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Abstract
We present a geometric variational discretization of nonlinear elasticity in 2D and
3D in the Lagrangian description. A main step in our construction is the definition
of discrete deformation gradients and discrete Cauchy–Green deformation tensors,
which allows for the development of a general discrete geometric setting for frame
indifferent isotropic hyperelasticmodels. The resulting discrete framework is in perfect
adequacy with the multisymplectic discretization of fluids proposed earlier by the
authors. Thanks to the unified discrete setting, a geometric variational discretization
can be developed for the coupled dynamics of a fluid impacting and flowing on the
surface of an hyperelastic body. The variational treatment allows for a natural inclusion
of incompressibility and impenetrability constraints via appropriate penalty terms.We
test the resulting integrators in 2D and 3D with the case of a barotropic fluid flowing
on incompressible rubber-like nonlinear models.
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1 Introduction

We present a discrete variational formulation of hyperelasticity in the Lagrangian
description. This formulation is associated to the multisymplectic geometric formu-
lation of continuum mechanics which underlies both fluid dynamics and nonlinear
elasticity. From the discrete variational setting, a structure preserving numerical
integrator is derived for hyperelastic solids, which is spacetime multisymplectic, sym-
plectic in time, preserves exactly the momenta associated to symmetries, and nearly
preserves total energy. Thanks to its variational character, the numerical scheme can
naturally incorporate incompressibility constraints. Being in perfect adequacywith the
multisymplectic discretization of fluids proposed earlier inDemoures andGay-Balmaz
(2021), the discrete framework can be extended to treat fluid-structure interaction
dynamics by the inclusion of appropriate impenetrability constraints in the variational
formulation.

The developments in this paper are founded on the multisymplectic geometric for-
mulation of continuum mechanics, which is the spacetime version of the symplectic
formulation of classical mechanics. This geometric setting allows to intrinsically for-
mulate the multisymplectic form formula and the covariant Noether theorem, which
are the field theoretic analogue to the symplecticity of the flow and to the conserva-
tion of momentum maps in classical mechanics. The more usual infinite dimensional
dynamical system formulation of continuum mechanics is recovered by space and
time splitting, which also has a discrete analogue.

Among the main concepts in this paper are the discrete deformation gradients,
the discrete Cauchy–Green deformation tensors, and the discrete Jacobians. These
objects, directly defined from the spacetime discrete configuration map of the body,
allow a systematic treatment of various models of hyperelasticity via the appropriate
definition of the discrete stored energy functions. The discrete variational geometric
setting also systematically guides the choice of the appropriate degree of freedomof the
discrete objects, for instance, at each spatial node there is one discrete Cauchy–Green
tensor associated to each of the cells sharing this node. One advantage of the discrete
variational framework is the possibility to include equality and inequality constraints
via appropriate modification of the discrete action functional. This is developed in
this paper for the treatment of fluid–structure interaction involving a barotropic fluid
and an incompressible rubber-like solid. Such a coupling can be realized thanks to the
unified geometric framework underlying both the solid and fluid components.

Geometric methods for discrete elasticity have been the subject of various devel-
opments. We can mention (Ariza and Ortiz 2005) concerning crystal elasticity
discretization, where the discrete notions of stress and strain in lattices are introduced,
and Yavari (2008), Angoshtari and Yavari (2013), concerning geometric discretization
of elasticity from the point of view of discrete exterior calculus.

Several points of view have been developed to treat fluid–structure interaction
problems, see (van Loon et al. 2007), Lefrançois and Boufflet (2010), Hou et al.
(2012) for the comparison of various fluid–structure interaction methods. We can
mention the immersed boundary method (see (Peskin and McQueen 1989), Peskin
(2002)) where the interactions between the solid boundaries and the fluid are taken
into account by means of local body forces, and the fictitious domain method (see
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(Glowinski et al. 1997)) where Lagrange multipliers are used instead of calculating
the interaction forces. Other point of views to couple fluids and elastic bodies can be
obtained, for example, via the arbitrary Lagrangian Eulerian method, see (Hirt et al.
1997), techniques based on the inverse motion function, see (Cottet et al. 2008) and
Kamrin et al. (2012), or the smoothed particle hydrodynamics method, see (Khayyer
et al. 2018), and references therein.

Our approach is based on the geometric formulation of continuum mechanics seen
as a particular classical field theory, see (Gotay et al. 1997) and Marsden et al. (2001).
The discrete formulation we develop follows the variational multisymplectic dis-
cretization initially developed in Marsden et al. (1998); Lew et al. (2003). Such an
approach has been exploited for instance towards its application to Lie group valued
field theories for the treatment of geometrically exact (Cosserat) rods (Demoures et al.
2014b, a) and towards its application to nonsmooth mechanics (Demoures et al. 2016,
2017).

The organization of the paper is as follows. Section 2 summarizes briefly the
Lagrangian variational setting for elasticity on the continuous side. The elements
of the constitutive continuous theory of elasticity necessary for our development are
described in rather general terms. Some aspects of the geometric formulation of field
theory are also given, including the Noether theorem. In Sects. 3 and 4 we describe,
in 2D and 3D, the discrete variational setting for elasticity. We define the discrete
deformation gradients, the discrete Cauchy–Green deformation tensors, as well as
the discrete Jacobians, in a parallel way with the continuous setting. Based on these
definitions, a discrete Lagrangian is constructed for frame indifferent isotropic mate-
rials. It is then shown how this approach can be naturally coupled with the variational
discretization of barotropic fluids thanks to the introduction of appropriate penalty
functions associated to the impenetrability constraints. Illustrative numerical exam-
ples are given in 2D and 3D for a barotropic fluid flowing into an hyperelastic container
described with the St. Venant–Kirchhoff or theMooney–Rivlin model. A convergence
test is presented with the method of manufactured solutions.

2 Elasticity and Field Theory

In this section we briefly review the variational geometric setting for elasticity in the
Lagrangian (or material) description by focusing on isotropic hyperelastic materials.
The description is given in terms of the (right) Cauchy–Green tensor, which plays
a central role in this paper. The formulation is then recasted in a multisymplectic
variational setting, which allows to formulate intrinsically the Hamilton principle,
the multisymplectic property of the solutions, and the covariant Noether theorem
associated to symmetries. This gives the geometric framework to be discretized in a
structure preserving way later.
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2.1 Description of Hyperelastic Bodies

We assume that the elastic body is represented by a compact manifold B ⊂ R
3 with

piecewise smooth boundary, and moves in the ambient space M = R
3. The motion

of the body is described by a time-dependent configuration map ϕ : R × B → M
which indicates the location m = ϕ(t, X) ∈ M at time t of the material point X ∈ B.
The deformation gradient is denoted F(t, X) = ∇ϕ(t, X), given in coordinates by
Fa

i = ϕa
,i , with Xi , i = 1, 2, 3 the Cartesian coordinates on B and ma , a = 1, 2, 3

the Cartesian coordinates on M. We assume that the configuration map is regular
enough so that all the computations below are valid.

A material is called hyperelastic if there is a stored energy function W depending
on the points X ∈ B and the gradient deformation F(t, X) such that the first Piola–
Kirchhoff stress tensor of the body in the configuration ϕ(t, X) is P = ρ0

∂W
∂F , where

ρ0 is the mass density of the body in the Lagrangian description. Given Riemannian
metrics G and g on B and M, the stored energy function of an hyperelastic material
with configuration map ϕ : B → M (at some fixed time) takes the general form

W(X ,F(X),G(X), g(ϕ(X))).
This expression of the stored energy function explicitly written in terms of Rieman-
nian metrics allows to naturally reformulate the axiom of material frame indifference
and the isotropic property as invariances of W with respect to spatial and material
diffeomorphisms, i.e., diffeomorphisms ofM and B, Marsden and Hughes (1983).

From theaxiomofmaterial frame indifference the stored energy functiondepends on
the deformation gradient only through the Cauchy–Green deformation tensor defined
by

C = ϕ∗g, Ci j (X) = gab(ϕ(X))ϕa
,i (X)ϕb

, j (X), (1)

i.e., we haveW(X ,F(X),G(X), g(ϕ(X))) = W (X ,G(X),C(X)), for some function
W , where ϕ∗ denotes the pull-back of a tensor field by ϕ.

Thematerial (or Lagrangian) strain tensor E and the second Piola–Kirchhoff stress
tensor S are defined respectively by

E(C) = 1

2
(C − G), Ei j = 1

2

(
Ci j − Gi j

)
, (2)

S(C) = 2ρ0
∂W

∂C
, Si j = 2ρ0

∂W

∂Ci j
. (3)

The elasticity tensor on the reference configuration is defined by

C = ∂S
∂C

, Ci jkl = ∂Si j

∂Ckl
= 2ρ0

∂2W

∂Ci j∂Ckl
. (4)

For simplicity, we will consider the Euclidean case, where Gi j = δi j and gab = δab
in Cartesian coordinates, in which case we can write

C = FTF and Ci j = ϕa
,iϕ

a
, j = 〈

ϕ,i , ϕ, j
〉
,

where 〈·, ·〉 denotes the Euclidean inner product on R
n .
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2.2 Euler–Lagrange Equations for an Hyperelastic Body

The Lagrangian density of an hyperelastic body evaluated on a configuration map
ϕ(t, X) is

L(ϕ, ϕ̇,∇ϕ) = L(ϕ, ϕ̇,∇ϕ)d3X ∧ dt

=
[1
2
ρ0 〈ϕ̇, ϕ̇〉 − ρ0W (G,C) − ρ0�(ϕ)

]
d3X ∧ dt,

(5)

with � a potential energy term such as the gravitational potential. Note that we didn’t
write explicitly the dependence on X and t . Hamilton’s principle reads

δ

∫ T

0

∫

B
L(ϕ, ϕ̇,∇ϕ)d3X ∧ dt = 0,

for variations δϕ of the body configuration map with δϕ = 0 at t = 0, T . It yields the
Euler–Lagrange equations

d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
= −DIV

∂L

∂F
(6)

together with the natural boundary conditions

∂L

∂Fa
i
niδϕ

a = 0 on ∂B (7)

for the allowed variations δϕ at the boundary, with F = ∇ϕ. For the Lagrangian (5)
we compute

∂L

∂Fa
i

= −2ρ0Fa
j

∂W

∂C ji
= −Fa

jS j i i.e.
∂L

∂F
= −FS,

hence the Euler–Lagrange equations (6) for the Lagrangian (5) gives the equations of
motion for an hyperelastic body as

ρ0ϕ̈ = DIV (FS) − ρ0
∂�

∂ϕ
. (8)

In this paper we focus exclusively on the variational formulation and the equations
in the material description, see (Gay-Balmaz et al. 2012) for the variational formula-
tion in the Eulerian and convective descriptions and its relation with material frame
indifference and material covariance discussed above.

2.3 Isotropic Hyperelastic Materials

A frame indifferent hyperelastic material is isotropic if and only if the stored energy
function can bewritten asW (X ,G(X),C(X)) = �(X , λ1(X), λ2(X), λ3(X)), where
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� is a symmetric function of the principal stretches λ1, λ2, λ3
1. This is equivalent to

state that W is a function of the invariants I1, I2, I3 of C defined by2

I1(C) = Tr(C), I2(C) = 1

2

[
(I1(C))2 − Tr(C2)

]
I3(C) = det(C).

= det(C)Tr(C−1),

(9)

The derivative of the invariants with respect to C are given by

∂ I1
∂C

= G−1,
∂ I2
∂C

= I2C−1 − I3C−2,
∂ I3
∂C

= I3C−1, (10)

from which the second Piola–Kirchhoff stress tensor (3) reads

S = 2ρ0

[
∂W

∂ I1
G−1 +

(
∂W

∂ I2
I2 + ∂W

∂ I3
I3

)
C−1 − ∂W

∂ I2
I3C−2

]
. (11)

We refer to Marsden and Hughes (1983)[Sect. 3.5] for more details.
The Lagrangian density of a frame indifferent isotropic hyperelastic material is

therefore

L(ϕ, ϕ̇,∇ϕ) =
[1
2
ρ0 〈ϕ̇, ϕ̇〉 − ρ0W (I1, I2, I3) − ρ0�(ϕ)

]
d3X ∧ dt, (12)

while the equations of motion take the form

ρ0ϕ̈ = DIV

[
2ρ0F

(
∂W

∂ I1
G−1 +

(
∂W

∂ I2
I2 + ∂W

∂ I3
I3

)
C−1 − ∂W

∂ I2
I3C−2

)]
− ρ0

∂�

∂ϕ
.

