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Abstract
In this paper, we focus on the propagation phenomena of a bistable man–environment
epidemic model with nonlocal dispersals, where there exists a positive feedback inter-
action between the concentration of infectious agent and infectious human population.
The monostable and bistable traveling wave solutions and three-wave entire solu-
tions are studied. First, by applying and developing the known results for monostable
case, we give a summary of the existence and asymptotic behavior of all monos-
table traveling wave solutions in two different monostable intervals and further find
some relationship between them. The existence of bistable traveling wave solutions
is obtained by introducing the results about monotone semiflows with weak com-
pactness. Second, we give twelve types of three-wave entire solutions, which contain
all possibilities of three-wave entire solutions originating from three traveling wave
solutions with different nonzero wave speeds, by constructing new auxiliary functions
and super- and sub-solutions for every type. We also show that these entire solutions
are globally Lipschitz continuous with respect to spatial variable. In addition, the
nonexistence result of entire solutions originating from more than four traveling wave
solutions is obtained.
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1 Introduction

Dispersal, as a common and important phenomenon in ecology and epidemiology,
describes the movement mechanism by which species move into a new area. Mathe-
matically, dispersal can be modeled by the following nonlocal dispersal operator:

u �→ J ∗ u − u =
∫
RN

J (x − y)u(y)dy − u,

which describes the movements of organisms between not only adjacent but also
nonadjacent spatial locations. Compared with its local counterpart represented by
Laplacian operator (i.e., u �→ �u), nonlocal dispersal is more effective to study
the long-range dispersal phenomena, such as the rapid spread of infectious disease
across countries or continents by the travel of infected human (see Cannas et al.
2006; Hallatschek and Fisher 2014). Here, the kernel J is a nonnegative function
satisfying

∫
RN J (x)dx = 1, and J (x − y) stands for the probability distribution of

the movement jumping from location y to x . Over the past two decades, the following
nonlocal dispersal equation with a reaction term

ut = J ∗ u − u + f (u), x ∈ R
N , t ∈ R

has attracted extensive attention, and we refer to Bates et al. (1997), Carr and Chmaj
(2004), Coville et al. (2008), and Schumacher (1980) for the works on traveling wave
solutions, and Dong et al. (2021), Li et al. (2010), and Sun et al. (2011) for the works
on entire solutions. We also refer to Andreu-Vaillo et al. (2010), Bates (2006), Fife
(2003), Kao et al. (2010), and Murray (2003) for the works on other problems about
nonlocal dispersals.

In this paper, we focus on an epidemicmodel where both the dispersals of infectious
agent and infectious human population are nonlocal, and there is a positive feedback
interaction between the concentration of infectious agent and infectious human pop-
ulation, that is, once the human hosts infected, they will promote the growth rate of
bacteria, and in turn, an increase in the concentration of infectious agent can lead to
an increase in the infection rate of human population. This model is written as

{
ut (x, t) = J1 ∗ u(x, t) − u(x, t) − αu(x, t) + h(v(x, t)), x ∈ R, t ∈ R,

vt (x, t) = J2 ∗ v(x, t) − v(x, t) − βv(x, t) + g(u(x, t)), x ∈ R, t ∈ R.

(1.1)

Here, u(x, t) and v(x, t) biologically stand for the spatial densities of infectious agent
and infectious human population at location x and time t , respectively; α denotes
the natural death rate of infectious agent; 1/β is the infectious period of infectious
human population; h(v)means the growth rate of infectious agent due to the infectious
human population; g(u) stands for the infection rate of the human population under the
assumption that the total susceptible human population is constant during the evolution
of epidemic. In the system (1.1), the dispersals of infectious agent and infectious human
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population are described by

J1 ∗ u(x, t) − u(x, t) =
∫
R

J1(x − y)u(y, t)dy − u(x, t),

J2 ∗ v(x, t) − v(x, t) =
∫
R

J2(x − y)v(y, t)dy − v(x, t),

respectively. The nonlocal dispersals describe the long-distance movements of infec-
tious agent and infectious humans across cites or countries by air traffic and other
long-distance transportation. The system (1.1) can model the spread of the epidemic
by fecal–oral transmission such as typhoid fever, cholera, hepatitis A, and poliomyeli-
tis. Fecal–oral transmission occurs when infectious agents in the fecalmaterial from an
infected individual contaminate food or water, which is ingested by a second individ-
ual. Hence, fecal–oral route transmission is classically associated with contamination
of water by human or animal waste. In (1.1), the nonlocal dispersal of infectious agent
can be regarded as the long-distance transportation of infected food and water.

If infectious human do not move during the infectious period (for example, they
are in sickbeds or quarantined probably), (1.1) reduces to the following degenerate
model:

{
ut (x, t) = J1 ∗ u(x, t) − u(x, t) − αu(x, t) + h(v(x, t)), x ∈ R, t ∈ R,

vt (x, t) = −βv(x, t) + g(u(x, t)), x ∈ R, t ∈ R.

(1.2)

In addition, when the movements of infectious agent and infectious human population
happen only between adjacent spatial locations, the local dispersal is more realistic
and the local dispersal model is written as

{
ut (x, t) = �u(x, t) − αu(x, t) + h(v(x, t)), x ∈ R, t ∈ R,

vt (x, t) = �v(x, t) − βv(x, t) + g(u(x, t)), x ∈ R, t ∈ R.
(1.3)

The model (1.3) has been previously considered by Capasso and Maddalena (1981,
1982) to study the spread of cholera in the European Mediterranean region in 1973.
With some suitable modifications, (1.3) was also used by Capasso and Wilson (1997)
to model other epidemics with fecal–oral transmission.

In these epidemic models, the study of the wave propagation phenomena such as
traveling wave solutions and entire solutions has attracted a number of researchers.
A traveling wave solution is a special solution that keeps its shape while moving at
a constant speed, and it can describe the spread of the infectious disease from an
outbreak to an endemic disease. An entire solution means a classical solution defined
in the whole space and at all time t ∈ R. Mathematically, the study of entire solutions
can help us to understand the structures of the global attractors, and biologically,
different entire solutions represent different propagation patterns of disease. Hence, it
is important and interesting to find more entire solutions. Since the pioneering works
on reaction–diffusion (local dispersal) equations by Hamel and Nadirashvili (1999,
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2001) for monostable case and Yagisita Yagisita (2003) for bistable case, there have
been large amounts of research on entire solutions for various models, see, e.g., Chen
and Guo (2005), Chen et al. (2006), Fukao et al. (2004), Li et al. (2008), and Morita
and Ninomiya (2006). Particularly, for the local dispersal model (1.3), we refer to
Hsu and Yang (2013), Volpert et al. (1994), Xu and Zhao (2005), and Zhao and Wang
(2004) for the works on traveling wave solutions, and Wu and Hsu (2016) for the
works on entire solutions. For the nonlocal dispersal model (1.1), we refer to Li et al.
(2017) and Meng et al. (2019) for the works of monostable traveling wave solutions
and entire solutions. We also refer to Hu et al. (2015) for the works of monostable
traveling wave solutions in m-component cooperative systems which contain (1.1) as
a special example.

Note that the aforementioned works for (1.1) have essentially considered only
monostable traveling wave solutions and two-wave entire solutions. To the best of our
knowledge, there is no result about bistable traveling wave solutions or three-wave (or
more) entire solutions of (1.1). Here, we say (u, v) is a N -wave entire solution if it
originates from the N traveling wave solutions (c j ,φ j ) j=1,...,N , in the sense that,

lim
t→−∞

N∑
j=1

(
sup

ρ j (t)≤x≤ρ j+1(t)

∥∥(u, v)(x, t) − φ j (x + c j t + ϑ j )
∥∥
)

= 0, (1.4)

where {ϑ j } j=1,...,N denotes some constant and {ρ j (t)} j=1,...,N+1 is some function
satisfying ρ j (t) < ρ j+1(t), ρ1(t) = −∞, and ρN+1(t) = +∞. In fact, even for
(1.2), there are almost no results on bistable traveling wave solutions and N -wave
entire solutions except the works by Zhang et al. (2016) for two-wave entire solutions
and Wu et al. (2018) for three-wave entire solutions. However, the study of (1.1) is
much more difficult than (1.2), since (1.1) is essentially a two-component nonlocal
dispersal (integral) system but (1.2) can be transformed into a scalar nonlocal dispersal
equation by substituting v(x, t) = e−βtv(x, 0) + ∫ t

0 eβ(s−t)g(u(x, s))ds (from the
second equation) into the first equation of (1.2). We also refer to Chen et al. (2018)
and Dong et al. (2021) for the three-wave entire solutions of scalar bistable equations,
and Guo and Wu (2019) for Lotka–Volterra diffusion–competition models.

