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Abstract
We are concerned with polynomial ordinary differential systems that arise from mod-
elling chemical reaction networks. For such systems, which may be of high dimension
and may depend on many parameters, it is frequently of interest to obtain a reduction
of dimension in certain parameter ranges. Singular perturbation theory, as initiated
by Tikhonov and Fenichel, provides a path towards such reductions. In the present
paper, we discuss parameter values that lead to singular perturbation reductions (so-
called Tikhonov–Fenichel parameter values, or TFPVs). An algorithmic approach is
known, but it is feasible for small dimensions only. Here, we characterize conditions
for classes of reaction networks for which TFPVs arise by turning off reactions (by
setting rate parameters to zero) or by removing certain species (which relates to the
classical quasi-steady state approach to model reduction). In particular, we obtain
definitive results for the class of complex-balanced reaction networks (of deficiency
zero) and first-order reaction networks.
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1 Introduction

The modelling of chemical reaction networks frequently leads to high-dimensional
parameter dependent systems of ordinary differential equations (ODEs). Even in the
presence of a well-established structure theory for large classes of reaction networks,
reducing the dimension of such systems is desirable for several reasons: From a quan-
titative perspective in the laboratory, parameter identification is frequently unfeasible
for the full systembutmight be possible for a reduced equation. TheMichaelis–Menten
system and generalizations can be seen as examples of this; see, e.g. Segel and Slemrod
(1989) and Keener and Sneyd (2009). From a qualitative vantage point, one strategy to
prove special features such as the existence of periodic solutions, or multistationarity,
is to prove such features for a reduced system and show that they persist for the full
system in some parameter range. For a recent example of this strategy, see Feliu et al.
(2020). Thus it is of general interest to identify parameter domains where a systematic
reduction is possible.

Typically (although not exclusively) the reduction procedures are based on singular
perturbation theory as developed by Tikhonov (1952) and Fenichel (1979). In the
present paper, we will discuss singular perturbation reductions and critical parameters
that permit reductions of this kind. The focus will be on characterizing such critical
parameters that correspond naturally to structural features of the chemical reaction
network.

A frequently used approach to finding appropriate parameters for singular pertur-
bation scenarios goes back to a classical paper by Heineken et al. (1967). The method
relies on an adroit scaling of suitable variables (based on an intuitive understanding of
the processes in the reaction network) and ideally leads to a system with slow and fast
variables to which Tikhonov’s and Fenichel’s theorems are applicable. From another
perspective, a singular perturbation approach for systemswith prescribed slow and fast
reactions was discussed by Schauer and Heinrich (1983). More recently, a complete
characterization of the parameter values (called Tikhonov–Fenichel parameter values,
briefly TFPVs) which give rise to singular perturbations, and of their critical mani-
folds, was obtained in A. Goeke’s dissertation (Goeke 2013) and the ensuing papers
(Goeke and Walcher 2014; Goeke et al. 2015, 2017) by Goeke et al. Moreover for
polynomial or rational systems, an algorithmic path exists towards determining these
parameter values. The theory was applied to a number of reaction networks, includ-
ing standard reaction networks from biochemistry (Keener and Sneyd 2009), and for
these all possible singular perturbation reductions could be determined. In addition, it
turned out that the algorithmically determined TFPVs for these systems readily admit
an interpretation in terms of chemical species concentrations and reaction rates: Fre-
quently these TFPVs correspond to a “switching off” of certain reactions or a removal
of certain chemical species. This is the vantage point for the present paper. Since
there is a natural limit to any algorithmic approach for systems with large numbers of
variables or parameters, generalizing such structural insights is of interest.
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From a mathematical as well as from a chemical perspective it seems desirable to
understand whether (and how) special properties of reaction networks imply the exis-
tence of particular classes of TFPVs. The purpose of the present paper is to contribute
towards this understanding. We will focus on reaction networks with mass-action
kinetics, hence on polynomial differential equations. Our goal is to employ the struc-
ture of chemical reaction networks to obtain heuristics for finding TFPV candidates
(respectively, candidates for scaling) in a first step and then, in a second step, proceed
to verify the TFPV property for some reasonably large and relevant classes of reaction
networks. We make substantial use of the structure theory going back to Horn and
Jackson (1972), Feinberg (1972) and others. In terms of chemical reaction networks,
we are concerned with slow and fast reactions, on the one hand. On the other hand, we
investigate the provenance of quasi-steady state phenomena for chemical species, and
their naturally associated “slow–fast” systems. Our main results apply in particular to
weakly reversible reaction networks of deficiency zero.

Specifically, in Sect. 3 we first consider TFPVs that arise from turning off reactions,
and identify graphical means for their identification (Theorems 3.9 and 3.10). We also
provide an explanation of why TFPVs in many cases belong to proper coordinate
subspaces (Proposition 3.3). In particular, we obtain a complete characterization for
weakly reversible systems of deficiency zero. Continuing, in Sect. 4, we characterize
sets of species (so-called LTC species sets) that “shut down” the reaction network
when the corresponding variables are zero (hence, the species are present in zero
concentration). Such species sets naturally lead to slow–fast systems (in aweak sense),
and we further investigate their relation to linear first integrals and give conditions for
when an LTC species set is the support of a linear first integral (Proposition 4.6). We
proceed to discuss conditions for TFPV for systems on stoichiometric compatibility
classes (Proposition 4.10 and its corollaries).

The paper is organized as follows. Section 2 contains preliminaries on reaction net-
works, TFPVs and (in a weak sense, formally) slow–fast dynamical systems. Section
3, in the context of reaction networks, discusses TFPVs defined by rate parameters.
Section 4 builds on Sect. 2 and connects results of Sect. 3 to the classical scaling
approach and slow–fast systems. In Appendix, we recall, for the reader’s conve-
nience, some results about TFPVs and Laplacianmatrices, respectively, and we briefly
discuss combining the approaches to turn off certain reactions and to remove cer-
tain species. Throughout, the results are illustrated by examples, including standard
textbook reaction networks. In particular, we will use the reversible uncompetitive
inhibition network as an accompanying example.

2 Preliminaries

We letR,R≥0,R>0 denote the sets of real, non-negative real and positive real numbers,
respectively. Also, we letN0 denote the set of non-negative integers. Givenm ∈ N0, a
coordinate subspace ofRm is defined by xi1 = · · · = xik = 0 for some k ∈ {0, . . . ,m}
and i1 < · · · < ik . It is proper if k > 0. The support supp(x) of x ∈ R

m is the
set of all indices i with xi �= 0, i = 1, . . . , n. For y = (y1, . . . , yn)� ∈ N

n
0 and

x = (x1, . . . , xn)� ∈ R
n≥0 (where

� denotes the transpose), we define x y = ∏n
i=1 x

yi
i .
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If M = (m1 . . .mk), mi ∈ N
n
0, i = 1, . . . , k, is an (n × k)-matrix, then we define xM

as the vector (xm1 , . . . , xmk )� ∈ R
k≥0.

2.1 Reaction Networks

We consider spatially homogeneous chemical reaction networks with constant ther-
modynamical parameters and kinetics of mass-action type. The mathematical theory
of these reaction networks was initiated and developed in seminal work by Horn and
Jackson (1972) and Feinberg (1972). We will refer to Feinberg’s recent monograph
(Feinberg 2019) as a basic source. First we introduce the notion of a reaction network
and fix some terminology.

Definition 2.1 Amass-action reactionnetwork over a set of speciesX = {X1, . . . , Xn}
is a finite labelled directed graph G = (Y,R, κ) with node set Y and edge setR such
that

Y ⊆
{

n∑

i=1

αi Xi | αi ∈ N0, i = 1, . . . , n

}

consists of non-negative integer linear combinations in X , and κ labels edges by
positive real numbers. Isolated nodes, but not self-edges, are allowed. We refer to the
nodes as complexes, to the edges as reactions, and to the labels as rate parameters.
Every species is assumed to be in some complexwith a positive coefficient. Throughout
we let d be the cardinality of Y and m the cardinality of R.

A reaction network G̃ is a subnetwork of another reaction network G with species
set X , if G̃ is a subdigraph of G.

We enumerate the set of complexes in some way, and thus write Y j = ∑n
i=1 yi j Xi

with yi j ∈ N0. The yi j ’s are referred to as stochiometric coefficients. A labelled
reaction between the complexes Y j and Y� is written as

Y j
κ� j−→ Y�, κ� j > 0.

Here, Y j is called a reactant complex and Y� a product complex. Note the reversal
of the subindex of κ in the labels. A numbering of the elements of R by 1, . . . ,m,
provides an ordering ofR and we identify the collection of κ� j with a vector κ ∈ R

m
>0,

ordered in the same way asR, such that κi = κ� j if Y j
κ� j−→ Y� is the i-th reaction. We

will use this convention without further reference.
The zero complex 0 is allowed by definition. Reactions with reactant 0 are called

inflow reactions, and account for production or influx of species.
As a reaction network is given as a directed graph, terminology and properties

from graph theory apply. Moreover, special terminology has been developed for CRN,
parallel to terminology in graph theory. We will refer to a reaction network where all
connected components of the digraph are strongly connected asweakly reversible, and
otherwise apply standard terminology.
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The evolution of the species concentrations in time is modelled by means of a
system of ODEs, assumingmass-action kinetics. Denote by x(t) = (x1(t), . . . , xn(t))
the vector of concentrations of the species X1, . . . , Xn at time t . Define the complex
matrix by

Y = (
yi j

)
1≤i≤n, 1≤ j≤d ∈ R

n×d ,

consistingof the stoichiometric coefficients of the complexes, and let y1, . . . , yd denote
its columns.We let B be the reactant matrix with i-th column y j if Y j is the reactant of
the i-th reaction, and N ∈ R

n×m the matrix, referred to as the stoichiometric matrix,
with i-th column given by y� − y j if Y j −→ Y� is the i-th reaction. With this notation,
the system of ODEs becomes:

ẋ = N diag(κ) x B, x ∈ R
n≥0, (1)

where reference to t is omitted and κ ∈ R
m
>0. The sets Rn

>0 and R
n≥0 are positively

invariant for (1) (Volpert 1972). Furthermore, there is a useful decomposition of the
right-hand side of (1) in terms of the Laplacian of the reaction network. The Laplacian
matrix A(κ) = (ai j )1≤i, j≤d ∈ R

d×d is given by

ai j = κi j , i �= j, a j j = −
∑

j �=�

κ� j , for i, j = 1, . . . , d,

where κi j = 0 if there is no reaction Y j → Yi . Then, (1) agrees with

ẋ = Y A(κ) xY , x ∈ R
n≥0. (2)

(See also Feinberg (2019, Subsection 16.1) for further background.)
System (1) often admits stoichiometric first integrals. These are nonzero linear

forms

φ(x) = α1x1 + · · · + αnxn

with coefficients αi ∈ R, i = 1, . . . , n, such that

(α1, . . . , αn) · N = 0
(
equivalently, (α1, . . . , αn) · Y A(κ) = 0 for all κ ∈ R

m
>0

)
.

Note that α1, . . . , αn might be chosen as integers, since N has integer entries.

Definition 2.2 The image of the stoichiometric matrix N is the stoichiometric sub-
space, and the intersection of every coset of this subspace with the non-negative
orthant is a stoichiometric compatibility class (SCC).

The dimension (respectively, codimension) of the mass-action reaction network is
by definition the dimension (respectively, codimension) of the stoichiometric sub-
space.
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While it is possible at the outset to reduce the dimension of system (1) via stoichio-
metric first integrals, for the purpose of the present paper it seems appropriate to keep
the representation (1) until at a later stage.

In principle, system (1) might admit further linear first integrals. However, the
following result says that it does not happen for realistic networks.

Lemma 2.3 (Feinberg and Horn 1977) If every connected component of a reaction
network has exactly one terminal strongly connected component, then every linear
first integral of (1) is stoichiometric.

Example 2.4 Consider themass-action reaction networkwith species X1, X2 and reac-
tions

0 X1
κ2�� κ1 ��

κ3

��

2X1

X2.

κ4

�� (3)

The corresponding ODE system is given by

ẋ1 = (κ1 − κ2)x1 − κ3x1 + κ4x2, ẋ2 = κ3x1 − κ4x2.

The reaction network has no linear first integrals for generic κ , but when κ1 = κ2, the
vector (1, 1) defines one. This reaction network has one connected component, but
two terminal strongly connected components, namely {0} and {2X1}.