(13)

Incompressible materials can be treated by inserting the constraint I3 = 1 in the
Hamilton principle as

δ

∫ T

0

∫

B
(
L(ϕ, ϕ̇,∇ϕ) + μ(I3 − 1)

)
d3X ∧ dt = 0,

where μ is a Lagrange multiplier.

Example 2.1 A well-known example of isotropic hyperelastic model is the Moonley–
Rivlin model ( Mooney (1940), Rivlin (1948, 1949,b)), which is suitable for the
description of certain incompressible rubber-like materials. Its stored energy function
is defined by the simple expression

W (I1, I2) = C1(I1 − 3) + C2(I2 − 3), (14)

1 Given the polar decomposition F = RU of the gradient deformation, the principal stretches λ1, λ2, λ3
are the eigenvalues of U. In particular λ21, λ

2
2, λ

2
3 are the eigenvalues of C = U2.

2 For simplicity we didn’t write explicitly the dependence of the invariants on G and assumed Gi j = δi j .
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with positive material constants C1,C2.

2.4 Multisymplectic Variational ContinuumMechanics

We briefly recall here the geometric variational framework of classical field theory,
as it applies to continuum mechanics (fluid and elasticity), see (Marsden et al. 2001)
and Lew et al. (2003). In Sects. 3 and 4 we shall carry out a structure preserving
discretization of this setting which allows the identification of the notion of discrete
multisymplecticity, discrete momentum map, and discrete Noether theorems.

2.4.1 Configuration Bundle, Jet Bundle, and Lagrangian Density

The geometric formulation of classical field theories starts with the identification of
the configuration bundle of the theory, denoted πY,X : Y → X . The configuration
fields ϕ of the theory are sections of this fiber bundle, i.e., they are smooth maps
ϕ : X → Y such that πY,X ◦ ϕ = idX , where idX denotes the identity map on X .

The first jet bundle of the configuration bundle πY,X : Y → X is the field theoretic
analogue of the tangent bundle of classical mechanics. It is defined as the fiber bundle
πJ 1Y,Y : J 1Y → Y whose fiber at y ∈ Y consists of linear maps γ : TxX → TyY
satisfying TπY,X ◦ γ = idTxX , where x = πY,X (y). The derivative of a field ϕ can
be regarded as a section of the fiber bundle πJ 1Y,X = πY,X ◦ πJ 1Y,Y : J 1Y → X ,
by considering its first jet extension x ∈ X → j1ϕ(x) = Txϕ ∈ J 1ϕ(x)Y , with
Txϕ : TxX → Tϕ(x)Y the tangent map of ϕ.

A Lagrangian density is a smooth bundle map L : J 1Y → �n+1X over X , where
�n+1X → X is the vector bundle of (n + 1)-forms on X , with dimX = n + 1. The
associated action functional is given by

S(ϕ) :=
∫

X
L( j1ϕ(x)), (15)

and the Euler–Lagrange equations follow from the stationary condition for δS(ϕ) = 0
for appropriate boundary conditions.

For continuum mechanics, the configuration bundle is the trivial fiber bundle

Y = M × X → X , with X = R × B,

where B is the reference configuration of the elastic body andM is the ambient space.
We have the variables x = (t, X) ∈ X and y = (x,m) = (t, X ,m) ∈ Y . A section of
this bundle is a map ϕ : X → X ×M, whose first component is idX . It is canonically
identifiedwith amapϕ : X = R×B → M referred to as the elastic body configuration
in Sect. 2.1. The first jet extension of ϕ is j1ϕ(t, X) = (ϕ(t, X), ϕ̇(t, X),∇ϕ(t, X))

and the Lagrangian density reads

L(ϕ, ϕ̇,∇ϕ) = L(ϕ, ϕ̇,∇ϕ)d3X ∧ dt .
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2.4.2 Multisymplectic Form Formula and Noether Theorem

A solution ϕ of the Euler–Lagrange equation associated to L : J 1Y → �n+1X
satisfies the multisymplectic form formula given by

∫

∂U
( j1ϕ)∗i j1V i j1W�L = 0, (16)

for all open subset U ⊂ X with piecewise smooth boundary, and for all vector fields
V ,W solutions of the first variation of the Euler–Lagrange equations atϕ, seeMarsden
et al. (1998). In this formula, �L denotes the Cartan (n + 2)-form on J 1Y associated
to L and j1V , j1W are the first jet extension of V ,W to J 1Y , see (Gotay et al. 1997).
Property (16) is an extension to field theory of the symplectic property of the solution
of the Euler–Lagrange equations of classical mechanics.

Consider the action of a Lie group G on Y , assume that this action covers a diffeo-
morphism of X , and assume that the Lagrangian density L is G-equivariant. Then a
solution ϕ of the Euler–Lagrange equation satisfies the covariant Noether theorem

∫

∂U
( j1ϕ)∗ JL(ξ) = 0, (17)

for all open subset U ⊂ X with piecewise smooth boundary and for all ξ ∈ g, the
Lie algebra of G, with JL : J 1Y → g∗ ⊗ �n J 1Y the covariant momentum map
associated to L and to the Lie group action, see (Gotay et al. 1997) for details.

The properties (16) and (17) admit discrete versions that will be considered later.

3 2D Discrete Fluid—Elastic Body Interactions

In this section we develop a multisymplectic variational discretization of two dimen-
sional hyperelasticity. A main step in our approach is the definition of the discrete
Cauchy–Green tensor associated to a discrete configuration map. We then show how
this approach can be naturally coupled with the multisymplectic discretization of
barotropic fluids. This is finally used for the development of a variational discretiza-
tion of the coupled dynamics of a barotropic fluid flowing on a hyperelastic body.

3.1 Multisymplectic Discretization and the Discrete Cauchy–Green Tensor

3.1.1 Discrete Lagrangian Setting

Consider the configuration bundle of continuum mechanics Y = X × M → X =
R × B. In this section we assume that B is a domain in R

2 and take M = R
2. To

discretize the geometric setting, one first considers a discrete parameter space Ud and
a discrete base-space configuration, which is a one-to-one map

φXd : Ud → φXd (Ud) = Xd ⊂ X

123



Journal of Nonlinear Science (2022) 32 :94 Page 9 of 42 94

whose image Xd is the discrete spacetime. The discrete fields are the sections of the
discrete configuration bundle πd : Yd = Xd × M → Xd , which can be identified
with maps ϕd : Xd → M. The discrete field and the discrete base-space configuration
can be simultaneously described by introducing the discrete configuration, which is a
map φd : Ud → Y . From φd we obtain the discrete base-space configuration and the
discrete field as φXd = πd ◦ φd and ϕd = φd ◦ φ−1

Xd
, see Fig. 1.

We choose the discrete parameter space Ud = {0, ..., j, ..., N } × Bd . Here
{0, ..., j, ..., N } describes an increasing sequence of time and Bd encodes the nodes
and simplexes of the discretization of B. Assuming for simplicity that B is a rectangle,
we consider Bd = {0, . . . , A} × {0, . . . , B} and denote ( j, a, b) ∈ Ud the element of
the discrete parameter space. The latter determines a set of parallelepipeds, denoted
�

j
a,b, defined by the following eight pairs of indices

�
j
a,b = {

( j, a, b), ( j + 1, a, b), ( j, a + 1, b), ( j, a, b + 1), ( j, a + 1, b + 1),

( j + 1, a + 1, b), ( j + 1, a, b + 1), ( j + 1, a + 1, b + 1)
}
,

(18)

with j = 0, ..., N − 1, a = 0, ..., A − 1, b = 0, ..., B − 1, see Fig. 2. We assume that
the discrete base-space configuration is of the form

φXd : Ud � ( j, a, b) → s ja,b = (t j , s ja , s jb ) ∈ Xd (19)

and denote by ϕ
j
a,b := ϕd(s

j
a,b) the value of the discrete field at s ja,b.

Denoting by U ø
d the set of all parallelepipeds in the discrete parameter space Ud ,

we write X �
d := φXd

(U �
d

)
and recall that the discrete version of the first jet bundle

is given by

J 1Yd := X �
d × M × ... × M︸ ︷︷ ︸

8 times

→ X �
d . (20)

Given a discrete field ϕd , its first jet extension is the section of (20) defined by

j1ϕd(�
j
a,b) = (

ϕ
j
a,b, ϕ

j+1
a,b , ϕ

j
a+1,b, ϕ

j+1
a+1,b, ϕ

j
a,b+1, ϕ

j+1
a,b+1, ϕ

j
a+1,b+1, ϕ

j+1
a+1,b+1

)
,

(21)

which associates to each parallelepiped, the values of the field at its nodes. Finally,
we recall that a discrete Lagrangian is a map

Ld : J 1Yd → R,

from which the discrete action functional is constructed as

Sd(ϕd) =
∑

�∈X�
d

Ld
(
j1ϕd(�)

)
.
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Fig. 1 Discrete configuration
and discrete configuration
bundle

Fig. 2 Discrete spacetime
domain Ud

3.1.2 Discrete Cauchy–Green Deformation Tensor

Given a discrete base-space configuration φXd and a discrete field ϕd , the following

four vectors F j
�;a,b ∈ R

2, � = 1, 2, 3, 4 are defined at each node ( j, a, b) ∈ Ud , see
Fig. 3 on the right:

F j
1;a,b = ϕ

j
a+1,b − ϕ

j
a,b

|s ja+1 − s ja |
and F j

2;a,b = ϕ
j
a,b+1 − ϕ

j
a,b

|s jb+1 − s jb |

F j
3;a,b = ϕ

j
a−1,b − ϕ

j
a,b

|s ja − s ja−1|
= −F j

1;a−1,b and F j
4;a,b = ϕ

j
a,b−1 − ϕ

j
a,b

|s jb − s jb−1|
= −F j

2;a,b−1.

(22)

Definition 3.1 The discrete deformation gradients of a discrete field ϕd at the par-
allelepiped �

j
a,b are the four 2 × 2 matrices F�(�

j
a,b), � = 1, 2, 3, 4, defined by

F1(�
j
a,b) =

[
F j
1;a,b F j

2;a,b

]
, F2(�

j
a,b) =

[
F j
2;a+1,b F j

3;a+1,b

]
,

F3(�
j
a,b) =

[
F j
4;a,b+1 F j

1;a,b+1

]
, F4(�

j
a,b) =

[
F j
3;a+1,b+1 F j

4;a+1,b+1

]
.

(23)

Note that the discrete deformation gradients are defined at each of the four nodes of
�

j
a,b that are associated to time t j , see Fig. 3 on the left for the ordering � = 1, 2, 3, 4

with respect to the nodes. Also, for each �, the discrete deformation gradients F�(�),
� = 1, 2, 3, 4, depend on the discrete field ϕd only through its first jet extension
j1ϕd(�) at the given �, see (21).
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Fig. 3 Discrete field φd = ϕd ◦ φXd
evaluated on �

j
a,b , �

j
a,b , �

j
a,b , �

j
a,b at time t j and the associated

vectors F�;a,b , � = 1, 2, 3, 4

It is assumed that the discrete field ϕd is such that the determinant of the discrete
deformation gradient are positive. Using Definition 3.1, the discrete Cauchy–Green
deformation tensors can be defined exactly as in the continuous case.

Definition 3.2 The discrete Cauchy–Green deformation tensors of a discrete field
ϕd at the parallelepiped �

j
a,b are the four 2 × 2 symmetric matrices

C�(�
j
a,b) = F�(�

j
a,b)

TF�(�
j
a,b), � = 1, 2, 3, 4. (24)

With the assumption on the discrete fieldmentioned above, the discrete deformation
gradients and the discrete Cauchy–Green deformation tensors are maps

F� : X �
d → GL(2), C� : X �

d → Sym+(2), � = 1, 2, 3, 4,

defined on X �
d , with Sym+(2) the set of symmetric positive definite 2 × 2 matrices.