The aim of this paper is to study monostable and bistable traveling wave solutions
and three-wave entire solutions in the system (1.1) with two stable equilibria E0 =
(0, 0) and E2 ∈ Int(R2+) and an unstable equilibrium E1 ∈ (E0, E2). Throughout this
paper, we always use the standard ordering in R

2. That is, for any u = (u1, u2), v =
(v1, v2), we write u ≥ v if ui ≥ vi , i = 1, 2; u 	 v if ui > vi , i = 1, 2; and u > v

if ui ≥ vi with i = 1, 2 but u 
= v. For any r1, r2 ∈ R
2 with r1 < r2, we define

[r1, r2] = {u ∈ R
2 : r1 ≤ u ≤ r2} and (r1, r2) = {u ∈ R

2 : r1 < u < r2}. For any
v ∈ R

2, ‖v‖ means the Euclidean norm.
First, we study both monostable and bistable traveling wave solutions. Note that

although (1.1) is bistable in the interval [E0, E2], it also has two monostable intervals
[E0, E1] and [E1, E2]. In the intervals [E0, E1] and [E1, E2], we give a summary of
the existence and asymptotic behavior of all monostable traveling wave solutions by
applying and developing the known results for [E0, E1] (see Li et al. 2017; Meng et al.
2019) into [E1, E2]. Furthermore, we find some relationship of monostable traveling
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wave solutions between these two monostable intervals, that is, the rightward (or
leftward) traveling wave solution in [E0, E1] has the same minimal wave speed as
that in [E1, E2], and when their wave speeds are equal, they also have the same
exponential decay rate. In the interval [E0, E2], we give the existence of bistable
traveling wave solutions by introducing the result given by Fang and Zhao (2015)
for monotone semiflows with weak compactness. The asymptotic behavior of these
bistable travelingwave solutions is also obtained by studying the associated eigenvalue
problems.

Second, we construct twelve types of three-wave entire solutions. In the construc-
tion, we only choose traveling wave solutions with nonzero wave speeds. Under this
consideration, these twelve types contain all possibilities of three-wave entire solu-
tionswhich originate from three travelingwave solutions (c j ,φ j ) j=1,2,3 with different
nonzero wave speeds. The sketchy profiles as t → −∞ of these entire solutions are
depicted by Figs. 1 and 2. In fact, the construction of a N -wave entire solution origi-
nating from (c j ,φ j ) j=1,...,N is essentially a procedure linking the profiles of φ j with
φ j+1 for any j = 1, . . . , N −1. The tools are a pair of suitable super- and sub-solutions
constructed by some appropriate auxiliary functions. Although the idea of linking two
traveling wave solutions by super- and sub-solutions comes from Chen et al. (2018)
and Morita and Ninomiya (2006), the difficulty is how to construct appropriate auxil-
iary functions and corresponding super- and sub-solutions for different types of entire
solutions and different models. We construct new auxiliary functions and super- and
sub-solutions only for the first six types of three-wave entire solutions (see Fig. 1), and
the last six types (see Fig. 2) can be easily obtained from the first six types by a symmet-
ric transformation on space R. By applying these auxiliary functions and super- and
sub-solutions, the existence of these twelve types of entire solutions is given. Under
some appropriate conditions, we have that these twelve types of entire solutions are
globally Lipschitz continuous with respect to x . In addition, the nonexistence result of
entire solutions originating from more than four traveling wave solutions is obtained.

The rest of this paper is organized as follows. In Sect. 2, we give the existence and
asymptotic behavior of all monostable and bistable traveling wave solutions of (1.1).
In Sect. 3, we focus only on the construction of the three-wave entire solutions. The
nonexistence result of entire solutions originating from more than four traveling wave
solutions is also obtained. The proofs of three important lemmas in Sect. 3 are given
in the Appendix.

2 TravelingWave Solutions

In this section, we study monostable and bistable traveling wave solutions of (1.1).
We first give the main assumptions. Let g(·) and h(·) be two functions satisfying

(J1) g ∈ C1+γ1(R), h ∈ C1+γ2(R) for some γ1, γ2 ∈ (0, 1), g(0) = h(0) = 0,
g′(u) > 0 foru ≥ 0 and h′(v) > 0 for v ≥ 0, and the function f (u) � h(

g(u)
β

)−αu

is bistable, in the sense that there exists u∗
1 ∈ R

+ and u∗
2 ∈ R

+ such that f (u∗
1) =

f (u∗
2) = 0, f ′(0) = g′(0)h′(0)/β − α < 0, f ′(u∗

1) > 0, and f ′(u∗
2) < 0;
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(a) W1(x) (b) W2(x)

(c) W3(x) (d) W4(x)

(e) W5(x) (f) W6(x)

Fig. 1 The sketchy profiles of the first six entire solutions as t → −∞

(J2) g′(u∗
1) ≥ (g(u)−g(u∗

1))/(u−u∗
1) foru ∈ [0, u∗

2] andh′(v∗
1) ≥ (h(v)−h(v∗

1))/(v−
v∗
1) for v ∈ [0, v∗

2 ], where v∗
1 � g(u∗

1)/β and v∗
2 � g(u∗

2)/β.

By (J1), it is clear that (1.1) admits three nonnegative equilibria: two stable equilibria
E0 = (0, 0) and E2 = (u∗

2, v
∗
2), and an unstable equilibrium E1 = (u∗

1, v
∗
1). Similar

to the Fisher–KPP assumption (namely f (u) ≤ f ′(0)u) in a monostable reaction–
diffusion equation, the purpose of (J2) is to ensure that the minimal wave speed is
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(a) W7(x) (b) W8(x)

(c) W9(x) (d) W10(x)

(e) W11(x) (f) W12(x)

Fig. 2 The sketchy profiles of the last six entire solutions as t → −∞

linearly selected. For example, according to Corollary 3.2 in Xu et al. (2020), we
can obtain that for the monostable traveling wave solution connecting E1 and E2, the
minimal wave speed cmin must satisfy cmin ≥ cL , where cL is defined in (2.2) later. If
cmin = cL , then we say that the minimal wave speed is linearly selected; otherwise,
i.e., cmin > cL , we say that the minimal wave speed is nonlinearly selected. Next, we
give an example of g(u) and h(v) as follows:
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g(u) = β
[
sin

(π

2
u − π

2

)
+ 1

]
, h(v) = αv.

Then, the model (1.1) has three equilibria (0, 0), (1, 1), and (2, 2). Some calculations
show that g′(0)h′(0) = g′(2)h′(2) = 0 < αβ, which implies that (0, 0) and (2, 2) are
stable, and g′(1)h′(1) = π

2 αβ > αβ, which means that (1, 1) is unstable.
Suppose that J1(·) and J2(·) are two continuous and nonnegative functions satisfy-

ing

(J3) For i ∈ {1, 2}, Ji ∈ C1(R), J ′
i ∈ L1(R),

∫
R

Ji (x)dx = 1 and Ji (x) ≥ 0 for
x ∈ R. Moreover, there exist x−

i ∈ R
− and x+

i ∈ R
+ such that Ji (x±

i ) > 0;
(J4) Ji has compact support and denote m := sup{|y| : y ∈ supp(Ji ), i = 1, 2} > 0.

Note that J1 and J2 in this paper may be asymmetric on R.
Let (u(x, t), v(x, t)) = (ϕ(ξ), ψ(ξ)) with ξ = x + ct be a traveling wave solution

of (1.1) connecting Ei and E j , where (ϕ, ψ) ∈ C1(R, R
2). By substituting it into

(1.1), we get that

{
cϕ′(ξ) = J1 ∗ ϕ(ξ) − ϕ(ξ) − αϕ(ξ) + h(ψ(ξ)),

cψ ′(ξ) = J2 ∗ ψ(ξ) − ψ(ξ) − βψ(ξ) + g(ϕ(ξ)),
(2.1)

and the asymptotic boundary conditions are

lim
ξ→−∞(ϕ(ξ), ψ(ξ)) = Ei , lim

ξ→+∞(ϕ(ξ), ψ(ξ)) = E j .

