K denoted previously. The
values of K correspond to the value of the bifurcation K ≈ 5.02714993 (left), a value where we have eight
5-EC orbits K = 4.86 (middle) and the value of collapse K ≈ 4.72835275 (Color figure online)

we obtain the same system of equations as (54) putting μ = 1 and considering ξ =
1/

√
L . In this way, we can obtain the following corollary of Theorem 1:

Corollary 8.2 There exists an L̂ such that for L ≥ L̂ and for any value of n ∈ N and
K = Ln2/3, there exist exactly four n-EC orbits, which can be characterized in the
same way as the previous corollary.

In this way, if we do the numerical exploration to compute the n-EC orbits that
exist for values of K ≥ KL (see Fig. 11) we see that, as expected by Corollary 8.2,
the value of K̂ grows with n.

Before going into more detail on the value of K̂ let us make a few comments about
Fig. 11. It is important to note that thanks to the extra symmetry we could only study
the ejection orbits with θ0 ∈ [0, π/2), but in order to visualize the evolution of the n-
EC orbits we will consider the interval θ0 ∈ [0, π) in Fig. 11. In this figure, we observe
how at least the first new families of n-EC orbits that appear are born from two of the
original families (αn and γn , or βn and δn) when the angle of ejection θ0 is 0 and π/2,
respectively (i.e., ϑ0 = 0, π ) and collapse into the two other original families when
the value of θ0 is π/4 and 3π/4 (i.e., ϑ0 = π/2, 3π/2) (see, for example, Fig. 12).
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Fig. 13 Trajectories of 9-EC periodic orbits associated with α9 (yellow) and γ9 (blue) for K ≈ 4.77318771
(left) and β9 (green) and δ9 (red) for K ≈ 4.42215362 (right) (Color figure online)

These respective values are very particular, since when these bifurcations take place
we have that the n-EC orbits are periodic or are part of a periodic ECorbit. In particular,
we have:

• If the θ0 of βn is 0 or π/2 (therefore θ0 of δn is π/2 or 0) then we have periodic
EC orbit formed by βn and δn (see Fig. 12 left). Analogously, if the θ0 of αn is
π/4 or 3π/4 (therefore θ0 of γn is 3π/4 or π/4) then we have periodic EC orbit
formed by αn and γn (see Fig. 12 right).

• If the θ0 of βn is π/4 or 3π/4 (therefore θ0 of δn is 3π/4 or π/4) then βn and δn
are periodic EC orbits (see Fig. 13 right). Analogously, if the θ0 of αn is 0 or π/2
(therefore θ0 of γn is π/2 or 0) then αn and γn are periodic EC orbits (see Fig. 13
left).

Wehave computed the value K̂ (n) forn = 1, . . . , 100 (seeFig. 14). It is important to
remark that the numerical value of K̂ (n) obtained fits with the expression of Corollary
8.2. In particular, if we draw the curve Ln2/3 with L = 22/3 we can see how it
practically matches the value of the numerical bound obtained for K̂ (see Fig. 14).

To conclude, we have seen how not only does the value of K̂ (n) follow the curve
Ln2/3 with L = 22/3, but also the successive bifurcations (the values of K where
appear new EC orbits) are closely related to the curves Ln2/3 with L = (2/p)2/3 being
p a natural number. In particular, in Fig. 15 we can see how the value of the successive
bifurcations coincides with the curves Ln2/3 with L = (2/p)2/3 and p = 1, . . . , 10.
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Fig. 14 Dots: Values of K̂ (n). Black line, curve Ln2/3 with L = 22/3

Fig. 15 In color values of K where exists more than 4 n-EC orbits for n = 1, . . . , 100. The black lines
correspond to the curves Ln2/3 with L = (2/p)2/3 and p = 1, . . . , 10 (Color figure online)
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Appendix