By using the definitions (23) and (24), the discrete Cauchy–Green deformation tensors
can be explicitly written in terms of the vectors defined in (22) as follows, which is a
discrete counterpart of the continuous relation Ci j = 〈ϕ,i , ϕ, j 〉.
Proposition 3.3 Given a discrete field ϕd : Xd → M, the discrete Cauchy–Green
deformation tensors are explicitly given as

C1(�
j
a,b) =

[
〈F j

1;a,b,F
j
1;a,b〉 〈F j

1;a,b,F
j
2;a,b〉

〈F j
2;a,b,F

j
1;a,b〉 〈F j

2;a,b,F
j
2;a,b〉

]

, (25)

C2(�
j
a,b) =

[
〈F j

3;a+1,b,F
j
3;a+1,b〉 〈F j

3;a+1,b,F
j
2;a+1,b〉

〈F j
2;a+1,b,F

j
3;a+1,b〉 〈F j

2;a+1,b,F
j
2;a+1,b〉

]

,

C3(�
j
a,b) =

[
〈F j

1;a,b+1,F
j
1;a,b+1〉 〈F j

1;a,b+1,F
j
4;a,b+1〉

〈F j
4;a,b+1,F

j
1;a,b+1〉 〈F j

4;a,b+1,F
j
4;a,b+1〉

]

,
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C4(�
j
a,b) =

[
〈F j

3;a+1,b+1,F
j
3;a+1,b+1〉 〈F j

3;a+1,b+1,F
j
4;a+1,b+1〉

〈F j
4;a+1,b+1,F

j
3;a+1,b+1〉 〈F j

4;a+1,b+1,F
j
4;a+1,b+1〉

]

, (26)

in terms of the vector F j
�;a,b defined in (22).

3.1.3 Discrete Jacobian

We recall from Demoures and Gay-Balmaz (2021) that the discrete Jacobian of a dis-
crete field ϕd at the parallelepiped �

j
a,b are the four numbers J�(�

j
a,b), � = 1, 2, 3, 4,

defined by

J1(�
j
a,b) = |F j

1;a,b × F j
2;a,b|, J2(�

j
a,b) = |F j

2;a+1,b × F j
3;a+1,b|,

J3(�
j
a,b) = |F j

4;a,b+1 × F j
1;a,b+1|, J4(�

j
a,b) = |F j

3;a+1,b+1 × F j
4;a+1,b+1|.

(27)

The discrete Jacobian can be written in terms of the discrete deformation gradient
and the discrete Cauchy–Green tensors exactly as in the continuous case, namely, we
have the following relations.

Proposition 3.4 The discrete Jacobian is related to the discrete deformation gradients
and discrete Cauchy–Green tensors as follows

det
(
F�(�

j
a,b)

) = J�(�
j
a,b), det

(
C�(�

j
a,b)

) = J�(�
j
a,b)

2, (28)

for each �
j
a,b ∈ X �

d and all � = 1, 2, 3, 4.

3.2 Discrete Frame Indifferent Linear Hyperelastic Model

In the 2D case, we shall focus on the St. Venant–Kirchhoff model

ρ0W (C) = λTr(E)2 + 2μTr(E2) = ETC E, (29)

where λ and μ are the first and second Lamé coefficients and E is the material strain
tensor defined in (2) with Gi j = δi j . In the last term we rewrote the stored energy
function in a vectorial form by introducing the vector E and the symmetric matrix C
defined by

E = (E11 E22 2E12)
T ∈ R

3 and C = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 (1−ν)

2

⎤

⎦

with ν = λ
λ+2μ the Poisson ratio and E = 4μ(λ+μ)

λ+2μ the Young modulus in 2D.
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3.2.1 Discrete Stored Energy Function

The discrete stored energy function Wd : J 1Yd → R is defined in terms of the
continuous one as follows

ρ0Wd
(
j1ϕd(�)

) := ρ0

4

4∑

�=1

W
(
C�(�)

) = 1

4

4∑

�=1

E�(�)TC E�(�), (30)

with E�(�) = (E� 11(�) E� 22(�) 2E� 12(�))T. For instance, for � = 1, we have

E1(�
j
a,b) =

(1
2
(〈F1;a,b,F1;a,b〉 − 1),

1

2
(〈F2;a,b,F2;a,b〉 − 1), 〈F1;a,b,F2;a,b〉

)
.

3.2.2 Discrete Second Piola–Kirchhoff Stress

The discrete second Piola–Kirchhoff stress at time t j and spatial position �, with the
ordering � = 1 to � = 4, respectively associated to the nodes ( j, a, b), ( j, a + 1, b),
( j, a, b + 1), ( j, a + 1, b + 1), is defined as

S�(�
j
a,b) = 2ρ0

∂W

∂C

(
C�(�

j
a,b)

)
, (31)

for all � j
a,b ∈ X �

d .

3.3 2D Barotropic Fluid—Elastic Body Interactions

We describe here the discrete variational setting for the coupled dynamics of a
barotropic fluid flowing on a hyperelastic body. The Lagrangian density of a barotropic
fluid is of the form

Lf(ϕ, ϕ̇,∇ϕ) = L f(ϕ, ϕ̇,∇ϕ)d2X ∧ dt

=
[1
2
ρf
0 〈ϕ̇, ϕ̇〉 − ρf

0W
f(ρf

0, J ) − ρf
0�(ϕ)

]
d2X ∧ dt,

(32)

with ρf
0 the fluid mass density and J = det F = √

detC, where we assume Gi j =
δi j and gab = δab. Here W f(ρf

0, J ) = w(ρf
0/J ), with w(ρ) the specific internal

energy barotropic fluid. We recall that Hamilton’s principle yields the barotropic fluid
equations in the Lagrangian (or material) description as

ρf
0ϕ̈ = − ∂

∂xi
(
PW JF−1)i − ρf

0
∂�

∂ϕ
, (33)

with PW (ρf
0, J ) = −ρf

0
∂W f

∂ J (ρf
0, J ) the pressure in the material description.
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3.3.1 Discrete Lagrangians for the Fluid and the Elastic Body

For the elastic body, we consider discrete Lagrangians of the form

Le
d

(
j1ϕd(�)

) = vol(�)
(
ρe
0Kd

(
j1ϕd(�)

)− ρe
0W

e
d

(
j1ϕd(�)

)
(34)

−ρe
0�d

(
j1ϕd(�)

))
,

where vol(�) is the volume of the parallelepiped � ∈ X �
d . For simplicity, we have

assume that ρe
0 is constant in space. The discrete kinetic energy Kd : J 1Yd → R is

defined by

Kd
(
j1ϕd(�

j
a,b)

) := 1

4

a+1∑

α=a

b+1∑

β=b

1

2

∣∣
∣v j

α,β

∣∣
∣
2
, (35)

with v j
α,β = (ϕ

j+1
α,β −ϕ

j
α,β)/�t j . The discrete stored energy functionW e

d : J 1Yd → R

is defined by

W e
d

(
j1ϕd(�

j
a,b)

) := 1

4

4∑

�=1

W e(C�(�
j
a,b)

)
, (36)

with W e the stored energy function of the hyperelastic body. Finally, the discrete
potential energy �d : J 1Yd → R is defined by

�d
(
j1ϕd(�

j
a,b)

) := 1

4

a+1∑

α=a

b+1∑

β=b

�(ϕ
j
α,β), (37)

where � is the potential energy of the continuous model. We shall focus on the
gravitation potential �(ϕ) = 〈g, ϕ〉, with g the gravitational acceleration vector.

For the barotropic fluid, we shall consider discrete versions of (32) given in a similar
way with the elasticity case (34) by

Lf
d

(
j1ϕd(�)

) = vol(�)
(
ρf
0Kd

(
j1ϕd(�)

)− ρf
0W

f
d

(
ρf
0, j

1ϕd(�)
)

−ρf
0�d

(
j1ϕd(�)

))
, (38)

where now W f
d : J 1Yd → R is the discrete internal energy of the fluid given by

W f
d

(
ρf
0, j

1ϕd(�
j
c,d)

) := 1

4

4∑

�=1

W f(ρf
0, J�(�

j
c,d)

)
, (39)
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with W f(�f
0, J ) the internal energy of the barotropic fluid and J�(�

j
c,d) the discrete

Jacobians associated to �
j
c,d . We assumed that ρf

0 is constant in space for simplicity.

3.3.2 Discrete Action and Variations

To simplify the exposition, we assume that the discrete base space configuration for
the elastic body is fixed and given by φXd ( j, a, b) = ( j�t, a�s1, b�s2), for given
�t , �s1, �s2, similarly for the fluid. In this case, we have vol(�) = �t�s1�s2 in
the discrete Lagrangian and the mass of each 2D cell in φXd (Bd) is Me = ρe

0�s1�s2.
We consider the discrete action functional

Sd(ϕd) =
∑

�∈X �
d

Le
d

(
j1ϕd(�)

)+ Lf
d

(
j1ϕd(�)

)

=
N−1∑

j=0

(
A−1∑

a=0

B−1∑

b=0

Le
d

(
j1ϕd(�

j
a,b)

)+
C−1∑

c=0

D−1∑

d=0

Lf
d

(
j1ϕd(�

j
c,d)

)
)

,

(40)

where Le
d and Lf

d are the discrete Lagrangians associated to the elastic body and to
the fluid. For notational simplicity we have used the same notation ϕd for the both the
discrete configuration of the fluid and the elastic body.

Let us denote by Dk , k = 1, ..., 8, the partial derivative of the discrete Lagrangians
with respect to the k-th component of j1ϕd(�), in the order given in (21). From
the discrete Hamilton principle δSd(ϕd) = 0, we get the discrete Euler–Lagrange
equations in the general form

D1L j
a,b + D2L j−1

a,b + D3L j
a−1,b + D4L j−1

a−1,b

+ D5L j
a,b−1 + D6L j−1

a,b−1 + D7L j
a−1,b−1 + D8L j−1

a−1,b−1 = 0
(41)

for both Le
d and Lf

d , where we used the abbreviate notation L j
a,b := L( j1ϕd(�

j
a,b)).

By using the expressions of the discrete Lagrangians given in (34) and (38), the general
form (75) yields

ρn
0

v j−1
a,b − v j

a,b

�t
− 1

4

4∑

�=1

[
D�

1

(
F�(�

j
a,b)S�(�

j
a,b)

)
+ D�

3

(
F�(�

j
a−1,b)S�(�

j
a−1,b)

)

+ D�
5

(
F�(�

j
a,b−1)S�(�

j
a,b−1)

)
+ D�

7

(
F�(�

j
a−1,b−1)S�(�

j
a−1,b−1)

) ]

− ρn
0
∂�

∂ϕ
(ϕ

j
a,b) = 0,

(42)

n = e, f, see “Appendix A.1” for the derivation, as well as for the definition of the
operators Dk , k = 1, 3, 5, 7. Note that these are the discrete equations of motion
corresponding to (8). In (42), S� is the discrete second Piola–Kirchhoff tensor of
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the model considered, see (31). For the St. Venant–Kirchhoff model one has S =
2λTr(E)I + 4μE while for the barotropic fluid S = −PW JC−1.

Implicit versions of these Euler–Lagrange equations can be derived by considering
the appropriate modifications in the definition of the discrete deformation gradients,
see Demoures and Gay-Balmaz (2021)[Sect. 3.2.1]. We also refer to that paper for the
discrete boundary conditions emerging from the discrete Hamilton principle.

3.3.3 Discrete Multisymplectic Form Formula

By evaluating the differentialdSd of the discrete action functional, restricted to an arbi-
trary subdomain U ′

d of Ud , on a solution ϕd of the discrete Euler–Lagrange equation
and by taking the exterior derivative of the resulting expression along the first vari-
ations of this solution, one obtains a discrete analogue of the multisymplectic form
formula (16), see (Marsden et al. 1998) for a detailed treatment. This formula extends
to spacetime discretization, the symplectic property of variational time integrators
(Marsden and West 2001). It also encodes a discrete version of the reciprocity theo-
rem of continuum mechanics, as well as discrete time symplecticity of the solution,
see (Lew et al. 2003).We refer to Demoures and Gay-Balmaz (2021) for application to
the case of the barotropic fluid, the case of the elastic body being similar. In the present
situation, the solution of the discrete Euler–Lagrange equations (42) satisfies the dis-
crete multisymplectic form formula on each subdomain U ′

d of the discrete spacetime
associated to either the fluid motion or the elastic body motion.

