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Abstract
In this study, we propose an explicit adaptive finite difference method (FDM) for the
Cahn–Hilliard (CH) equation which describes the process of phase separation. The
CH equation has been successfully utilized to model and simulate diverse field appli-
cations such as complex interfacial fluid flows and materials science. To numerically
solve the CH equation fast and efficiently, we use the FDM and time-adaptive narrow-
band domain. For the adaptive grid, we define a narrow-band domain including the
interfacial transition layer of the phase field based on an undivided finite difference
and solve the numerical scheme on the narrow-band domain. The proposed numeri-
cal scheme is based on an alternating direction explicit (ADE) method. To make the
scheme conservative, we apply a mass correction algorithm after each temporal itera-
tion step. To demonstrate the superior performance of the proposed adaptive FDM for
the CH equation, we present two- and three-dimensional numerical experiments and
compare them with those of other previous methods.
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1 Introduction

The Cahn–Hilliard (CH) equation represents the dynamics of spinodal decomposition
that occurs when a single thermodynamic phase spontaneously separates into two
phases (Cahn and Hilliard 1958; Grant 1993):

∂φ(x, t)
∂t

= �
[
F ′(φ(x, t)) − ε2�φ(x, t)

]
, (1)

where φ(x, t) is a phase field at space x ∈ � and time t , ε is a positive constant,
and F(φ) = (φ2 − 1)2/4. The boundary condition is the homogeneous Neumann
boundary condition: n · ∇φ(x, t) = 0 and n · ∇�φ(x, t) = 0 for x ∈ ∂�, where
n is the outer unit normal vector. Because the CH equation can efficiently handle
topological changes, it has been widely studied and applied in various applications.
However, because the CH equation is a fourth-order nonlinear partial differential
equation (PDE), the explicit time discretization requires a very small time step for
stability. In order to overcome the strict time step constraints, various semi-implicit
(Zhu et al. 1999; Li and Qiao 2017; Li et al. 2016, 2021) and implicit (Beneŝová et al.
2014; Bosch et al. 2014; Xu et al. 2019) schemes have been proposed to solve the
CH equation with good numerical stability. Splitting-type numerical schemes have
been used for variable studies (Chen et al. 2012; Li et al. 2018; Cheng et al. 2019;
Chen et al. 2020; Meng et al. 2020; Hao 2021) with energy stability. Several different
methods have been utilized to numerically solve the CH equation. Zhai et al. (2021)
proposed a novel high-order linearly operator splittingmethod for the nonlocal viscous
CH equation with the spectral deferred correction method. Their method can avoid the
nonlinear iteration and obtain high temporal accuracy. Feng et al. (2020) considered
the CH equation with an imposed advection term. They studied the effects of the
imposed advection on phase separation of theCHequation.Ainsworth andMao (2017)
investigated the fractional CH equation with fractional free energy. They presented
well-posedness and several numerical examples of the fractional CH equation. Li et al.
(2016a) used the phase-field model to the minimized CH dynamics. Mohammadi and
Dehghan (2019) presented an adaptive time algorithm for the CH equation. Fu and
Han (2021) used a finite element method (FEM) to overcome the challenges of solving
the CH equation with a degenerate mobility function. Theljani et al. (2020) proposed
the image inpainting method which solves the CH equation on an adaptive mesh.
Figure 1 shows an adaptive mesh (Theljani et al. 2020).

Chen et al. (2016) solved the CH-type diffusion equation and the Navier–Stokes
equation using a space-time adaptive finite difference method. Isotopic and strongly
anisotropic CH systems were solved using the multigrid method on an adaptive grid
(Chen et al. 2018). Figure 2a and b shows the adaptive meshes (Chen et al. 2016,
2018) for two- and three-dimensional spaces, respectively.