A Values of the Solutions

U7(τ, θ0) = 0,

V7(τ, θ0) = 0,

U8(τ, θ0) = μ(1 − μ)1/3

6

[
105τ cos τ − (48 + 87 cos2 τ − 38 cos4 τ + 8 cos6 τ) sin τ

]
∗(5 cos6 θ0 − 6 cos2 θ0 + 2) cos θ0,

V8(τ, θ0) = −μ(1 − μ)1/3

6

[
105τ cos τ − (48 + 87 cos2 τ − 38 cos4 τ + 8 cos6 τ) sin τ

]
∗(5 sin6 θ0 − 6 sin2 θ0 + 2) sin θ0,

U9(τ, θ0) = − 1

24

[
4(τ − cos τ sin τ)3 sin τ − μ

(
3τ(23 + 144 cos2 τ + 8 cos4 τ) sin τ

−(379 − 217 cos2 τ − 178 cos4 τ + 16 cos6 τ) cos τ

−480τ(1 + 6 cos2 τ) sin τ cos2 θ0

+32(81 − 53 cos2 τ − 32 cos4 τ + 4 cos6 τ) cos τ cos2 θ0 − 360τ2 cos τ cos4 θ0

+240τ(3 + 15 cos2 τ − cos4 τ) sin τ cos4 θ0

−8(374 − 257 cos2 τ − 143 cos4 τ + 26 cos6 τ) cos τ cos4 θ0

)]
sin θ0,

V9(τ, θ0) = 1

24

[
4(τ − cos τ sin τ)3 sin τ − μ

(
3τ(23 + 144 cos2 τ + 8 cos4 τ) sin τ

−(379 − 217 cos2 τ − 178 cos4 τ + 16 cos6 τ) cos τ

−480τ(1 + 6 cos2 τ) sin τ sin2 θ0

+32(81 − 53 cos2 τ − 32 cos4 τ + 4 cos6 τ) cos τ sin2 θ0 − 360τ2 cos τ sin4 θ0

+240τ(3 + 15 cos2 τ − cos4 τ) sin τ sin4 θ0
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−8(374 − 257 cos2 τ − 143 cos4 τ + 26 cos6 τ) cos τ sin4 θ0

)]
cos θ0,

U10(τ, θ0) = μ(1 − μ)2/3

8

[
315τ cos τ − (

128 + 325 cos2 τ − 210 cos4 τ + 88 cos6 τ

−16 cos8 τ
)
sin τ

]
(3 − 20 cos2 θ0 + 30 cos4 θ0 − 14 cos8 θ0) cos θ0,

V10(τ, θ0) = μ(1 − μ)2/3

8

[
315τ cos τ − (

128 + 325 cos2 τ − 210 cos4 τ + 88 cos6 τ

−16 cos8 τ
)
sin τ

]
(3 − 20 sin2 θ0 + 30 sin4 θ0 − 14 sin8 θ0) sin θ0.

Then, writing the function UU̇ + V V̇ as an expansion series in ε and collecting
terms of the same order, we can successively find the terms τ ∗

i of order i = 7, . . . , 10
from (UU̇ + V V̇ )(τ ∗) = 0:

τ ∗
7 (n, θ0) = 0,

τ ∗
8 (n, θ0) = −35μ(1 − μ)1/3nπ cos(2θ0)(5 cos2(2θ0) − 3)

4
,

τ ∗
9 (n, θ0) = 15μn2π2 sin(4θ0)

2
,

τ ∗
10(n, θ0) = 315μ(1 − μ)2/3nπ(13 − 10 cos(4θ0) − 35 cos2(4θ0))

256
.

Now we are ready to compute the explicit expression for the angular momentum
M(n, θ0) = (UV̇ − VU̇ )(τ ∗) up to order 10 which is the following:

M(n, θ0) = −15μnπ sin(4θ0)

4
ε6 + 105μ(1 − μ)1/3nπ (sin(2θ0) + 5 sin(6θ0))

64
ε8

+ 15μn2π2 cos(4θ0)

2
ε9

− 315μ(1 − μ)2/3nπ(2 sin(4θ0) + 7 sin(8θ0))

128
ε10 + O(ε11).

which is precisely (51).

B Proof of the Auxiliary Lemmas

We must prove Lemmas 2, 3 and 5. First, let us fix some notation. Given a matrix
A = (ai j )i, j=1,...,4, we denote the new matrix

|A| = (|ai j |)i, j=1,...,4.

Analogously for vectors v = (v1, . . . , v4):

|v| = (|v1|, . . . , |v4|),
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and given two vectors v = (v1, . . . , v4), w = (w1, . . . , w4), we will say that

v ≤ w if vi ≤ wi ∀i = 1, . . . , 4.

Similarly with matrices A ≤ B.
With this notation we have:

|Av| ≤ |A||v|.

During this section we will use M to denote any constant which appears in the bounds
and is independent of ξ , μ and n ∈ N.