3.3.4 Symmetries and Discrete Noether Theorems

Consider the action of the special Euclidean group SE(2) � (Rθ , u) on a discrete
field given by ϕd → Rθϕd +u with Rθ the rotation of angle θ . The discrete covariant
momentum maps J p

Ld
: J 1Yd → se(2)∗, p = 1, ..., 8, associated to the SE(2) action

and to a discrete Lagrangian Ld : J 1Yd → R, are found as

J p
Ld

(
j1ϕd(�

j
a,b)

) = (
ϕ(p) × DpL j

a,b, DpL j
a,b

) ∈ se(2)∗. (43)

In (43), ϕ(p) is the p-th component of j1ϕd , see (21), Dp denotes the partial derivative

with respect to the p-th argument of Ld , and L j
a,b := Ld

(
j1ϕd(�

j
a,b)

)
. From the

discrete covariant momentum maps (43), the discrete classical momentum map is
given by

Jd(ϕ j ,ϕ j+1) =
A−1∑

a=0

B−1∑

b=0

(
J 2
Ld

+ J 4
Ld

+ J 6
Ld

+ J 8
Ld

) (
j1ϕd(�

j
a,b)

)

= −
A−1∑

a=0

B−1∑

b=0

(
J 1
Ld

+ J 3
Ld

+ J 5
Ld

+ J 7
Ld

) (
j1ϕd(�

j
a,b)

) ∈ se(2)∗
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with ϕ j the collection of all positions at time t j , see (Demoures et al. 2014a). For the
discrete Lagrangians (34) and (38), we get the expressions

Jd(ϕ j ,ϕ j+1) =
A−1∑

a=0

B−1∑

b=0

Je
(
j1ϕd(�

j
a,b)

)+
C−1∑

c=0

D−1∑

d=0

Jf
(
j1ϕd(�

j
c,d)

)
(44)

with

Je
(
j1ϕd(�

j
a,b)

) =
a+1∑

α=a

b+1∑

β=b

(
ϕ
j
α,β × Me

4
v
j
α,β,

Me

4
v
j
α,β

)
(45)

similarly for the fluid.
In absence of gravitational potential, the discrete Lagrangians (34) and (38) are

SE(2) invariant. Indeed, when ϕd → Rθϕd + u the associated discrete deformation
gradients (23) transform as F� → RθF�, so that the discrete Cauchy–Green defor-
mation tensors (24) and the discrete Jacobians (27) are SE(2)-invariant. The discrete
covariant Noether theorem for the discrete covariant momentum maps J p

Ld
, given as

∑

�∈U ′ �
d

∑

p;�(p)∈∂U ′
d

= J p
Ld

(�) = 0,

thus holds on arbitrary subdomain U ′
d of the discrete spacetime associated to either the

fluid motion or the elastic body motion. Furthermore, the classical discrete Noether
theorem holds for the discrete classical momentum map (79) as

Jd(ϕ j ,ϕ j+1) = Jd(ϕ j−1,ϕ j ),

for all t j .
When the gravitational potential is taken into account, only the component of the

discrete momentum maps associated to horizontal translations satisfies the discrete
Noether theorems above.

3.3.5 Incompressibility and Impenetrability Conditions

The constraints will be included in the discrete variational formulation by the addition
of appropriate penalty terms.

The first constraint is the incompressibility of the elastic body which is imposed via
the condition J�(�) − 1 = 0, for all � ∈ X �

d and all � = 1, 2, 3, 4, which mimics
the properties of rubber. The associated quadratic penalty function is given by

�in
(
j1ϕd(�)

) := 1

4

4∑

�=1

r

2

(
J�(�) − 1

)2
, (46)

where r is the penalty parameter.
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The second constraint is the impenetrability condition between the fluid node ϕ
j
c,d

flowing above the elastic body nodes ϕ
j
a,b, ϕ

j
a+1,b, which is defined as follows

�im(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d) = 〈(ϕ j

c,d − ϕ
j
a+1,b),Rπ/2(ϕ

j
a+1,b − ϕ

j
a,b)〉 ≥ 0, (47)

where Rπ/2 is a rotation of +π/2. In this expression Rπ/2(ϕ
j
a+1,b − ϕ

j
a,b) represents

the outward pointing normal vector to the body. See, e.g., Cirak and West (2005) for
the use of such constraint functions in impact problems. The function �im in (47) is
evaluated on all the boundary nodes ϕ

j
c,d of the fluid and on the two boundary nodes

of the elastic body that are the closest to ϕ
j
c,d . The associated quadratic penalty term

is given by

�im(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d) = 1

2
K�im(ϕ

j
a,b, ϕ

j
a+1,b, ϕ

j
c,d)

2, (48)

with K ∈ ]0,∞[ if�im(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d) ≤ 0 and K = 0 if�im(ϕ

j
a,b, ϕ

j
a+1,b, ϕ

j
c,d)

> 0. The derivatives of �im with respect to the nodes ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d are given by

D1�im(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d) = −K�im(ϕ

j
a,b, ϕ

j
a+1,b, ϕ

j
c,d)R

�
π/2(ϕ

j
c,d − ϕ

j
a+1,b)

D2�im(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d) = K�im(ϕ

j
a,b, ϕ

j
a+1,b, ϕ

j
c,d)Rπ/2(ϕ

j
a,b − ϕ

j
c,d)

D3�im(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d) = K�im(ϕ

j
a,b, ϕ

j
a+1,b, ϕ

j
c,d)Rπ/2(ϕ

j
a+1,b − ϕ

j
a,b),

(49)

which express the directions of the reactions forces.
The resulting discrete action functional is found as

S̃d(ϕd) = Sd(ϕd) −
N−1∑

j=0

A−1∑

a=0

B−1∑

j=0

�t�s1�s2 �in
(
j1ϕd(�

j
a,b)

)

−
N−1∑

j=0

∑

(c,d) ∈Bf

�im(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d),

(50)

where Sd is associated to the discrete Lagrangians of the fluid and the elastic body,
see (40). In the third term the second sum is taken over the boundary nodes of the fluid
and, given such a boundary node ϕ

j
c,d , the nodes ϕ

j
a,b, ϕ

j
a+1,b are chosen as explained

above. For the boundary nodes ϕ
j
c,d that are not in contact, the corresponding term

vanishes by definition of �im. Away from the interface between the barotropic fluid
and the elastic body, the boundary nodes are subject to the ambient pressure. This
boundary condition directly arises from the variations of Sd as explained below. Parts
of the boundary of the body can also be prescribed, see below.

In order to avoid the possible instabilities related to the presence of a large penalty
parameter, one could use the methods of augmented Lagrangians, in which both a
Lagrange multiplier term and a penalty term are used, see (Rockafellar 1993). From
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Fig. 4 Elastic body and fluid configurations respectively in nodes ϕ
j
a,b , ϕ

j
a+1,b , ϕ

j
a,b+1, andϕ

j
c,d attime t j

a practical point of view, see (Nocedal and Wright 2006), this approach is however
much more expensive as it needs to determine the Lagrange multiplier at each contact
point.

3.4 Barotropic Fluid Flowing Over a St. Venant–Kirchhoff Hyperelastic Container

We consider an incompressible elastic body with stored energy given by the St.
Venant–Kirchhoff model (29) and a compressible barotropic fluid described by the
Tait equation

W f( j0, J ) = A

γ − 1

(
J

ρ0

)1−γ

+ B
J

ρ0
. (51)

We shall use the expression (51) for the treatment of an isentropic perfect fluid, where
the value of the constant B �= 0 does not affect the dynamics, while it allows to
naturally impose the boundary condition P|∂B = B, with P = A

(
ρ0
J

)γ and B the
external pressure. This is crucial for the discretization, since it allows to find the
appropriate discretization of the boundary condition directly from the boundary terms
of the discrete variational principle, see (Demoures and Gay-Balmaz 2021).

The barotropic fluid is subject to gravity and is flowing without friction inside
an elastic container. In this case, see Fig. 4, the impenetrability constraints take the
following form along the three edges

�im1(ϕ
j
a,b, ϕ

j
a+1,b, ϕ

j
c,d) = 〈(ϕ j

c,d − ϕ
j
a+1,b),Rπ/2(ϕ

j
a+1,b − ϕ

j
a,b)〉 ≥ 0

�im2(ϕ
j
a,b, ϕ

j
a,b+1, ϕ

j
c,d) = 〈(ϕ j

c,d − ϕ
j
a,b),Rπ/2(ϕ

j
a,b − ϕ

j
a,b+1)〉 ≥ 0

�im3(ϕ
j
a,b, ϕ

j
a,b+1, ϕ

j
c,d) = 〈(ϕ j

c,d − ϕ
j
a,b+1),Rπ/2(ϕ

j
a,b+1 − ϕ

j
a,b)〉 ≥ 0.

(52)

The integrator is found by computing the criticality condition for the discrete action
functional (50) with incompressibility and impenetrability penalty terms given in (46)
and (48). We simulate the following situation:

1. The barotropic fluid has the properties ρ0 = 997 kg/m3, γ = 6, A = Ãρ
−γ
0

with Ã = 3.041 × 104 Pa, and B = 3.0397 × 104 Pa. The size of the discrete
reference configuration at time t0 is 0.5m×0.15m, with space-steps�s1 = 0.025,
�s2 = 0.015m.
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2. The hyperelastic St. Venant–Kirchhoff model has the properties ρ0 = 945 kg/m3,
Poisson ratio ν = 0.4999, and Young modulus E = 4.5 × 106. The incompress-
ibility parameter is r = 104 and the space-steps are �s1 = 0.02, �s2 = 0.0125m.

3. The two corners at the bottom of the hyperelastic body are fixed.
4. The time-step is �t = 10−4 and the test is carried out for 0.4s. After this time, the

impact between the fluid and the obstacle requires taking into account the physical
phenomena of breaking waves.

The results are reproduced in Figs. 5 and 6, which also show the evolution of the total
momentum maps (fluid+solid), the relative total energy behavior (fluid+solid), and
the norm of the resultant of forces acting on the right and on the left of the fluid. We
used the notation Jd = (J1, J2, J3) ∈ se(2)∗ for the angular, horizontal, and vertical
component, respectively. Note that only the component J2 corresponds to a symmetry
of the discrete Lagrangian in presence of gravity. Its conservation is however broken,
even before the fluid impacts the elastic body, see Fig. 5, due to the fixing of the
two corners at the bottom of the hyperelastic body. Its exact conservation in Fig. 6 is
due to the symmetric character of the initial configuration. The graph of the resultant
force also illustrates the times of impact of the fluid on the right and left parts of the
hyperelastic container.

The forces acting on the right at the spacetime nodes ( j,C−1, d), d = 1, ..., D−1,
of the fluid associated to pressures P2(�

j
C−1,d) & P4(�

j
C−1,d−1) are given by

P2(�
j
C−1,d)

4

(
ϕ
j
C,d − ϕ

j
C,d+1

)
× n2(�

j
C−1,d)

|n2(� j
C−1,d)|

+ P4(�
j
C−1,d−1)

4

(
ϕ
j
C,d−1 − ϕ

j
C,d

)
× n4(�

j
C−1,d−1)

|n4(� j
C−1,d−1)|

,

see “Appendix A.2” in Demoures and Gay-Balmaz (2021) for details. Similarly, the
forces acting on the left at the spacetime nodes ( j, 0, d), d = 1, ..., D−1, of the fluid
associated to pressures P1(�

j
0,d) & P3(�

j
0,d−1) are

P1(�
j
0,d)

4

(
ϕ
j
0,d+1 − ϕ

j
0,d

)
× n1(�

j
0,d)

|n1(� j
0,d)|

+ P3(�
j
0,d−1)

4

(
ϕ
j
0,d − ϕ

j
0,d−1

) n3(�
j
0,d−1)

|n3(� j
0,d−1)|

.