Themain results of this section consist of twoparts. First, in Sect. 2.1,we summarize
the results about the existence and asymptotic behavior of all monostable traveling
wave solutions in intervals [E0, E1] and [E1, E2], and further find some relationship
between the traveling wave solutions in these two monostable intervals. Second, in
Sect. 2.2, we introduce the theory by Fang and Zhao (2015) about the monotone
semiflows with weak compactness and obtain the existence of bistable traveling wave
solutions. The asymptotic behavior of bistable traveling wave solutions is also given
by studying the corresponding eigenvalue problem.

2.1 Monostable TravelingWave Solutions

Although the system (1.1) satisfies the bistable assumption (J1), it also admits
some monostable traveling wave solutions, which play a very important role in the
construction of entire solutions in Sect. 3. Indeed, if we restrict (u, v) in the interval
[E0, E1] or [E1, E2], then (1.1) can be regarded as a monostable system. Define

c(λ) = 1

2λ

[
Fu(0, λ) + Fv(0, λ) +

√
(Fu(0, λ) − Fv(0, λ))2 + 4g′(u∗

1)h
′(v∗

1 )

]
for λ 
= 0,
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where

Fu(c, λ) =
∫
R

J1(z)e
−λzdz − 1 − cλ − α,

Fv(c, λ) =
∫
R

J2(z)e
−λzdz − 1 − cλ − β.

By Theorem 2.1 in Xu et al. (2020), we can define

cL � inf
λ∈R+ c(λ) and cR � sup

λ∈R−
c(λ), (2.2)

and it holds that

cR < cL . (2.3)

The existence of all monostable traveling wave solutions in (1.1) is given by the
following two theorems, which are straightforward consequences of Hu et al. (2015,
Theorem 3.6), Li et al. (2017, Theorem 2.1), and Xu et al. (2020, Corollary 3.2).

Theorem 2.1 Assume (J1)–(J4) hold. Then, for any c1 ≤ cR, (1.1) admits a nonde-
creasing monostable traveling wave solution 
1(x + c1t) satisfying


1(−∞) = E0, 
1(+∞) = E1. (2.4)

Moreover, (1.1) has no traveling wave solution 
1(x + c1t) with c1 > cR satisfying
(2.4). Similarly, for any ĉ1 ≥ cL , (1.1) admits a nonincreasing monostable traveling
wave solution 
̂1(x + ĉ1t) satisfying


̂1(−∞) = E1, 
̂1(+∞) = E0. (2.5)

Moreover, (1.1) has no traveling wave solution 
̂1(x + ĉ1t) with ĉ1 < cL satisfying
(2.5).

Theorem 2.2 Assume (J1)–(J4) hold. Then, for any c2 ≥ cL , (1.1) admits a nonde-
creasing monostable traveling wave solution 
2(x + c2t) satisfying


2(−∞) = E1, 
2(+∞) = E2. (2.6)

Moreover, (1.1) has no traveling wave solution 
2(x + c2t) with c2 < cL satisfying
(2.6). Similarly, for any ĉ2 ≤ cR, (1.1) admits a nonincreasing monostable traveling
wave solution 
̂2(x + ĉ2t) satisfying


̂2(−∞) = E2, 
̂2(+∞) = E1. (2.7)

Moreover, (1.1) has no traveling wave solution 
̂2(x + ĉ2t) with ĉ2 > cR satisfying
(2.7).
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Remark 2.3 The travelingwave solutionwith nonzerowave speed in Theorems 2.1 and
2.2 is unique up to translation. When the wave speed is equal to zero, the continuous
traveling wave solution is unique up to translation. We refer to Coville et al. (2008) for
more details about the uniqueness of traveling wave solutions in a nonlocal dispersal
equation.

Now, we consider the asymptotic behavior of these traveling wave solutions. For c
and λ ∈ R, define the functions

�0(c, λ) = Fu(c, λ) · Fv(c, λ) − h′(0)g′(0),
�1(c, λ) = Fu(c, λ) · Fv(c, λ) − h′(v∗

1)g
′(u∗

1),

�2(c, λ) = Fu(c, λ) · Fv(c, λ) − h′(v∗
2)g

′(u∗
2).

For any fixed c ∈ R, we consider the equation �i (c, λ) = 0 with i ∈ {1, 2, 3}. The
following two lemmas study the number of its roots.

Lemma 2.4 Assume (J1), (J3), and (J4) hold. Then, for any fixed c ∈ R, �i (c, λ) = 0
with i ∈ {0, 2} has exactly two negative roots and two positive roots.

Proof We only consider the equation �0(c, λ) = 0, since the other case is similar.
Some simple calculations imply that

Fu(c, 0) < 0, lim
λ→±∞ Fu(c, λ) = +∞, and

∂2Fu(c, λ)

∂λ2
> 0 for any λ ∈ R.

Then, the equation Fu(c, λ) = 0 has two real roots λ−
u (c) ∈ (−∞, 0) and λ+

u (c) ∈
(0,+∞) by the continuity of Fu(c, λ) with respect to λ. Similarly, the equation
Fv(c, λ) = 0 has two real roots λ−

v (c) ∈ (−∞, 0) and λ+
v (c) ∈ (0,+∞). It is

easy to check that

�0(c,±∞) = +∞, �0(c, 0) = αβ − h′(0)g′(0) > 0,

�0(c, λ) < 0 for λ ∈ [min{λ+
u (c), λ+

v (c)},max{λ+
u (c), λ+

v (c)}].

Thus, the equation �0(c, λ) = 0 has a unique root in (max{λ+
u (c), λ+

v (c)},+∞) and
at least one root in (0,min{λ+

u (c), λ+
v (c)}). Applying a similar method to the proof

of Li et al. (2017, Lemma 2.6), we can obtain that �0(c, λ) = 0 has at most one root
in (0,min{λ+

u (c), λ+
v (c)}). Then, the equation �0(c, λ) = 0 has two positive roots.

Similarly, the equation �0(c, λ) = 0 has two negative roots. It completes the proof. 
�
Lemma 2.5 Assume (J1)–(J4) hold. For c > cL , �1(c, λ) = 0 has and only has three
different positive roots. When c = cL , �1(c, λ) = 0 has two different positive roots.
Similarly, for c < cR, �1(c, λ) = 0 has and only has three different negative roots.
When c = cR, �1(c, λ) = 0 has two different negative roots.

Proof For the case c ≥ cL , the proof can be obtained by a similar method to Li et
al. (2017, Lemma 2.6). For the case c < cR , consider

�̃(c, λ) � �1(−c,−λ) = Fu(−c,−λ) · Fv(−c,−λ) − h′(v∗
1)g

′(u∗
1)
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with

Fu(−c,−λ) =
∫
R

J1(z)e
λzdz − 1 − cλ − α,

Fv(−c,−λ) =
∫
R

J2(z)e
λzdz − 1 − cλ − β.

By substituting Ji (z) for Ji (−z) with i ∈ {1, 2}, we see that the equation �̃(c, λ) = 0
has the same property of roots as �1(c, λ) = 0. Namely, �̃(c, λ) = 0 has and only has
three different positive roots for c > c̃L and two different positive roots for c = c̃L ,
where

c̃L = inf
λ∈R+

{
1

2λ
[Fu(0,−λ) + Fv(0,−λ)

+
√

(Fu(0,−λ) − Fv(0,−λ))2 + 4g′(u∗
1)h

′(v∗
1)

]}
.

A simple calculation shows that c̃L = −cR , which completes the proof. 
�

For c ∈ R, we define

λ+
0 (c) = the smallest positive root of �0(c, λ) = 0,

λ−
0 (c) = the largest negative root of �0(c, λ) = 0,

λ+
2 (c) = the smallest positive root of �2(c, λ) = 0,

λ−
2 (c) = the largest negative root of �2(c, λ) = 0,

(2.8)

and

λ+
1 (c) = the smallest positive root of �1(c, λ) = 0 for c ≥ cL > 0,

λ−
1 (c) = the largest negative root of �1(c, λ) = 0 for c ≤ cR < 0.

The asymptotic behavior of all monostable traveling wave solutions is given by the
following two theorems. Since the calculations for different cases in the proof are
analogous and similar to Li et al. (2017, Theorem 2.2), we omit them.

