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Abstract
Central configurations and relative equilibria are an important facet of the study of
the N -body problem, but become very difficult to rigorously analyze for N > 3. In
this paper, we focus on a particular but interesting class of configurations of the five-
body problem: the equilateral pentagonal configurations, which have a cycle of five
equal edges. We prove a variety of results concerning central configurations with this
property, including a computer-assisted proof of the finiteness of such configurations
for any positive five masses with a range of rational-exponent homogeneous potentials
(including the Newtonian case and the point-vortex model), some constraints on their
shapes, and we determine some exact solutions for particular N -body potentials.

Keywords Celestial mechanics · Relative equilibria · N-body problem · Central
configurations

Mathematics Subject Classification 70F15 · 37Jxx

1 Introduction

In this work, we consider some particular classes of relative equilibria (i.e., equilibria
in a uniformly rotating coordinate system) of a planar N -body problem, in which N
point particles with non-negative masses mi interact through a central potential U :
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mi q̈i; j = ∂U

∂qi; j
, i ∈ {0, . . . N − 1},

U =
∑

i< j

mim j/r
A−2
i, j

where qi ∈ R2 is the position of particle i , qi; j denotes the j th component of qi , and
ri, j = |qi − q j | are the mutual distances between the particles. The exponent A is a
real parameter in (2,∞).

The most interesting and important case is the Newtonian gravitational model with
A = 3, but we believe it can be useful to generalize the problem since many features
of the relative equilibria do not strongly depend on the exponent A. The potential can
be extended to the case A = 2 by using

U =
∑

i<k

mimk log(ri,k)

which has been used inmodels of fluid vortex tubes (Helmholtz 1858; Kirchhoff 1883;
Aref et al. 1992).

The relative equilibria (equilibria in a uniformly rotating reference frame) must sat-
isfy the equations for a central configuration (Wintner 1941), defined as configurations
for which

λ(qi − c) =
n∑

j=1, j �=i

m j (qi − q j )

r Ai, j
(1)

The vector c is the center of mass,

c = 1

M

n∑

i=1

miqi ,

with

M =
n∑

i=1

mi

the total mass, which we will always assume to be nonzero (for the special case in
which M = 0, see Celli (2005)). The parameter λ is real. The masses mi are also
assumed to be real, and we are primarily interested in positive masses.

In some earlier literature, central configurations are also referred to as permanent
configurations (MacMillan and Bartky 1932; Rayl 1939; Brumberg 1957). The study
of central configurations and relative equilibria provides an avenue for progress into
the N -body problem, which otherwise presents formidable difficulty. There is a rich
literature on these configurations, starting with Euler (1767) and Lagrange (1772) who
completely characterized the relative equilibria for theNewtonian three-body problem.
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The collinear three-body configurations studied by Euler were further elucidated by
Moulton (1910), who showed there is a unique (up to scaling) central configuration
for any ordering of N positive masses on a line.

Besides their interest as simple orbits, central configurations also play an important
role in the topology of the integral manifolds of the N -body problem (Cabral 1973;
Albouy 1993), in multiple-body collision orbits (Moeckel 1981; Saari and Hulkower
1981; ElBialy 1990), and in the proof of chaotic dynamics in the three-body problem
(Moeckel 1989).

For N > 3, it is much harder to characterize the central configurations. One of the
most basic questions is whether there are finitely many equivalence classes of central
configurations for each choice of positive masses. This question has been highlighted
in the planar case by several authors (Chazy 1918; Wintner 1941; Smale 1998). It has
been resolved for theNewtonian four-body problem (Hampton andMoeckel 2005), the
four-vortex problem (Hampton and Moeckel 2009), and partially for the Newtonian
five-body problem (Hampton 2010; Albouy and Kaloshin 2012). The spatial version
of the five-body finiteness problem has also been partially resolved (Hampton and
Jensen 2011), although with similar limitations to the planar case.

Much is still unknown about the central configurations and relative equilibria in
the five-body problem. An attempt to extend the approach of MacMillan and Bartky
was undertaken by Williams (1938), but without as much success and there appear
to be some errors in the restrictions of the shapes of configurations in that work.
Another line of inquiry is to consider five-body configurations with some small or
infinitesimal masses, to leverage the knowledge of three- and four-body configurations
(Xia 1991; Moeckel 1997; Hampton 2005). In the equal mass case, the planar central
configurations have been characterized with high-quality numerical methods (Lee and
Santoprete 2009; Moczurad and Zgliczyński 2019).