For the network X2
κ1←− X1

κ2−→ X3, the dimension is 1, but for all κ there are
two linearly independent linear first integrals: a stoichiometric linear first integral
φ1 = x1 + x2 + x3, and a non-stoichiometric first integral φ2 = κ2x2−κ1x3.

The following example will be used to illustrate notions and results throughout the
paper.

Example 2.5 The uncompetitive inhibition network with reversible product formation
(Keener and Sneyd 2009),

X1 + X2
κ1−−⇀↽−−
κ−1

X3
κ2−−⇀↽−−
κ−2

X4 + X2, X3 + X5
κ3−−⇀↽−−
κ−3

X6,

is an extension of the classical reversible Michaelis–Menten network (see Appendix,
Example A.2), with an inhibitor X5 binding to complex X3. The system has five
complexes and two linkage classes. Here, we find

Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 0 0 0
−1 1 1 −1 0 0
1 −1 −1 1 −1 1
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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hence the dimension of the network equals three. One has stoichiometric first integrals

φ1 = x2 + x3 + x6, φ2 = x5 + x6, φ3 = x1 + x3 + x4 + x6. (4)

Moreover

A(κ) =

⎛

⎜
⎜
⎜
⎜
⎝

−κ1 κ−1 0 0 0
κ1 −(κ−1 + κ2) κ−2 0 0
0 κ2 −κ−2 0 0
0 0 0 −κ3 κ−3
0 0 0 κ3 −κ−3

⎞

⎟
⎟
⎟
⎟
⎠

, xY =

⎛

⎜
⎜
⎜
⎜
⎝

x1x2
x3
x2x4
x3x5
x6

⎞

⎟
⎟
⎟
⎟
⎠

.

The full ODE system is given by

ẋ1 = −κ1x1x2 + κ−1x3
ẋ2 = −κ1x1x2 + (κ−1 + κ2)x3 − κ−2x2x4
ẋ3 = κ1x1x2 − (κ−1 + κ2)x3 + κ−2x2x4 − κ3x3x5 + κ−3x6
ẋ4 = κ2x3 − κ−2x2x4
ẋ5 = −κ3x3x5 + κ−3x6
ẋ6 = +κ3x3x5 − κ−3x6.

(5)

With typical initial values x1(0) = s0, x2(0) = e0, x5(0) = f0, x3(0) = x4(0) =
x6(0) = 0, and using the stoichiometric first integrals from (4) to reduce the dimension,
one arrives at a three-dimensional system

ẋ1 = −κ1(e0 − x3 − x6)x1 + κ−1x3
ẋ3 = κ1(e0 − x3 − x6)x1 − (κ−1 + κ2)x3 + κ−2(e0 − x3 − x6)(s0 − x1 − x3 − x6)

− κ3x3( f0 − x6) + κ−3x6
ẋ6 = κ3x3( f0 − x6) − κ−3x6.

(6)

2.2 Tikhonov–Fenichel Parameter Values (TFPVs)

Throughout, when referring to singular perturbation reduction, we mean this in the
sense of Tikhonov (1952) and Fenichel (1979). In order to identify parameters that give
rise to singular perturbation reductions the following approach was taken in Goeke’s
dissertation (Goeke 2013) and the subsequent papers (Goeke andWalcher 2014;Goeke
et al. 2015).

Consider a parameter-dependent ODE system,

ẋ = h(x, π), x ∈ 	 ⊆ R
n, π ∈ 
 ⊆ R

m (7)

with h(x, π) polynomial in x and π . We let D1h(x, π) and D2h(x, π) denote the
matrices of partial derivatives with respect to the entries of x and π , respectively.
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Given π ∈ 
, we denote by V(h(·, π)) the zero set of x 
→ h(x, π), and let n − s∗
be the generic dimension (with respect to π ) of the vector subspace generated by the
h(x, π), with x ∈ 	. In addition, we require that the generic rank of D1h(x, π), with
x ∈ R

n , equals n − s∗.
In the setting ofmass-action reaction networks, this subspace is equal to the stoichio-

metric subspace under the hypotheses of Lemma2.3. In this case, s∗ is the codimension
of the reaction network, according to Definition 2.2.

The existence of singular perturbation reductions corresponds to the existence of
Tikhonov–Fenichel parameter values (TFPVs). The following definition extends the
one given in Goeke et al. (2015).

Definition 2.6 A TFPV for dimension s (s∗ < s < n) of system (7) is a parameter
π̂ ∈ 
, such that the following hold:

(i) The critical variety V(h(·, π̂)) ∩ 	 contains an irreducible component Z of
dimension s.

(ii) There is a Zariski open subset Z̃ ⊆ Z such that for all x ∈ Z̃ one has

rank D1h(x, π̂) = n − s and R
n = ker D1h(x, π̂) ⊕ Im D1h(x, π̂).

(iii) There exists x0 ∈ Z̃ such that all nonzero eigenvalues of D1h(x0, π̂) have
negative real part.

We let 
s ⊆ 
 denote the set of TFPVs for dimension s > s∗.

If 
 and 	 are semi-algebraic sets (typically, these are positive orthants), then

s is a semi-algebraic set as well (Goeke et al. 2015), hence defined by polynomial
equations and inequalities. If one is only interested in the defining equations, this
amounts to considering the Zariski closure of 
s , which is denoted by

Ws := 
s
Zar

. (8)

For a number of standard reaction networks in biochemistry (in particular those
described in the first chapter of Keener and Sneyd 2009), all TFPVs were determined
algorithmically in Goeke’s dissertation (Goeke 2013) and in the subsequent papers
(Goeke et al. 2015, 2017). It turned out that every irreducible component ofWs is just
a coordinate subspace, and that all of these admit an interpretation as a degenerate sce-
nario in reaction network terms, via “switched off” reactions or missing species (and
in some cases a combination of these). Based on these observations, and employing
the theory of reaction networks, we will investigate conditions on reaction networks
that guarantee the existence of singular perturbation scenarios.

Note that provided (i) holds, then (ii) and (iii) are together equivalent to

(ii’) There exists x0 ∈ Z̃ such that D1h(x0, π̂) has exactly n − s nonzero eigenvalues
(counted with multiplicity), which additionally have negative real part.

For further information about TFPVs see Sect. A.1 in Appendix.
We note the relation to the more restrictive definition from Goeke et al. (2015).
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Lemma 2.7 Given the mass-action reaction network (7), with s∗ as defined following
(7), let π̂ be a TFPV for dimension s > s∗ of (7). Then π̂ is a TFPV for dimension
s−s∗ for the restriction to any SCC that has non-trivial intersection with Z̃ and admits
only isolated stationary points.

For a proof see Sect. A.1 in Appendix.

2.3 Slow–Fast Systems, Scalings and Reductions

In the present paper, we call a smooth system of the form

u̇1 = f1(u1, u2, ε),

u̇2 = ε f2(u1, u2, ε),
(9)

on an open subset of Rs × R
r × R, with a parameter ε in a neighbourhood of 0, a

slow–fast system. One is interested in the behaviour as ε → 0 (and mostly ε ≥ 0).
The classical statement of Tikhonov’s theorem (and Fenichel’s local theory) starts

from a slow–fast system which satisfies additional conditions amounting to those
given in Definition 2.6. In this situation, the equation f1(u1, u2, 0) = 0 locally defines
u1 = φ(u2) as a function of u2, and a reduced system in slow time τ = ε t can be
defined as du2

dτ
= f2(φ(u2), u2, 0). The trajectories of the reduced system approximate

in a specific sense the trajectories of the original system (9).
A well-known approach to a rigorous foundation of quasi-steady state phenom-

ena in chemical reaction networks goes back to Heineken et al. (1967): In order to
obtain a slow–fast system from (7) some variables of the system that satisfy a certain
compatibility condition are scaled by a positive parameter (frequently called “small
parameter”) ε, and one considers the system as ε → 0.We outline a simplified version
of this technique: Given a smooth curve ε 
→ π∗ + ερ + . . . in the parameter space
(with π∗ not necessarily a TFPV), we obtain a system

h(x, π∗ + ερ + · · · ) = h(0)(x) + εh(1)(x) + ε2h(2)(x) + · · · =: h∗(x, ε) (10)

with small parameter ε. Note that

h(0)(x) = h(x, π∗).

If one starts this procedure from a TFPV π∗, then one obtains a singular perturbation
reduction, as noted in Appendix, Proposition A.1.

Remark 2.8 Given the coordinate-independent setting (10), if π∗ is a TFPV, then the
actual determination of a reduced equation has been discussed in Goeke and Walcher
(2014) for the case s∗ = 0, and we briefly recall it: There exists1 a decomposition

h(0)(x) = P(x) · μ(x),

1 The decomposition is not unique, but the reduced equation on Z̃ is.
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with P an n × s matrix, and μ an s × 1 matrix with rational functions as entries, such
that Z̃ is locally the zero set of μ and the rank of D1μ equals s, as does the rank of P .
With I the identity matrix, define the projection matrix

Q(x) := I − P(x) (D1μ(x)P(x))−1 D1μ(x).

Then the reduced equation is given by

ẋ = Q(x) · h(1)(x) on the invariant manifold Z̃ . (11)

We illustrate the reduction procedure by an examplewhich has not yet been recorded
in the literature. (For a further example see Sect. A.1.)

Example 2.9 The restriction (6) of the uncompetitive inhibition system admits a TFPV
with e0 = 0 and all other parameters positive. With e0 = εe∗

0, one finds

P(x) =
⎛

⎝
κ1x1 + κ−1 κ1x1

−κ1x1 − κ−1 − κ2 − κ−2(s0 − x1) − κ3 f0 −κ1x1 − κ−2(s0 − x1) + κ−3
κ3 f0 −κ−3

⎞

⎠

and the critical manifold Z̃ is given by x3 = x6 = 0. Thus one has

D1μ(x) =
(
0 1 0
0 0 1

)

,

and D1μ · P is the 2 × 2 matrix consisting of the last two rows of P . The following
computations are straightforward (if perhaps tedious). The reduced equation on Z̃
yields

ẋ1 = − κ−3e0 · (κ2κ1x1 − κ−1κ−2(s0 − x1))

κ−2(κ3 f0 + κ−3)(s0 − x1) + (κ1x1 + κ−1 + κ2)κ−3 + κ1κ3 f0x1

and ẋ3 = ẋ6 = 0.

We return to the more general setting of slow–fast systems. The above-mentioned
compatibility (LTC) condition ensures that scaling of the chosen variables preserves
smoothness. We recall it from Lax and Walcher (2020).

Definition 2.10 An index set

{i1, . . . , ir }, 1 ≤ i1 < · · · < ir ≤ n, 1 ≤ r < n,

is called an LTC index set for (10), and the set of corresponding variables {xi1 , . . . , xir }
an LTC variable set, if

h(0)(x) = 0, whenever xi1 = · · · = xir = 0, (12)
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thus the coordinate subspace defined by xi1 , . . . , xir is contained in V(h(0)). The
acronym stands for “locally Tikhonov consistent” (Lax and Walcher 2020).

If the ODE system models a reaction network, then the corresponding species set
{Xi1 , . . . , Xir } is called a set of LTC species. If the concentrations of all the species
in an LCT set are all zero, then no reaction can take place. Note that (12) cannot be
fulfilled if there are inflow reactions in the reaction network, as h(0)(x) contains a
nonzero constant monomial.

For an LTC index set {i1, . . . , ir }, define

u1 :=
⎛

⎜
⎝

xi1
...

xir

⎞

⎟
⎠ ,

and collect the remaining variables in u2. Partitioning

x =
(
u1
u2

)

,

and rewriting h∗(x, ε) =: g(u1, u2, ε), one obtains a system

u̇1 = g1(u1, u2, ε),

u̇2 = g2(u1, u2, ε),
(13)

with g(0, u2, ε) = 0. Scaling u1 = ε u∗
1, one can write gi (ε u∗

1, u2, ε) =
ε ĝi (u∗

1, u2, ε), with ĝ1, ĝ2 being polynomials, provided that g1, g2 are so, arriving
at the slow–fast system as in (9),

u̇∗
1 = ĝ1(u

∗
1, u2, ε),

u̇2 = ε ĝ2(u
∗
1, u2, ε).

(14)

In the singular perturbation reduction following (Heineken et al. 1967), one applies
Tikhonov’s theorem to (14), upon verifying the necessary conditions. In the literature,
a frequently used shortcut is to directly solve g1(u1, u2, ε) = 0 (with small ε) for
u1 and substitute the result into the second equation of (13). We will refer to this
procedure as classical QSS reduction.Note that without further analysis, e.g. verifying
the hypotheses for Tikhonov’s theorem, this is a purely formal procedure.