Theorem 2.6 Assume (J1)–(J4) hold. Let 
1(x + c1t) and 
̂1(x + ĉ1t) be the nonde-
creasing and nonincreasing traveling wave solutions with c1 
= 0 and ĉ1 
= 0 in (1.1)
as given in Theorem 2.1. Then, all the following limits exist in R

+ × R
+ and

(i) for c1 < cR, lim
ξ→+∞(E1 − 
1(ξ))/eλ−

1 (c1)ξ = − lim
ξ→+∞ 
′

1(ξ)/(λ−
1 (c1)eλ−

1 (c1)ξ ),

for c1=cR, lim
ξ→+∞(E1−
1(ξ))/(|ξ |eλ−

1 (c1)ξ )=− lim
ξ→+∞ 
′

1(ξ)/(λ−
1 (c1)|ξ |eλ−

1 (c1)ξ ),

for c1 ≤ cR, lim
ξ→−∞ 
1(ξ)/eλ+

0 (c1)ξ = lim
ξ→−∞ 
′

1(ξ)/(λ+
0 (c1)eλ+

0 (c1)ξ ),

123



67 Page 12 of 57 Journal of Nonlinear Science (2022) 32 :67

(ii) for ĉ1 > cL , lim
ξ→−∞(E1 − 
̂1(ξ))/eλ+

1 (ĉ1)ξ = − lim
ξ→−∞ 
̂′

1(ξ)/(λ+
1 (ĉ1)eλ+

1 (ĉ1)ξ ),

for ĉ1 = cL , lim
ξ→−∞(E1 − 
̂1(ξ))/(|ξ |eλ+

1 (ĉ1)ξ ) = − lim
ξ→−∞ 
̂′

1(ξ)/(λ+
1 (ĉ1)|ξ |

eλ+
1 (ĉ1)ξ ),

for ĉ1 ≥ cL , lim
ξ→+∞ 
̂1(ξ)/eλ−

0 (ĉ1)ξ = lim
ξ→+∞ 
̂′

1(ξ)/(λ−
0 (ĉ1)eλ−

0 (ĉ1)ξ ).

Theorem 2.7 Assume (J1)–(J4) hold. Let 
2(x + c2t) and 
̂2(x + ĉ2t) be the nonde-
creasing and nonincreasing traveling wave solutions with c2 
= 0 and ĉ2 
= 0 in (1.1)
as given in Theorem 2.2. Then, all the following limits exist in R

+ × R
+ and

(i) for c2 > cL , lim
ξ→−∞(
2(ξ) − E1)/eλ+

1 (c2)ξ = lim
ξ→−∞ 
′

2(ξ)/(λ+
1 (c2)eλ+

1 (c2)ξ ),

for c2=cL , lim
ξ→−∞(
2(ξ)−E1)/(|ξ |eλ+

1 (c2)ξ )= lim
ξ→−∞ 
′

2(ξ)/(λ+
1 (c2)|ξ |eλ+

1 (c2)ξ ),

for c2 ≥ cL , lim
ξ→+∞(E2 − 
2(ξ))/eλ−

2 (c2)ξ = − lim
ξ→+∞ 
′

2(ξ)/(λ−
2 (c2)eλ−

2 (c2)ξ ),

(ii) for ĉ2 < cR, lim
ξ→+∞(
̂2(ξ) − E1)/eλ−

1 (ĉ2)ξ = lim
ξ→+∞ 
̂′

2(ξ)/(λ−
1 (ĉ2)eλ−

1 (ĉ2)ξ ),

for ĉ2 = cR, lim
ξ→+∞(
̂2(ξ)−E1)/(|ξ |eλ−

1 (ĉ2)ξ ) = lim
ξ→+∞ 
̂′

2(ξ)/(λ−
1 (ĉ2)|ξ |eλ−

1 (ĉ2)ξ ),

for ĉ2 ≤ cR, lim
ξ→−∞(E2 − 
̂2(ξ))/eλ+

2 (ĉ2)ξ = − lim
ξ→−∞ 
̂′

2(ξ)/(λ+
2 (ĉ2)eλ+

2 (ĉ2)ξ ).

From Theorems 2.1, 2.2, 2.6, and 2.7, we can get some relationship between the
traveling wave solutions in the intervals [E0, E1] and [E1, E2]. We see that the two
rightward traveling wave solutions 
1 and 
̂2 have the same minimal wave speed.
And when their wave speeds are equal, they also have the same exponential decay
rate as ξ → +∞. The difference is that 
1 is in the interval [E0, E1], while 
̂2 is in
[E1, E2], and hence the convergence 
1 → E1 is from below, while the convergence

2 → E1 is from above. Similarly, for the two leftward traveling wave solutions 
̂1
and 
2, although the convergence 
̂1 → E1 is from below, while the convergence

2 → E1 is from above as ξ → −∞, they have the same minimal wave speed, and
when their wave speeds are equal, they also have the same exponential decay rate.

2.2 Bistable TravelingWave Solutions

In this subsection, we introduce the theory developed by Fang and Zhao (2015) about
the monotone semiflows with weak compactness, and study the existence and asymp-
totic behavior of bistable traveling wave solutions in (1.1).

First, we give some notations. Let X be an ordered Banach space with the norm
‖ · ‖X and the cone X+. Assume that Int(X+) is not empty. Let C denote the set of
all bounded and continuous functions from R to X and let M denote the set of all
nondecreasing functions from R to X. We equip C and M with the compact open
topology and the standard cone consisting of all nonnegative functions. For any u, v ∈
H with H ∈ {X, C,M}, we write u ≥ v if u − v ∈ H+; u > v if u ≥ v but
u 
= v; and u 	 v if u − v ∈ Int(H+). For any r1, r2 ∈ X with r1 < r2, we
define H[r1,r2] = {u ∈ H : r1 ≤ u ≤ r2} and write H[0,r ] as Hr for short. We say
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{Qt }t≥0 is a semiflow onMb when it satisfies that Q0 = I where I is a identity map,
Qt ◦ Qs = Qt+s for any t, s > 0, and Qtn [ϕn](y) → Qt [ϕ](y) in Xb for almost all
y ∈ R whenever tn → t and ϕn → ϕ inMb.

Let Q be a map from Mb to Mb with two fixed points 0 and b. We denote E by
the set consisting of all fixed points of Q restricted on Xb. The following definition
states the stability of fixed points.

Definition 2.8 For Q : Mb → Mb, a fixed point a ∈ E is said to be strongly stable
from below if there is a constant δ > 0 and a unit vector e ∈ Int(X+) such that for any
η ∈ (0, δ],

Q[a − ηe] 	 a − ηe. (2.9)

Strong instability from below is defined by reversing the inequality (2.9). Similarly,
we can define strong stability and strong instability from above.

Now, we give some fundamental assumptions on Q.

(B1) (Translation Invariance) Ty ◦ Q[φ] = Q ◦ Ty[φ] for all φ ∈ Mb and y ∈ R,
where Ty[φ](x) := φ(x − y).

(B2) (Continuity) Q : Mb → Mb is continuous in the sense that if φn → φ in Mb,
then Q[φn](x) → Q[φ](x) in Xb for almost all x ∈ R.

(B3) (Monotonicity) Q is order preserving in the sense that Q[φ] ≥ Q[ϕ] whenever
φ ≥ ϕ.

(B4) (Weak Compactness) For any fixed y ∈ R, the set Q[Mb](y) is precompact in
Xb.

(B5) (Bistability) Fixed points 0 and b are strongly stable from above and below,
respectively, for the map Q : Xb → Xb. The set E \ {0,b} ⊂ Xb is totally
unordered.

For each a ∈ E \ {0,b}, it follows from the assumption (B5) that Q has no other fixed
point in bothM[a,b] \ {a,b} andM[0,a] \ {0, a}. In view of the assumption (B5), there
are constants δ1, δ2 > 0 and unit vectors e1, e2 ∈ Int(X+) such that Q[ηe1] � ηe1
for η ∈ (0, δ1] and Q[b − ηe2] 	 b − ηe2 for η ∈ (0, δ2]. Denote θ− = sup{θ ∈
[0, 1] : θa + (1 − θ)b ∈ X[b−δ2e2,b]} and θ+ = sup{θ ∈ [0, 1] : θa ∈ X[0,δ1e1]}. Let
ν− = θ−a + (1 − θ−)b and ν+ = θ+a. Define

c∗−(a,b) = sup

{
c ∈ R : lim

n→∞,x≥−cn
Qn[φ−

a ](x) = b
}

, (2.10)

c∗+(0, a) = sup

{
c ∈ R : lim

n→∞,x≤cn
Qn[φ+

a ](x) = 0
}

, (2.11)

where the continuous initial functions φ±
a ∈ Mb satisfy that

φ−
a (x) = a for x ≤ −1, φ−

a (x) = ν− for x ≥ 0,

φ+
a (x) = a for x ≥ 1, φ+

a (x) = ν+ for x ≤ 0.