In this manuscript, we consider a special case of the five-body problem in which
the configurations are an equilateral cyclic chain (defined in the next section). This
special case has some interesting properties and can be generalized to larger numbers
of masses. This problem was suggested to us by Manuele Santoprete in 2020; more or
less simultaneously, this approach seems to have been taken up by a separate group,
who proved some properties of these configurations in the Newtonian case that are
complementary to our results (Alvarez-Ramírez et al. 2022).

There is much work on other interesting questions on central configurations, such
as their stability. Rather than attempt to summarize this work, we recommend the
excellent surveys by Moeckel (2015, 1990).

2 Equations for Central Configurations and Equilateral Chains

Choosing two indices i and j , we can take the inner product of (1) with qi −q j to get

λ(qi − c) · (qi − q j ) =
n∑

k=1,k �=i

mk(qi − qk) · (qi − q j )

r Ai,k
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and then the left-hand side becomes

λ(qi − c) · (qi − q j ) = λ

M

n∑

k=1

mk(qi − q j ) · (qi − qk) = λ̃

n∑

k=1

mk(r
2
i, j + r2i,k − r2j,k)/2

in which we have introduced λ̃ = λ
M . The inner-products on the right-hand side can

be rewritten in terms of the mutual distances as well. After putting all the terms on
one side of the equation and cancelling a factor of 1/2, we obtain for each choice of
i �= j the equations

n∑

k=1,k �=i

mk(r
−A
i,k − λ̃)(r2i, j + r2i,k − r2j,k) = 0 (2)

If we now introduce variables Si, j = r−A
i,k − λ̃ and Ai, j,k = r2j,k − r2i,k − r2i, j , we

obtain the compact form

fi, j =
n∑

k=1,k �=i

mk Si,k Ai, j,k = 0.

Gareth Roberts has observed that these equations follow from the developments given
in Albouy and Chenciner (1997); they are sometimes referred to as the ‘asymmetric
Albouy–Chenciner equations.’

If we combine fi, j and f j,i , we obtain n(n − 1)/2 equations

gi, j = fi, j + f j,i =
n∑

k=1,k �=i, j

mk(Si,k Ai, j,k + S j,k A j,i,k) = 0.

These are the equations presented as the Albouy–Chenciner equations in Hampton
and Moeckel (2005).

By taking the wedge product instead of the inner product, we obtain a different set
of equations referred to as the Laura–Andoyer equations (Laura 1905; Andoyer 1906)

Li, j :=
∑

k �=i, j

mk(Ri,k − R j,k)�i, j,k = 0 (3)

where �i, j,k is twice the oriented area of the triangle (qi , q j , qk), i.e., (qi − q j ) ∧
(qi − qk), qi ∈ R

2 and Ri, j = r−A
i, j = (|qi − q j |)−A. Sometimes the �i, j,k will be

replaced by the non-negative Di, j,k = |�i, j,k | in order to make the sign of the terms
in our equations more apparent. When explicit coordinates are needed, qi = (xi , yi ).

We define an N -body configuration to be an equilateral chain if at least N − 1
consecutive distances involving all of the points are equal;wewill choose the particular
convention with

r1,2 = r2,3 = . . . = rN−2,N−1 = rN−1,N
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Fig. 1 A five-body equilateral cyclic configuration with the labeling convention used in this paper

Similarly, an equilateral cyclic configuration has a N equal distances in a complete
cycle, and we will choose our indexing so that

r1,2 = r2,3 = · · · = r1,N

An example of such a configuration is shown in Fig. 1.
The five-body cyclic configurations generalize the rhomboidal configurations of the

four-body problem which have been well-studied in both the Newtonian and vortex
cases (Long and Sun 2002; Perez-Chavela and Santoprete 2007; Hampton et al. 2014;
Leandro 2019; Oliveira and Vidal 2020). The five-body configurations of a rhombus
with a central mass are another interesting and well-studied extension, which contain
continua of central configurations if a negative central mass is allowed (Roberts 1999;
Gidea and Llibre 2010; Albouy and Kaloshin 2012; Cornelio et al. 2021).