3.5 Convergence Tests

We test the convergence of our scheme for the fluid and the solid via the method of
manufactured solutions.
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Fig. 5 Top to bottom on the left: Configuration after 0.01s, 0.1s, 0.15s, 0.35s, 0.4s. Top to bottom on the
right: Evolution of momentum maps, relative energy, and norm of the resultant of forces acting on the

right and on the left of the fluid, associated respectively to pressures P2(�
j
C−1,d ) & P4(�

j
C−1,d−1) and

P1(�
j
0,d ) & P3(�

j
0,d−1) during 0.4s

3.5.1 Barotropic Fluid

We consider the barotropic fluid equations (33) with internal energy given in (51)
and potential energy �(ϕ) = 〈g, ϕ〉. We recall that PW = A

(
ρ0
J

)γ − B and that the
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Fig. 6 Top to bottom on the left: Configuration after 0.01s, 0.15s, 0.25s, 0.35s, 0.4s. Top to bottom on the
right: Evolution of momentum maps, relative energy, and norm of the resultant of forces acting on the

right and on the left of the fluid, associated respectively to pressures P2(�
j
C−1,d ) & P4(�

j
C−1,d−1) and

P1(�
j
0,d ) & P3(�

j
0,d−1) during 0.5s
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boundary condition is PW |∂B = 0, or, equivalently,

P|∂B = B with P = A
(ρ0

J

)γ

. (53)

On the reference configuration space B = [0, 1] × [0, 1] we manufactured an
analytic solution ϕ∗ = (ϕ1, ϕ2) given by

ϕ1(t, x, y) = E3t + E2sinh (tδ)

+ x + V1 sin (2π(−1 + x)) sin (πx) sin (π y) sinh (2π(−1 + y))

ϕ2(t, x, y) = E4t − E1sin (tδ)

+ y + V2 sinh (2π(−1 + x)) sin (πx) sin (2π(−1 + y)) sin (π y) ,

(54)

by adding forcing terms f ∗ = ( f 1, f 2) on the right-hand side of (33). These forces
are explicitly given by

ρ0ϕ̈
1 − γ A

ρ
γ
0

J γ+1

∂ J

∂x1
∂ϕ2

∂x2
+ γ A

ρ
γ
0

J γ+1

∂ J

∂x2
∂ϕ2

∂x1
= f 1 (55)

ρ0ϕ̈
2 + γ A

ρ
γ
0

J γ+1

∂ J

∂x1
∂ϕ1

∂x2
− γ A

ρ
γ
0

J γ+1

∂ J

∂x2
∂ϕ1

∂x1
+ ρ0g = f 2, (56)

with ϕ1, ϕ2 given by (54) and where we assume that ρ0 is a constant.
Note that at t = 0 we have

ϕ∗(0, 0, y) = (
0, y

)
, ϕ∗(0, 1, y) = (

1, y
)

ϕ∗(0, x, 0) = (
x, 0

)
, ϕ∗(0, x, 1) = (

x, 1
)
.

The Jacobian of the manufactured solution satisfies J (t, 0, y) = J (t, 1, y) =
J (t, x, 0) = J (t, x, 1) = 1, therefore ϕ∗ verifies PW |∂B = Aρ

γ
0 − B on the bound-

ary for all t . Hence, by choosing the constants A, B, ρ0 such that B = Aρ
γ
0 , the

manufactured solution (54) satisfies the boundary condition (53) at all times.
We numerically solved (42) with the forcing f ∗ = ( f 1, f 2) and with the properties

ρ0 = 103 kg/m2, γ = 6, and A = Ãρ
−γ
0 with Ã = B = 3.041 × 104 Pa. The size of

the reference configuration at time t0 is 1m × 1m. In (54) the coefficients have the
following values E1 = 10−3, E2 = 10−3, E3 = 10−2, E4 = 10−3, V1 = 2 × 10−4,
V2 = 10−5, and δ = π/4.

We consider a fixed time-step �t = 10−4 and we impose the initial positions ϕ
j
a,b

at times t0 and t1 to be given by the expression (54). For each space-step �s1 = �s2
∈ {1/4, 1/8, 1/16, 1/32, 1/64}, we calculate the positions ϕd through the forced
multisymplectic integrator and measure the L2-error

‖ϕd − ϕ∗‖L2 =
(
∑

a

∑

b

‖ϕN
a,b − (ϕ∗)Na,b‖2

)1/2

(57)

at time t N = 0.1s with respect to the exact solution ϕ∗ in (54). We get the following
convergence with respect to �s1 = �s2
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�s1 = �s2 1/4 1/8 1/16 1/32 1/64

‖ϕd − ϕ∗‖L2 0.2658 0.1022 0.0494 0.0208 0.0106
rate 1.138 1.058 1.22 0.97

Fig. 7 Configuration of the barotropic fluid after 0.1s when �s1 = �s2 = 1/4, 1/16, 1/32, 1/64

3.5.2 Hyperelastic Solid

We consider the equations for a St. Venant–Kirchhoff hyperelastic body given in (8)
with stored energy function (29) and potential energy �(ϕ) = 〈g, ϕ〉. We recall that
the second Piola–Kirchhoff stress tensor is

S = 2ρ0
∂W

∂C
= 2λTr(E)I + 4μE

and the boundary condition read S · n|∂B = 0.
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On the reference configuration space B = [0, 1] × [0, 1] we manufactured an
analytic solution ϕ∗ = (ϕ1, ϕ2) given by

ϕ1(t, x, y) = E3t + E2sinh (δt)

+ x + V1 sin (μ(−1 + x)) sin (λx) sin (λy) sin (μ(−1 + y))

ϕ2(t, x, y) = E4t − E1sin (δt)

+ y + V2 sinh (μ(−1 + x)) sin (λx) sin (μ(−1 + y)) sin (λy) ,

(58)

by adding forcing terms f ∗ = ( f 1, f 2) on the right-hand side of (8). Assuming that
ρ0 is a constant, these forces are explicitly given by

ρ0ϕ̈
1 − 2λ

[
∂

∂x1

(
(E11 + E22)

∂ϕ1

∂x1

)
+ ∂

∂x2

(
(E11 + E22)

∂ϕ1

∂x2

)]

− 4μ

[
∂

∂x1

(∂ϕ1

∂x1
E11 + ∂ϕ1

∂x2
E21

)
+ ∂

∂x2

(∂ϕ1

∂x1
E12 + ∂ϕ1

∂x2
E22

)]
= f1

ρ0ϕ̈
2 − 2λ

[
∂

∂x1

(
(E11 + E22)

∂ϕ2

∂x1

)
+ ∂

∂x2

(
(E11 + E22)

∂ϕ2

∂x2

)]

− 4μ

[
∂

∂x1

(∂ϕ2

∂x1
E11 + ∂ϕ2

∂x2
E21

)
+ ∂

∂x2

(∂ϕ2

∂x1
E12 + ∂ϕ2

∂x2
E22

)]
+ ρ0g = f2,

(59)

with ϕ1, ϕ2 given by (58) and with Ei j the components of the material strain tensor
E = 1

2 (C − I):

E11 = 1

2

[(∂ϕ1

∂x1

)2 +
(∂ϕ2

∂x1

)2 − 1

]
, E22 = 1

2

[(∂ϕ1

∂x2

)2 +
(∂ϕ2

∂x2

)2 − 1

]

E12 = E21 = 1

2

[
∂ϕ1

∂x1
∂ϕ1

∂x2
+ ∂ϕ2

∂x1
∂ϕ2

∂x2

]
.

The boundary condition S · n|∂B = 0 reads

S · n1(t, x, 0) = S · n2(t, x, 1) = S · n3(t, 0, y) = S · n4(t, 1, y) = 0,

where the outward pointing unit normal vector field to the boundary of the body is
given by

n1(t, x, 0) =
(

∂ϕ2(t, x, 0)

∂x
, −∂ϕ1(t, x, 0)

∂x

)

, n2(t, x, 1) =
(

−∂ϕ2(t, x, 1)

∂x
,
∂ϕ1(t, x, 1)

∂x

)

n3(t, 0, y) =
(

−∂ϕ2(t, 0, y)

∂ y
,
∂ϕ1(t, 0, y)

∂ y

)

, n4(t, 1, y) =
(

∂ϕ2(t, 1, y)

∂ y
, −∂ϕ1(t, 1, y)

∂ y

)

.
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A direct computation shows that if the coefficients λ and μ in (58) satisfy

λ = kπ, μ = k′π

for k, k′ ∈ Z, the manufactured solution ϕ∗ satisfies the boundary condition at all
times.

We numerically solved (42) with the forcing f ∗ = ( f 1, f 2) and with mass density
ρ0 = 945 kg/m2, Young modulus E = 2.5 × 104, and Poisson ratio ν = 0.4999,
where we recall the relations λ = Eν

(1−ν)(1+ν)
, μ = E

2(1+ν)
. The size of the reference

configuration at time t0 is 1m×1m. In (58) the coefficients have the following values
E1 = 10−3, E2 = 2×10−3, E3 = 2×10−2, E4 = 10−3, V1 = 3×10−2, V2 = 10−3,
and δ = π/4.

As before, we consider a fixed time-step �t = 10−4 and we impose the initial
positions ϕ

j
a,b at times t0 and t1 to be given by the expression (58). For each space-step

�s1 = �s2 ∈ {1/4, 1/8, 1/16, 1/32, 1/64}, we calculate the positions ϕd through
the forced multisymplectic integrator and measure the L2-error (57) at time t N = 0.1s
with respect to the exact solution ϕ∗ in (58). We get the following convergence with
respect to �s1 = �s2

�s1 = �s2 1/4 1/8 1/16 1/32 1/64

‖ϕd − ϕ∗‖L2 0.0794 0.168 0.0045 0.0011 0.00058
rate 2.24 1.9 2.03 0.92

4 3D Discrete Fluid—Elastic Body Interactions

In this section we show how the setting developed previously can be extended to the
three dimensional case. The main step is to find an appropriate definition of the 3D
discrete deformation gradients.

4.1 3D Discrete Setting and the Discrete Cauchy–Green Tensor

4.1.1 Discrete Lagrangian Setting

With B a domain in R
3 with piecewise smooth boundary and M = R

3, the discrete
configuration bundle is defined as in the 2D case, see the beginning of Sect. 3.1 and
Fig. 1. The discrete parameter space is now Ud = {0, ..., j, ..., N } × Bd , where we
consider Bd = {0, ..., A} × {0, ..., B} × {0, ...,C} and we denote ( j, a, b, c) ∈ Ud . It
determines a set U �

d of parallelepipeds denoted�
j
a,b,c, defined by 16 pairs of indices,

see Fig. 9 for the eight pairs of indices in�
j
a,b,c at time t j . We assume that the discrete

base-space configuration is of the form

φXd : Ud � ( j, a, b, c) → s ja,b,c = (t j , s ja , s jb , s jc ) ∈ Xd (60)
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Fig. 8 Configuration of the hyperelastic solid after 0.1s when �s1 = �s2 = 1/4, 1/16, 1/32, 1/64

and denote by ϕ
j
a,b,c := ϕd(s

j
a,b,c) the value of the discrete field at s

j
a,b,c. The discrete

first jet bundle and discrete first jet extensions are defined as in the 2D case earlier. In
particular, we write the first jet extension as follows

j1ϕd(�
j
a,b,c) = (

ϕ
j
a,b,c, ϕ

j+1
a,b,c, ϕ

j
a+1,b,c, ϕ

j+1
a+1,b,c, ϕ

j
a,b+1,c, ϕ

j+1
a,b+1,c, ϕ

j
a,b,c+1,

ϕ
j+1
a,b,c+1, ϕ

j
a+1,b+1,c, ϕ

j+1
a+1,b+1,c, ϕ

j
a,b+1,c+1, ϕ

j+1
a,b+1,c+1, ϕ

j
a+1,b,c+1,

ϕ
j+1
a+1,b,c+1, ϕ

j
a+1,b+1,c+1, ϕ

j+1
a+1,b+1,c+1

)
,

(61)

4.1.2 Discrete Cauchy–Green Deformation Tensor in 3D

Given a discrete base-space configuration φXd and a discrete field ϕd , the following

six vectors F j
�;a,b,c ∈ R

3, � = 1, ..., 6 are defined at each node ( j, a, b, c) ∈ Ud , see
Fig. 9 on the right:

123



94 Page 28 of 42 Journal of Nonlinear Science (2022) 32 :94

Fig. 9 Discrete field φd = ϕd ◦ φXd
evaluated on �

j
a,b,c at time t j

F j
1;a,b,c = ϕ

j
a+1,b,c − ϕ

j
a,b,c

|s ja+1 − s ja |
, F j

2;a,b,c = ϕ
j
a,b+1,c − ϕ

j
a,b,c

|s jb+1 − s jb |
,

F j
3;a,b,c = ϕ

j
a,b,c+1 − ϕ

j
a,b,c

|s jc+1 − s jc |
, F j

4;a,b,c = ϕ
j
a−1,b,c − ϕ

j
a,b,c

|s ja − s ja−1|
,

F j
5;a,b,c = ϕ

j
a,b−1,c − ϕ

j
a,b,c

|s jb − s jb−1|
, F j

6;a,b,c = ϕ
j
a,b,c−1 − ϕ

j
a,b,c

|s jc − s jc−1|
.