We further assume that
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(B6) (Counter-propagation) For each a ∈ E \ {0,b}, c∗−(a,b) + c∗+(0, a) > 0.

As stated in Fang and Zhao (2015), assumption (B6) can ensure that the spatial propa-
gation directions of the two monostable systems restricted onM[a,b] andM[0,a] with
front-like initial data are opposite.

Let C(M, R
d) denote the set of all continuous functions from the compact metric

space M to the d-dimensional Euclidean space R
d with the maximum norm and

the standard cone consisting of all nonnegative functions. The following theorem
shows the existence of nondecreasing bistable traveling wave solutions in monotone
semiflows with weak compactness. It is a key tool to study bistable traveling wave
solutions in (1.1).

Theorem 2.9 (see Fang and Zhao 2015, Theorem 5.3) Let X = C(M, R
d). Assume

that {Qt }t≥0 is a semiflow on Mb and for any t > 0, the map Qt satisfies (B1) and
(B3)–(B6). Then, there is a constant c ∈ R and a nondecreasing function φ ∈ Mb
connecting 0 to b such that Qt [φ](x) = φ(x + ct) for x ∈ R.

In what follows, we apply Theorem 2.9 and prove the existence of bistable traveling
solutions connecting E0 and E2 in (1.1). Note that we usually choose X = C(M, R

d)

to study some more complex systems, such as the time-periodic reaction–diffusion
systems and the nonlocal dispersal equations with time delay (see, e.g., Fang and
Zhao 2014, 2015). However, in (1.1), we only need to choose X = R

2 with the
Euclidean norm ‖ · ‖, which means that M is a singleton. Let P(t) be the solution
semigroup of the following nonlocal dispersal equation:

{
ut = J ∗ u − u, x ∈ R, t > 0,

u(x, 0) = ϕ(x), x ∈ R.

As stated in Weng and Zhao (2006), P(t) can be written as

P(t)[ϕ](x) = e−t
∞∑

m=0

tm

m!am(ϕ)(x), (2.12)

where a0(ϕ) = ϕ and am(ϕ) = J ∗am−1(ϕ) for m ≥ 1. Now, we consider the Cauchy
problem of the system (1.1) as follows:

⎧⎨
⎩

ut (x, t) = J1 ∗ u(x, t) − u(x, t) − αu(x, t) + h(v(x, t)), (x, t) ∈ R × R
+,

vt (x, t) = J2 ∗ v(x, t) − v(x, t) − βv(x, t) + g(u(x, t)), (x, t) ∈ R × R
+,

(u(x, 0), v(x, 0)) = φ(x), x ∈ R.

(2.13)
Let

ωωω = (u, v)T , F(ωωω) =
(−αu + h(v)

−βv + g(u)

)
and P(t) = diag (P1(t), P2(t)) ,
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where Pi (t)with i ∈ {1, 2} is defined by (2.12) with substituting Ji for J . Then, (2.13)
can be written as

ωωω(x, t) = P(t)[φ](x) +
∫ t

0
P(t − s)[F(ωωω(·, s))](x)ds, x ∈ R, t ≥ 0.

By applying the standard contracting mapping theorem or the theory of abstract
functional–differential equations in Martin and Smith (1990), the existence and
uniqueness of the solution of (2.13) can be obtained as follows.

Lemma 2.10 Assume (J1) and (J3) hold. For any φ ∈ ME2 (or CE2 ) with E0 ≤
φ ≤ E2, the system (1.1) has a unique solution ωωω(x, t;φ) on R × [0,∞) satisfying
ωωω(x, 0;φ) = φ(x), and moreover, E0 ≤ ωωω(x, t;φ) ≤ E2.

For t > 0, let Qt : ME2 → ME2 satisfy Qt (φ) = ωωω(·, t;φ). It is easy to check
that Qt satisfies assumptions (B1) and (B4) for any t > 0. Next, we show that {Qt }t≥0
is a semiflow on ME2 and Qt satisfies assumption (B3) for any t > 0.

Lemma 2.11 Assume (J1) and (J3) hold. Then, {Qt }t≥0 is a monotone semiflow on
ME2 .

Proof For any t > 0, we first show the monotonicity of Qt on ME2 . By (J1), the
function F : XE2 → R

2 is Lipschitz continuous and cooperative. Thus, we can
choose a sufficiently large constant a > 0 such that the function Fa(ωωω) := F(ωωω)+ aωωω

is nondecreasing on XE2 . Then, (2.13) can be written as an abstract integral equation
onME2 , namely

ωωω(t) = e−atP(t)[φ] +
∫ t

0
e−a(t−s)P(t − s)[Fa(ωωω(s))]ds, t ≥ 0.

By a similar argument to Thieme (1979, Lemma 3.2), we can prove that Qt : ME2 →
ME2 is monotone for any t > 0.

It suffices to prove that Qt is continuous for (t, φ) ∈ R
+ × ME2 with respect

to the compact open topology. For any given φ ∈ ME2 , it follows from (1.1) that
∂
∂t ωωω(x, t;φ) is bounded in R

2 for any (x, t) ∈ R × R
+. Then, there exists a constant

L = L(φ) > 0 such that

‖ωωω(x, t1;φ) − ωωω(x, t2;φ)‖ ≤ L|t1 − t2| for any x ∈ R and t1, t2 ≥ 0.

Therefore, for any φ ∈ ME2 , the function t �→ Qt (φ) = ωωω(·, t;φ) from R
+ toME2

is continuous with respect to the compact open topology.
For any φ1, φ2 ∈ ME2 , ε > 0, and t0 > 0, we define

γ (x, t) = (γ1(x, t), γ2(x, t)) = (u(x, t; φ1) − u(x, t;φ2), v(x, t;φ1) − v(x, t;φ2)),

k1 = sup
x∈R,t∈[0,t0]

γ1(x, t), k2 = sup
x∈R,t∈[0,t0]

γ2(x, t),

N1 = max
[0,u∗

2]
g′(u), N2 = max

[0,v∗
2 ]

h′(v),
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ε′ =
√
2ε

2(1 + max{N1, N2}t0)eN1N2t20
, ε = ε′

2 + et0 + max{N1, N2}t0 ,

�ρ(z) = [−ρ + z, ρ + z] for ρ > 0, z ∈ R, |ϕ|�ρ(z) = sup
x∈�ρ(z)

|ϕ(x)|.

Then, there exist (x∗
1 , t∗1 ) and (x∗

2 , t∗2 ) in R × [0, t0] such that

γ1(x, t) ≤ γ1(x∗
1 , t∗1 ) + ε, γ2(x, t) ≤ γ2(x∗

2 , t∗2 ) + ε, (x, t) ∈ R × [0, t0].

We choose Mi with i = 1, 2 sufficiently large such that

∫
|x∗

i −y|≥Mi

Ji (y)dy ≤ ε

max{k1, k2} , i = 1, 2.

First, we consider the case φ1 ≥ φ2. The monotonicity of Qt impliesωωω(x, t;φ1) ≥
ωωω(x, t;φ2). It follows that

⎧⎪⎪⎨
⎪⎪⎩

γ1(x, t) ≤ P1(t)[γ1(·, 0)](x) +
∫ t

0
P1(t − s)[N2γ2(·, s)](x)ds,

γ2(x, t) ≤ P2(t)[γ2(·, 0)](x) +
∫ t

0
P2(t − s)[N1γ1(·, s)](x)ds.

According to Weng and Zhao (2006, Lemma 3.1), there is a sufficiently large number
M ′

i in (Mi ,+∞) and a small number δ > 0 such that P(t)[φ](x∗
i ) < (1 + et0)" for

t ∈ [0, t0], provided that φ ∈ M satisfies ‖φ(x)‖ < δ for any x ∈ �M ′
i
(x∗

i ). Choose
M > max{M1, M2} sufficiently large such that �M ′

i
(x∗

i ) ⊂ �M (0). If ‖φ1(x) −
φ2(x)‖ < δ for x ∈ �M (0), then

|γ1(·, t)|�M (0) ≤ ε + γ1(x∗
1 , t∗1 ) ≤ ε + P1(t

∗
1 )[γ1(·, 0)](x∗

1 )

+ N2

∫ t∗1

0
P1(t

∗
1 − s)[γ2(·, s)](x∗

1 )ds

≤ ε + (1 + et0)ε + N2t∗1 ε + N2

∫ t∗1

0
|γ2(·, s)|�M ′

1
(x∗

1 )ds

≤ ε′ + N2

∫ t0

0
|γ2(·, s)|�M (0)ds.