Compared to the unstructured methods, the adaptive mesh refinement (AMR)
framework can provide spatial multi-resolution (Berger and Oliger 1984), which
imposes a good choice for the large-scale simulation with challenging physical issues
(Li et al. 2016b; Zhou and Xie 2021). There are many applications for the AMR algo-
rithm, i.e., crystal growth (Li and Kim 2012, 2017), thin film (Li et al. 2014; Sun et al.
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Fig. 1 a Uniform mesh and b adaptive mesh. Reprinted from (Theljani et al. 2020) with permission from
SAGE Publishing

Fig. 2 a and b are 2D and 3D adaptive meshes, reprinted from (Chen et al. 2016) and (Chen et al. 2018)
with permission from Elsevier, respectively

2007), nonlinear wave (Dohnal and Uecker 2016), and computational fluid dynamics
(Berger and Colella 1989). Koliesnikova et al. (2021) proposed a hierarchical mesh
refinement scheme driven by a posteriori error estimator. Li et al. (2021) proposed an
implicitly discretized surface method with an AMR method. To overcome the diffi-
culties of imposing the boundary conditions by considering the skin depth, Jung and
Yoo (2021) used an AMR framework for microwave applications of metallic struc-
tures. Grave and Coutinho (2021) used a PDE model to investigate the dynamics of
COVID-19 using an AMR method. Their model can represent various spatial scales.

Kay and Welford (2006) presented a multigrid FEM for the CH equation. Banas
and Nürnberg (2008) presented an AMR method for the CH equation. Ceniceros and
Rom (2007) presented a nonstiff, fully AMR method for the CH equation. Wise et al.
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(2007) presented a second-order accurate and adaptive FDM to solve the CH equation
in 2D and 3D spaces. Stogner et al. (2008) proposed a variational formulation and
C1 FEM with an AMR method. The fourth-order spatial accurate compact schemes
were developed for the CH equation in 2D (Lee et al. 2014) and 3D (Li et al. 2016c)
spaces. The above-mentionedmethods are based on a semi-implicit splitting or implicit
scheme, in which a multigrid method or other numerical solvers should be performed
on coarse and fine grid levels. Therefore, the explicit AMR-based method is much
simpler to implement.

The main purpose of this study is to present an explicit adaptive FDM for the CH
equation. The primary advantage of the proposed method is its simplicity compared
to existing adaptive numerical schemes for the CH equation which use complex data
structure and implicit solvers.

The outline of this article is as follows. In Sect. 2, the proposed numerical method
is described. In Sect. 3, we present several computational experiments to confirm the
superior performance of the proposed explicit AMR method. We conclude this paper
in Sect. 4.

2 Numerical Method

We describe the proposed numerical solution algorithms on the adaptive domain for
the 2D and 3DCHequations using the Saul’yev scheme (Yang et al. 2022) and adaptive
methodology (Jeong et al. 2021).

2.1 Two-Dimensional Algorithm

For the completeness of exposition, we briefly describe the explicit finite difference
scheme for the CH equation in the 2D domain � = (Lx , Rx ) × (Ly, Ry). For more
details, see (Yang et al. 2022). Let �h = {(xi = Lx + h(i − 0.5), y j = Ly +
h( j − 0.5))|i = 1, . . . , Nx , j = 1, . . . , Ny}, where the spatial space step is h =
(Rx − Lx )/Nx = (Ry − Ly)/Ny . Here, Nx and Ny are the numbers of the grid points.
Let φn

i j = φ(xi , y j , n�t), where �t is the time step for a nonnegative integer n. First,
we discretize Eq. (1) using the linear convex splitting scheme (Li et al. 2017):

φn+1
i j − φn

i j

�t
= �d((φ

n
i j )

3 − 3φn
i j ) + 2�dφ

n+1
i j − ε2�2

dφ
n+1
i j , (2)

where �dφi j = (φi+1, j + φi−1, j − 4φi j + φi, j+1 + φi, j−1)/h2 and �2
dφi j =

�d(�dφi j ). We define a temporary narrow domain as

�n
tmp = {(xi , y j )| |∇φn

i j | > ξ, 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny}, (3)

123



Journal of Nonlinear Science (2022) 32 :80 Page 5 of 19 80

where ξ is a parameter and

∇φn
i j =

(
φn
i+1, j − φn

i−1, j

2h
,
φn
i, j+1 − φn

i, j−1

2h

)
.