Lemma 8 The fundamental matrix X for system (76) can be expressed as

X(T̂ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(nT̂ ) + O(ξ3) O(ξ3)
sin(nT̂ ) + O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) + O(ξ3)
1

n
O(ξ3)

sin(nT̂ ) + O(ξ3)

n
−n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) + O(ξ3) O(ξ3)

nO(ξ3) −n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) + O(ξ3)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and its inverse matrix as

X−1(T̂ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(nT̂ ) + O(ξ3) O(ξ3)
− sin(nT̂ ) + O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) + O(ξ3)
1

n
O(ξ3)

− sin(nT̂ ) + O(ξ3)

n
n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) + O(ξ3) O(ξ3)

nO(ξ3) n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) + O(ξ3)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof Consider the general solution U0 of system (58a) given by (64), (65) and (66),
we can express the fundamental matrix of the system

U̇1 = DF0(U0)U1,

as

X = RA,

where

R =

⎛
⎜⎜⎝
cos(−t/2) − sin(−t/2) 0 0
sin(−t/2) cos(−t/2) 0 0

0 0 cos(−t/2) − sin(−t/2)
0 0 sin(−t/2) cos(−t/2)

⎞
⎟⎟⎠ , (86)

and A is the matrix with rows

A1(T̂ ) =
[

∂Ū0

∂U0(0)
+ V̄0

2

∂t

∂U0(0)

]
(T̂ ),
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A2(T̂ ) =
[

∂V̄0

∂U0(0)
− Ū0

2

dt

∂U0(0)

]
(T̂ ),

A3(T̂ ) =
[

∂ ˙̄U0

∂U0(0)
+ 2

(
Ū2
0 + 3V̄2

0

)
ξ3

∂V̄0

∂U0(0)

+4Ū0V̄0ξ
3 ∂Ū0

∂U0(0)
+

˙̄V0 − 2
(
Ū2
0 + V̄2

0

)
Ū0ξ

3

2

∂t

∂U0(0)

]
(T̂ ),

A4(T̂ ) =
[

∂ ˙̄V0

∂U0(0)
− 2

(
3Ū2

0 + V̄2
0

)
ξ3

∂Ū0

∂U0(0)
− 4Ū0V̄0ξ

3 ∂V̄0

∂U0(0)

−
˙̄U0 + 2

(
Ū2
0 + V̄2

0

)
V̄0ξ

3

2

∂t

∂U0(0)

]
(T̂ ), (87)

where Ū0 is given by (64).
Note that we are interested in solving equations (76), which correspond to the

ejection orbits U e
0, that have initial conditions (0, 0, n cos θ0, n sin θ0). So we must

compute the fundamental matrix X
withU0(T̂ ) = Ue

0(T̂ ).We denote by Ae and Re the correspondingmatrices. Recall
also that the expression of t is given by (70) and the explicit elements of Ae are provided
in Appendix C.

In this way, we can express Ae and Re as

Ae =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(nT̂ ) + O(ξ3) O(ξ3)
sin(nT̂ ) + O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) + O(ξ3)
1

n
O(ξ3)

sin(nT̂ ) + O(ξ3)

n
−n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) + O(ξ3) O(ξ3)

nO(ξ3) −n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) + O(ξ3)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Re = I d +

⎛
⎜⎜⎝
O(ξ6) O(ξ3) 0 0
O(ξ3) O(ξ6) 0 0

0 0 O(ξ6) O(ξ3)

0 0 O(ξ3) O(ξ6)

⎞
⎟⎟⎠ ,

and therefore,

X(T̂ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(nT̂ ) + O(ξ3) O(ξ3)
sin(nT̂ ) + O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) + O(ξ3)
1

n
O(ξ3)

sin(nT̂ ) + O(ξ3)

n
−n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) + O(ξ3) O(ξ3)

nO(ξ3) −n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) + O(ξ3)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The expression for X−1(T̂ ) can be found in a similar way. �
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B.1 Proof of Lemma 2

From (73) and (75), we have

H{0}(T̂ ) = X(T̂ )