The Laura–Andoyer equations for the equilateral pentagon case fall into two sets
of five; in the first of these sets, each equation only involves two of the masses:

m4�1,3,4(R1,4 − R1,2) + m5�1,3,5(R1,2 − R3,5) = 0,

m1�1,2,4(R1,4 − R1,2) + m5�2,4,5(R1,2 − R2,5) = 0,

m3�2,3,5(R3,5 − R1,2) + m4�2,4,5(R1,2 − R2,4) = 0,

m1�1,3,5(R1,3 − R1,2) + m2�2,3,5(R1,2 − R2,5) = 0,

m2�1,2,4(R2,4 − R1,2) + m3�1,3,4(R1,2 − R1,3) = 0, (4)

while in the second set, each equation involves three of the masses:

m3�1,2,3(R1,3 − R1,2) + m4�1,2,4(R1,4 − R2,4) + m5�1,2,5(R1,2 − R2,5) = 0,

m2�1,2,5(R2,5 − R1,2) + m3�1,3,5(R3,5 − R1,3) + m4�1,4,5(R1,2 − R1,4) = 0,

m1�1,2,3(R1,2 − R1,3) + m4�2,3,4(R2,4 − R1,2) + m5�2,3,5(R2,5 − R3,5) = 0,
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m1�1,3,4(R1,3 − R1,4) + m2�2,3,4(R1,2 − R2,4) + m5�3,4,5(R3,5 − R1,2) = 0,

m1�1,4,5(R1,4 − R1,2) + m2�2,4,5(R2,4 − R2,5) + m3�3,4,5(R1,2 − R3,5) = 0,

If we normalize the configurations by choosing q1 = (−1/2, 0) and q2 = (1/2, 0)
(so r1,2 = 1), then the �i, j,k are

�1,2,3 = y3, �1,2,4 = y4, �1,2,5 = y5,

�1,3,4 = −x4y3 + x3y4 + 1

2
(y4 − y3),

�1,3,5 = −x5y3 + x3y5 + 1

2
(y5 − y3),

�1,4,5 = −x5y4 + x4y5 + 1

2
(y5 − y4),

�2,3,4 = −x4y3 + x3y4 + 1

2
(y3 − y4),

�2,3,5 = −x5y3 + x3y5 + 1

2
(y3 − y5),

�2,4,5 = −x5y4 + x4y5 + 1

2
(y4 − y5),

�3,4,5 = −x4y3 + x5y3 + x3y4 − x5y4 − x3y5 + x4y5.

3 Finiteness Results

To study the finiteness of the planar equilateral configurations, we use the asymmetric
Albouy–Chenciner equations fi, j = 0 and the Cayley–Menger determinants for all
four-point subconfigurations

Ci, j,k,l = det

⎛

⎜⎜⎜⎜⎜⎝

0 1 1 1 1
1 0 r2i, j r2i,k r2i,l
1 r2i, j 0 r2j,k r2j,l
1 r2i,k r2j,k 0 r2k,l
1 r2i,l r2j,l r2k,l 0

⎞

⎟⎟⎟⎟⎟⎠
= 0 (5)

(with distinct i , j , k, and l).
Our strategy uses what is now mostly referred to as tropical geometric techniques,

or sometimes as BKK (Bernshtein, Khovanskii, and Kushnirenko) theory in our con-
text (Bernshtein 1975; Kushnirenko 1976; Khovanskii 1978). The first application of
these techniques to celestial mechanics problems was pioneered by Richard Moeckel
(Hampton and Moeckel 2005; Moeckel 2008). It has been shown to be a powerful
technique for finiteness problems, and to a lesser extent for enumeration of central
configurations. Subsequent work using these ideas include (Hampton and Moeckel
2009; Hampton 2010; Hampton and Jensen 2015; Kulevich et al. 2009). The work of
Albouy and Kaloshin (2012) on the Newtonian four- and five-body planar central con-
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figurations uses related ideas although not presented within the framework of tropical
geometry.

Here, we follow a very similar procedure to that described in (Hampton and Jensen
2011) to study the question of finiteness of the five-body equilateral central con-
figurations. The general strategy is to convert the system of equations for central
configurations into a polynomial system, and study the behavior of the resulting alge-
braic variety in (C∗)m as some subset of the m variables approach 0 or ∞. Much of
this analysis can be done using the Newton polytopes of the polynomials, which are
much simpler than the algebraic varieties themselves. If we have a polynomial

p =
∑

v∈S
avx

v

where the av are nonzero coefficients, the xv = ∏
xvi
i , and S is a finite subset of Zm≥0,

then the Newton polytope N (p) of p is defined as the convex hull of the exponent
vectors v. A vectorw induces an initial form inw(p) of a polynomial, which is the sum
of the terms avxv in p which attain the maximum value of w · v. The tropical variety
of p is defined to be the set of vectors w ∈ R

n such that inw(p) is not monomial. For
a system of polynomials {pi } the tropical prevariety is defined to be the intersection
of the tropical varieties T (pi ). If we can show that the tropical prevariety is trivial
(consisting of only the zero vector), then there are only finitely many solutions to the
polynomial system.