A space-time adaptive narrow-band domain �n
nb is defined using �n

tmp:

�n
nb =

p=m⋃
p=−m

q=m⋃
q=−m

{(xi+p, y j+q)|(xi , y j ) ∈ �n
tmp} (4)

for some positive integer m, which makes buffer points. We can control the narrow-
band domain by adjusting ξ and m values appropriately. We define doubly layered
exterior boundary points of �n

nb as

�n
bd =

p=2⋃
p=−2

q=2⋃
q=−2

{(xi+p, y j+q)|(xi , y j ) ∈ �n
nb} \ �n

nb.

For better understanding of the narrow-band domain construction, let us consider
the following circular shape at time t = n�t :

φ(x, y, t) = tanh

(
30 − √

x2 + y2√
2ε

)
, (5)

which is shown in Fig. 3a and the red line is the contour of φ at zero level. Figure
3b, c, and d shows |∇φn| with z = ξ -plane, temporary domain �n

tmp, and space-time
adaptive narrow-band domain �n

nb (closed circle) with the exterior boundary points
�n

bd (open circle), respectively. We use the values defined at �n
bd for the exterior

boundary values when we solve Eq. (6) on the interior boundary points. Then, using
the Saul’yev method (Yang et al. 2022), we have the following updating scheme: For
j = 1, 2, . . . , Ny, for i = 1, 2, . . . , Nx . If (xi , y j ) ∈ �nb, then

φn+1
i j = 1

r

[φn
i j

�t
+ �d((φ

n
i j )

3 − 3φn
i j ) + 2

h2
(
φn
i+1, j + φn+1

i−1, j − 2φn
i j

+ φn
i, j+1 + φn+1

i, j−1

) − ε2

h4
{
φn
i+2, j + φn+1

i−2, j + φn
i, j+2 + φn+1

i, j−2

+ 2(φn
i+1, j+1 + φn

i+1, j−1 + φn
i−1, j+1 + φn+1

i−1, j−1)

− 8(φn
i+1, j + φn+1

i−1, j + φn
i, j+1 + φn+1

i, j−1) + 10φn
i j

}]
, (6)

where r = 1/�t +4/h2 +10ε2/h4. The other 7 ‘for loop’ cases are similarly defined.
Next, we adopt the adaptive methodology, which was developed for the Allen–Cahn
equation, see (Jeong et al. 2021).
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Fig. 3 Schematic illustration for �n
tmp, �n

nb and �n
bd: a mesh plot of φ with the zero level contour (red

line), b |∇φn | and z = ξ -plane, c temporary domain�n
tmp, and d space-time adaptive narrow-band domain

�n
nb (closed circle) with the exterior boundary points �n

bd (open circle) (Color figure online)

Because the Saul’yev-type scheme is generally not conservative, we adopt a mass
correction step (Jeong et al. 2020):

φn+1
i j = φn+1

i j +
∑

(xp,yq )∈�n
nb

(φn
pq − φn+1

pq )

∑
(xp,yq )∈�n

nb

√
F(φn+1

pq )

√
F(φn+1

i j ) for (xi , y j ) ∈ �n
nb. (7)

We should note that the mass correction is only done on the narrow-band domain
because the values of φ outside the narrow-band domain are unchanged.

Remark 1 Solving problems using the FDM in adaptive meshes is very complex and
difficult; nevertheless, there are studies that have presented new numerical ideas
and convincing numerical results on this interesting scientific problem (Feng et al.
2018; Wise et al. 2011). However, because most adaptive methods have very com-
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plex relational expressions, numerical methods have been verified through numerical
experiments rather than analytically verified.