∫ T̂

0
X−1(T̂ )G(0) dT̂ = μX(T̂ )

∫ T̂

0
X−1(T̂ )F1(Ue

0(T̂ )) dT̂ ,

(88)
so, the first step is to bound the components of F1(U e

0) (see (57)).
Concerning the expansions involving r2 in (55), we have

(
1

r2
− 1

)
= −2(1 − μ)1/3(U2 − V2)

n2/3
ξ2 + 4(1 − μ)2/3(U4 − 4U2V2 + V4)

n4/3
ξ4 + 1

n2
O(ξ6),

1

r32
= 1 − 6(1 − μ)1/3(U2 − V2)

n2/3
ξ2 + 1

n4/3
O(ξ4),

(89)
where the symbol O refers to terms bounded for bounded U and any μ ∈ (0, 1) and
n ∈ N. Thus, we obtain

F1(U ,V) =

⎛
⎜⎜⎝

0
0

24
(
U4 − 2U2V2 − V4

)
Uξ6 + 1

n2/3
O(ξ8)

24
(
V4 − 2U2V2 − U4

)
Vξ6 + 1

n2/3
O(ξ8)

⎞
⎟⎟⎠ . (90)

Let us bound |F1(Ue
0 ,Ve

0)|. Recall that (see (69)) we have that,

Ue
0
2
(θ0, T̂ ) + Ve

0
2
(θ0, T̂ ) = sin2(nT̂ ) ≤ 1,

Therefore, |Ue
0 | ≤ 1, |Ve

0 | ≤ 1 are bounded and consequently, for ξ small enough:

|F1(Ue
0 ,Ve

0)| ≤ M

⎛
⎜⎜⎝

0
0

ξ6 + 1
n2/3

O(ξ8)

ξ6 + 1
n2/3

O(ξ8)

⎞
⎟⎟⎠=M

[
ξ6 + 1

n2/3
O(ξ8)

]⎛⎜⎜⎝
0
0
1
1

⎞
⎟⎟⎠≤Mξ6

⎛
⎜⎜⎝
0
0
1
1

⎞
⎟⎟⎠ .

(91)
and the constant M is independent of μ and n.

By Lemma 8, we can bound |X | ≤ M and |X−1| ≤ M where

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + O(ξ3) O(ξ3)
1 + O(ξ3)

n

1

n
O(ξ3)

O(ξ3) 1 + O(ξ3)
1

n
O(ξ3)

1 + O(ξ3)

n
n + nO(ξ3) nO(ξ3) 1 + O(ξ3) O(ξ3)

nO(ξ3) n + nO(ξ3) O(ξ3) 1 + O(ξ3)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (92)
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In this way, we have

|X−1(T̂ )F1(Ue
0 (T̂ ),Ve

0(T̂ ))| ≤ |X−1(T̂ )||F1(Ue
0 (T̂ ),Ve

0(T̂ ))|
≤ M|F1(Ue

0 (T̂ ),Ve
0(T̂ ))|

≤ Mξ6

⎛
⎜⎜⎝
1/n
1/n
1
1

⎞
⎟⎟⎠ .

(93)

And, therefore, as we have taken T = 2π :

∫ T

0
|X−1(T̂ )F1(Ue

0 (T̂ ),Ve
0(T̂ ))| dT̂ ≤ Mξ6

⎛
⎜⎜⎝
1/n
1/n
1
1

⎞
⎟⎟⎠ . (94)

Finally, multiplying by μX we have

|H{0}| ≤ Mμξ6

⎛
⎜⎜⎝
1/n
1/n
1
1

⎞
⎟⎟⎠ . (95)

and using the definition of the norm in (77) and renaming M1 = M we obtain the
desired result:

‖H{0}‖ ≤ Mμξ6. (96)

B.2 Proof of Lemma 3

In order to boundH(U⊕)−H(U�) (see (75)), firstweneed to boundG(U⊕)−G(U�),
for U⊕, U� ∈ BR(0), where R = 2M1μξ6. In order to ease the computations, let us
introduce

G(U1) = G0(U1) + G1(U1), (97)

with
G0(U1) = F0(U e

0(T̂ ) + U1) − F0(U e
0(T̂ )) − DF0(U e

0(T̂ ))U1,

G1(U1) = μF1(Ue
0 (T̂ ) + U1,Ve

0(T̂ ) + V1).
(98)

We will bound separately the term G0(U⊕) − G0(U�) in Lemma 9 and G1(U⊕) −
G1(U�) in Lemma 10.