With the assistance of the software Sage (2020), Singular Decker et al. (2021), and
Gfan Jensen (2011) we find relatively easily that there are finitely many equilateral
central configurations for A = 2 and A = 3, for any positive masses. The tropical
prevariety of the system is much simpler in the vortex case A = 2, having only 22
generating rays compared to 37 in the Newtonian case. In fact, the Newtonian case
generalizes for potential exponents greater than 3 as well.

Because Gfan cannot currently compute a prevariety for variable exponents, we
used a slight variation of the Albouy–Chenciner equations to compute and to analyze
the initial form systems for rational exponents A > 2. We found it was helpful to
introduce the variables Qi, j = r−A+2

i, j = r−B
i, j , where B = A − 2, since the quantity

A − 2 appears so often. With this notation,

fi, j =
n∑

k=1

mkSi,k Ai, j,k =
n∑

k=1

mk(Qi, j r
−2
i, j − λ̃)Ai, j,k

We used Gfan to compute the tropical prevariety of these equations with the nor-
malization λ̃ = 1, and cleared denominators to obtain a polynomial system in ri, j
and Qi, j , combined with the four-point Cayley–Menger determinants. We denote the
polynomial versions of the fi, j by pi, j .

For rational A > 2, the rays of the tropical prevariety fall into nine equivalence
classes under the action of the cyclic group C5 on the indices of the ri, j . Since we
have chosen the equilateral configurations to have ri, j = ri+1, j+1, this action fixes
our first coordinate ri, j and cyclically permutes the remaining five distances. In the
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Table 1 Representative rays of
the tropical prevariety of the
asymmetric Albouy–Chenciner
equations and Cayley–Menger
determinants

Label Ray representative Multiplicity

h1 (−1, −1,−1,−1,−1,−1) 1

h2 (1, 1, 1, 1, 1, 1) 1

h3 (0, 1, 1, 1, 1, 1) 1

h4 (0, 0, 1, 1, 1, 1) 5

h5 (1, 0, 1, 1, 1, 1) 5

h6 (1, 0, 1, 0, 1, 1) 5

h7 (B, −2, B, −2, B, B) 5

h8 (B, −2, B, 0, B, B) 10

h9 (B, −2, B, B, B, B) 5

table below, the coordinate exponents are in the order (r1,2, r1,3, r1,4, r2,4, r2,5, r3,5).
Six of these rays are independent of A (Table 1).

Because of the balance condition for tropical varieties (Maclagan and Sturmfels
2015), we can restrict our analysis to cones that intersect the half-space containing
exponent vectors with a non-negative sum. This excludes the first ray in our list. Again
after reducing by the C5 symmetry, we have a set of 22 representative cones (Table 2).

Remarkably, for each cone in the tropical prevariety, the initial form polynomials
factor enough that we can compute the elimination ideal of the initial form system
in the ring Q[m1,m2,m3,m4,m5] (using Singular within Sage), without the need to
specialize to a particular value of B (apart from the condition that B > 0, i.e., A > 2).
To rule out a nontrivial (i.e., nonmonomial) initial form ideal, we only need to assume
that no subset of the masses has a vanishing sum, including the total mass.

As an example of this analysis, we will consider the initial forms induced by weight
vectors in cone C22. This is one of the simplest cases—since the higher-dimensional
cones induce sparser initial forms, they are usually easier to analyze. For the coneC22,
wedonot evenneedmost of our equations; out of thefiveCayley–Menger determinants
Ci, j,k,l and 20 asymmetric Albouy–Chenciner equations fi, j it is sufficient to use the
six polynomials C1,2,3,4, C2,3,4,5, C1,3,4,5, and p2,4, p2,5 and p4,5. For any w ∈ C22,
the initial forms for those six polynomials are

inw(C1,2,3,4) = r21,2(r
2
1,2 − r21,4)

2,

inw(C2,3,4,5) = r21,2(r
2
1,2 − r22,5)

2,

inw(C1,3,4,5) = r61,2 − 3r21,2r
2
1,4r

2
3,5 + r41,4r

2
3,5 + r21,4r

4
3,5,

inw(p2,4) = r2B+2
1,2 r A1,3r

A
1,4(r

2
1,2m2 − m4(r

2
1,2 − r21,4) + m5(r

2
2,5 − 2r21,2)),

inw(p2,5) = r2A1,2r
B
1,3r

A
1,3(m4(r

2
1,2 − r21,4) + m5(r

2
3,5 − r21,2)),

inw(p4,5) = r2B+2
1,2 r A2,4r

A
2,5(−2r21,2(m1 + m3) + m5(−r21,2 − r22,5 + r23,5)).