Obviously, any superset of an LTC species set is also an LTC species set; generally
one will first consider minimal ones.

Since solutions of (14) are bounded on compact subsets of their maximal existence
interval, one finds u1 = O(ε) on these compact subintervals. But it is not guaranteed
that system (13) admits a local (n−r)-dimensional invariant manifold close to u1 = 0
for small positive ε, hence there remains the question whether some reduction exists.
Thus, LTC variable sets provide candidates for Tikhonov–Fenichel reductions, but
these need further investigation. Moreover, even in the singular perturbation setting,
there may not be a connection to TFPVs. We will get back to this later.
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In some cases, direct application of Tikhonov–Fenichel does not work, but singular
perturbation reduction with a critical variety of higher dimension is possible. For
instance, Schneider and Wilhelm (2000) considered a scenario, where the fast part
of (14) admits non-trivial first integrals. In such a setting, the partial derivative D1ĝ1
cannot have full rank, but if the rank is full on every level set of the first integrals, and
the nonzero eigenvalues have negative real parts, then reduction works. Conversely,
the local existence of such first integrals is also necessary (Goeke and Walcher 2014,
Prop. 2).

Example 2.11 For the uncompetitive inhibition network (see Example 2.5, equation
(5)) one finds LTC variable sets {x2, x3, x6} and {x1, x3, x4, x6}. For the first set,
one obtains (employing first integrals as detailed in Lax and Walcher 2020) the same
reduction to dimension one as in Example 2.9.

3 TFPVs for Reaction Networks

3.1 General Considerations

While the notion of TFPV applies to all parameter-dependent polynomial (and more
general) vector fields, special properties of reaction networks impose restrictions. We
give an elementary illustration of this fact.

Example 3.1 Consider the linear differential equation in R
2,

ẋ =
(

α11 α12
α21 α22

)

x +
(

β1
β2

)

= A x + b,

where the second equality defines A and b, and αi j , βi ∈ R, i, j = 1, 2. Thus the
parameter space consists of all (α11, α12, α21, α22, β1, β2). By Definition 2.6(i) and
Lemma A.3(v), a TFPV for dimension s = 1 satisfies

0 = det A = α11α22 − α12α21.

This relation defines a hypersurface in the parameter space. On the other hand, by (2),
every linear 2 × 2 system describing a first-order reaction network with two species
(hence, the reaction network has the complexes X1, X2 and possibly 0), takes the form

ẋ =
(−κ21 − κ31 κ12

κ21 −κ12 − κ32

)

x +
(

κ13
κ23

)

,

with non-negative κi j (κi j is zero if the corresponding reaction does not exist). The
determinant condition on the Jacobian of the system simplifies to

κ21κ32 + κ31κ12 + κ31κ32 = 0 ⇔ κ21κ32 = κ31κ12 = κ31κ32 = 0,
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due to non-negativity. (In addition, the existence of stationary points requires condi-
tions on κ13 and κ23.) Evaluating the TFPV conditions, one sees that they all admit
an interpretation in the reaction network framework: Certain reactions are being
“switched off”. Furthermore, the conditions for TFPVs to exist yield very simple
irreducible components of the Zariski closure Ws of 
s (see (8)), namely coordinate
subspaces.

Indeed, it is not easy to find (realistic) systems where some component of Ws is not
a coordinate subspace. This may be the case when non-stoichiometric first integrals
exist for only some κ: Let s∗ be the codimension of the reaction network (the number
of independent stoichiometric first integrals). Assume the set 
̃ of κ’s that give rise
to extra linear first integrals is a proper algebraic variety and hence has measure zero
(as for the reaction network in (3) in Example 2.4). Any point in 
̃ is a candidate
for a TFPV in dimension s > s∗, if furthermore the critical manifold intersects the
non-negative orthant and is attracting. Going back to network (3), the set 
̃ consists
of TFPVs and is characterized by the condition κ1 = κ2, as one easily verifies that
there exists a linearly attracting critical manifold.

An artificial way to construct further examples where the set of TFPVs is not
included in a coordinate subspace, is to consider any parametrized polynomial system
for which the dimension of the set of stationary points is larger than s∗ for some
choice of parameters, and furthermore, all negative monomials of the i-th polynomial
are multiples of xi . The latter is enough to constructively interpret the system as
arising fromamass-action reaction network (Érdi andTóth 1989), though the networks
obtained in this way are typically not realistic. The following example is generated in
this way.

Example 3.2 Consider the following mass-action reaction network

X2
κ1−→ X1 + X2

κ2−→ X1
κ3−→ 0 2X1

κ4−→ X2 + 2X1.

The associated ODE system in R
2≥0 is

ẋ1 = κ1x2 − κ3x1, ẋ2 = −κ2x1x2 + κ4x
2
1 = x1(−κ2x2 + κ4x1).

Generically, the variety of stationary points consists of the point (0, 0) and has dimen-
sion s∗ = 0. However, when κ1κ4 = κ2κ3, then the variety has dimension one and
consists of the line κ1x2 = κ3x1. Additionally, a direct computation shows that the
critical manifold is attracting for (x1, x2) ∈ R

2≥0. Hence, κ1κ4 = κ2κ3 defines a set of
TFPVs for dimension one. In this case, there are no linear first integrals.

We now turn to system (1), and first establish conditions to ensure that every TFPV
lies in some proper coordinate subspace, thus every irreducible component of Ws is
contained in some coordinate subspace. If we require the critical manifold to intersect
the positive orthant, the existence of TFPVs κ̂ ∈ R

m
>0 is easily precluded for important

classes of reaction networks.
In preparation for Proposition 3.3, we introduce some objects and some notation.

Let N ′ ∈ R
s∗×m consist of s∗ linearly independent rows of the stoichiometric matrix
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N . Moreover let E ∈ R
m×q be a matrix whose columns are the extreme rays of the

polyhedral cone ker(N ) ∩ R
m≥0, and for λ ∈ R

q denote by diag(Eλ) the matrix with
the entries of Eλ in the diagonal, and zeros off-diagonal. Consider the matrix

N ′ diag(Eλ)B� (15)

(with B the reactant matrix, see Sect. 2.1). Finally, let � be the set of λ ∈ R
q
≥0 such

that Eλ ∈ R
m
>0. (The particular choice of N

′ will be irrelevant.)

Proposition 3.3 Let G be a mass-action reaction network of codimension s∗. With the
notation introduced above, assume G belongs to one of the following cases:

(a) The set of positive stationary points Vκ ⊆ R
n
>0 admits a smooth parametrization

of the form R
s∗
>0

ϕκ−→ Vκ , with im(ϕκ) = Vκ for all κ ∈ R
m
>0.

(b) The reaction network is injective (Feliu and Wiuf 2012a), hence the coefficient
σn−s∗(x, κ) of τ s

∗
of the characteristic polynomial of the Jacobian of system (1)

is a polynomial in x and κ with only non-negative coefficients.
(c) For all λ ∈ �, at least one of the minors of N ′ diag(Eλ)B� is nonzero.

Then, there are no TFPVs κ̂ ∈ R
m
>0 for which some irreducible component Z of the

critical variety intersects the positive orthant.

Proof (a) The parametrization gives that the dimension of Vκ is s∗ for all κ ∈ R
m
>0. (b)

By Lemma A.3 in Appendix, for κ̂ to be a TFPV we need that σn−s∗(x0, κ̂) = 0 for
some x0 ∈ Z . Assumption (b) now gives that this can happen only if κ̂ or x0 belong
to a coordinate subspace. (c) The condition implies that the Jacobian of (1) has rank
n − s∗ at any positive stationary point (Pascual-Escudero and Feliu 2021). ��
Remark 3.4 We make a few observations regarding the relevance of the criteria in
Proposition 3.3.

• Condition (c) holds for surprisingly many networks and is computationally easy
to verify. When � = R

q
>0, which occurs often, then condition (c) holds if there is

one minor with all nonzero coefficients of the same sign.
• Many realistic reaction networks admit parametrizations in the sense of Propo-
sition 3.3(a): Among these are reaction networks admitting toric steady states
(Millán et al. 2012), complex-balancing equilibria (Horn and Jackson 1972; Fein-
berg 1972; Craciun et al. 2009) (see also Sect. 3.2), and there are many reaction
networks forwhich parametrizations can be found using linear elimination of some
variables in terms of the rest (Feliu andWiuf 2012b; Sáez et al. 2019) (see Conradi
et al. 2017 for a short account on how to find parametrizations).

• Injective reaction networks admit at most one equilibrium in each SCC (Craciun
and Feinberg 2005; Feliu and Wiuf 2012a), and several criteria, in addition to
the one stated in Proposition 3.3(b), have been established. These criteria involve
graphical conditions (Banaji and Craciun 2010, 2009) and sign vectors (Müller
et al. 2016).

To include TFPVs with critical manifold intersecting the positive orthant, it is
appropriate (and necessary in the cases covered in Proposition 3.3) to deviate from
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the convention in Definition 2.1 and allow the rate parameters to be zero, thus change
the parameter range of κ to Rm≥0. Passing from generic κ ∈ R

m
>0 to a special κ̂ ∈ R

m≥0
may be seen as considering a subnetwork of the original reaction network. To indicate
this, we make the following definition.

Definition 3.5 Let κ ∈ R
m≥0. We denote by G(κ) the subnetwork obtained from G by

removing the reactions with indices in {1, . . . ,m} \ supp(κ), that is, the i-th reaction
is removed if κi = 0, for i = 1, . . . ,m. Isolated nodes are not removed from G(κ),
and hence G and G(κ) have the same set of complexes and species.

Note thatG(κ) = G (̃κ) as long as supp(κ) = supp(̃κ). Recall that the codimension
of a network is defined as the codimension of its stoichiometric subspace.

Proposition 3.6 Let G be a mass-action reaction network of codimension s∗. Let
h(x, κ) denote the right-hand side of (2).

(a) Let κ∗ ∈ R
m
>0. If there exists x

∗ ∈ R
n
>0 ∩ V(h(·, κ∗)) such that D1h(x∗, κ∗) has

rank n− s∗ (respectively, additionally n− s∗ eigenvalues with negative real part),
then the same holds for a norm-open neighbourhood of κ∗, and thus for a Zariski
dense subset of Rm

>0 containing κ∗. In particular, an irreducible component of
V(h(·, κ∗)) has dimension s∗ and intersects the positive orthant.

(b) If κ∗ ∈ R
m≥0 is a TFPV for dimension s > s∗ with s the codimension of G(κ∗),

then the minimal coordinate subspace containing κ∗ is contained in Ws.

Proof (a) We will use that D1h(x∗, κ∗) has n − s∗ eigenvalues with negative real
part, if and only if the corresponding n− s∗ Hurwitz determinants of its characteristic
polynomial, divided by τ s

∗
, are positive, see Gantmacher (2005, Ch. V, section 6). The

rank of D1h(x∗, κ∗) being n−s∗ implies that an irreducible component of V(h(·, κ∗))
has dimension s∗ and intersects the positive orthant (Coxet al. 2007, §9.6Thm9).LetV
be the real algebraic variety in the variables x, κ consisting of pointswhere h(x, κ) = 0
and D1h(x, κ) has rank strictly smaller than n − s∗, respectively, at least one of the
Hurwitz determinants vanishes. By hypothesis, there exists (x∗, κ∗) ∈ R

n+m
>0 \ V

satisfying h(x∗, κ∗) = 0. Let U ⊆ R
n+m
>0 \ V be an open Euclidean ball containing

(x∗, κ∗). The intersection of U and the zero set of h, which is non-empty, consists
of points (x, κ) such that x ∈ V(h(·, κ)) and the Jacobian has maximal rank n − s∗,
respectively, all Hurwitz determinants are positive. The projection Û of U onto R

m
>0

in the variable κ contains a non-empty open Euclidian ball of parameters κ0 for which
there exists x0 ∈ R

n
>0 such that D1h(x0, κ0) has rank n − s∗, respectively, additional

n − s∗ eigenvalues with negative real part. By the Implicit Function Theorem applied
to h at (x∗, κ∗), Û contains an open ball centred at κ∗ such thatRn

>0 ∩V(h(·, κ)) �= ∅
for all κ in the ball. As any Euclidean ball is Zariski dense, this concludes the proof
of (a).

(b) LetC be the minimal coordinate subspace containing κ∗. The parameter κ∗ and
the reaction network G(κ∗) satisfy the hypotheses of (a), after restricting R

m
>0 to C .