Definition 4.1 The discrete deformation gradients of a discrete field ϕd at the par-
allelepiped �

j
a,b are the eight 3 × 3 matrices F�(�

j
a,b,c), � = 1, ..., 8, defined by

F1(�
j
a,b,c) =

[
F j
1;a,b,c F j

2;a,b,c F j
3;a,b,c

]
,

F2(�
j
a,b,c) =

[
F j
2;a+1,b,c F j

4;a+1,b,c F j
3;a+1,b,c

]
,

F3(�
j
a,b,c) =

[
F j
5;a,b+1,c F j

1;a,b+1,c F j
3;a,b+1,c

]
,

F4(�
j
a,b,c) =

[
F j
2;a,b,c+1 F j

1;a,b,c+1 F j
6;a,b,c+1

]
,

F5(�
j
a,b,c) =

[
F j
4;a+1,b+1,c F j

5;a+1,b+1,c F j
3;a+1,b+1,c

]
,

F6(�
j
a,b,c) =

[
F j
1;a,b+1,c+1 F j

5;a,b+1,c+1 F j
6;a,b+1,c+1

]
,

F7(�
j
a,b,c) =

[
F j
4;a+1,b,c+1 F j

2;a+1,b,c+1 F j
6;a+1,b,c+1

]
,

F8(�
j
a,b,c) =

[
F j
5;a+1,b+1,c+1 F j

4;a+1,b+1,c+1 F j
6;a+1,b,c+1

]
.

(62)

We note that the discrete deformation gradients are defined at each of the eight
nodes of� j

a,b,c that are associated to time t j . We assume that the determinant of these
matrices is always positive. The ordering � = 1 to � = 8 is respectively associated
to the nodes (a, b, c), (a + 1, b, c), (a, b + 1, c), (a, b, c + 1), (a + 1, b + 1, c),
(a, b + 1, c + 1), (a + 1, b, c + 1), (a + 1, b + 1, c + 1) see Fig. 9 on the left. Note
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that with this concept of discrete deformation gradient, one can consider the right and
left polar decompositions F = RU = VR exactly as in the continuous case.

Definition 4.2 The 3D discrete Cauchy–Green deformation tensors of a discrete
field ϕd at the parallelepiped �

j
a,b,c are the eight 3 × 3 symmetric matrices

C�(�
j
a,b,c) = F�(�

j
a,b,c)

TF�(�
j
a,b,c), � = 1, ..., 8. (63)

As in Proposition 3.3, we have following result.

Proposition 4.3 Given a discrete field ϕd : Xd → M, the 3D discrete Cauchy–Green
deformation tensor associated to �

j
a,b,c at the node (a, b, c) at time t j , for � = 1, is

C1(�
j
a,b,c) =

⎡

⎢
⎣

〈F j
1;a,b,c,F

j
1;a,b,c〉 〈F j

1;a,b,c,F
j
2;a,b,c〉 〈F j

1;a,b,c,F
j
3;a,b,c〉

〈F j
2;a,b,c,F

j
1;a,b,c〉 〈F j

2;a,b,c,F
j
2;a,b,c〉 〈F j

2;a,b,c,F
j
3;a,b,c〉

〈F j
3;a,b,c,F

j
1;a,b,c〉 〈F j

3;a,b,c,F
j
2;a,b,c〉 〈F j

3;a,b,c,F
j
3;a,b,c〉

⎤

⎥
⎦ . (64)

See “Appendix A.3” for the discrete Cauchy–Green deformation tensor at the nodes
(a+1, b, c), (a, b+1, c), (a, b, c+1), (a+1, b+1, c), (a, b+1, c+1), (a+1, b, c+1),
(a + 1, b + 1, c + 1).

4.1.3 Discrete Jacobian

The 3D discrete Jacobian of ϕd associated to �
j
a,b,c at the node ( j, a, b, c) is defined

by

J1(�
j
a,b,c) = (F j

1;a,b,c × F j
2;a,b,c) · F j

3;a,b,c. (65)

We refer to “Appendix A.2” for the expression of the 3D discrete Jacobians at the
other nodes. The relations with the 3D discrete deformation gradients and discrete
Cauchy–Green tensors hold exactly as in the 2D case in Proposition 3.4.

4.2 Discrete Frame Indifferent and Isotropic Nonlinear Hyperelastic Models

4.2.1 Invariants of the discrete Cauchy–Green Deformation Tensor

Our definition of the discrete Cauchy–Green deformation tensor as a symmetricmatrix
allows the definition of its invariants exactly as in the continuous case. Note that in the
discrete case each node has several associated discrete Cauchy–Green deformation
tensors, namely, one for each parallelepiped sharing this node. This follows directly
from the discrete field theoretic Lagrangian setting that we follow. We have the fol-
lowing expressions.
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Definition 4.4 The invariants of the symmetric matrix C�(�
j
a,b,c), � = 1, ..., 8, are

defined by

I1
(
C�(�

j
a,b,c)

) = Tr
(
C�(�

j
a,b,c)

)

I2
(
C�(�

j
a,b,c)

) = 1

2

[
I1
(
C�(�

j
a,b,c)

)2 − Tr
(
C�(�

j
a,b,c)

2)
]

= det
(
C�(�

j
a,b,c)

)
Tr
(
C�(�

j
a,b,c)

−1)

I3
(
C�(�

j
a,b,c)

) = det
(
C�(�

j
a,b,c)

)
.

(66)

For each fixed �
j
a,b,c, these invariants depend only of the first jet extension

j1ϕd(�
j
a,b,c) of the discrete field at the given �

j
a,b,c. Recall that these invariants are

related to the coefficients in the characteristic polynomial P(ν) of the 3×3 symmetric
matrix C�

(
�

j
a,b,c

)
as follows

P(ν) = ν3 − I1
(
C�(�

j
a,b,c)

)
ν2 + I2

(
C�(�

j
a,b,c)

)
ν − I3

(
C�(�

j
a,b,c)

)
.

In particular, the eigenvalues ν1, ν2, ν3 are defined at each node with respect to each
of the eight neighbouring parallelepipeds. For each �

j
a,b,c ∈ X �

d and � = 1, ..., 8,
we have

I1
(
C�(�

j
a,b,c)

) = ν1 + ν2 + ν3, I2
(
C�(�

j
a,b,c)

) = ν1ν2 + ν1ν3 + ν2ν3,

I3
(
C�(�

j
a,b,c)

) = ν1ν2ν3,

and ν1 = λ21, ν2 = λ22, ν3 = λ23, with λ1, λ2, λ3 the discrete principal stretches. At
each node, there are thus several classes of discrete principal stretches, namely, one
for each parallelepiped sharing this nodes. We can also recall the following standard
result, which holds here in the discrete case and can be regarded as a discrete analogue
of the characterization of the stored energy function for frame indifferent isotropic
hyperelastic materials.

Proposition 4.5 The following are equivalent:

(i) A scalar function f of C�(�
j
a,b,c) is invariant under orthogonal transformations.

(ii) f is a function of the invariants of C�(�
j
a,b,c).

(iii) f is a symmetric function of the principal stretches.

4.2.2 3D Discrete Stored Energy Function

Given the stored energy function W (I1, I2, I3) of a frame indifferent isotropic hyper-
elastic material, the associated discrete stored energy function is defined as Wd :
J 1Yd → R with

Wd
(
j1ϕd(�)

) = 1

8

8∑

�=1

W
(
I1(C�(�)), I2(C�(�)), I3(C�(�))

)
. (67)
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For each� ∈ X �
d the value ofWd is found as the averaged value of the stored energy

function evaluated on the discrete Cauchy–Green tensor at the nodes of � at time t j .

4.2.3 3D Discrete Second Piola–Kirchhoff Stress

It is defined at each node of each � ∈ X �
d as

S�(�) = 2ρ0
∂W

∂C

(
C�(�)

) = S
(
C�(�)

)
, (68)

� = 1, ..., 8. In particular, for an isotropic material, it takes the form

S�(�) = 2ρ0

[
∂W

∂ I1
G−1 +

(
∂W

∂ I2
I2 + ∂W

∂ I3
I3

) (
C�(�)

)−1 − ∂W

∂ I2
I3
(
C�(�)

)−2
]

.

(69)

Example 4.6 (Nonlinear Mooney–Rivlin incompressible model)For this model, see
(14), the discrete stored energy becomes

Wd
(
j1ϕd(�

j
a,b,c)

) = 1

8

8∑

�=1

[
C1
(
I1
(
C�(�

j
a,b,c)

)− 3
)+ C2

(
I2
(
C�(�

j
a,b,c)

)− 3
)]

(70)

and the 3D discrete second Piola–Kirchhoff stress is

S�(�) = 2ρ0
(
C1G−1 + C2 I2

(
C�(�)

)
C�(�)−1 − C2 I3

(
C�(�)

)
C�(�)−2

)
.

Incompressibility is imposed via a penalty term exactly as in the 2D case earlier, see
(46).

4.3 3D Barotropic Fluid—Elastic Body Interactions

4.3.1 Discrete Lagrangians for the Fluid and the Elastic Body

The discrete Lagrangian Le
d of the elastic body is defined exactly as in the 2D case in

(34) with the obvious modifications, namely we take the discrete kinetic energy

Kd
(
j1ϕd(�

j
a,b,c)

) := 1

8

a+1∑

α=a

b+1∑

β=b

c+1∑

γ=c

1

2

∣∣∣v j
α,β,γ

∣∣∣
2
, (71)
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where v j
α,β,γ = (ϕ

j+1
a,b,c − ϕ

j
a,b,c)/�t , we take the discrete stored energy function

W e
d

(
j1ϕd(�

j
a,b,c)

) := 1

8

8∑

�=1

W e(C�(�
j
a,b,c)

)
(72)

and the gravitational potential energy density

�d(�
j
a,b,c) := 1

8

a+1∑

α=a

b+1∑

β=b

c+1∑

γ=c

�(ϕ
j
α,β,γ ). (73)

We proceed similarly for the discrete Lagrangian Lf
d of the fluid, see (38).

4.3.2 Discrete Action and Discrete Euler–Lagrange Equations

As earlier, we assume φXd ( j, a, b, c) = ( j�t, a�s1, b�s2, c�s3) and the mass of
each 3D cell in �Xd (Bd) is Me = ρe

0�s1�s2�s3. The discrete action functional
reads

Sd(ϕd)

=
N−1∑

j=0

⎛

⎝
A−1∑

a=0

B−1∑

b=0

C−1∑

c=0

Le
d

(
j1ϕd(�

j
a,b,c)

)+
D−1∑

d=0

E−1∑

e=0

F−1∑

f =0

Lf
d

(
j1ϕd(�

j
d,e, f )

)
⎞

⎠ .