If we discard common monomial factors and eliminate the ri, j from the ideal
generated by these six polynomials, we are left with the sum of the massesm1 +m2 +
m3 + m4 + m5. Fortunately, this example is typical of the systems from all of the
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Table 2 Representative cones of the tropical prevariety of the asymmetric Albouy–Chenciner equations
and Cayley–Menger determinants in the non-negative sum half-space of weights

Label Representative cone rays

C1 {(0, 0, 1, 1, 1, 1)}
C2 {(0, 1, 1, 1, 1, 1)}
C3 {(1, 0, 1, 0, 1, 1)}
C4 {(1, 0, 1, 1, 1, 1)}
C5 {(1, 1, 1, 1, 1, 1)}
C6 {(B, −2, B, −2, B, B)}
C7 {(B, −2, B, 0, B, B)}
C8 {(B, −2, B, B, 0, B)}
C9 {(B, −2, B, B, B, B)}
C10 {(0, 0, 1, 1, 1, 1), (0, 1, 1, 0, 1, 1)}
C11 {(0, 0, 1, 1, 1, 1), (0, 1, 1, 1, 0, 1)}
C12 {(0, 0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1)}
C13 {(0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)}
C14 {(0, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)}
C15 {(1, 0, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)}
C16 {(1, 0, 1, 0, 1, 1), (B, −2, B, 0, B, B)}
C17 {(1, 0, 1, 0, 1, 1), (B, 0, B,−2, B, B)}
C18 {(1, 0, 1, 1, 1, 1), (B, −2, B, B, B, B)}
C19 {(B, −2, B, −2, B, B), (B, −2, B, 0, B, B)}
C20 {(B, −2, B, −2, B, B), (B, 0, B, −2, B, B)}
C21 {(0, 0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)}
C22 {(1, 0, 1, 0, 1, 1), (B, −2, B, −2, B, B),

(B, −2, B, 0, B, B), (B, 0, B, −2, B, B)}

cones, in that most or all of the dependence on the exponent B in the initial forms
appears as a common factor.

It seems possible that this formulation of the equations with the Qi, j may be useful
in studying central configurations in other contexts.

We can include the case of rational A in this result, since if A = p/q, then we can
use the polynomial conditions Qq

i, j r
p
i, j − r2qi, j = 0 to define the Qi, j .

Altogether this gives a computer-assisted proof of the following result:

Theorem 1 For nonzero masses with nonzero subset sums (i.e., mi + m j �= 0, mi +
m j + mk �= 0, mi + m j + mk + ml �= 0, m1 + m2 + m3 + m4 + m5 �= 0), there
are finitely many planar equilateral five-body central configurations for any rational
potential exponent A ≥ 2.

This result strongly suggests the conjecture that there are finitely many planar
equilateral five-body central configurations for any real A ≥ 2, but the proof of that
would require different methods.
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4 The Symmetric Case

In this section, we impose the further restrictions of an axis of symmetry r1,3 = r2,5,
r1,5 = r2,3, and r1,4 = r2,4.

In addition to normalizing the size of the configurationwith r1,2 = 1, we can choose
Cartesian coordinates q1 = (−1/2, 0), q2 = (1/2, 0), q3 = (x3, y3), q4 = (0, y4),
and q5 = (−x3, y3). The equilateral constraints in these coordinates become:

4x23 − 4x3 + 4y23 − 3 = 0

x23 + y23 − 2y3y4 + y24 − 1 = 0

We can parameterize the configurations by y4, in terms of which

y3 =
8 y34 + 2 y4 ±

√
−16 y44 + 56 y24 + 15

4
(
4 y24 + 1

)

x3 =
4 y24 + 1 ± 2 y4

√
−16 y44 + 56 y24 + 15

4
(
4 y24 + 1

)

Note that the choices of sign must be the same, giving us two curves of configurations.
We will refer to the positive choice of sign as branch A, and the other as branch B.