2.2 Three-Dimensional Algorithm

The 3D numerical solution algorithm and adaptive grid generation are straightforward
extension of the 2D ones. Let � = (Lx , Rx )× (Ly, Ry)× (Lz, Rz). Let �h = {(xi =
Lx + h(i − 0.5), y j = Ly + h( j − 0.5), zk = Lz + h(k − 0.5))|i = 1, . . . , Nx , j =
1, . . . , Ny, k = 1, . . . , Nz} be the discrete domain, where h = (Rx − Lx )/Nx =
(Ry − Ly)/Ny = (Rz − Lz)/Nz . Here, Nx , Ny and Nz are the numbers of the grid
points. Let φn

i jk = φ(xi , y j , zk, n�t). We start with the following method (Li et al.
2017):

φn+1
i jk − φn

i jk

�t
= �d((φ

n
i jk)

3 − 3φn
i jk) + 2�dφ

n+1
i jk − ε2�2

dφ
n+1
i jk , (8)

where�dφi jk = (
φi+1, jk+φi−1, jk+φi, j+1,k+φi, j−1,k+φi j,k+1+φi j,k−1−6φi jk

)
/h2

and �2
dφi jk = �d(�dφi jk). Then, using the Saul’yev method (Yang et al. 2022), we

have the following updating scheme:

For i = 1, 2, . . . , Nx , for j = 1, 2, . . . , Ny , for k = 1, 2, . . . , Nz, (9)

If (xi , y j , zk) ∈ �nb, then

φn+1
i jk = 1

r

[φn
i jk

�t
+ �d ((φn

i jk)
3 − 3φn

i jk) + 2

h2
(
φn
i+1, jk + φn+1

i−1, jk + φn
i, j+1,k

+φn+1
i, j−1,k + φn

i j,k+1 + φn+1
i j,k−1 − 3φn

i jk
) − ε2

h4
{
φn
i+2, jk + φn+1

i−2, jk

+φn
i, j+2,k + φn+1

i, j−2,k + φn
i j,k+2 + φn+1

i j,k−2 + 2(φn
i+1, j+1,k + φn

i+1, j−1,k

+φn
i+1, j,k+1 + φn

i+1, j,k−1 + φn
i−1, j+1,k + φn+1

i−1, j−1,k + φn
i−1, j,k+1

+φn+1
i−1, j,k−1 + φn

i, j+1,k+1 + φn
i, j+1,k−1 + φn

i, j−1,k+1 + φn+1
i, j−1,k−1)

−12(φn
i+1, jk + φn+1

i−1, jk + φn
i, j+1,k + φn+1

i, j−1,k+φn
i j,k+1 + φn+1

i j,k−1) + 21φn
i jk

}]
,

(10)

where r = 1/�t + 6/h2 + 21ε2/h4. The other 47 ‘for loop’ cases are simi-
larly defined. A space-time adaptive narrow-band domain �n

nb is defined as �n
nb =

{(xi , y j , zk)| |∇φn
i jk | > ξ, 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz}, where

∇φn
i jk =

(
φn
i+1, jk − φn

i−1, jk

2h
,
φn
i, j+1,k − φn

i, j−1,k

2h
,
φn
i j,k+1 − φn

i j,k−1

2h

)
. (11)

Figure 4 illustrates a schematic of narrow-band domain on 3D space. It shows the
temporal evolution of �n

nb (dots) with isosurface of solutions at zero level.
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Fig. 4 a–c Snapshots of the temporal evolution of narrow-band domain �n
nb (dots) in 3D space

To make the numerical scheme conservative, we apply the mass correction algo-
rithm after each temporal iteration:

φn+1
i jk = φn+1

i jk +
∑

(xp,yq ,zr )∈�n
nb

(φn
pqr − φn+1

pqr )

∑
(xp,yq ,zr )∈�n

nb

√
F(φn+1

pqr )

√
F(φn+1

i jk ) for (xi , y j , zk) ∈ �n
nb.

(12)

In Eqs. (2) and (8), we only considered a first-order linear convex splitting scheme.
It can be extended to second-order linear convex splitting schemes (Guo et al. 2016,
2021; Chen et al. 2019; Dong et al. 2020). For example, we may use the following
second-order method (Guo et al. 2016): for given φn−1

i jk , φn
i jk ∈ �h ,

φn+1
i jk − φn

i jk

�t
= �dμ

n+ 1
2

i jk , (13)

where

μ
n+ 1

2
i jk = �d

(
χ(φn+1

i jk , φn
i jk) − φ

n+ 1
2

i jk − ε2�d φ̂
n+ 1

2
i jk

)
, (14)