(74)

Let us denote by Dk , k = 1, ..., 16, the partial derivative of the discrete Lagrangians
with respect to the k-th component of j1ϕd(�), in the order given in (61). From
the discrete Hamilton principle δSd(ϕd) = 0, we get the discrete Euler–Lagrange
equations in the general form

D1L j
a,b,c + D2L j−1

a,b,c + D3L j
a−1,b,c + D4L j−1

a−1,b,c + D5L j
a,b−1,c + D6L j−1

a,b−1,c

+ D7L j
a,b,c−1 + D8L j−1

a,b,c−1 + D9L j
a−1,b−1,c + D10L j−1

a−1,b−1,c

+ D11L j
a,b−1,c−1 + D12L j−1

a,b−1,c−1 + D13L j
a−1,b,c−1 + D14L j−1

a−1,b,c−1

+ D15L j
a−1,b−1,c−1 + D16L j−1

a−1,b−1,c−1 = 0 (75)

for bothLe
d andLf

d , wherewe used the abbreviate notationL j
a,b,c := L( j1ϕd(�

j
a,b,c)).

For the discrete Lagrangians based on the discretizations given in (71)–(73), the dis-
crete Euler–Lagrange equations (75) yield

ρn
0

v j−1
a,b,c − v j

a,b,c

�t
− 1

8

4∑

�=1

[
D�

1

(
F�(�

j
a,b,c)S�(�

j
a,b,c)

)

123



Journal of Nonlinear Science (2022) 32 :94 Page 33 of 42 94

+D�
3

(
F�(�

j
a−1,b,c)S�(�

j
a−1,b,c)

)
+ D�

5

(
F�(�

j
a,b−1,c)S�(�

j
a,b−1,c)

)
+ ...

+D�
15

(
F�(�

j
a−1,b−1,c−1)S�(�

j
a−1,b−1,c−1)

) ]
− ρn

0
∂�

∂ϕ
(ϕ

j
a,b) = 0, (76)

n = e, f. The derivation of (76) is similar to the 2D case, see “Appendix A.1”. These
equations give the dynamics at the interior of the elastic body and the fluid.

4.3.3 Impenetrability Conditions

The impenetrability conditions between the fluid nodes ϕ
j
d,e, f , ϕ

j
d+1,e, f , ϕ

j
d,e+1, f ,

ϕ
j
d+1,e+1, f and the elastic body nodes are defined as follows, see Fig. 10,

�im1(ϕ
j
a,b,c, ϕ

j
a−1,b,c, ϕ

j
a,b−1,c, ϕ

j
d,e, f )

= 〈
(ϕ

j
d,e, f − ϕ

j
a,b,c), (ϕ

j
a−1,b,c − ϕ

j
a,b,c) × (ϕ

j
a,b−1,c − ϕ

j
a,b,c)

〉 ≥ 0

�im2(ϕ
j
a,b,c, ϕ

j
a+1,b,c, ϕ

j
a,b−1,c, ϕ

j
d+1,e, f )

= 〈
(ϕ

j
d+1,e, f − ϕ

j
a,b,c), (ϕ

j
a,b−1,c − ϕ

j
a,b,c) × (ϕ

j
a+1,b,c − ϕ

j
a,b,c)

〉 ≥ 0

�im3(ϕ
j
a,b,c, ϕ

j
a−1,b,c, ϕ

j
a,b+1,c, ϕ

j
d,e+1, f )

= 〈
(ϕ

j
d,e+1, f − ϕ

j
a,b,c), (ϕ

j
a,b+1,c − ϕ

j
a,b,c) × (ϕ

j
a−1,b,c − ϕ

j
a,b,c)

〉 ≥ 0

�im4(ϕ
j
a,b,c, ϕ

j
a+1,b,c, ϕ

j
a,b+1,c, ϕ

j
d+1,e+1, f )

= 〈
(ϕ

j
d+1,e+1, f − ϕ

j
a,b,c), (ϕ

j
a+1,b,c − ϕ

j
a,b,c) × (ϕ

j
a,b+1,c − ϕ

j
a,b,c)

〉 ≥ 0.

(77)

The expression (ϕ
j
a−1,b,c−ϕ

j
a,b,c)×(ϕ

j
a,b−1,c−ϕ

j
a,b,c) represents the outward pointing

normal vector field to the body, similarly in the other three conditions.
The associated penalty terms�imi , i = 1, ..., 4 are defined as in (48). The directions

of the reaction forces are given by the derivative with respect to the positions of the
nodes, i.e.,

D1�im1(ϕ
j
a,b,c, ϕ

j
a−1,b,c, ϕ

j
a,b−1,c, ϕ

j
d,e, f ),

D2�im1(ϕ
j
a,b,c, ϕ

j
a−1,b,c, ϕ

j
a,b−1,c, ϕ

j
d,e, f ),

D3�im1(ϕ
j
a,b,c, ϕ

j
a−1,b,c, ϕ

j
a,b−1,c, ϕ

j
d,e, f ),

D4�im1 , (ϕ
j
a,b,c, ϕ

j
a−1,b,c, ϕ

j
a,b−1,c, ϕ

j
d,e, f ),

similarly for�im2 , �im3 , �im4 , see “AppendixA.4” for the expressions of these deriva-
tives.
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Fig. 10 Fluid flowing above the
hyperelastic body

The resulting discrete action functional is

S̃d(ϕd)

= S(ϕd) −
N−1∑

j=0

A−1∑

a=0

B−1∑

b=0

C−1∑

c=0

�t�s1�s2�s3 �in
(
j1ϕd(�

j
a,b,c)

)

−
N−1∑

j=0

∑

(d,e, f ) ∈Bf

[
�im1(ϕ

j
a,b,c, ϕ

j
a−1,b,c, ϕa,b−1,c, ϕ

j
d,e, f )

+ �im2(ϕ
j
a,b,c, ϕ

j
a−1,b,c, ϕa,b−1,c, ϕ

j
d,e, f )

+ �im3(ϕ
j
a,b−1,c, ϕ

j
a−1,b−1,c, ϕa,b,c, ϕ

j
d,e, f )

+ �im4(ϕ
j
a−1,b−1,c, ϕ

j
a,b−1,c, ϕa−1,b,c, ϕ

j
d,e, f )

]
,

(78)

where Sd is given in (74). The second term in (78) is associated to the incompressibility
of the elastic body. In the third term, the second sum is taken over the boundary nodes
of the fluid and, given such a boundary node ϕ

j
d,e, f , the nodes of the elastic body in

the four terms i = 1, ..., 4 are chosen in accordance with (77) for each functions�imi ,
i = 1, ..., 4.

4.3.4 Symmetries and Discrete Noether Theorems

The discrete classical momentummap associated to the action of the special Euclidean
group SE(3) takes the form

Jd(ϕ j ,ϕ j+1) =
A−1∑

a=0

B−1∑

b=0

C−1∑

c=0

Je
(
j1ϕd(�

j
a,b,c)

)+
D−1∑

d=0

E−1∑

e=0

F−1∑

f =0

Jf
(
j1ϕd(�

j
d,e, f )

)

(79)
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with

Je
(
j1ϕd(�

j
a,b)

) =
a+1∑

α=a

b+1∑

β=b

(
ϕ
j
α,β × Me

4
v
j
α,β,

Me

4
v
j
α,β

)
(80)

similarly for the fluid.

4.4 Barotropic Fluid Flowing Over a Mooney–Rivlin Hyperelastic Support

We consider an incompressible Mooney–Rivlin hyperelastic body, see (70), and a
barotropic fluid described by the Tait equation with discrete internal energy term

W f
d

(
ρ0, j

1ϕd(�)
) = 1

8

8∑

�=1

[
A

γ − 1

(
J�(�)

ρ0

)1−γ

+ B

(
J�(�)

ρ0

)]

. (81)

The integrator is found by computing the criticality condition for the discrete action
functional (78) which includes the incompressibility and impenetrability penalty
terms. We simulate the following situation, see Fig. 11:

1. The barotropic fluid has the properties ρ0 = 997 kg/m2, γ = 6, A = Ãρ
−γ
0 with

Ã = 3.041× 104 Pa, and B = 3.0397× 104 Pa. The size of the discrete reference
configuration at time t0 is 0.3m × 0.3m × 0.05m, with space-steps �s1 = �s2 =
0.05, �s3 = 0.025m.

2. The Mooney–Rivlin model has the properties ρ0 = 945 kg/m3, C1 = 1.848, and
C2 = 0.264 such that C1/C2 = 7. The model is nearly incompressible, with
coefficient r = 104 in the corresponding penalty term. The size of the discrete
reference configuration at time t0 is 1m × 1m × 0.3m with space-steps �s1 =
�s2 = 0.0625m, �s3 = 0.1m.

3. The four upper edges of the Mooney–Rivlin incompressible model are fixed.
4. The time-step is �t = 2 × 10−4 and the test is carried out for 0.4s.

The results are reproduced in Fig. 11, where we used the notation Jd = (J1, J2, J3, J4,
J5, J6) ∈ se(3)∗. Due to the presence of the gravitation potential, the discrete
Lagrangian is only invariant under the subgroup SE(2) of Euclidean transforma-
tions of the horizontal plane. This is why only the components J3, J4, J5 of the discrete
momentummap Jd are almost preserved. As in our 2D test, the fixing of the four upper
edges prevents the exact conservation of these momentum maps.

5 Concluding Remarks and Future Directions

In this paper we introduced a structure preserving numerical integrator for hyperelastic
solids, which is spacetime multisymplectic, symplectic in time, preserves exactly the
momenta associated to symmetries, and nearly preserves total energy. The integrator
is derived from a discrete variational formulation of hyperelasticity in the Lagrangian
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Fig. 11 Top to bottom on the left: Configuration after 0.002s, 0.1s, 0.4s, 0.5s, 0.6s. Top to bottom on the
right: Evolution of total (fluid+solid) momentum maps, total (fluid+solid) energy, and relative total energy
during 0.5s
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description. Thanks to its variational nature and its adequacy with a previously derived
variational discretization for fluids, the scheme can naturally be extended to accommo-
date fluid–structure interaction problems via the inclusion of impenetrability penalty
terms in the discrete action functional. Important steps in our approachwere the defini-
tionof discrete deformationgradients, discreteCauchy–Greendeformation tensors and
discrete Jacobians. The resulting integrator and its conservative properties were illus-
trated with numerical tests both in 2D and 3D. This paper only presented the very first
steps towards the application of variational integrators to fluid–structure interaction
problems. The discrete setting developed here opens several directions of research such
as the inclusion of dynamic mesh update, inspired by arbitrary Lagrangian-Eulerian
methods, and the treatment of h-adaptivity, by appropriate extensions of the variational
discretization. One can also explore extensions of our model to take into account of
the possible disconnection of fluid cells, which is useful to model the fragmentation
of the flow after the impact. Finally, appropriate extensions of the discrete variational
formulation need to be developed in order to treat other classes of continuum models,
such as viscous-plastic materials.

A Appendix

A.1 2D Discrete Hyperelastic Models

To compute the partial derivatives DkL j
a,b of the discrete Lagrangian (34) we note

Dk

(

ρe
0
1

4

4∑

�=1

W e(C�(�
j
a,b)

)
)

· δϕ = 1

4

4∑

�=1

Tr
(
S�(�

j
a,b)F�(�

j
a,b)

TDkF�(�
j
a,b) · δϕ

)

for all � = 1, ..., 4 and all k = 1, 3, 5, 7. We observe that the 16 expressions
DkF�(�

j
a,b) are independent of the value of the field ϕd and on the location of

the spacetime node (if the spacing �sa and �sb are constant), i.e., we can write
DkF�(�

j
a,b) = DkF�. For instance, for � = 1, we have

D1F1 · δϕ =
[
− 1

�sa
δϕ,− 1

�sb
δϕ

]
D3F1 · δϕ =

[
1

�sa
δϕ, 0

]

D5F1 · δϕ =
[
0,

1

�sb
δϕ

]
D7F1 · δϕ = [0, 0]

and for � = 2, we have

123



94 Page 38 of 42 Journal of Nonlinear Science (2022) 32 :94

D1F2 · δϕ =
[
0,

1

�sa
δϕ

]
D3F2 · δϕ =

[
− 1

�sb
δϕ,− 1

�sa
δϕ

]

D7F2 · δϕ =
[

1

�sb
δϕ, 0

]
D5F2 · δϕ = [0, 0] ,

similarly for � = 3, 4. We can thus write

Dk

(

ρe
0
1

4

4∑

�=1

W e(C�(�
j
a,b)

)
)

· δϕ = 1

4

4∑

�=1

〈
F�(�

j
a,b)S�(�

j
a,b), DkF� · δϕ

〉

= 1

4

4∑

�=1

D�
k

(
F�(�

j
a,b)S�(�

j
a,b)

)
· δϕ,

where in the last equality we defined the operator D�
k , k = 1, 3, 5, 7, � = 1, 2, 3, 4,

by duality.
From this, the partial derivatives DkL j

a,b of the discrete Lagrangian can be com-
puted. For instance for k = 1 one has

1

vol(�)
D1L j

a,b =−ρe
0

1

4�t
v j
a,b−

1

4

4∑

�=1

D�
1

(
F�(�

j
a,b)S�(�

j
a,b)

)
− 1

4�t
ρe
0∇�(ϕ

j
a,b).