Lemma 9 Take U⊕,U� ∈ BR(0). Then for 0 < ξ small enough we have that:

‖G0(U⊕) − G0(U�)‖ ≤ Mμ

n
ξ9‖U⊕ − U�‖.
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Proof First, we observe that G0(U) = (G1
0 ,G2

0 ,G3
0 ,G4

0 )(U) = (0, 0,G3
0 ,G4

0 )(U).
Therefore, we will consider the last two components. We will do the computations for
G3
0 , the ones for G4

0 are analogous. Using the mean value theorem, we have:

G3
0 (U⊕) − G3

0 (U�) = F3
0 (U0 + U⊕) − F3

0 (U0 + U�) − DF3
0 (U0)(U⊕ − U�)

=
∫ 1

0

[
DF3

0 (U0 + sU⊕ + (1 − s)U�)(U⊕ − U�)
]
ds

− DF3
0 (U0)(U⊕ − U�)

=
{∫ 1

0

[
DF3

0 (U0 + sU⊕ + (1 − s)U�) − DF3
0 (U0)

]
ds

}
(U⊕ − U�)

=
{∫ 1

0

∫ 1

0
(sU⊕ + (1 − s)U�)t D2F3

0 (U0

+ z
[
sU⊕ + (1 − s)U�

])
dz ds

}
(U⊕ − U�).

(99)
Now we want to bound the expression appearing in the previous double integral.

Notice that D2F3
0 (see (57)) is given by:

D2F3
0 =

⎛
⎜⎜⎝
16
[
V̇ + 3(5U2 + 3V2)Uξ3

]
ξ3 48(3U2 + V2)Vξ6 0 16Uξ3

48(3U2 + V2)Vξ6 16
[
V̇ + 3(U2 + 3V2)Uξ3

]
ξ3 0 16Vξ3

0 0 0 0
16Uξ3 16Vξ3 0 0

⎞
⎟⎟⎠ ,

and thus, as (see (69)):

|Ue
0 | ≤ 1, |Ve

0 | ≤ 1, |U̇e
0 | ≤ n, |V̇e

0 | ≤ n, ‖U⊗‖ ≤ 2M1μξ6,

we have that:

∣∣∣D2F3
0 (U e

0 + U⊗)

∣∣∣ ≤ Mξ3

⎛
⎜⎜⎝

n ξ3 0 1
ξ3 n 0 1
0 0 0 0
1 1 0 0

⎞
⎟⎟⎠ . (100)

Now, as ‖U�‖ ≤ 2M1μξ6:

|U t�D2F3
0 (Ue

0 + U⊗)| ≤ |U t�| |D2F3
0 (U e

0 + U⊗)|

≤ 2M1μξ6 (1/n, 1/n, 1, 1) Mξ3

⎛
⎜⎜⎝

n ξ3 0 1
ξ3 n 0 1
0 0 0 0
1 1 0 0

⎞
⎟⎟⎠

≤ 2MM1μξ9 (1, 1, 0, 1/n) .

(101)
Taking into account the integral expression in (99), we obtain

|G3
0(U⊕) − G3

0(U�)| ≤ 2MM1μξ9 (1, 1, 0, 1/n) |U⊕ − U�|
≤ 1

n
2MM1μξ9‖U⊕ − U�‖.
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We get a similar bound for the fourth components and using that the first and the
second are identically zero and the definition of the norm we get the result of the
lemma. �


The next goal is to bound G1(U⊕) − G1(U�). To do so, we apply the same trick:

Lemma 10 Given U⊕,U� ∈ BR(0). Then for ξ > 0 small enough we have that

‖G1(U⊕) − G1(U�)‖ ≤ Mμξ6

n
‖U⊕ − U�‖.

Proof Using again the main value theorem, we obtain:

G1(U⊕) − G1(U�) =
∫ 1

0
DG1(sU⊕ + (1 − s)U�) (U⊕ − U�) ds. (102)

So we only need to bound |DG1(U�)| where U� ∈ BR(0), = 2M1μξ6

Let us recall that

DG1(U�) = μDF1(Ue
0 + U�,Ve

0 + V�),

and F1 is given in (57). Proceeding similarly as to bound F1 we can differentiate
(89) to obtain:

DF1(U ,V) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

24(5U4 − 6U2V2 − V4)ξ6 + 1
n2/3

O(ξ8) −96(U2 + V2)UVξ6 + 1
n2/3

O(ξ8) 0 0

−96(U2 + V2)UVξ6 + 1
n2/3

O(ξ8) 24(5V4 − 6U2V2 − U4)ξ6 + 1
n2/3

O(ξ8) 0 0

⎞
⎟⎟⎟⎟⎠

= 24ξ6

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

5U4 − 6U2V2 − V4 + 1
n2/3

O(ξ2) −4(U2 + V2)UV + 1
n2/3

O(ξ2) 0 0

−4(U2 + V2)UV + 1
n2/3

O(ξ2) 5V4 − 6U2V2 − U4 + 1
n2/3

O(ξ2) 0 0

⎞
⎟⎟⎟⎟⎠ .