Therefore, there exists a norm-open and Zariski dense set U (relative to C) such that
any κ ′ ∈ U ⊆ C ∩ R

m
>0 is a TFPV for dimension s and thus U ⊆ Ws . Since U is

Zariski dense in C , its Zariski closure is C and it follows that C ⊆ Ws . ��
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Proposition 3.6(b) does not imply that all rate parameters in the coordinate subspace
are TFPVs given that one is a TFPV, but only that this is the case in an open set relative
to the coordinate subspace. The next example illustrates this.

Example 3.7 Consider the following mass-action reaction network,

X1 + X2
κ1−→ 2X1, X1 + 2X2

κ3−→ 3X1, 0
κ5−⇀↽−
κ6

X1,

X1 + X2
κ2−→ 2X2, X1 + 2X2

κ4−→ 3X2.

The associated ODE system in R
2≥0 is

ẋ1 = (κ1 − κ2)x1x2 + (2κ3 − κ4)x1x
2
2 + κ5 − κ6x1,

ẋ2 = (−κ1 + κ2)x1x2 + (−2κ3 + κ4)x1x
2
2 .

The codimension of the reaction network is s∗ = 0, and the reaction network has one
positive equilibrium (

κ5
κ6

, κ2−κ1
2κ3−κ4

), provided the second entry is positive. Consider a
parameter value of the form κ̂ = (κ1, κ2, κ3, κ4, 0, 0), which corresponds to removing
the pair of reactions 0 −⇀↽− X1. Then, the stoichiometric subspace of G (̂κ) has codi-
mension s = 1, and the stationary variety consists of the two coordinate axes together
with the line x2 = κ2−κ1

2κ3−κ4
, provided this expression is positive. In this case, there is a

critical manifold of dimension one in R
2
>0. The line intersecting the positive orthant

is attracting if κ1 < κ2 and repelling if κ2 < κ1. Hence, κ̂ is a TFPV for dimension
one if and only if κ1 < κ2 and κ4 < 2κ3. We also have that the minimal coordinate
subspace C containing κ̂ belongs to W1.

If we now consider κ̂ = (0, κ2, κ3, 0, 0, 0), the codimension of G (̂κ) is also s = 1,
and the positive part of the stationary variety consists of the attracting line x2 = κ2

2κ3
.

Hence, κ̂ is a TFPV for dimension one. The minimal coordinate subspace containing
κ̂ is not an irreducible component of W1, as it is a proper Zariski closed set of the
coordinate subspace C .

In what follows, we consider TFPVs for two classes of reaction networks, namely
first-order reaction networks and complex-balanced reaction networks. Due to special
properties of the Laplacian matrix, TFPVs for complex-balanced reaction networks
can be identified. Our results build on the understanding of the kernel of A(κ) in (2).
In Appendix, Sect. A.2 we review key results about Laplacian matrices and especially
their kernels, using a graphical approach.

3.2 Complex-Balancing and TFPVs

We turn to an important class of reaction networks called complex-balanced reac-
tion networks and the existence of TFPVs for this class. Complex-balanced reaction
networks are characterized by their equilibria, called complex-balanced equilibria.
According to Horn and Jackson (1972) (see also Feinberg 2019, Ch. 15ff.), a positive
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equilibrium z ∈ R
n
>0 of (2) is complex-balanced for the parameter value κ∗ if

A(κ∗)zY = 0.

By Lemma A.5(b), the existence of a positive complex-balanced equilibrium implies
that the reaction network is weakly reversible (Feinberg 2019, Proposition 16.5.7).
However, weak reversibility is not a sufficient condition. Since z is an equilibrium for
system (2) if and only if Y A(κ)zY = 0, one needs to understand the relation between
ker Y A(κ) and ker A(κ). Obviously, the latter is a subset of the former.

The following proposition gathers well-known facts (Feinberg 2019, Thm 15.2.2,
Thm 15.2.4, Lemma 16.3.1).

Proposition 3.8 Let G = (Y,R, κ) be a mass-action reaction network with d com-
plexes, r connected components and codimension s∗.

• Let e1, . . . , ed denote the standard basis ofRd and let� :=
{
e j − ei | Yi → Y j ∈

R
}

⊆ R
d . Then

ker Y A(κ) = ker A(κ) ⊕ (ker Y ∩ span�) .

The dimension δ of ker Y ∩ span� is called the deficiency, and satisfies δ =
d − (n − s∗) − r .

• If system (2) admits a complex-balanced equilibrium in R
n
>0, then every SCC

contains precisely one positive equilibrium, which also is complex-balanced, and
the Jacobian has n−s∗ eigenvalues with negative real part and s∗ zero eigenvalues
(counted with multiplicity). As a consequence, the positive equilibria of the system
form a manifold of dimension s∗.

If G is weakly reversible and δ = 0, then all positive equilibria are complex-
balanced, irrespective of the (positive) reaction rate constants. In general, there are
δ algebraically independent relations on the rate parameters κ , characterizing when
the reaction network admits positive complex-balanced equilibria. These relations
are explicit (Craciun et al. 2009; Dickenstein and Millán 2011; Feliu et al. 2018).
Complex-balanced equilibria form a manifold of dimension s∗, and the rank of the
Jacobian of system (2) evaluated at the equilibrium is n − s∗.

In the following theorem we use the notation G (̂κ) introduced in Definition 3.5.

Theorem 3.9 Let G be amass-action reaction network of codimension s∗. Let κ̂ ∈ R
m≥0

such that

• G (̂κ) is weakly reversible of codimension s > s∗.
• The nonzero coordinates of κ̂ satisfy the relations for the existence of positive
complex-balanced equilibria in G (̂κ).

Then, κ̂ is a TFPV for dimension s of system (2). Furthermore, the minimal coordinate
subspace containing κ̂ is contained in Ws.
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Proof We show that κ̂ is a TFPV by showing that properties (iv)-(vi) in Lemma A.3
hold. By Proposition 3.8, the dimension of the set of positive equilibria of G (̂κ)

is s, giving (iv). Properties (v)-(vi) follow from the properties of complex-balanced
equilibria in Proposition 3.8. The last statement follows from Proposition 3.6(b). ��

An immediate consequence of Theorem 3.9 arises when G is weakly reversible
and has deficiency zero. A key point is that the deficiency of any subnetwork obtained
from G by removing reactions can only decrease (Joshi and Shiu 2015, Prop. 8.2). In
particular, if G has deficiency zero, then so does any subnetwork.

Theorem 3.10 Let a weakly reversible reaction network G of deficiency zero be given,
with dynamics governed by system (2). Let κ̂ ∈ R

m≥0 be such that the induced subnet-
work G (̂κ) is weakly reversible and has more connected components than G.

Then κ̂ is a TFPV of system (2) for dimension n − d + r , with d and r the number
of complexes, respectively, connected components of G (̂κ). This dimension equals the
codimension of G (̂κ).

Proof Let r∗ be the number of connected components of G. As the deficiencies of
G and G (̂κ) are zero, the codimensions of G and G (̂κ) are s∗ = n − d + r∗ and
s = n − d + r , respectively. As r > r∗, we have s > s∗. Furthermore, all parameter
values κ̂ yield complex-balanced equilibria for G (̂κ) as the deficiency is zero. The
statement now follows from Theorem 3.9. ��

In particular, when the hypotheses of Theorem 3.10 hold, then κ̂ lies in a coordi-
nate subspace of the parameter space. Moreover, the connected components of G (̂κ)

identify a coordinate subspace in Ws for the appropriate s > s∗. For some classes of
reaction networks, including weakly reversible reaction networks of deficiency zero,
an explicit formula for the singular perturbation reduction was derived in Feliu et al.
(2020).

Example 3.11 The classical reversible Michaelis–Menten system (see Appendix,
Example A.2) has deficiency zero and codimension s∗ = 2. By Theorem 3.10, set-
ting either κ1 = κ−1 = 0 or κ2 = κ−2 = 0, the number of connected components
increases, and the resulting rate parameters are TFPVs for dimension 3.

Example 3.12 We continue the discussion of the uncompetitive inhibition network
from Example 2.5. This reaction network is weakly reversible with deficiency zero
(five complexes, two linkage classes and stoichiometric subspace of dimension three).
ByTheorem3.10, setting either κ1 = κ−1 = 0, or κ2 = κ−2 = 0, or κ3 = κ−3 = 0, the
number of connected components increases by one, and the resulting rate parameters
are TFPVs for dimension 4. In addition, choosing two of the three pairs to be zero, one
obtains TFPVs for dimension 5. Restricting to stoichiometric compatibility classes
one has TFPVs for dimension one and two, respectively, for system (6), by Lemma
2.7.

We take a closer look at the reduction of (6) induced by the TFPVwith κ1 = κ−1 =
κ3 = κ−3 = 0, thus κ1 = εκ∗

1 , κ−1 = εκ∗−1, κ3 = εκ∗
3 , κ−3 = εκ∗−3. Here, we have,

using (10) that
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h(0)(x) =
⎛

⎝
0

−κ2x3 + κ−2(e0 − x3 − x6)(s0 − x1 − x3 − x6)
0

⎞

⎠

h(1)(x) =
⎛

⎝
−κ1(e0 − x3 − x6)x1 + κ−1x3

κ1(e0 − x3 − x6)x1 − κ−1x3 − κ3x3( f0 − x6) + κ−3x6
κ3x3( f0 − x6) − κ−3x6

⎞

⎠ .

By Remark 2.8, we find the decomposition of h(0) in terms of

P(x) =
⎛

⎝
0
1
0

⎞

⎠ , μ(x) = −κ2x3 + κ−2(e0 − x3 − x6)(s0 − x1 − x3 − x6),

and obtain the projection matrix

Q(x) = 1

�(x)

⎛

⎝
�(x) 0 0

−κ−2(e0 − x3 − x6) 0 κ2
0 0 �(x)

⎞

⎠ ;

�(x) = κ2 + κ−2(e0 − x3 − x6 + s0 − x1 − x3 − x6).

By (11), one obtains the reduced system on the invariant variety given by μ = 0. Of
the various versions, the one with the simplest appearance is

ẋ1 = −κ1(e0 − x3 − x6)x1 + κ−1x3
ẋ6 = κ3x3( f0 − x6) − κ−3x6,

with x3 to be determined from μ = 0, a quadratic equation in x3.

Example 3.13 Consider the following reaction network, which is the futile cycle with
one phosphorylation site (Wang and Sontag 2008):

X1 + X3
κ1−⇀↽−
κ2

X5
κ3−→ X1 + X4 X2 + X4

κ4−⇀↽−
κ5

X6
κ6−→ X2 + X3.

This reaction network is not weakly reversible and has codimension 3. An easy com-
putation shows that the stationary set admits a parametrizationwith three free variables
x1, x2, x3, and hence has dimension 3. Proposition 3.3(a) applies.

Alternatively, Proposition 3.3(c) is applicable: For a specific choice of N ′, the
matrix N ′ diag(Eλ)B� in (15) equals

⎛

⎝
0 −λ2 0 −λ2 λ2 λ1 + λ2
λ1 0 λ1 0 −λ2 − λ3 0
0 λ2 0 λ2 0 −λ1 − 2λ2 − λ3

⎞

⎠ .

We have � = R
3
>0. The minor given by columns 1, 2, 5 is λ1λ

2
2, which is nonzero.
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In conclusion, no TFPVs with positive entries and critical manifold intersecting
the positive orthant exist. Upon setting κ3 = κ6 = 0, the resulting reaction network
is weakly reversible and has deficiency 0 with codimension s = 4. Hence, by The-
orem 3.9, any rate parameter of the form (κ1, κ2, 0, κ4, κ5, 0) with nonzero entries
being positive, is a TFPV for dimension 4.

Example 3.14 Consider the following reaction network modelling an allosteric kinase
(Feng et al. 2016):

X1 + X5
κ1−⇀↽−
κ2

X3
κ9−→ X1 + X6, X3

κ3−⇀↽−
κ4

X4, X6
κ11−→ X5,

X2 + X5
κ6−⇀↽−
κ5

X4
κ10−→ X2 + X6, X1

κ7−⇀↽−
κ8

X2.

The positive part of the stationary set admits a parametrization with s∗ = 2 free
variables. Upon setting κ9 = κ10 = κ11 = 0, the reaction network becomes weakly
reversible of deficiency 1 and codimension 3. The condition that characterizes when
complex-balanced equilibria exist, referred to inTheorem3.9, is κ2κ4κ6κ7 = κ1κ3κ5κ8
(Craciun et al. 2009). Thus any κ̂ = (κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8, 0, 0, 0), fulfilling
this condition, is a TFPV for dimension 3 and the corresponding coordinate subspace
is included in W3.