Similarly, we have

|γ2(·, t)|�M (0) ≤ ε′ + N1

∫ t0

0
|γ1(·, s)|�M (0)ds.
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For any t ∈ (0, t0), it follows that

⎧⎪⎪⎨
⎪⎪⎩

|γ1(·, t)|�M (0) ≤ (1 + N2t0)ε
′ + N1N2t0

∫ t0

0
|γ1(·, s)|�M (0)ds,

|γ2(·, t)|�M (0) ≤ (1 + N1t0)ε
′ + N1N2t0

∫ t0

0
|γ2(·, s)|�M (0)ds.

By Gronwall’s inequality, it is easy to check that

{ |γ1(·, t)|�M (0) ≤ (1 + N2t0)ε
′eN1N2t20 ,

|γ2(·, t)|�M (0) ≤ (1 + N1t0)ε
′eN1N2t20 .

We get that

‖ωωω(0, t;φ1) − ωωω(0, t;φ2)‖ ≤ ε for t ∈ [0, t0].

Then, the spatial translation invariance in (1.1) implies that

‖ωωω(z, t;φ1) − ωωω(z, t;φ2)‖ ≤ ε for t ∈ [0, t0],

provided ‖φ1(x) − φ2(x)‖ < δ for any x ∈ �M (z).
Second, we consider the case φ1 � φ2. Define

�1(x) = max{φ1(x), φ2(x)}, �2(x) = min{φ1(x), φ2(x)}.

We have that

�1(x) − �2(x) = |φ1(x) − φ2(x)|,
ωωω(x, t;φ1) ≤ ωωω(x, t;�1), and ωωω(x, t;�2) ≤ ωωω(x, t;φ2).

It follows that

‖ωωω(x, t;φ1) − ωωω(x, t;φ2)‖ ≤ ‖ωωω(x, t;�1) − ωωω(x, t;�2)‖.

Then, we have that Qt is continuous inφ with respect to the compact open topology,
uniformly for t in any bounded interval. It completes the proof. 
�

Similarly,wehave that themap Qt : CE2 → CE2 is continuous for (t, φ) ∈ R
+×CE2

with respect to the compact open topology. Next, we verify the stability of fixed points
in (B5).

Lemma 2.12 Assume (J1) and (J3) hold. For Qt : ME2 → ME2 with t > 0, we have
that

(1) E0 and E2 are strongly stable from above and below, respectively;
(2) E1 is strongly unstable from both above and below.
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Proof Wewrite the restriction of Qt onXE2 as Q̄t . Let M̄0,t be the derivation DQ̄t [E0]
of Q̄t . Then, M̄0,t is the solution map of the following system:

⎧⎪⎨
⎪⎩

du

dt
= −αu + h′(0)v,

dv

dt
= g′(0)u − βv.

Consider the following eigenvalue problem:

{
− αϕ + h′(0)ψ = λϕ,

g′(0)ϕ − βψ = λψ.
(2.14)

It is obvious that (2.14) admits two negative eigenvalues λ1 and λ2. Without loss of
generality, we assume that λ2 < λ1 < 0. Then, there exists an eigenfunction e0 	 E0
associated with the eigenvalue λ1, namely M̄0,t [e0] = eλ1te0. For any t > 0, there is
δ0(t) > 0 such that

Q̄t [δe0] = Q̄t [E0] + DQ̄t [E0][δe0] + o(δ2) = δM̄0,t [e0] + o(δ2)

= δeλ1te0 + o(δ2) = δe0 + δ[eλ1t − 1]e0 + o(δ2)

� δe0, δ ∈ (0, δ0(t)].

Similarly, there exist δ1(t), δ2(t), e1, and e2 such that

Q̄t [E2 − δe2] 	 E2 − δe2, δ ∈ (0, δ2(t)]

and

Q̄t [E1 + δe1] 	 E1 + δe1, Q̄t [E1 − δe1] � E1 − δe1, δ ∈ (0, δ1(t)].

It completes the proof. 
�
Next, we study some propagating properties of the two monostable systems

restricted on M[E0,E1] and M[E1,E2], respectively, to verify the assumption (B6).

Lemma 2.13 Assume (J1)–(J4) hold. Then, c∗−(E1, E2) + c∗+(E0, E1) > 0.

Proof For the rightward propagation dynamics of {Qt }t≥0, we restrict {Qt }t≥0 on
ME1 . Define (ũ(x, t), ṽ(x, t)) = (u∗

1, v
∗
1) − (u(x, t), v(x, t)) and then the rightward

propagation dynamics is equivalent to that of the following system restricted onME1

⎧⎪⎪⎨
⎪⎪⎩

∂ ũ

∂t
= J1 ∗ ũ − ũ − αũ − h(v∗

1 − ṽ) + h(v∗
1),

∂ṽ

∂t
= J2 ∗ ṽ − ṽ − βṽ − g(u∗

1 − ũ) + g(u∗
1).

(2.15)
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Define a family of operators {Q̃t }t≥0 onME1 by Q̃t (φ) = ω̃ωω(·, t;φ), where ω̃ωω(·, t;φ)

is the solution of (2.15) satisfying ω̃ωω(·, 0;φ) = φ ∈ ME1 . We have that Q̃t (E0) = E0

and Q̃t (E1) = E1 for all t ≥ 0. It is easy to check that Q̃t : CE1 → CE1 is continuous
and satisfies the assumptions (A1), (A3)–(A5) in Fang and Zhao (2014) with ME1

replaced by CE1 . According to Fang and Zhao (2014, Remark 3.7), we have that
Q̃1 : ME1 → ME1 admits a rightward spreading speed, which is no more than
c∗+(E0, E1). For (1.1), Theorem 3.1 in Xu et al. (2020) shows that the rightward
spreading speed is equal to −cR , which is defined by (2.2). Then, we have that

c∗+(E0, E1) ≥ −cR .

Similarly, for the leftward propagation dynamics of {Qt }t≥0, we restrict {Qt }t≥0
onM[E1,E2]. Define (û(x, t), v̂(x , t)) = (u(x, t), v(x, t)) − (u∗

1, v
∗
1) and consider

⎧⎪⎪⎨
⎪⎪⎩

∂ û

∂t
= J1 ∗ û − û − αû + h(v̂ + v∗

1) − h(v∗
1),

∂v̂

∂t
= J2 ∗ v̂ − v̂ − βv̂ + g(û + u∗

1) − g(u∗
1).

(2.16)

Let E∗
1 := E2 − E1. We define {Q̂t }t≥0 on ME∗

1
by Q̂t (φ) = ω̂ωω(·, t;φ), where

ω̂ωω(·, t;φ) is the solution of (2.16) satisfying ω̂ωω(·, 0;φ) = φ ∈ ME∗
1
. Then, Q̂1 :

ME∗
1

→ ME∗
1
admits a leftward spreading speed cL defined by (2.2) and it holds

that

c∗−(E1, E2) ≥ cL .

Finally, the proof is completed by (2.3). 
�
Now, we are ready to give the existence of bistable traveling wave solutions of (1.1).

Theorem 2.14 Assume (J1)–(J4) hold. Then, there is a constant c0 ∈ R such that (1.1)
admits an increasing traveling wave solution 
(x + c0t) satisfying


(−∞) = E0 and 
(+∞) = E2.

Moreover, 
(·) is strictly increasing.

Proof In view of Lemmas 2.11, 2.12, and 2.13 , the existence of traveling wave
solutions in Theorem 2.9 implies that there is c0 ∈ R and 
 ∈ ME2 such that
Qt (
)(x) = 
(x + c0t) for any x ∈ R. Next, we prove that 
 is a classical solution
of (1.1). It is easy to verify that

∂

∂t
P(t)[
](x) = −P(t)[
](x) + J ∗ (P(t)[
])(x). (2.17)
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Note that ωωω(x, t) := 
(x + c0t) satisfies the following integral equation:

ωωω(x, t) = P(t)[ωωω(·, 0)](x) +
∫ t

0
P(t − s)[F(ωωω(·, s))](x)ds, x ∈ R, t ≥ 0.

(2.18)

Since the right side of (2.18) is differentiable with respect to variable t , it follows from
(2.17) that ωωω(x, t) is a classical solution of (1.1).