So, using again that (see (69)):

|Ue
0 | ≤ 1, |Ve

0 | ≤ 1, ‖U�‖ ≤ 2M1μξ6,

|DF1(Ue
0 + U�,Ve

0 + V�)| ≤ [120ξ6 + 1

n2/3
O(ξ8)]

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

⎞
⎟⎟⎠ ,

and therefore

|DG1(U�)| ≤ Mμξ6

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

⎞
⎟⎟⎠ .
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And using the integral Eq. (102) and the fact that the first two rows of the previous
matrix are zero, we get:

|G1(U⊕) − G1(U�)| ≤ Mμξ6

⎛
⎜⎜⎝

0
0

|U⊕ − V⊕|
|U⊕ − V⊕|

⎞
⎟⎟⎠ ≤ Mμξ6

n
‖U⊕ − U�‖

⎛
⎜⎜⎝
0
0
1
1

⎞
⎟⎟⎠ .

Now, using the definition of the norm we get the result. �

From the results of lemmas 9 and 10 we have:

‖G(U⊕) − G(U�)‖ ≤ Mμξ6

n
‖U⊕ − U�‖.

Now, proceeding as we did in the proof of Lemma 2, we multiplyG(U⊕)−G(U�)

by X−1, integrate for a finite time and multiply the resulting expression by X . We use
that |X | ≤ M and |X−1| ≤ M where M is given in (92) and proceed to bound the
expression which givesH{U⊕}−H{U�} as we did forH{0} in (93), (94), (95), (96),
to obtain

‖H{U⊕} − H{U�}‖≤ M2μξ6||U⊕ − U�||. (103)

This finishes the proof of Lemma 3.

B.3 Proof of Lemma 5

In order to compute H{0}(T̂ ∗
0 ) let us recall its expression:

H{0}(T̂ ∗
0 ) = X(T̂ ∗

0 )

∫ T̂ ∗
0

0
X−1(T̂ )G(0) dT̂ = μX(T̂ ∗

0 )

∫ T̂ ∗
0

0
X−1(T̂ )F1(U e

0(T̂ )) dT̂ .

From (90), substituting (69) we have

F1(Ue
0 ,Ve

0) =

⎛
⎜⎜⎝

0
0

24 sin5(nT̂ ) cos θ0(2 cos4 θ0 − 1)ξ6 + O(ξ8)

24 sin5(nT̂ ) sin θ0(2 sin4 θ0 − 1)ξ6 + O(ξ8)

⎞
⎟⎟⎠ , (104)

Multiplying (104) by X−1 using the expression provided in Lemma 8 we obtain:

X−1F1(Ue
0 ,Ve

0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−24 sin6(nT̂ ) cos θ0(2 cos4 θ0 − 1)

n
ξ6 + 1

n
O(ξ8)

−24 sin6(nT̂ ) sin θ0(2 sin4 θ0 − 1)

n
ξ6 + 1

n
O(ξ8)

24 cos(nT̂ ) sin5(nT̂ ) cos θ0(2 cos4 θ0 − 1)ξ6 + O(ξ8)

24 cos(nT̂ ) sin5(nT̂ ) sin θ0(2 sin4 θ0 − 1)ξ6 + O(ξ8)

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Finally, integrating and multiplying by μX using the expression of X provided in
Lemma 8 we have:

H1{0} = −
μ cos θ0(2 cos4 θ0 − 1)

(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
+ μ

n
O(ξ8),

H2{0} = −
μ sin θ0(2 sin4 θ0 − 1)

(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
+ μ

n
O(ξ8).

Note that the values of H3{0} and H4{0} can be obtained directly by differentiating
H1{0} and H2{0}, respectively. This finishes the proof of Lemma 5.