In this case, the positive part of the stationary variety of G (̂κ) always admits a
parametrization. Using Hurwitz determinants, one confirms that the variety is linearly
attracting. Therefore, the whole positive part of this particular coordinate subspace is
formed by TFPVs.

We conclude with an example of a weakly reversible reaction network admitting
TFPVs that are not included in a proper coordinate subspace.

Example 3.15 This example is introduced in Boros et al. (2020, Example 4.1), where
the purpose is to show the existence of weakly reversible reaction networks with
infinitely many equilibria in some SCC. The reaction network consists of four con-
nected components, written in rows for convenience:

0
κ1−→ X1

κ2−→ X1 + X2
κ3−→ X2

κ4−→ 0,

2X1
κ5−→ 3X1

κ6−→ 3X1 + X2
κ7−→ 2X1 + X2

κ8−→ 2X1,

2X2
κ9−→ X1 + 2X2

κ10−→ X1 + 3X2
κ11−→ 3X2

κ12−→ 2X2,

2X1 + 2X2
κ13−→ 3X1 + 2X2

κ14−→ 3X1 + 3X2
κ15−→ 2X1 + 3X2

κ16−→ 2X1 + 2X2.

This reaction network is weakly reversible of codimension s∗ = 0. When all parame-
ters are set to 1 except for κ3 = κ8 = κ10 = κ13 = a, with a > 5, then the stationary
variety has dimension 1: it consists of one unstable point (1, 1) and one attracting
closed curve around (1, 1). Hence, any such rate parameter is a TFPV for dimension
1, which does not belong to a proper coordinate subspace. One might note that the
reaction network is of the form discussed in Example 3.2 with all negative terms in
the ODE system being multiples of x2.

123



Journal of Nonlinear Science (2022) 32 :83 Page 21 of 41 83

3.3 TFPVs for First-Order Reaction Networks

In this section, we consider the special case of a mass-action reaction network G =
(Y,R, κ) containing only first-order reactions; thus d = n or d = n + 1 and nonzero
complexes may be identified with species. In the formulation

ẋ = Y A(κ) xY , x ∈ R
n≥0, (16)

the matrix Y is simply the identity matrix if 0 /∈ Y and the identity matrix with an

extra zero column otherwise. Hence either xY = x or xY =
(
x
1

)

.

Lemma 3.16 A first-order mass-action reaction network has deficiency zero.

Proof With the notation introduced in Proposition 3.8, one has ker Y ∩ span� = {0},
due to the form of Y . The assertion follows. ��
Remark 3.17 By Lemma A.5, the rank of A(κ) does not depend on κ ∈ R

m
>0. Let T be

the number of terminal strongly connected components ofG and s∗ be the codimension
of G. We make the following observations:

• If 0 /∈ Y , then Y is the identity matrix, and the solution set to (16) in R
n≥0 is

ker A(κ) and s∗ = T .
• If 0 ∈ Y , then s∗ = T − 1.

– If 0 belongs to a terminal strongly connected component ofG, then the solution
set to (16) in R

n≥0 is the linear affine subspace of ker A(κ) ∩ R
n≥0 with last

coordinate equal to 1. By the description of ker A(κ) in Lemma A.5, this
subspace has dimension T − 1.

– If 0 does not belong to a terminal strongly connected component of G, then
(16) has no solution. Indeed, the last entry of xY is equal to 1, and hence
positive, but any vector in ker A(κ) has last entry zero.

With this in mind, we obtain the following proposition.

Proposition 3.18 Let A(κ) be the Laplacian matrix of a mass-action reaction network
G = (Y,R, κ) consisting only of first-order reactions with dynamics governed by
system (16) in R

n≥0. Let T be the number of terminal strongly connected components
of G, and s∗ the dimension of the solution set to (16).

(a) If κ̂ ∈ R
m≥0 is a TFPV of (16) for dimension s > s∗, then κ̂ lies in a proper

coordinate subspace of Rm.
(b) Let κ̂ ∈ R

m≥0 be in a proper coordinate subspace of R
m, and consider the subnet-

work G (̂κ).
If 0 is not a complex of G, then κ̂ is a TFPV if and only if G (̂κ) has more than T
terminal strongly connected components.
If 0 is a complex of G, then κ̂ is a TFPV if and only if G (̂κ) has more than T
terminal strongly connected components, and additionally the complex 0 belongs
to one such component.
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(c) Each irreducible component of Ws for s > s∗ is a coordinate subspace of Rm.

Proof (a) This is straightforward as the dimension of the solution set to (16) does not
depend on κ ∈ R

m
>0. (b)We first make a digression. ConsiderG (̂κ) and assume 0 ∈ Y .

Then the last column of the matrix Y is zero and the last entry of v(x) = xY is 1.
Let Ã(̂κ) be the submatrix of A(̂κ) obtained by removing the last row and column.
Let β ∈ R

d−1 be the vector formed by the first d − 1 entries of the last column of
A(κ). Then Y A(̂κ)v(x) = Ã(̂κ)x + β. To prove (b), we apply Lemma A.4 to the
compartmental matrices A(̂κ) or Ã(̂κ), depending on whether 0 is a complex of G.
(c) is a direct consequence of (a) and (b), as 
s is a union of coordinate subspaces of
R
m≥0. ��
Rephrasing the statement of Proposition 3.18, all TFPVs are found by setting rate

parameters to zero such that the number of terminal strongly connected components
increases, and taking into consideration the role of the zero complex. We note that the
irreducible components of any Ws can be identified by inspecting the graph G.

If the consideredfirst-order reaction networkG in addition isweakly reversible, then
for this network Theorem 3.9 and Theorem 3.10 are both consequences of Proposition
3.18. For Theorem 3.9, note that if the subnetwork G (̂κ) of G is weakly reversible
with codimension s > s∗, then it must be that κ̂ ∈ R

m≥0 belongs to a proper coordinate
subspace of Rm and the number of terminal strongly connected components of G (̂κ)

exceeds the number of terminal strongly connected components of G. Hence, the
conclusions of Theorem 3.9 follow from Proposition 3.18(b),(c). Note that the second
condition of Theorem 3.9 is trivially fulfilled because G has deficiency zero, hence
any subnetwork, in particular G (̂κ), has also deficiency zero (Joshi and Shiu Joshi
and Shiu 2015, Prop. 8.2). For Theorem 3.10, we remark that it is a consequence of
Theorem 3.9, hence also of Proposition 3.18. Alternatively, it follows directly from
Proposition 3.18 by similar arguments to above.

Example 3.19 Consider a first-order reaction network with three complexes and four
reactions,

X1
κ1−−⇀↽−−
κ−1

X2
κ2−−⇀↽−−
κ−2

X3.

This reactionnetworkhas one terminal strongly connected component.ByRemark3.17,
s∗ = 1. There are three coordinate subspaces yielding TFPVs for dimension 2. These
arise from the three ways to increase the number of terminal strongly connected com-
ponents: κ1 = κ−1 = 0, or κ2 = κ−2 = 0, or κ1 = κ−2 = 0.

Example 3.20 For the first-order reaction network

X1
κ1−−⇀↽−−
κ−1

X2, 0
κ2−→ X3,

we have two connected components and s∗ = 1 (Remark 3.17), but this reaction
network has no stationary points. Upon setting κ2 = 0, we have three connected
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components and 0 belongs to a terminal strongly connected component. Hence, by
Proposition 3.18, (κ1, κ−1, 0) is a TFPV for dimension 2. (The critical manifold con-
sists of all (x1, x2, x3)� such that κ1x1 = κ−1x2.)

4 Scalings, Stoichiometry and TFPVs

In this section, we start from LTC variable sets and the scaling approach to singular
perturbation reductions of system (2), as initiated by Heineken et al. (1967) (recall
Sect. 2.3 on slow–fast systems). A priori, there are no TFPVs that correspond to
scalings, but thesemayappearwhen the system is restricted toSCCs, as newparameters
are introduced. For motivation, we look at a familiar example.

Example 4.1 Weconsider again the reversibleMichaelis–Menten system (seeAppendix,
Example A.2). The LTC variable set {x2, x3} corresponds to the stoichiometric first
integral φ1 = x2 + x3, and the LTC variable set {x1, x3, x4} corresponds to the stoi-
chiometric first integralφ2 = x1+x3+x4.Moreover, on the SCCgiven by x2+x3 = e0
and x1 + x3 + x4 = s0, one obtains the two-dimensional system

ẋ1 = −κ1x1(e0 − x3) + κ−1x3
ẋ3 = κ1x1(e0 − x3) − (κ−1 + κ2)x3 + κ−2(e0 − x3)(s0 − x1 − x3).

This system admits a TFPV with e0 = 0, and all other parameters > 0, with a
degenerate (one dimensional) SCC forming the critical manifold, and a subsequent
singular perturbation reduction. (For a TFPV with s0 = 0, the SCC degenerates into
a single point.)

Quite generally, LTC variable sets point to bifurcation scenarios, and possibly inter-
esting dynamics may appear for small perturbations. In general, there is no perfect
correspondence to stoichiometric first integrals, as shown by examples in Lax and
Walcher (2020). But stoichiometric first integrals which correspond to LTC variable
sets may, in turn, yield TFPVs of the system on SCCs.

We start by characterizing LTC species sets.

4.1 A Characterization of LTC Species Sets

A useful modification of system (2) is the following, when some complexes are non-
reactant complexes, that is, they only appear as product complexes. Complex Y j is
non-reactant if and only if column j of A(κ) is zero. Thus, one may form Y ∗ from Y ,
respectively, A∗(κ) from A(κ), by removing all columns that correspond to indices of
non-reactant complexes, to rewrite (2) as

ẋ = Y A(κ)xY = Y A∗(κ) xY
∗
. (17)

Let d∗ be the number of reactant complexes, hence Y ∗ ∈ N
n×d∗
0 . Note that A∗(κ) is not

a square matrix unless all complexes are reactant complexes and thus A∗(κ) = A(κ).
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In parameter-dependent systems, the notion of an LTC species set may depend on
particular parameter values. But in the present paper, with the exception of Sect. A.3
in Appendix, we will only discuss sets that are LTC species sets for all parameter
values κ ∈ R

m
>0. The equations x

Y = 0, respectively, xY
∗ = 0 define varieties with

coordinate subspaces as irreducible components, and the corresponding variables are
obviously LTC variables. We will first show that all LTC variable sets of system (17)
(which is the same as system (1)) are of this type.

The following proposition characterizes the LTC species sets. It also shows that
the notions of LTC species and LTC variables are of real interest only for nonlinear
systems. Recall that reaction networks with inflow reactions do not admit any LTC
species sets (remark below Definition 2.10).

Proposition 4.2 Let system (1) be given. Then {i1, . . . , iu} with u < n and 1 ≤ i1 <

i2 · · · < iu ≤ n is an LTC index set for all κ ∈ R
m
>0 if and only if

xY
∗ = 0, whenever xi1 = · · · = xiu = 0.

Stated differently, LTC species sets are identifiable from the reactant complexes: A set
of species {Xi1 , . . . , Xiu } is an LTC species set if and only if in every reactant complex,
one of the Xik appears with positive coefficient.

Proof The non-trivial assertion is the “only if” part. The “if” part follows by definition.
We need to show that if h(x, κ) = N diag(κ)x B = 0 for all κ ∈ R

m
>0 whenever

xi1 = · · · = xiu = 0, then also xY
∗ = 0. We may assume that the LTC index set is

{1, . . . , u}, and that complexes are ordered such that the first d∗ are reactant complexes.
We let y1, . . . , yd∗ denote the columns of Y ∗.

We argue by contradiction and assume that some x yi , i ∈ {1, . . . , d∗}, is nonzero
when x1 = · · · = xu = 0. For x1 = · · · = xu = 0 and i = 1, . . . , d∗, we have

x yi �= 0 ⇐⇒ yi =
(
0
∗
)

, with 0 ∈ R
u . (18)

We may assume that (18) holds precisely for the indices d ′ ≤ i ≤ d∗, for some
d ′ ≤ d∗. Thus, we aim to show d ′ = d∗.

Let Kκ be the (m × d∗)-matrix with non-negative entries such that

Kκ x
Y ∗ = diag(κ)x B, hence N diag(κ)x B = NKκ x

Y ∗
.