χ(φn+1
i jk , φn

i jk) = 1

4
(φn+1

i jk + φn
i jk)

[
(φn+1

i jk )2 + (φn
i jk)

2
]
, (15)

φ
n+ 1

2
i jk = 3

2
φn
i jk − 1

2
φn−1
i jk , φ̂

n+ 1
2

i jk = 3

4
φn+1
i jk + 1

4
φn−1
i jk . (16)

3 Computational Tests

We perform various computational simulations using the proposed numerical solution
algorithm on 2D and 3D spaces. Through the computational experiments, we demon-
strate the efficiency and accuracy of our proposed numerical solution algorithm. For
numerical simulations, we define the interface layer parameter εl as follows (Jeong
et al. 2021):
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εl = lh

2
√
2 tanh−1(0.9)

, (17)

where l is a positive integer. Unless otherwise stated, numerical experiments are per-
formed in � = (−1, 1)d (d = 2, 3) with grid points Nx = Ny = Nz = 128, uniform
spatial step h = 2/Nx = 2/Ny = 2/Nz , and ε = ε4.

3.1 Stability Test

In this section, we test the time step stability of the proposed adaptive method. In 2D
and 3D spaces, we consider square and cubic shapes as initial conditions, respectively.
We define a maximum time step �tmax , which is a numerical maximum time step that
guarantees the non-blow-up of the numerical solutions. The condition under which
the numerical solution blows up is defined when maxi∈I {φ(xi , 100�t)} > 1.7, where
I is the index set of grid points. In 2D and 3D computational domains � = (0, 1)d ,
where d is dimension, the given initial conditions are as follows:

φ(x, y, 0) =
{+1, if 0.25 < x < 0.75, 0.25 < y < 0.75,

−1, otherwise,
(18)

and

φ(x, y, z, 0) =
{+1, if 0.25 < x < 0.75, 0.25 < y < 0.75, 0.25 < z < 0.75,

−1, otherwise,

(19)

respectively. Tables 1 and 2 list the maximum time step �tmax in 2D and 3D space,
respectively, with three different spatial grid sizes h = 1/64, 1/128, and 1/256. The
stability test confirms that the proposed adaptive method can use sufficiently large
time steps for the stable numerical solutions.

3.2 Two-Dimensional Space

In 2D space, we compare solutions of the entire domainwith those of adaptive domains
and investigate effects of the parameters m, ξ , and K which generate the adaptive
domain.

Table 1 Stability test results in 2D space

Case �tmax

h = 1/64 8.8199e-4 ≈ 14790h4

h = 1/128 2.2140e-4 ≈ 59432h4

h = 1/256 5.6189e-5 ≈ 241330h4
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Table 2 Stability test results in 3D space

Case �tmax

h = 1/64 1.1704e-4 ≈ 1964h4

h = 1/128 6.3239e-5 ≈ 16976h4

h = 1/256 1.5285e-5 ≈ 65650h4

In Fig. 5, we observe the temporal evolution with the following square shape initial
condition,

φ(x, y, 0) =
{+1, if − 0.5 < x < 0.5, − 0.5 < y < 0.5,

−1, otherwise,
(20)

We compare the solutions of the CH equation computed on the entire domain (solid
line) with the adaptive domain (solid line with markers). The solutions on the adaptive
domain fit well with the solutions on the entire domains. For efficient computations,
buffer size m which adjusts the narrow-band domain should be appropriately con-
trolled. To find a proper the buffer sizem, we investigate the evolution of the solutions
on the adaptive narrow-band domain according to the value ofm. In Fig. 6, we experi-
ment with a square spiral shape. As a result of Fig. 6, m = 6 is sufficient to accurately
represent the solution of the CH equation.