The wedge products �i, j,k in these coordinates are

�1,2,3 = y3,

�1,2,4 = y4,

�1,3,4 = x3y4 + (y4 − y3)/2,

�1,3,5 = 2y3x3,

�1,4,5 = x3y4 − (y4 − y3)/2,

�3,4,5 = 2x3(y4 − y3).

These configurations are shown in Fig. 2.
For the vortex case A = 2, it is possible to compute a Groebner basis of the system

used in the finiteness proof. This basis shows there are only two possible symmetric
equilateral configurations: the regular pentagonwith equalmasses, and a configuration
(using normalized masses m1 = m2 = 1) with m4 satisfying

64m9
4 − 752m8

4 + 2316m7
4 − 109m6

4 − 2830m5
4 + 45m4

4 + 1362m3
4

+ 215m2
4 − 149m4 − 17 = 0

which has a single positive root at m4 ≈ 0.34199, and then there is a unique choice
for m3 = m5 ≈ 2.32. This configuration is shown in Fig. 3.

Wewere also able to compute aGroebner basis for A = 4,with themass polynomial
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Fig. 2 Some examples of normalized symmetric equilateral pentagons. i BranchA is in blue, and ii branch
B in red (Color figure online)

12288m16
4 − 232064m15

4 + 636883m14
4 + 5616221m13

4 + 2342977m12
4 − 15626678m11

4

− 6546497m10
4 + 17143788m9

4 − 1407668m8
4 − 5326884m7

4 + 456601m6
4 + 2374416m5

4

− 239673m4
4 − 387130m3

4 − 33431m2
4 + 25519m4 + 957 = 0

The Laura–Andoyer equations for the symmetric case are

L1,3 = m3(1 − R3,5)�1,3,5 + m4(R1,4 − 1)�1,3,4 = 0

L1,4 = m1(1 − R1,4)�1,2,4 + m3(R1,3 − 1)�1,3,4 = 0

L1,5 = m1(1 − R1,3)�1,2,3 + m3(R1,3 − R3,5)�1,3,5 + m4(R1,4 − 1)�1,4,5 = 0

L3,4 = m1
[
(R1,3 − R1,4)�1,3,4 + (1 − R1,4)�2,3,4

] + m3(R3,5 − 1)�3,4,5 = 0

We can highlight the linearity of these equations in the masses by forming the mass
coefficient matrix:

⎛

⎜⎜⎝

0 (1 − R3,5)�1,3,5 (R1,4 − 1)�1,3,4
(1 − R1,4)�1,2,4 (R1,3 − 1)�1,3,4 0
(1 − R1,3)�1,2,3 (R1,3 − R3,5)�1,3,5 (R1,4 − 1)�1,4,5

(R1,3 − R1,4)�1,3,4 + (1 − R1,4)�1,4,5 (R3,5 − 1)�3,4,5 0

⎞

⎟⎟⎠
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Fig. 3 Symmetric vortex
(A = 2) central configuration

1 2

3

4

5

We can row-reduce this a little to get
⎛

⎜⎜⎜⎝

0 (1 − R3,5)�1,3,5 (R1,4 − 1)�1,3,4

(1 − R1,4)�1,2,4 (R1,3 − 1)�1,3,4 0

(1 − R1,3)�1,2,3

[
(R1,3 − R3,5) − (1 − R3,5)

�1,4,5
�1,3,4

]
�1,3,5 0

(R1,3 − R1,4)�1,3,4 + (1 − R1,4)�1,4,5 (R3,5 − 1)�3,4,5 0

⎞

⎟⎟⎟⎠

(6)

Thismatrixmust have a kernel vector ofmasses in the positive orthant. This imposes
many constraints. To simplify the analysis of these constraints, we assume (without
loss of generality) that y4 ≥ 0. This convention means that�1,2,4 ≥ 0. It is immediate
from equation L1,4 that y4 cannot be zero, so we can assume that �1,2,4 is strictly
positive.

In terms of the signs of the�i, j,k and themagnitude of themutual distances relative
to r1,2, there are five cases for the branch A configurations. Representatives of these
are shown in Fig. 4.