Each entry of Kκ is one of the rate parameters: the (i, j)-th entry is κ� j if the i-th
reaction is Y j → Y�. As yi , i = 1, . . . , d∗, are pairwise different, the monomials x yi ,
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d ′ ≤ i ≤ d∗, are linearly independent over R. Using NKκ xY
∗ = 0, we obtain

NKκ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
x yd′
...

x yd∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 ⇒ NKκ = (∗ · · · ∗ 0 · · · 0
)
,

with the lastd∗−d ′+1 ≥ 1 columns equal to zero. The equality tells us that the lastd∗−
d ′ +1 columns of Kκ belong to ker(N ) for all κ ∈ R

m
>0. The sum of these columns lies

also in ker(N ). The entries of the sum are positive when they correspond to reactions
with Yd ′ , . . . ,Yd∗ among the reactant species, and zero otherwise. As κ varies, we thus
obtain a relatively open and non-empty subset in some proper coordinate subspace C
ofRm . The row space of N is therefore orthogonal to C ; hence N has at least one zero
column, and we have reached a contradiction, as a reaction network does not have
self-edges. ��

An enumeration of all LTC species setsmay start from those reactant complexes that
contain the fewest species (that is, the species appearing with positive stoichiometric
coefficients). First, a species that appears alone in some reactant complex is necessarily
contained in every LTC species set. Then proceed with complexes containing two
species and so on. From this observation, one also finds that LTC species sets for first-
order reaction networks (with every complex consisting of one species) are comprised
of all species in reactant complexes.

Example 4.3 (a) In the classical reversible Michaelis–Menten reaction network (see
Appendix, Example A.2), the reactant complexes are X1 + X2, X3 and X4 + X2.
Thus X3 must lie in every LTC species set, and so must X2 or X1. The first
alternative yields the LTC species set {X2, X3}, while the second yields the LTC
species set {X1, X3, X4}. These are the only two LTC species sets. In contrast,
the irreversible Michaelis–Menten reaction network (omitting the reaction X4 +
X2

κ−2−−→ X3) has reactant complexes X1 + X2 and X3, with two LTC species sets,
{X1, X2} and {X2, X3}.

(b) For reversible uncompetitive inhibition, all the minimal sets of LTC species for all
parameter values are listed in Example 2.11.

Example 4.4 We consider again the futile cycle with one phosphorylation site, see
Example 3.13:

X1 + X3
κ1−⇀↽−
κ2

X5
κ3−→ X1 + X4, X2 + X4

κ4−⇀↽−
κ5

X6
κ6−→ X2 + X3.

Here, X5 and X6 are contained in every LTC species set, and altogether one finds the
following LCT species sets,

{X1, X2, X5, X6}, {X1, X4, X5, X6}, {X2, X3, X5, X6}, {X3, X4, X5, X6}.
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Only the first and the last of these are also LTC species sets for the fully reversible

system with the additional reactions X1 + X4
κ7−→ X5 and X2 + X3

κ8−→ X6.

4.2 LTC Species and First Integrals

We proceed to study the relation between LTC species sets for all κ ∈ R
m and linear

first integrals. We first note a relation between LTC indices and the complex matrix.

Lemma 4.5 Let {i1, . . . , iu} with u < n and 1 ≤ i1 < i2 · · · < iu ≤ n. Then the
following statements are equivalent.

(a) {i1, . . . , iu} is an LTC index set.
(b) The support of every column of Y ∗ contains some ik .
(c) There exists a non-negative row ω ∈ N

n
0 with support {i1, . . . , iu} such that every

entry of ω · Y ∗ is positive.

Proof The equivalence of (a) and (b) was noted in Proposition 4.2. As for the equiva-
lence of (b) and (c), note that

ω · Y ∗ =
(

n∑

i=1

ωi yi,1, . . . ,
n∑

i=1

ωi yi,d∗

)

=
(

u∑

k=1

ωik yik ,1, . . . ,
u∑

k=1

ωik yik ,d∗

)

.

Thus, the j-th entry of ω · Y ∗ is positive if and only if yi�, j > 0 for some i�. As
the (i, j)-entry of Y ∗ is the stoichiometric coefficient of Xi in the complex Y j , we
have that (ω · Y ∗) j > 0 if and only if the support of the j-th column of Y ∗ intersects
{i1, . . . , iu}. The assertion follows. ��

As a consequence of Lemma 4.5, one finds that the support of certain stoichiometric
first integrals consists of LTC indices.

Proposition 4.6 Let G be a mass-action reaction network with r connected com-
ponents, such that each connected component has one terminal strongly connected
component. Assume that there exists a linear first integral φ = ∑n

i=1 αi xi �= 0, with
non-negative integer coefficients.

(a) One has (α1, . . . , αn) · Y ∈ ker A(κ), and therefore, with the notation of
Lemma A.5,

(α1, . . . , αn) · Y =
r∑

i=1

�i

(
0, . . . , 0, e(i), 0, . . . , 0

)
, �i ∈ N0.

(b) If �i �= 0 for all i = 1, . . . , r , then the indices i1, . . . , iu in the support supp(φ)

form an LTC index set whenever u < n.

Proof (a) Since the complexes are pairwise different, the monomial entries of xY are
linearly independent over R. Therefore

φ(Y A(κ)xY ) = 0 for all x ∈ R
n≥0 ⇔ φ(Y A(κ)) = 0.
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Now, the statement follows from Lemma A.5(c). (b) It follows directly from Lemma
4.5. ��
Example 4.7 For the futile cycle from Examples 3.13 and 4.4, the linear first integral
φ1 = x1 + x2 + x5 + x6 satisfies

(1, 1, 0, 0, 1, 1) · Y = (1, 1, 1, 1, 1, 1) = (1, 1, 1, 0, 0, 0) + (0, 0, 0, 1, 1, 1),

where in the second equality the vector is written as in Proposition 4.6 with �1 = �2 =
1. Hence, by Proposition 4.6, {X1, X2, X5, X6} is an LTC species set. The linear first
integral φ2 = x1 + x5 satisfies

(1, 0, 0, 0, 1, 0) · Y = (1, 1, 1, 0, 0, 0) = (1, 1, 1, 0, 0, 0) + 0 · (0, 0, 0, 1, 1, 1),

and Proposition 4.6 does not apply. In fact, {X1, X5} is not an LTC species set. The
LTC species set {X1, X4, X5, X6} does not correspond to the support of any linear
first integral, but it contains the support of one.

The next example shows that non-negativity of the coefficients of the stoichiometric
first integral in Proposition 4.6 cannot be discarded in general.

Example 4.8 Consider the reversible Michaelis–Menten mass-action reaction network
(Appendix, Example A.2), with degradation of the intermediate complex (the reaction

X3
κ3−→ 0), governed by the ODE system,

ẋ1 = −κ1x1x2 + κ−1x3
ẋ2 = −κ1x1x2 + (κ−1 + κ2)x3 − κ−2x2x4
ẋ3 = κ1x1x2 − (κ−1 + κ2)x3 + κ−2x2x4 − κ3x3
ẋ4 = κ2x3 − κ−2x2x4,

with κ3 > 0. As in the system without degradation (Example 4.3), {X2, X3} is an
LTC species set, but the only stoichiometric first integral (up to multiples) is φ =
x1 − x2 + x4, due to (1, −1, 0, 1) Y = 0. The set {1, 2, 4} is not an LTC index set.
Similar to Example 4 in Lax and Walcher (2020), this example also illustrates that
the scaling approach may yield singular perturbation scenarios which are not directly
related to TFPVs (even after restriction to SCCs). See Lax and Walcher (2020) for
details.

Remark 4.9 There remains the question under which conditions the existence of LTC
species sets in turn implies the existence of stoichiometric first integrals with corre-
sponding support.We give a characterization for reaction networkswith one connected
component and one terminal strongly connected component. Thus, let system (2) rep-
resent such a reaction network. Assume without loss of generality that {X1, . . . , Xu}
is an LTC species set, and denote by ȳ1, . . . , ȳu the first rows of the complex matrix Y .
By Lemma A.5 in Appendix and Proposition 4.6 the system admits a stoichiometric
first integral if, and only if, e = (1, . . . , 1) lies in the closed convex hull of ȳ1, . . . , ȳu .
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(Note that due to Lemma 4.5(c), there exist integers ω1 > 0, . . . , ωu > 0 such that∑u
i=1 ωi ȳi > 0 (coordinate-wise).)

4.3 Stoichiometry and TFPVs

We now address TFPVs of system (2) versus TFPVs of its restriction to stoichiomet-
ric compatibility classes. As seen in Example 4.1, the restricted system may admit
additional TFPVs. We first fix some notation.

We introduce the abbreviation

h(x, κ) = Y A(κ)xY . (19)

In the following, we will assume that system (19) admits a maximal set of independent
stoichiometric first integrals φ1, . . . , φs∗ . Then every SCC is the intersection of Rn≥0
with the common level set

φi (x) = θi , 1 ≤ i ≤ s∗,

whichwe abbreviate as Sθ , θ = (θ1, . . . , θs∗). Onemay choose x̂ ∈ R
n−s∗ with entries

from x1, . . . , xn , such that the Jacobian of (̂x, φ1(x), . . . , φs∗(x)) has full rank n. This
yields an equivalent version

˙̂x = ĥ(̂x, κ, θ) in R
n−s∗ , (20)

which for given θ represents system (19) on Sθ . We are interested in TFPVs of the
(n − s∗)-dimensional system (20) for dimension s > 0. Candidates for TFPVs are as
follows.

• TFPVs via “inheritance” from (19): If κ̂ is a TFPV of (19) for dimension s > s∗,
then (̂κ, θ) is a TFPV of (20) for dimension s − s∗ and some θ , according to
Lemma 2.7.

• TFPV candidates from stoichiometric first integrals: Let the setting of Proposition
4.6 be given and assume that the stoichiometric first integral φ� with non-negative
coefficients corresponds to an LTC variable set (for all κ ∈ R

m≥0). If there exists a
TFPV (̂κ, θ̂ ) with θ̂� = 0, then the critical variety will be a coordinate subspace,
and consequently by Goeke et al. (2017) the singular perturbation reduction will
agree with the “classical” QSS reduction (in the sense of Sect. 2.3) for the LTC
variables. (We restrict attention to a single first integral here, sincewe are interested
in minimal LTC sets; cf. Sect. 2.3.)

There remains to establish manageable criteria for TFPVs from stoichiometric
first integrals. The next result yields conditions for parameter values that are “almost
TFPV”; the notion will be specified in Remark 4.12.

Proposition 4.10 Let system (1) be given, and assume that every SCC of this system is
compact (equivalently, the left-kernel of N in (1) has a vector with all entries positive
(Ben-Israel 1964). Moreover assume that there exists a parameter θ̂ ∈ R

s∗ such that:
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(a) No stationary points in Sθ̂ are isolated relative to Sθ̂ .
(b) For every ρ > 0, there exists some θ such that ‖θ − θ̂‖ < ρ and ˙̂x = ĥ(̂x, κ, θ)

admits an isolated linearly attracting stationary point. (Here, ‖·‖ denotes some
norm.)

Then, ˙̂x = ĥ(̂x, κ, θ̂ ) admits a non-isolated stationary point whose Jacobian has only
eigenvalues with non-positive real part, and admits zero as an eigenvalue.

Proof Let κ be fixed in the following. Given a compact subset K ∗ of Rs∗ , the union
of the SCCs Sθ with θ ∈ K ∗ is compact. In the following, let K be a compact
neighbourhood of Sθ̂ .

For every positive integer L let θL ∈ K ∗ be such that ‖θL − θ̂‖ < 1/L and ˙̂x =
ĥ(̂x, κ, θL) admits an isolated linearly attracting stationary point ẑL . By compactness,
the sequence (̂zL)L inRn−s∗ has an accumulation point ẑ, in Sθ̂ . Since ẑ is not isolated,
the Jacobian of D1ĥ(̂z, κ, θ̂ ) has the eigenvalue zero. Moreover, the map which sends
(̂x, κ, θ) to the coefficients of the characteristic polynomial

χ̂(̂x,κ,θ)(τ ) = τ n−s∗ + σ̂1(̂x, κ, θ)τ n−s∗−1 + · · · + σ̂n−s∗ (̂x, κ, θ) (21)

of D1ĥ(̂x, κ, θ) is continuous. Thus, if some eigenvalue of the Jacobian had positive
real part, the same would hold for some eigenvalue of the Jacobian of D1ĥ(̂zL , κ, θL)

with L sufficiently large (see, e.g. the reasoning in Gantmacher (2005, Ch. V, section
3). ��
Corollary 4.11 Assume that system (20) describes the dynamics of a weakly reversible
deficiency zero reaction network. Let θ̂ be such that no stationary points are iso-
lated in Sθ̂ . Then, ˙̂x = ĥ(̂x, κ, θ̂ ) admits a stationary point whose Jacobian has only
eigenvalues with non-positive real part, and admits zero as an eigenvalue.