To compare CPU times for the entire domains with those for adaptive domains,
we define a period K of updating the adaptive domain at every K time steps. That
is, we update the computational domain �n

nb when n = Kp for p = 0, 1, 2, . . .,
where K is a positive integer. In Fig. 7, we show the comparison results for entire
and adaptive domains. The CH equation is solved on a rectangular domain � =
(−1, 1) × (−0.5, 0.5) with parameter values: Nx = 128, Ny = 64, �t = h2, m = 4,
and ξ = 0.5. We investigate the dynamics until the solution of the CH equation
becomes circular from the rectangular initial condition. Figure 7a shows CPU times
for entire and adaptive domains. It shows that as K increases, the CPU times decrease.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Initial

(a)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
Entire domain
Adaptive domain

(b)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
Entire domain
Adaptive domain

(c)

Fig. 5 Temporal evolution of the contours of φ at zero level with square initial condition. a–c are snapshots
of solution for entire and adaptive domains at t = 0, t = 9000�t , and t = 30000�t , respectively. Here,
m = 6, �t = 0.1h2, and ξ = 0.5 are used
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(d)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

t = 3000Δt
-1 -0.5 0 0.5 1

-1

-0.5
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0.5

1

t = 15000Δt
-1 -0.5 0 0.5 1
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-0.5

0

0.5

1

t = 30000Δt

Fig. 6 Snapshots of solution and narrow-band domain for a–b adaptive domain m = 2 and m = 6, c entire
domain. d Overlapped contour of solutions at zero level. Left to right column, t = 3000�t , t = 15000�t ,
and t = 30000�t . Here, ξ = 0.5 and �t = 0.1h2 are used

Figure 7b shows contours of φ at zero for the entire and adaptive domains with the
rectangular initial condition. Solutions in the adaptive domains are similar to the
solution in the entire domain up to K = 100. As shown in Figs. 7a and b, it seems
reasonable to adopt K = 100 for efficient and accurate computation.
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Fig. 7 On a computational domain � = (−1, 1) × (−0.5, 0.5), for a rectangular initial condition, a CPU
times and b contours of φ at zero for entire domain and adaptive domains with K = 1, 100, and 10000.
Here, m = 4, h = 1/64, �t = h2, and t = 20000�t are used

3.3 Three-Dimensional Space

We perform several computational experiments in 3D space. In 3D space, for stability
and efficient computation, we use �t = 0.2h2,m = 6, ξ = 0.5, and K = 100. Figure
8 displays the temporal evolution of the cubic shape initial condition as follows:

φ(x, y, z, 0) =
{+1, if − 0.5 < x < 0.5, − 0.5 < y < 0.5, − 0.5 < z < 0.5,

−1, otherwise.

To examine the efficiency of adaptive narrow-domain, a shape with irregularity is
considered as the initial condition as shown in Fig. 9. In the case of the shape of Fig.
9, higher efficiencies can be obtained when using the adaptive narrow-band domain,
compared to the case of solving the problems on the entire domain. Let us define the
3D discrete energy functional in the discretized space domain �h as

Eh(φn) :=
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

(
F(φn

i jk) + ε2

2
|∇hφ

n
i jk |2

)
h3, (21)

Fig. 8 Temporal evolution isosurface of φ at zero level with cube initial condition in 3D space. a–c are
snapshots of solution for adaptive domain at t = 0, t = 400�t , and t = 3000�t , respectively
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Fig. 9 Temporal evolution of the discrete free energy functional and dynamics with respect to the number of
time iterations. Here, the solid line represents the energy curve, open circles represent the specific moments
when t = 0, t = 1000�t , and t = 5000�t . From left to right, the figures inserted into the graph are
snapshots of the zero level isosurface of solution φ with the irregular initial condition

where

∇hφ
n
i jk =

(φn
i+1, jk − φn

i jk

h
,
φn
i, j+1,k − φn

i jk

h
,
φn
i j,k+1 − φn

i jk

h

)
. (22)

In Fig. 9, the graph shows the temporal evolution of discrete free energy from
t = 0 to t = 5000�t and the figures are snapshots of the zero level isosurface of φ

with the irregular initial condition. We confirm that the discrete free energy functional
decreases monotonically as time goes on.

Then, we investigate the robustness of the adaptive narrow-band domain for a shape
with complex interface in 3D space. We consider ‘Genus 6 3D surface’ (Ceh Jan) as
an initial condition, where the inside of the surface is 1 and the outside is -1, as shown
in Fig. 10a. Figure 10a–d shows the temporal evolution of isosurface of φ at zero level
with Genus 6 shape. As shown in Fig. 10, it can be seen that the adaptive narrow-band
domain operates well for the CH equation for shapes with complex interfaces such as
Genus 6 3D surface.