Using this result, one then derives (42) from (75).

A.2 3D Discrete Jacobian

J2(�
j
a,b,c) = (F j

2;a+1,b,c × F j
4;a+1,b,c) · F j

3;a+1,b,c,

J3(�
j
a,b,c) = (F j

5;a,b+1,c × F j
1;a,b+1,c) · F j

3;a,b+1,c,

J4(�
j
a,b,c) = (F j

2;a,b,c+1 × F j
1;a,b,c+1) · F j

6;a,b,c+1,

J5(�
j
a,b,c) = (F j

4;a+1,b+1,c × F j
5;a+1,b+1,c) · F j

3;a+1,b+1,c,

J6(�
j
a,b,c) = (F j

1;a,b+1,c+1 × F j
5;a,b+1,c+1) · F j

6;a,b+1,c+1,

J7(�
j
a,b,c) = (F j

4;a+1,b,c+1 × F j
2;a+1,b,c+1) · F j

6;a+1,b,c+1,

J8(�
j
a,b,c) = (F j

5;a+1,b+1,c+1 × F j
4;a+1,b+1,c+1) · F j

6;a+1,b+1,c+1.
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A.3 3D Discrete Cauchy–Green Deformation Tensor

C2(�
j
a,b,c)

=

⎡

⎢
⎢
⎢
⎣

〈F j
2;a+1,b,c,F

j
2;a+1,b,c〉 〈F j

2;a+1,b,c,F
j
4;a+1,b,c〉 〈F j

2;a+1,b,c,F
j
3;a+1,b,c〉

〈F j
4;a+1,b,c,F

j
2;a+1,b,c〉 〈F j

4;a+1,b,c,F
j
4;a+1,b,c〉 〈F j

4;a+1,b,c,F
j
3;a+1,b,c〉

〈F j
3;a+1,b,c,F

j
2;a+1,b,c〉 〈F j

3;a+1,b,c,F
j
4;a+1,b,c〉 〈F j

3;a+1,b,c,F
j
3;a+1,b,c〉

⎤

⎥
⎥
⎥
⎦

.

C3(�
j
a,b,c)

=

⎡

⎢
⎢⎢
⎣

〈F j
5;a,b+1,c,F

j
5;a,b+1,c〉 〈F j

5;a,b+1,c,F
j
1;a,b+1,c〉 〈F j

5;a,b+1,c,F
j
3;a,b+1,c〉

〈F j
1;a,b+1,c,F

j
5;a,b+1,c〉 〈F j

1;a,b+1,c,F
j
1;a,b+1,c〉 〈F j

1;a,b+1,c,F
j
3;a,b+1,c〉

〈F j
3;a,b+1,c,F

j
5;a,b+1,c〉 〈F j

3;a,b+1,c,F
j
1;a,b+1,c〉 〈F j

3;a,b+1,c,F
j
3;a,b+1,c〉

⎤

⎥
⎥⎥
⎦

.

C4(�
j
a,b,c)

=

⎡

⎢
⎢⎢
⎣

〈F j
2;a,b,c+1,F

j
2;a,b,c+1〉 〈F j

2;a,b,c+1,F
j
1;a,b,c+1〉 〈F j

2;a,b,c+1,F
j
6;a,b,c+1〉

〈F j
1;a,b,c+1,F

j
2;a,b,c+1〉 〈F j

1;a,b,c+1,F
j
1;a,b,c+1〉 〈F j

1;a,b,c+1,F
j
6;a,b,c+1〉

〈F j
6;a,b,c+1,F

j
2;a,b,c+1〉 〈F j

6;a,b,c+1,F
j
1;a,b,c+1〉 〈F j

6;a,b,c+1,F
j
6;a,b,c+1〉

⎤

⎥
⎥⎥
⎦

.

C5(�
j
a,b,c)

=

⎡

⎢⎢
⎢
⎣

〈F j
4;a+1,b+1,c,F

j
4;a+1,b+1,c〉 〈F j

4;a+1,b+1,c,F
j
5;a+1,b+1,c〉 〈F j

4;a+1,b+1,c,F
j
3;a+1,b+1,c〉

〈F j
5;a+1,b+1,c,F

j
4;a+1,b+1,c〉 〈F j

5;a+1,b+1,c,F
j
5;a+1,b+1,c〉 〈F j

5;a+1,b+1,c,F
j
3;a+1,b+1,c〉

〈F j
3;a+1,b+1,c,F

j
4;a+1,b+1,c〉 〈F j

3;a+1,b+1,c,F
j
5;a+1,b+1,c〉 〈F j

3;a+1,b+1,c,F
j
3;a+1,b+1,c〉

⎤

⎥⎥
⎥
⎦

.

C6(�
j
a,b,c)

=

⎡

⎢
⎢
⎢
⎣

〈F j
1;a,b+1,c+1,F

j
1;a,b+1,c+1〉 〈F j

1;a,b+1,c+1,F
j
5;a,b+1,c+1〉 〈F j

1;a,b+1,c+1,F
j
6;a,b+1,c+1〉

〈F j
5;a,b+1,c+1,F

j
1;a,b+1,c+1〉 〈F j

5;a,b+1,c+1,F
j
5;a,b+1,c+1〉 〈F j

5;a,b+1,c+1,F
j
6;a,b+1,c+1〉

〈F j
6;a,b+1,c+1,F

j
1;a,b+1,c+1〉 〈F j

6;a,b+1,c+1,F
j
5;a,b+1,c+1〉 〈F j

6;a,b+1,c+1,F
j
6;a,b+1,c+1〉

⎤

⎥
⎥
⎥
⎦

.

C7(�
j
a,b,c)

=

⎡

⎢
⎢⎢
⎣

〈F j
4;a+1,b,c+1,F

j
4;a+1,b,c+1〉 〈F j

4;a+1,b,c+1,F
j
2;a+1,b,c+1〉 〈F j

4;a+1,b,c+1,F
j
6;a+1,b,c+1〉

〈F j
2;a+1,b,c+1,F

j
4;a+1,b,c+1〉 〈F j

2;a+1,b,c+1,F
j
2;a+1,b,c+1〉 〈F j

2;a+1,b,c+1,F
j
6;a+1,b,c+1〉

〈F j
6;a+1,b,c+1,F

j
4;a+1,b,c+1〉 〈F j

6;a+1,b,c+1,F
j
2;a+1,b,c+1〉 〈F j

6;a+1,b,c+1,F
j
6;a+1,b,c+1〉

⎤

⎥
⎥⎥
⎦

.

C8(�
j
a,b,c)

=

⎡

⎢⎢
⎢
⎣

〈F j
5;a+1,b+1,c+1,F

j
5;a+1,b+1,c+1〉 〈F j

5;a+1,b+1,c+1,F
j
4;a+1,b+1,c+1〉 〈F j

5;a+1,b+1,c+1,F
j
6;a+1,b+1,c+1〉

〈F j
4;a+1,b+1,c+1,F

j
5;a+1,b+1,c+1〉 〈F j

4;a+1,b+1,c+1,F
j
4;a+1,b+1,c+1〉 〈F j

4;a+1,b+1,c+1,F
j
6;a+1,b+1,c+1〉

〈F j
6;a+1,b+1,c+1,F

j
5;a+1,b+1,c+1〉 〈F j

6;a+1,b+1,c+1,F
j
4;a+1,b+1,c+1〉 〈F j

6;a+1,b+1,c+1,F
j
6;a+1,b+1,c+1〉

⎤

⎥⎥
⎥
⎦

.
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A.4 3D Derivatives of Impenetrability Constraints (77)

D1�im1 = −(ϕ
j
a−1,b,c − ϕ

j
a,b,c) × (ϕ

j
a,b−1,c − ϕ

j
a,b,c)

− (ϕ
j
a,b−1,c − ϕ

j
a,b,c) × (ϕ

j
d,e, f − ϕ

j
a,b,c)

− (ϕ
j
d,e, f − ϕ

j
a,b,c) × (ϕ

j
a−1,b,c − ϕ

j
a,b,c),

D2�im1 = (ϕ
j
a,b−1,c − ϕ

j
a,b,c) × (ϕ

j
d,e, f − ϕ

j
a,b,c),

D3�im1 = (ϕ
j
d,e, f − ϕ

j
a,b,c) × (ϕ

j
a−1,b,c − ϕ

j
a,b,c),

D4�im1 = (ϕ
j
a−1,b,c − ϕ

j
a,b,c) × (ϕ

j
a,b−1,c − ϕ

j
a,b,c),

D1�im2 = −(ϕ
j
a,b−1,c − ϕ

j
a,b,c) × (ϕ

j
a+1,b,c − ϕ

j
a,b,c)

− (ϕ
j
d+1,e, f − ϕ

j
a,b,c) × (ϕ

j
a,b−1,c − ϕ

j
a,b,c)

− (ϕ
j
a+1,b,c − ϕ

j
a,b,c) × (ϕ

j
d+1,e, f − ϕ

j
a,b,c),

D2�im2 = (ϕ
j
d+1,e, f − ϕ

j
a,b,c) × (ϕ

j
a,b−1,c − ϕ

j
a,b,c),

D3�im2 = (ϕ
j
a+1,b,c − ϕ

j
a,b,c) × (ϕ

j
d+1,e, f − ϕ

j
a,b,c),

D4�im2 = (ϕ
j
a,b−1,c − ϕ

j
a,b,c) × (ϕ

j
a+1,b,c − ϕ

j
a,b,c),

D1�im3 = −(ϕ
j
a,b+1,c − ϕ

j
a,b,c) × (ϕ

j
a−1,b,c − ϕ

j
a,b,c)

− (ϕ
j
d,e+1, f − ϕ

j
a,b,c) × (ϕ

j
a,b+1,c − ϕ

j
a,b,c),

− (ϕ
j
a−1,b,c − ϕ

j
a,b,c) × (ϕ

j
d,e+1, f − ϕ

j
a,b,c),

D2�im3 = (ϕ
j
d,e+1, f − ϕ

j
a,b,c) × (ϕ

j
a,b+1,c − ϕ

j
a,b,c),

D3�im3 = (ϕ
j
a−1,b,c − ϕ

j
a,b,c) × (ϕ

j
d,e+1, f − ϕ

j
a,b,c),

D4�im3 = (ϕ
j
a,b+1,c − ϕ

j
a,b,c) × (ϕ

j
a−1,b,c − ϕ

j
a,b,c),

D1�im4 = −(ϕ
j
a+1,b,c − ϕ

j
a,b,c) × (ϕ

j
a,b+1,c − ϕ

j
a,b,c)

− (ϕ
j
d+1,e+1, f − ϕ

j
a,b,c) × (ϕ

j
a+1,b,c − ϕ

j
a,b,c)

− (ϕ
j
a,b+1,c − ϕ

j
a,b,c) × (ϕ

j
d+1,e+1, f − ϕ

j
a,b,c),

D2�im4 = (ϕ
j
a,b+1,c − ϕ

j
a,b,c) × (ϕ

j
d+1,e+1, f − ϕ

j
a,b,c),

D3�im4 = (ϕ
j
d+1,e+1, f − ϕ

j
a,b,c) × (ϕ

j
a+1,b,c − ϕ

j
a,b,c),

D4�im4 = (ϕ
j
a+1,b,c − ϕ

j
a,b,c) × (ϕ

j
a,b+1,c − ϕ

j
a,b,c).
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