All of the branch A configurations have �1,2,3 > 0, �1,2,4 > 0, �1,3,5 > 0,

�1,4,5 > 0, and r1,3 >
√
6
2 > 1. The distinguishing geometric properties of the

branch A configurations are:

A1) Concave, �1,3,4 < 0, �3,4,5 < 0, r1,4 < 1, r3,5 < 1.
A2) Concave, �1,3,4 < 0, �3,4,5 < 0, r1,4 < 1, r3,5 > 1.
A3) Concave, �1,3,4 > 0, �3,4,5 < 0, r1,4 < 1, r3,5 > 1.
A4) Convex, �1,3,4 > 0, �3,4,5 > 0, r1,4 > 1, r3,5 > 1.
A5) Convex, �1,3,4 > 0, �3,4,5 > 0, r1,4 > 1, r3,5 > 1.

Theorem 2 The only possible branch A central configurations are of type A2 or A4.
There is a unique type A2 central configuration for all A ≥ 2.
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Fig. 4 Sign type representatives of A branch configurations

Proof For type A1 configurations, we can immediately verify that L1,3 < 0, so no
such central configurations are possible. This is also true for configurations on the
border between A1 and A2 with r3,5 = 1.

The type A2 configurations contain an interesting central configuration.
For the mass coefficient matrix (6) to have nonzero mass solutions, the following

minor must vanish:

F(y4) = det

(
(1 − R1,4)�1,2,4 (R1,3 − 1)�1,3,4

(R1,3 − R1,4)�1,3,4 + (1 − R1,4)�1,4,5 (R3,5 − 1)�3,4,5

)

= (1 − R1,4)(R3,5 − 1)�1,2,4�3,4,5

+ (1 − R1,3)�1,3,4((R1,3 − R1,4)�1,3,4 + (1 − R1,4)�1,4,5) = 0

We can prove the existence of a type A2 central configuration for any A ≥ 2
by examining the sign of F at the regional endpoints. At the lower endpoint, where

y4 = 2−√
3

2 , the points 1,2,3, and 5 form a square, with r3,5 = 1, r1,4 =
√
2 − √

3,

�1,3,4 = 1−√
3

2 < 0, and �1,4,5 = 1
2 . Since R3,5 = 1, the first portion of F is

zero, which makes it elementary to check the sign of the remaining terms and see that

F( 2−
√
3

2 ) > 0.

At the other endpoint, y4 =
√

5−2
√
5

2 , and the points 1,4, and 3 are collinear (as
are points 2, 4, and 5) so �1,3,4 = 0. Only the first portion of F is nonzero for this

configuration, and it is straightforward to see that F(

√
5−2

√
5

2 ) < 0.
We can prove the uniqueness of the type A2 central configuration for each A ≥ 2

using interval arithmetic, simply evaluating F and dF
dy4

for intervals of y4 and A. The
lack of any common zeros shows that no bifurcations occur, and it suffices to check
the uniqueness for A = 2, for which we have a Groebner basis.

For typeA3 configurations, and the boundary case with D1,3,4 = 0, it is immediate
that L1,3 > 0, so no such central configurations are possible.

TypeA4 configurations include the regular pentagon, which is a central configura-
tion for equal masses for all potential exponents A. Remarkably, there is a bifurcation
at Ac ≈ 3.12036856. It appears that for A ∈ [2, Ac], the regular pentagon is the only
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Fig. 5 Sign-type representatives of B branch configurations

central configuration of type A4, and for A > Ac, there are three type A4 central
configurations (including the regular pentagon). For large A, these two new central
configurations converge to the A3/A4 boundary case for which D3,4,5 = 0, and the

house-like configuration with r3,5 = 1 and y4 = 1+
√
3
2 . With interval arithmetic, we

can prove the uniqueness of the regular pentagon for A ∈ [2, 3], but we do not have
an exact value for the bifurcation value Ac.

For typeA5 configurations, once again L1,3 < 0, and no such central configurations
are possible. 
�

For the branch B configurations, there are three subcases of convex configurations
and two concave, along with some exceptional cases on the borders between them.
For all branch B configurations, �1,4,5 < 0 and r3,5 < 1. The subcases are:

B1) Convex, �1,2,3 < 0, �1,3,4 > 0, �1,3,5 < 0, �3,4,5 > 0, r1,3 > 1, and r1,4 < 1.
B2) Convex, �1,2,3 < 0, �1,3,4 > 0, �1,3,5 > 0, �3,4,5 < 0, r1,3 < 1, and r1,4 < 1.
B3) Convex, �1,2,3 > 0, �1,3,4 < 0, �1,3,5 < 0, �3,4,5 < 0, r1,3 < 1, and r1,4 > 1.
B4) Concave, �1,2,3 > 0, �1,3,4 ≥ 0, �1,3,5 < 0, �3,4,5 < 0, r1,3 < 1, and

r1,4 > 1.
B5) Concave,�1,2,3 > 0,�1,3,4 > 0,�1,3,5 > 0,�3,4,5 > 0, r1,3 > 1, and r1,4 > 1

(Fig. 5).