Remark 4.12 We now clarify what is meant by “almost TFPV” prior to the statement
of Proposition 4.10. For this, we discuss the conditions for TFPV in Definition 2.6 in
Sect. 2.2 for system (20) and parameter value θ̂ .

• Condition (i) is always satisfied for some dimension > 0, due to condition (a) in
Proposition 4.10.

• Condition (ii) requires equality of geometric and algebraic multiplicity for the
eigenvalue 0. This holds automatically when the algebraic multiplicity is equal
to one. Generally, this property can be checked by algebraic methods: For x̂ in
the critical manifold, τ divides the characteristic polynomial in (21). Obtain a
new polynomial η from χ̂(̂x,κ,θ) by dividing out a power of τ such that a single
factor τ remains. Then the multiplicity equals one if and only if η annihilates
D1ĥ(̂x, κ, θ̂ ). But [as mentioned, e.g. in Goeke and Walcher 2014, Example 4)]
there exist realistic reaction networks for which the direct sum condition on the
kernel and the image does not hold.

• Finally, to guarantee condition (iii), one needs to verify that there exist no purely
imaginary eigenvalues except 0. However, if (iii) is not satisfied, then the system
may admit some interesting dynamics, like zero-Hopf bifurcations.
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We note a sharper result for the case of a one-dimensional critical variety.

Corollary 4.13 In the setting of Proposition 4.10, consider system (20), with charac-
teristic polynomial of the Jacobian given by (21). Let θ̂ be such that σ̂n−s∗ = 0 and
σ̂n−s∗−1 �= 0 for θ = θ̂ , some κ ∈ R

m
>0 and some stationary point ẑ ∈ R

n−s∗≥0. Then
it holds:

(a) The eigenvalue 0 of D1ĥ(̂z, κ, θ̂ ) has multiplicity one.
(b) There exists a polynomial � in n − s∗ − 1 variables with the following property:

The Jacobian D1ĥ(̂z, κ, θ̂ ) admits nonzero purely imaginary eigenvalues if and
only if �(̂σ1, . . . , σ̂n−s∗−1) = 0 at (̂z, κ, θ̂).

Proof (a) is obvious. (b) There exists a polynomial � in the coefficients of the char-
acteristic polynomial that vanishes if and only if a pair of (nonzero) eigenvalues adds
up to zero; see, e.g. Kruff and Walcher (2020, Lemma 4.1, Appendix B). Since all
eigenvalues have real part ≤ 0, such a pair of eigenvalues must have zero real parts. ��

The non-trivial restrictions on the σ̂i in Corollary 4.13(b) suggest that there will be
nonzero purely imaginary eigenvalues only in exceptional cases. There is an obvious
(but less readily applicable) extension of Corollary 4.13 to TFPVs for dimension
strictly larger than one, with an additional requirement that the geometric and the
algebraic multiplicities of the zero eigenvalue are equal in Corollary 4.13(a), and that
Corollary 4.13(b) is left unchanged except for the number of variables of �.

The polynomial � can be determined explicitly. We recall some cases for SCCs of
small generic dimension from Kruff and Walcher (2020, Example 1).

Remark 4.14 (a) If the SCCs of system (2) generically have dimension two, and the
hypotheses of Proposition 4.10 are satisfied, then θ̂ is a TFPV for dimension one
whenever σ̂1 �= 0 at (̂z, κ, θ̂ ),

(b) If the SCCs of system (2) generically have dimension three, and the hypotheses
of Proposition 4.10 are satisfied, then θ̂ is a TFPV for dimension one whenever σ̂1 �= 0
and σ̂2 �= 0 at (̂z, κ, θ̂ ).

(c) If the SCCs of system (2) generically have dimension four, and the hypotheses
of Proposition 4.10 are satisfied, then θ̂ is a TFPV for dimension one whenever σ̂3 �= 0
and σ̂1σ̂2 �= σ̂3 at (̂z, κ, θ̂ ).

Example 4.15 Corollary 4.11 is applicable to the reversible competitive inhibition reac-
tion network introduced in Example 2.5, with the critical parameter value θ̂ having
e0 = 0, and all other parameters being positive. The dynamics on an SCC is described
by the ODE system (6), and the Jacobian on the SCC with e0 = 0 (thus, on the critical
manifold with x3 = x6 = 0) is equal to:
⎛

⎝
0 κ1x1 + κ−1 κ1x1
0 −(κ1x1 + κ−1 + κ2 + κ−2(s0 − x1)) − κ3 f0 −(κ1x1 + κ−2(s0 − x1)) + κ−3
0 κ3 f0 −κ−3

⎞

⎠ .

The coefficients of its characteristic polynomial are

σ̂1 = f0κ3 + κ−3 + κ2 + κ−1 + κ1x1 + κ−2(s0 − x1),

σ̂2 = κ3 f0(κ1x1 + κ−2(s0 − x1)) + κ−3(κ1x1 + κ−1 + κ2 + κ−2(s0 − x1)),

σ̂3 = 0.
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Since both σ̂1 and σ̂2 are positivewhen 0 ≤ x1 ≤ s0, the conditions in Remark 4.14 and
Corollary 4.11 are satisfied, and θ̂ is a TFPV for dimension one. Onemay compare this
to the discussion of the related competitive inhibition network in Goeke et al. (2012),
by direct computation with no reference to reaction network theory. Thus one sees
that the approach developed here saves substantial computational effort. Moreover,
one verifies that Proposition 4.10 is also applicable to the system with irreversible
product formation (that is, κ−2 = 0).
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A Appendix

Here, we first collect some further properties of TFPVs, as well as their use and
characterization, and then recall some properties of Laplacian matrices. These two
subsections are included (mostly) for the reader’s convenience. In a final subsection,
we outline a heuristic that combines switching off reactions and removing species, to
obtain further singular perturbation reductions. No systematic discussion is intended,
but we give relevant examples where this heuristic works.

A.1 Tikhonov–Fenichel Parameter Values: Details

We collect here some facts about TFPV and the reduction procedure, and introduce
further notation.

A.1.1 A Proof of Lemma 2.7

Proof One needs to verify that the intersection of Z̃ with the SCChas dimension s−s∗;
the remaining properties are clear. Given the fixed TFPV, after a linear coordinate
change the system has the form ẇ = f (w), in detail
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ẇ1 = 0
...

ẇs∗ = 0
ẇs∗+1 = fs∗+1(w)

...

ẇn = fn(w).

At a point w0 in the SCC one has f (w0) = 0 and

Df (w0) =
(
0 0
A B

)

with an (n − s∗) × (n − s∗)-matrix B. Now Df (w0) has rank n − s, and so has B
by condition (ii)’. With the implicit function theorem one gets (up to renumbering) a
local parameterization of the zero set of f in the form

⎛

⎜
⎝

ws+1
...

wn

⎞

⎟
⎠ = q(w1, . . . , ws).

On the SCC the entries w1, . . . , ws∗ are fixed, hence there remains an s − s∗-
dimensional manifold. ��

A.1.2 TFPV and Reductions

We have by Goeke (2013) and Goeke et al. (2015):

Proposition A.1 Given a parameter π ∈ 
 and any smooth curve ε 
→ ϕ(ε) in the
parameter space 
 with ϕ(0) = π̂ , in case s∗ = 0 the system

ẋ = h(x, ϕ(ε)) = h(x, π̂) + εD2h(x, π̂)ϕ′(0) + · · · = h(0)(x) + εh(1)(x) + · · · ,(22)

with ε ≥ 0, admits a singular perturbation reduction in the sense of Tikhonov and
Fenichel if and only if π̂ is a TFPV.

Thus one may think of a TFPV as a (“degenerate”) parameter from which singularly
perturbed systems emanate.

A.1.3 A Detailed Example

We further illustrate the procedure outlined in Remark 2.8 with a detailed example
that seems to be unavailable in the literature. The TFPV property can be verified by
computation but is also an immediate consequence of Theorem 3.10 .
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Example A.2 Consider the reversibleMichaelis–Menten reaction network (Keener and
Sneyd 2009),

X1 + X2
κ1−−⇀↽−−
κ−1

X3
κ2−−⇀↽−−
κ−2

X4 + X2, (23)

where X1 chemically is a substrate, X2 an enzyme, X3 an intermediate complex, and
X4 a product, formed by conversion of the substrate X1. Using (1), we obtain the ODE
system

ẋ1 = −κ1x1x2 + κ−1x3,

ẋ2 = −κ1x1x2 + (κ−1 + κ2)x3 − κ−2x2x4,

ẋ3 = κ1x1x2 − (κ−1 + κ2)x3 + κ−2x2x4,

ẋ4 = κ2x3 − κ−2x2x4.

With stoichiometric first integrals and the typical initial values x1(0) = s0, x2(0) =
e0 and x3(0) = x4(0) = 0 one has the two-dimensional system

ẋ1 = −κ1e0x1 + (κ1x1 + κ−1)x3,

ẋ3 = κ1e0x1 − (κ1x1 + κ−1 + κ2)x3 + κ−2(e0 − x3)(s0 − x1 − x3).

This system admits a TFPV with κ2 = κ−2 = 0 and all other parameters positive.
With κ2 = εκ∗

2 , κ−2 = εκ∗−2 one gets

h(0)(x) =
(−κ1e0x1 + (κ1x1 + κ−1)x3

κ1e0x1 − (κ1x1 + κ−1)x3

)

=
(−1

1

)

· (κ1e0x1 − (κ1x1 + κ−1)x3),

the decomposition being as in Remark 2.8. So, the critical manifold Z̃ is given by
μ = 0, explicitly x3 = κ1e0x1

κ1x1+κ−1
, and with D1μ(x) = (κ1(e0 − x3), −(κ1x1 + κ−1))

one finds via straightforward computations:

Q(x) = 1

κ1(e0 − x3) + κ1x1 + κ−1

(
κ1x1 + κ−1 κ1x1 + κ−1
κ1(e0 − x3) κ1(e0 − x3)

)

.

With

h(1)(x) =
(

0
−κ2x3 + κ−2(e0 − x3)(s0 − x1 − x3)

)

one obtains a version of the reduced equation on Z̃ . Substituting x3 via the defining
equation yields a version for x1 alone, viz.

ẋ1 = (−κ2κ1e0x1 + κ−2κ−1e0) · (κ1x1 + κ−1) − κ−2κ−1e0 · κ1e0x1
κ1κ−1e0 + (κ1x1 + κ−1)2

.
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A.1.4 A Computational Approach to TFPVs

The following is taken from Goeke (2013) and Goeke et al. (2015).

Lemma A.3 Consider the characteristic polynomial

χ(τ, x, π) = τ n + σ1(x, π)τ n−1 + · · · + σn−1(x, π)τ + σn(x, π)

of D1h(x, π). Then, given s∗ < s < n, a parameter value π̂ is a TFPV with locally
exponentially attracting critical manifold Z̃ (depending on π̂ ) of dimension s, if and
only if the following conditions hold for some x0 ∈ Z̃ :

(iv) h(x0, π̂) = 0.
(v) The characteristic polynomial χ(τ, x, π) satisfies

(1) σn(x0, π̂) = · · · = σn−s+1(x0, π̂) = 0;
(2) all roots of χ(τ, x0, π̂)/τ s have negative real part.

(vi) The system ẋ = h(x, π̂) admits s independent local analytic first integrals at x0.

Therefore, a starting point for computing TFPVs is as follows: With h(x0, π̂) = 0
and σn(x0, π̂) = · · · = σn−s+1(x0, π̂) = 0, one sees that (x0, π̂) is a solution to
n + s > n equations for x ∈ R

n , given π̂ . In turn, this allows us to obtain conditions
on π̂ for general polynomial systems via elimination theory.

The validity of the hypotheses for Tikhonov’s and Fenichel’s theorems depend on
the ambient space, and thus may change when passing to an invariant subspace. As a
consequence, the notion of TFPVmay also depend on the ambient space. For reaction
networks this observation is relevant when passing to SCCs.

For further information on the reduction procedure and its properties, and further
examples, we refer to Goeke and Walcher (2014) and Goeke et al. (2017). The latter
reference contains an explanation of the simple form of the reduced equation in Exam-
ple 2.9. Reference Feliu et al. (2020) provides a version of the singular perturbation
reduction when a parameterization of the critical manifold is known.