C Value of the Auxiliary Matrix Ae

The values of the terms (Ae
i, j ) are given by

Ae
11 = cos(nT̂ ) − sin(2θ0)

[
T̂ cos(nT̂ ) − sin(nT̂ )

1 + sin2(nT̂ )

n

]
ξ3

+ 2 sin2 θ0

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,

Ae
12 = 2

⎡
⎣cos2 θ0T̂ cos(nT̂ ) −

sin(nT̂ )
(
cos2 θ0 − sin2 θ0 sin2(nT̂ )

)
n

⎤
⎦ ξ3

− sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,

Ae
13 = sin(nT̂ )

n
+ 2 sin2 θ0

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
14 = sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
21 = −2

⎡
⎣sin2 θ0T̂ cos(nT̂ ) +

sin(nT̂ )
(
sin2 θ0 − cos2 θ0 sin2(nT̂ )

)
n

⎤
⎦ ξ3

− sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,

Ae
22 = cos(nT̂ ) + sin(2θ0)

[
T̂ cos(nT̂ ) − sin(nT̂ )

1 + sin2(nT̂ )

n

]
ξ3

+ 2 cos2 θ0

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,
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Ae
23 = −2 cos2 θ0

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
24 = sin(nT̂ )

n
− sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
31 = −n sin(nT̂ ) + sin(2θ0) sin(nT̂ )

(
nT̂ + 3 cos(nT̂ ) sin(nT̂ )

)
ξ3

+ 2

[
sin2 θ0T̂

(
5 − 8 cos2(nT̂ )

)
cos(nT̂ )

− sin(nT̂ )

n

(
cos2 θ0

(
8 − 13 cos2(nT̂ ) + 2 cos4(nT̂ )

)
+ 9 cos2(nT̂ ) − 6

) ]
ξ6

− 2 sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,

Ae
32 = −2

[
n cos2 θ0T̂ −

(
1 + 3 sin2 θ0

)
cos(nT̂ ) sin(nT̂ )

]
sin(nT̂ )ξ3

+ sin(2θ0)

[
T̂
(
5 − 8 cos2(nT̂ )

)
− 8 − 13 cos2(nT̂ ) + 2 cos4(nT̂ )

n
sin(nT̂ )

]
ξ6

+ 4 cos2 θ0

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,

Ae
33 = cos(nT̂ ) + sin(2θ0)

[
T̂ cos(nT̂ ) + 2 − 3 cos2(nT̂ )

n
sin(nT̂ )

]
ξ3

− 4 cos2 θ0

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6,

Ae
34 = 2

[
sin2 θ0

(
T̂ − cos(nT̂ ) sin(nT̂ )

n

)
cos(nT̂ ) + 2 sin2 θ0 + 1

n
sin3(nT̂ )

]
ξ3

− 2 sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6,

Ae
41 = 2

[
n sin2 θ0T̂ − (1 + 3 cos2 θ0) cos(nT̂ ) sin(n)T̂

]
sin(nT̂ )ξ3

+ sin(2θ0)

[
T̂
(
5 − 8 cos2(nT̂ )

)
− 8 − 13 cos2(nT̂ ) + 2 cos4(nT̂ )

n
sin(nT̂ )

]
ξ6

− 4 sin2 θ0

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,

Ae
42 = −n sin(nT̂ ) − sin(2θ0) sin(nT̂ )

(
nT̂ + 3 cos(nT̂ ) sin(nT̂ )

)
ξ3

+ 2

[
− cos2 θ0T̂

(
5 − 8 cos2(nT̂ )

)
cos(nT̂ )

− sin(nT̂ )

n

(
sin2 θ0

(
8 − 13 cos2(nT̂ ) + 2 cos4(nT̂ )

)
+ 9 cos2(nT̂ ) − 6

) ]
ξ6
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+ 2 sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,

Ae
43 = −2

[
cos2 θ0

(
T̂ − cos(nT̂ ) sin(nT̂ )

n

)
cos(nT̂ ) + 2 cos2 θ0 + 1

n
sin3(nT̂ )

]
ξ3

− 2 sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6,

Ae
44 = cos(nT̂ ) − sin(2θ0)

[
T̂ cos(nT̂ ) + 2 − 3 cos2(nT̂ )

n
sin(nT̂ )

]
ξ3

− 4 sin2 θ0

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6.
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