It remains to prove that the nondecreasing function 
(·) = (ϕ, ψ)(·) is strictly
increasing. By a contradiction argument, without loss of generality, we assume that
ϕ(·) is not strictly increasing; namely, there exist x1 < x2 such that ϕ(ξ) = ϕ(x1) for
any ξ ∈ [x1, x2]. It follows that ϕ′(ξ) = 0 for ξ ∈ [x1, x2]. By (2.1), we have that

0 =
∫
R

J1(y)(ϕ(x1 − y) − ϕ(x2 − y))dy − α(ϕ(x1) − ϕ(x2))

+h(ψ(x1)) − h(ψ(x2)).

It follows that

0 ≥
∫
R

J1(y)(ϕ(x1 − y) − ϕ(x2 − y))dy = α(ϕ(x1) − ϕ(x2))

−h(ψ(x1)) + h(ψ(x2)) ≥ 0,

which implies
∫
R

J1(y)(ϕ(x1 − y)−ϕ(x2 − y))dy = 0. Then, ϕ(x1 − y) = ϕ(x2 − y)

for any y ∈ supp(J1). Rechoose x1 and x2 and repeat the process above, we can obtain
that ϕ(·) is a constant function, which contradicts ϕ(−∞) = 0 and ϕ(+∞) = u∗

2. It
completes the proof. 
�

Since J1 and J2 are not required to be symmetric, the corresponding nondecreasing
and nonincreasing traveling wave solutions can be different in shape. The following
theorem gives the existence of nonincreasing traveling wave solution.

Theorem 2.15 Assume (J1)–(J4) hold. Then, there is a constant ĉ0 ∈ R such that (1.1)
admits a decreasing traveling wave solution 
̂(x + ĉ0t) satisfying


̂(−∞) = E2 and 
̂(+∞) = E0.

Moreover, 
̂(·) is strictly decreasing.

Proof According to Fang and Zhao (2015, Remark 2.1), when we consider the non-
increasing traveling waves, assumption (B6) should be replaced by

c∗+(E1, E2) + c∗−(E0, E1) > 0. (2.19)

Here, c∗+(E1, E2) and c∗−(E0, E1) are defined similarly to (2.10) and (2.11), respec-
tively. By the same argument as the proof of Lemma 2.13, we have that c∗+(E1, E2) ≥
−cR and c∗−(E0, E1) ≥ cL . Then, (2.19) follows from cL − cR > 0. The rest of the
proof is similar to Theorem 2.14. 
�
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Now, we give the result about the asymptotic behavior of bistable traveling wave
solutions. The proof is omitted sincewe canuse the same techniques as inTheorems2.6
and 2.7.

Theorem 2.16 Assume (J1)–(J4) hold. Let 
(x + c0t) and 
̂(x + ĉ0t) be the nonde-
creasing and nonincreasing traveling wave solutions of (1.1) as in Theorems 2.14 and
2.15 with c0 
= 0 and ĉ0 
= 0, respectively. Then, all of the following limits exist in
R

+ × R
+ and

lim
ξ→−∞ 
(ξ)/eλ+

0 (c0)ξ = lim
ξ→−∞ 
′(ξ)/(λ+

0 (c0)e
λ+
0 (c0)ξ ),

lim
ξ→+∞(E2 − 
(ξ))/eλ−

2 (c0)ξ = − lim
ξ→+∞ 
′(ξ)/(λ−

2 (c0)e
λ−
2 (c0)ξ ),

lim
ξ→+∞ 
̂(ξ)/eλ−

0 (ĉ0)ξ = lim
ξ→+∞ 
̂′(ξ)/(λ−

0 (ĉ0)e
λ−
0 (ĉ0)ξ ),

lim
ξ→−∞(E2 − 
̂(ξ))/eλ+

2 (ĉ0)ξ = − lim
ξ→−∞ 
̂′(ξ)/(λ+

2 (ĉ0)e
λ+
2 (ĉ0)ξ ),

where λ+
i (c) and λ−

i (c) with i ∈ {0, 2} are defined by (2.8).

3 Entire Solutions

In this section, we focus on the construction of entire solutions of (1.1). As stated in
Sect. 1, we only choose traveling wave solutions with nonzero wave speeds c0, ĉ0,
ci , and ĉi (i = 1, 2). By super- and sub-solutions method, we construct six types
of entire solutions, and each of them originates from three traveling wave solutions.
Figure 1 in Section 1 depicts the sketchy profiles of these entire solutions as t → −∞.
The existence results of these six types of entire solutions are given in Sects. 3.2–3.7,
respectively. Since the construction methods for these six types are similar, we give
details only for the first type. And for the other five types, the main differences are
shown in the corresponding subsections. Moreover, we prove that the entire solutions
established in Sects. 3.2–3.7 are globally Lipschitz continuous with respect to x under
the following assumption:

(J5) sup
u∈[0,u∗

2]
g′(u) · sup

v∈[0,v∗
2 ]

h′(v) < (1 + α)(1 + β).

Finally, when c0 
= ĉ0, we obtain the nonexistence of entire solutions originating from
more than four traveling wave solutions in Sect. 3.8.

3.1 Preliminaries

This subsection gives some fundamental properties of (1.1), including the comparison
principle, the Lipschitz continuity of solution, and the study of some ordinary dif-
ferential equations. First, we give the definition of super- and sub-solutions of (1.1).

123



67 Page 22 of 57 Journal of Nonlinear Science (2022) 32 :67

Definition 3.1 For τ, T ∈ R with τ < T , a function ωωω = (u, v) is called a super-
solution (sub-solution) of (1.1) on R × [τ, T ), if ωωω ∈ C0,1(R × [τ, T ), R

2) and

{
ut (x, t) ≥ (≤)J1 ∗ u(x, t) − u(x, t) − αu(x, t) + h(v(x, t)),

vt (x, t) ≥ (≤)J2 ∗ v(x, t) − v(x, t) − βv(x, t) + g(u(x, t))

for any (x, t) ∈ R × [τ, T ). Moreover, ωωω = (u, v) is called a super-solution (sub-
solution) of (1.1) onR×(−∞, T ), if for any τ < T , it is a super-solution (sub-solution)
on R × [τ, T ).

The following lemma states the comparison principle proven in Li et al. (2017, The-
orem 3.6).

Lemma 3.2 Assume (J1) and (J3) hold. Let ωωω+(x, t) and ωωω−(x, t) be the super-
and sub-solutions of (1.1) on R × [0,∞), respectively. If ωωω+(x, 0) ≥ ωωω−(x, 0)
for x ∈ R and E0 ≤ ωωω−(x, t),ωωω+(x, t) ≤ E2, then ωωω−(x, t) ≤ ωωω+(x, t) for
t ∈ [0,∞)(x is fixed).

In the study of entire solutions, the Lipschitz continuity of solution as given by the
following lemma is a very important property. We refer to Li et al. (2017, Lemma 3.8)
for its proof.

Lemma 3.3 Assume (J1)–(J5) hold. Let (u(x, t), v(x, t)) be a solution of the corre-
sponding Cauchy problem of (1.1) with bounded initial data. Then, there is a constant
M > 0 (independent of initial data) such that

|ut (x, t)|, |utt (x, t)|, |vt (x, t)|, |vt t (x, t)| ≤ M for any x ∈ R, t > 0.

In addition, if the initial data are globally Lipschitz continuous, namely there is L0 > 0
such that

|u(x + x̃, 0) − u(x, 0)| ≤ L0 x̃, |v(x + x̃, 0) − v(x, 0)| ≤ L0 x̃ for any x ∈ R, x̃ > 0,

then for any t > 0, the solution is also globally Lipschitz continuous and

|u(x + x̃, t) − u(x, t)|, |v(x + x̃, t) − v(x, t)| ≤ M ′ x̃,

|∂u

∂t
(x + x̃, t) − ∂u

∂t
(x, t)|, |∂v

∂t
(x + x̃, t) − ∂v

∂t
(x, t)| ≤ M ′′ x̃,

where M ′ and M ′′ are two positive constants independent of x and x̃.