A.2 Some Properties of Laplacians

In this subsection we recall and review some properties of Laplacian and compartmen-
tal matrices. For the following known facts refer, e.g. to Jacquez and Simon (1993,
Subsection 4.1), Anderson (2013, Thm. 12.1), aswell asBerman andPlemmons (1994,
Ch. 6) (noting that compartmental matrices are negative M-matrices).

The Laplacian matrix of a directed graph (and thus the Laplacian A(κ) of a reaction
network) is a compartmental matrix. We recall some notions.

• A square matrix with real entries is called a compartmental matrix if all its off-
diagonal entries are ≥ 0 and all its column sums are ≤ 0.
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• Given non-negative real numbers σi j , 1 ≤ i, j ≤ n, and τk , 1 ≤ k ≤ n, the matrix

L(σ, τ ) :=

⎛

⎜
⎜
⎜
⎜
⎝

−∑
� σ�1 − τ1 σ12 · · · σ1d

σ21
. . .

...
...

. . .
. . . σd−1,d

σd1 · · · σd,d−1 −∑
� σ�d − τd

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
d×d , (24)

with σ = (σi j ) and τ = (τk), is compartmental. In turn, every compartmental
d × d matrix has a representation of the form (24), with uniquely determined σi j
and τk .

• The Laplacian A(κ) of a reaction network satisfies σ = κ and τ = 0. Hence,
A(κ) = L(κ, 0) and column sums are zero.

Lemma A.4 Let L(σ, τ ) be a compartmental matrix as in (24). Then, all eigenvalues
of L(σ, τ ) have non-positive real part, and any eigenvalue with real part zero is equal
to zero. Moreover Rn is the direct sum of the kernel and the image of L(σ, τ ).

Proof We give a direct argument for the second assertion, which is not readily found
in the cited references: Due to the structure of the matrix, the simplex defined by
x1 ≥ 0, . . . , xn ≥ 0 and x1 +· · ·+ xn ≤ 1 is positively invariant for ẋ = L(σ, τ ) x . In
particular all solutions starting in the simplex are bounded for positive times. Therefore
the eigenvalue 0 cannot admit a non-trivial Jordan block,whichwould yield unbounded
solutions. ��

Consider a mass-action reaction network G. Let G1, . . . ,Gr be the connected
components of G and further order the set of complexes according to the connected
component they belong to. If Ai (κ) stands for the Laplacian matrix of Gi , then A(κ)

becomes a block diagonal matrix with r blocks,

A(κ) =

⎛

⎜
⎜
⎜
⎝

A1(κ) 0 . . . 0
0 A2(κ) . . . 0
...

...
. . .

...

0 0 . . . Ar (κ)

⎞

⎟
⎟
⎟
⎠

∈ R
d×d .

The form of the kernel of the Laplacian matrix A(κ) of a digraph with κ ∈ R
m
>0

is well known, in particular, in the context of reaction networks (Feinberg 2019, Thm
16.4.2). It derives from the Matrix-Tree theorem (Tutte 1948; Mirzaev and Gunawar-
dena 2013; Chaiken and Kleitman 1978).

• The dimension of the kernel of A(κ) agrees with the number of terminal strongly
connected components and is independent of κ ∈ R

m
>0.• If the digraph is strongly connected, then dim ker A(κ) = 1 and a generator of

ker A(κ) is given by the sequence of signed principal minors (which are positive).
• If the digraph is not strongly connected, then any complex in the support of a vector
in ker A(κ) belongs to a terminal strongly connected component. Furthermore, a
basis of ker A(κ) can be chosen such that the support of each vector is exactly
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one terminal strongly connected component and the nonzero entries are positive.
These entries arise as the signed principal minors of the restriction of the matrix
to the nodes in the component.

• The vector e = (1, . . . , 1) belongs to the left-kernel of A(κ), and generates it
when the digraph has one terminal strongly connected class.

These facts lead to the following lemma.

Lemma A.5 Let G be a mass-action reaction network with labelling κ ∈ R
m
>0. Let

G1, . . . ,Gr be the connected components of G and assume that the set of complexes
is ordered in accordancewith the components. Let T be the number of terminal strongly
connected components of G.

Then, the rank of A(κ) does not depend on the choice of κ ∈ R
m
>0, and in particular

(a) dim ker A(κ) = T .
(b) ker A(κ) has non-trivial intersection with the positive orthant Rd

>0, if and only if
G is weakly reversible.

(c) The left-kernel of A(κ) contains the following row vectors, one for each connected
component:

(
e(1), 0, . . . , 0

)
, . . . ,

(
0, . . . , 0, e(r)), with e(i) = (1, . . . , 1)

of size the number of nodes of Gi . If each connected component of G has exactly
one terminal strongly connected component, then these vectors span the left-kernel
of A(κ).

Proof (a-b) are direct consequences of the properties of the kernel of A(κ) discussed
above. (c) The column sums in each block Ai (κ) are zero, as each submatrix is a
Laplacian. The second part follows from (a), as T = r . ��

With the notation in Lemma A.5, if a connected component of G has more than
one terminal strongly connected component, then the vectors given in Lemma A.5(c)
do not form a basis of the left-kernel of A(κ). To obtain a basis, one has to augment
them by vectors that might depend on the particular entries of A(κ), that is, on κ; see
Example 2.4 for an illustration.

A.3 Partial Scalings: An Outlook

In the main part of this paper, we considered on the one hand TFPVs that, in reaction
network interpretation, arise from “switching off” certain reactions (Theorems 3.9
and 3.10). On the other hand, we introduced LTC species sets for all parameters, with
the characterizing property that if their concentrations are zero, then all reactions of
the reaction network are precluded from taking place, and discussed their relation to
TFPVs (Proposition 4.10 and Corollary 4.13). But beyond the proven results, one may
also use the underlying strategies as heuristics to obtain particular singular perturbation
reductions. It is suggestive to go further and combine these approaches by switching
off certain reactions and determining LTC species for the reactant complexes. This
combinationwill be sketchedhere. In the setting of Sect. 2.3 and in particular expansion
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(10), we consider LTC variable sets for a specific choice of the parameter π∗ = κ̃ in
(10), for reaction networks. This yields a slow–fast system which may further admit a
Tikhonov–Fenichel reduction. We will not attempt to establish necessary or sufficient
conditions for a singular perturbation setting.

We start again from (17), but now we consider some κ̃ such that A(̃κ) has zero
columns, thus there are additional non-reactant complexes in the reaction network
G (̃κ). We may assume that the remaining reactant complexes correspond to columns
y1, . . . , yd̃ of Y ∗, thus

A∗(̃κ) =
⎛

⎜
⎝

∗ · · · ∗ 0 · · · 0
...

...
...

...

∗ · · · ∗ 0 · · · 0

⎞

⎟
⎠ .

Matrices of this type define some coordinate subspace of parameter space. We denote
by Y1 the matrix with columns y1, . . . , yd̃ , and by Y2, the matrix with the remaining
columns of Y ∗. LTC variable sets for G (̃κ) can be identified via Proposition 4.2 with
the complex matrix Y1.

Upon relabelling, we may assume that x1, . . . , xu form an LTC variable set for
G (̃κ). Considering a curve ε 
→ κ̃ + ερ + . . . in parameter space, we obtain

A∗(̃κ + ερ) =
(
A11 + ε · · · εA∗

12 + ε2 · · ·
A21 + ε · · · εA∗

22 + ε2 · · ·
)

with A11 ∈ R
u×d̃ . Moreover, set xi = εx∗

i for 1 ≤ i ≤ u, then we have

x y j = εy1 j+···+yu j x∗
1
y1 j · · · x∗

u
yu j · x yu+1, j

u+1 · · · x ynjn ,

noting that the exponent of ε is positive for all j ≤ d̃ . Abbreviating w1(x) = xY1 , and
w2(x) = xY2 , one obtains an expansion

w1(εx∗
1 , . . . , εx

∗
u , xu+1, . . . , xn) = εw∗

1(x
∗
1 , . . . , x

∗
u , xu+1, . . . , xn) + ε2 · · · ,

w2(εx∗
1 , . . . , εx

∗
u , xu+1, . . . , xn) = w∗

2(x
∗
1 , . . . , x

∗
u , xu+1, . . . , xn) + ε · · · ,

and altogether we arrive at the slow–fast system,

d

dt

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x∗
1
...

x∗
u

xu+1
...

xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(

A11 A∗
12

εA21 εA∗
22

)

·
(

w∗
1(x

∗
1 , . . . , x

∗
u , xu+1, . . . , xn)

w∗
2(x

∗
1 , . . . , x

∗
u , xu+1, . . . , xn)

)

+
(

ε · · ·
ε2 · · ·

)

.
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One would arrive at the same slow–fast system by starting from a different vantage
point: First designate LTC variables and then switch off all reactions whose source
complexes do not contain these variables.

Since the fast part of the scaled system involves slow reactions corresponding to
A∗
12, the results from the previous subsections do not carry over to partial scalings. We

will not discuss these matters any further here.
For given reaction networks, the above considerations on partial scalings, while

not providing comprehensive results, may be used to identify candidates for singular
perturbation reductions, as shown by the following examples.

Example A.6 We continue theMichaelis–Menten reaction network fromExample A.2,
rewriting (23) in the form (2) with

Y =

⎛

⎜
⎜
⎝

1 0 0
1 0 1
0 1 0
0 0 1

⎞

⎟
⎟
⎠ , A(κ) =

⎛

⎝
−κ1 κ−1 0
κ1 −(κ−1 + κ2) κ−2
0 κ2 −κ−2

⎞

⎠ , xY =
⎛

⎝
x1x2
x3
x2x4

⎞

⎠ .

If κ̃ is such that {x3} is an LTC variable set for G (̃κ), then we need κ1 = κ−2 = 0
at ε = 0 (slow formation of the intermediate complex from both sides). Then for the
curve in parameter space κ̃ + εκ∗ = (εκ∗

1 , κ−1, κ2, εκ
∗−1),

A(κ) =
⎛

⎝
0 κ−1 0
0 −(κ−1 + κ2) 0
0 κ2 0

⎞

⎠ + ε

⎛

⎝
−κ∗

1 0 0
κ∗
1 0 κ∗−2
0 0 −κ∗−2

⎞

⎠ ,

and scaling x3 = εx∗
3 yields

ẋ1 = ε(−κ∗
1 x1x2 + κ−1x

∗
3 ),

ẋ2 = ε(−κ∗
1 x1x2 + κ−1cx

∗
3 + κ2x

∗
3 − κ−2∗x2x4),

ẋ∗
3 = κ∗

1 x1x2 − κ−1x
∗
3 − κ2x

∗
3 + κ∗−2x2x4,

ẋ4 = ε(κ2x
∗
3 − κ∗−2x2x4).

Here, Tikhonov’s theorem is directly applicable, with the reduced system admitting
the first integrals φ1 = x2 and φ2 = x1 + x4. Thus, we end up with a one-dimensional
equation (see Goeke et al. 2015).

Designating the LTC variable set {x2} forces κ−1 = κ2 = 0 at ε = 0 (slow
degradation of the intermediate complex in both directions). Proceeding as before,
one has

A(κ) =
⎛

⎝
−κ1 0 0
κ1 0 κ−2
0 0 −κ−2

⎞

⎠ + ε

⎛

⎝
0 κ∗−1 0
0 −(κ∗−1 + κ∗

2 ) 0
0 κ∗

2 0

⎞

⎠ .
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Scaling x2 = εx∗
2 , one obtains

ẋ1 = ε(−κ1x
∗
2 x1 + κ∗−1x3),

ẋ∗
2 = −κ1x

∗
2 x1 + κ∗−1cx3 + κ∗

2 x3 − κ−2x
∗
2 x4,

ẋ3 = ε(κ1x
∗
2 x1 − κ∗−1x3 − κ∗

2 x3 + κ−2x
∗
2 x4),

ẋ4 = ε(κ∗
2 x3 − κ−2x

∗
2 x4),

forwhich, again,Tikhonov’s theorem is directly applicable. The reduced systemadmits
the first integrals φ1 = x3 and φ2 = x1 + x4. Thus, again one arrives at a reduction to
dimension one; see Goeke et al. (2015) for details.

Hence, as noted earlier, for reversible Michaelis–Menten, by the approaches in the
present paper we have obtained all TFPVs that were determined algorithmically in
Goeke et al. (2015) for this system.
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