Theorem 3 The only possible branch B central configuration is the regular pentagon
for all A ≥ 2 (type B2).
Proof The case B1 has no solutions with positive masses, as both terms in equation
L1,3 are positive.

The case B2 contains the regular pentagon. Using interval arithmetic with the
function F(y4) and its derivative, we can verify that there are no other type B2 central
configurations for all A ≥ 2.

The case B3 has no solutions with positive masses, as both terms in equation L1,3
are positive.

The case B4 has no solutions with positive masses, as both terms in equation L1,4
are positive.
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The case B5 has no solutions with positive masses, as both terms in equation L1,3
are negative. 
�

5 General Planar Equilateral Pentagons

We know that two diagonals are always greater than the four exterior edges for planar
convex four-body central configurations. For strictly convex planar five-body problem,
Chen and Hsiao (2018) showed that at least two interior edges are less than the exterior
edges if the five bodies form a central configuration. They also showed numerical
examples of strictly convex central configurations with five bodies that have either
one or two interior edges less than the exterior edges. However, for convex planar
equilateral five-body central configurations, we have the following result:

Lemma 1 For planar convex equilateral five-body central configurations, all interior
edges are greater than the exterior edges.

Proof We consider the Laura–Andoyer equations involving only two of the masses
(equations (4)). For the convex case, we know that �1,2,3,�1,2,4,�1,2,5,�1,3,4,

�1,3,5,�1,4,5,�2,3,4,�2,3,5 and �3,4,5 are all positive.
There is at least one interior edge greater than the exterior edges for any planar

equilateral five-body configuration. Without loss of generality, let r1,4 > r1,2, and
then R1,4 < R1,2 and R1,4 − R1,2 < 0 . From the first equation of (4), we must have
R1,2 − R3,5 > 0. So R1,2 > R3,5 and r3,5 > r1,2. Similarly, from the third equation,
we have r2,4 > r1,2; from the second equation above, we get r1,3 > r1,2; from the
fifth equation, we obtain r2,5 > r1,2. Thus, we have

r1,3, r1,4, r2,4, r2,5, r3,5 > r1,2.


�
The five simpler Laura–Andoyer equations (4) can be used to further restrict the

possible configurations of planar equilateral five-body central configurations.
The allowed regions fall into three classes:

Region I: defined by r1,2 < ri, j and containing the regular pentagon (in 12345
order)

Region II: defined by r1,2 > ri, j and containing the regular pentagon (in 13524
order)

Region III: five disjoint regions, which are equivalent under permutations. These are
concave configurations. For instance, the regionwithmass 5 in the interior
is defined by θ1,2,3+θ2,3,4 ≤ 3π , θ1,2,3 ≤ 5π/3, θ2,3,4 ≤ 5π/3,�1,3,5 ≥
0, and �2,4,5 ≥ 0. We label these with a subscript indicating which of the
five points is inside the convex hull of the other four, i.e., III1, . . . , III5.

These regions are shown in Fig. 6.
Fromour analysis and the closely related theorems inAlvarez-Ramírez et al. (2022),

the only positive mass symmetric planar equilateral cyclic five-body central configu-
rations in the Newtonian case are the regular pentagon and star with equal masses and
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I

II

III5

III3

III1

III2III4

Fig. 6 Regions of allowable angles θ1,2 and θ2,3 for positivemass equilateral central configurations (white).
The more heavily shaded central oval consists of angles that are not geometrically realizable. The regular
pentagon configurations are indicated as icons in green (in Region II) and red (in Region I) (Color figure
online)

the symmetric configurations discussed above. The proof in Alvarez-Ramírez et al.
(2022) does not seem to cover the case of the regular star (in our B2-type config-
urations), whose uniqueness within the B2-type configurations we validated using
interval arithmetic.

If the symmetry condition is removed, it seems from numerical investigations that
there are no other equilateral cyclic central configurations, leading us to conjecture:

Conjecture 1 The only positive mass planar equilateral cyclic five-body central con-
figurations in the Newtonian case are the regular pentagon and star with equal masses
and the concave symmetric configuration discussed above.
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