To validate the adaptive procedure for disjoint drops in 3D space, we consider the
four separate drops, (see, e.q., Cheng et al. (2018)) consisting of three ellipsoids and
one sphere. The initial condition is given as

φ(x, y, z, 0) = tanh

⎛
⎝

π
12 −

√
0.25(x + π

14 )
2 + (y − π

11 )
2 + (z + π

11 )
2

√
2ε

⎞
⎠

+ tanh

⎛
⎝

π
12 −

√
0.5(x − π

10 )
2 + (y + π

13 )
2 + (z + π

11 )
2

√
2ε

⎞
⎠

+ tanh

⎛
⎝

π
14 −

√
(x + π

10 )
2 + (y + π

12 )
2 + (z + π

11 )
2

√
2ε

⎞
⎠
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Fig. 10 Temporal evolution of isosurface of φ at zero level with Genus 6 shape for initial condition. a–d
are snapshot of solution for the adaptive domain at t = 0, t = 400�t , t = 800�t , and t = 3000�t ,
respectively

+ tanh

⎛
⎝

π
10 −

√
x2 + 0.2y2 + (z − π

10 )
2

√
2ε

⎞
⎠ + 3.

The isosurface of initial condition at φ = 0 is illustrated in Fig. 11a. From the results
in Fig. 11, four disjoint drops merge and eventually evolve into a sphere. The solution
obtained by the proposed explicit adaptive method follows the dynamics of the CH
equation well even if it is initially irregular or separated.
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Fig. 11 a–f Snapshots of the isosurface of numerical solution φ at zero level with initially four drops, using
the adaptive domain with �t = 4000h4 at t = 0, t = 100�t , t = 300�t , t = 800�t , t = 3000�t , and
t = 50000�t , respectively

4 Discussion and Conclusion

In this section, we discuss a relation between the interface layer parameter ε and the
gradient criterion ξ . Then, we draw conclusions of this paper. An equilibrium profile
is ψ(x) = tanh(x/(

√
2ε)) on the infinite domain, where the phase-field varies from

−0.9 to 0.9 at a distance of about 2
√
2 tanh(0.9). Therefore, we use Eq. (17) for a

transition layer width of approximately lh. We differentiate the equilibrium solution
ψ(x) to define the gradient criterion value ξ .

ψ ′(x) = sech2(x/(
√
2ε))√

2ε
.

Thus, we define the relation between ξ and εl as follows:

ξ(ε) =
∣∣∣ψ ′ (√

2ε tanh−1(0.995)
) ∣∣∣, (23)

which implies that our algorithm is set to recognize the transition layermore accurately.
When ε = ε4, using the relation (23), ξ(ε4) ≈ 0.4699. In our previous numerical tests,
we use ξ = 0.5 for simplicity.
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In this paper, we presented an explicit adaptive FDM for the CH equation which
describes the process of phase separation. To numerically solve the CH equation
fast and efficiently, we used the FDM and time-adaptive narrow-band domain. For the
adaptive grid,we define a narrow-band domain including the interfacial transition layer
of the phase field and solve the numerical scheme on the narrow-band domain which is
computed using undivided finite difference. We used the alternating direction explicit
method. To make the scheme conservative, we apply a mass correction algorithm
after each temporal iteration step. To demonstrate the superior performance of the
proposed method, we presented 2D and 3D numerical experiments and compared
them with those of the other previous methods. There exist several interesting future
extensions of the proposed adaptive approach of the CH equation to other phase field
models such as two-phase flows (Guo et al. 2022), multiphase tumor growth (Chen
et al. 2014), topology optimization (Bartels et al. 2021; Yu et al. 2021), N -component
CH system (Li et al. 2016b), N -component fluid flows (Kim 2009; Xia et al. 2022),
curve and surface smoothing (Choi et al. 2017), and dendritic crystal growth (Zhang
et al. 2019).
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