The construction of entire solutions also involves the solutions of some ordinary
differential equations. For any real numbers s1 < s2 < s3, define

ν1 := (s2 − s1)/2 > 0, ν2 := [2s3 − (s1 + s2)]/2 > ν1. (3.1)
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Consider the following ordinary differential equations: (c.f. Chen et al. 2018)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p′
1 = ν1 − Leκ p1 , −∞ < t < 0, p1(0) = p0,

p′
2 = ν2 + Leκ p1 , −∞ < t < 0, p2(0) = r0,

r ′
1 = ν1 + Leκr1 , −∞ < t < 0, r1(0) = r0,

r ′
2 = ν2 − Leκr1 , −∞ < t < 0, r2(0) = p0,

(3.2)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p̃′
1 = ν1 + Leκ p̃1 , −∞ < t < 0, p̃1(0) = p0,

p̃′
2 = ν2 + Leκ p̃1 , −∞ < t < 0, p̃2(0) = p0,

r̃ ′
1 = ν1 − Leκr̃1 , −∞ < t < 0, r̃1(0) = r0,

r̃ ′
2 = ν2 − Leκr̃1 , −∞ < t < 0, r̃2(0) = r0,

(3.3)

where L , p0, and r0 are some constants determined later and

κ := min

{
η1, η2,

(ν2 − ν1)η1

4ν1
,
(ν2 − ν1)η2

4ν1

}
. (3.4)

We can solve (3.2) and (3.3) explicitly as

p1(t) = ν1t − 1

κ
ln

[
e−κ p0 − L(1 − eκν1t )

ν1

]
, p2(t) = ν2t + 1

κ
ln

[
e−κ p0 − L(1 − eκν1t )

ν1

]
+ p0 + r0,

r1(t) = ν1t − 1

κ
ln

[
e−κr0 + L(1 − eκν1t )

ν1

]
, r2(t) = ν2t + 1

κ
ln

[
e−κr0 + L(1 − eκν1t )

ν1

]
+ p0 + r0,

p̃1(t) = ν1t − 1

κ
ln

[
e−κ p0 + L(1 − eκν1t )

ν1

]
, p̃2(t) = ν2t − 1

κ
ln

[
e−κ p0 + L(1 − eκν1t )

ν1

]
,

r̃1(t) = ν1t − 1

κ
ln

[
e−κr0 − L(1 − eκν1t )

ν1

]
, r̃2(t) = ν2t − 1

κ
ln

[
e−κr0 − L(1 − eκν1t )

ν1

]
.

Now, for any given sufficiently large δ, we take the initial values p0 and r0 satisfying

p0 = − 1

κ
ln

[
e−κr0 + 2L

ν1

]
< −δ and r0 < − 1

κ
ln

[
eκδ + 2L

ν1

]
< −δ.
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Then, it follows that

lim
t→−∞(r1(t) − p1(t)) = lim

t→−∞(p2(t) − r2(t)) = 0,

lim
t→−∞(p1(t) − ν1t) = − 1

κ
ln

[
e−κ p0 − L

ν1

]
,

lim
t→−∞(p2(t) − ν2t) = 1

κ
ln

[
e−κ p0 − L

ν1

]
+ p0 + r0,

lim
t→−∞(r1(t) − ν1t) = − 1

κ
ln

[
e−κr0 + L

ν1

]
,

lim
t→−∞(r2(t) − ν2t) = 1

κ
ln

[
e−κr0 + L

ν1

]
+ p0 + r0,

lim
t→−∞( p̃1(t) − r̃1(t)) = lim

t→−∞( p̃2(t) − r̃2(t)) = 0,

lim
t→−∞( p̃1(t) − ν1t) = lim

t→−∞( p̃2(t) − ν2t) = − 1

κ
ln

[
e−κ p0 + L

ν1

]
,

lim
t→−∞(r̃1(t) − ν1t) = lim

t→−∞(r̃2(t) − ν2t) = − 1

κ
ln

[
e−κr0 − L

ν1

]
.

(3.5)

In addition, there exists a positive constant N (dependent on L , p0, and r0) such that

0 < r1(t) − p1(t) = p2(t) − r2(t) ≤ Neκν1t for t ≤ 0,

0 < p̃1(t) − r̃1(t) = p̃2(t) − r̃2(t) ≤ Neκν1t for t ≤ 0, (3.6)

and

p1(t), p2(t), r1(t), r2(t), p̃1(t), p̃2(t), r̃1(t), r̃2(t) ≤ −δ for t ≤ 0.

Remark 3.4 In the next six subsections, the values of ν1 and ν2 are different for the six
types of entire solutions, since s1, s2, and s3 will be changed for every type. However,
the above results about the solutions of Eqs. (3.2) and (3.3) are always true.

3.2 I-Type Entire Solution

In this subsection, we construct the first type of entire solution, which originates from
one monostable and two bistable traveling wave solutions.

Theorem 3.5 Assume (J1)–(J4) hold and c0 > ĉ0 > c2. Then, (1.1) admits an entire
solution W1 : R

2 → [0, u∗
2] × [0, v∗

2 ] satisfying

lim
t→−∞

{
sup

x≤ρ1(t)
‖W1(x, t) − 
2(x + c2t − ϑ1)‖

+ sup
ρ1(t)≤x≤ρ2(t)

‖W1(x, t) − 
̂(x + ĉ0t + ϑ1)‖
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+ sup
ρ2(t)≤x

‖W1(x, t) − 
(x + c0t + ϑ2)‖
}

= 0, (3.7)

where ϑ1 and ϑ2 are some constants satisfying

ϑ1 := − 1

κ
ln

[
e−κr0 + L

ν1

]
, ϑ2 := 1

κ
ln

[
e−κr0 + L

ν1

]
+ p0 + r0,

and ρ1, ρ2 : R → R are defined by

ρ1(t) := −(c2 + ĉ0)t

2
, ρ2(t) := −(ĉ0 + c0)t

2
.

Moreover, when (J5) holds, there are two positive constants D1 and D2 such that for
any (x, t) ∈ R

2 and η > 0,

‖W1(x + η, t) − W1(x, t)‖ ≤ D1η,

∥∥∥∥∂W1

∂t
(x + η, t) − ∂W1

∂t

∥∥∥∥ ≤ D2η. (3.8)

The entire solutionW1(x, t) given byTheorem3.5 can be regarded as a combination
of the travelingwave solutions (c2,
2), (ĉ0, 
̂), and (c0,
)with c0 > ĉ0 > c2.When
t → −∞, its profile is found in Fig. 1a. Obviously, W1(x, t) is differentiable with
respect to t , and (3.8) further shows that it is globally Lipschitz continuouswith respect
to x .

As stated in Sect. 1, the construction of W1 is essentially a procedure that we link
the profile of 
2 with 
̂ and link the profile of 
̂ with 
 successively, and the main
difficulty is to construct appropriate auxiliary functions and a pair of super- and sub-
solutions. ForW1 in Theorem 3.5, the construction procedure is quite complicated and
it will be provided in the rest of this subsection. We first define the auxiliary functions
as follows:

P(x, y, z) = y

+ (x − u∗
1)(u

∗
2 − y)z(u∗

2 − y) + (u∗
2 − x)y(u∗

2 − z)(u∗
1 − y)

u∗
2(x − u∗

1)(u
∗
2 − y) + (u∗

2 − u∗
1)y(u∗

2 − z)
, (x, y, z) ∈ D1

(3.9)

and

Q(x, y, z) = y

+ (x − v∗
1)(v

∗
2 − y)z(v∗

2 − y) + (v∗
2 − x)y(v∗

2 − z)(v∗
1 − y)

v∗
2(x − v∗

1)(v
∗
2 − y) + (v∗

2 − v∗
1)y(v∗

2 − z)
, (x, y, z) ∈ D2,

(3.10)
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where

D1 := {
(x, y, z) ∈ [u∗

1, u∗
2] × [0, u∗

2] × [0, u∗
2]
∣∣ u∗

2(x − u∗
1)(u

∗
2 − y) + (u∗

2 − u∗
1)y(u∗

2 − z) > 0
}
,

D2 := {
(x, y, z) ∈ [v∗

1 , v∗
2 ] × [0, v∗

2 ] × [0, v∗
2 ] ∣∣ v∗

2 (x − v∗
1 )(v∗

2 − y) + (v∗
2 − v∗

1 )y(v∗
2 − z) > 0

}
.

Lemma 3.6 There exists a positive constant C3 such that

|Pxx (x, y, z)|
|y| ,

|Pxx (x, y, z)|
|u∗

2 − y| ,
|Pxx (x, y, z)|

|u∗
2 − z| ,

|Pyy(x, y, z)|
|x − u∗

1|
,
|Pyy(x, y, z)|

|u∗
2 − z| ,

|Pyy(x, y, z)|
|u∗

2 − x | + |z| ≤ C3,

|Pzz(x, y, z)|
|x − u∗

1|
,
|Pzz(x, y, z)|

|u∗
2 − y| ,

|Pzz(x, y, z)|
|y| ,

|Pxy(x, y, z)|
|u∗

2 − z| ,
|Pyz(x, y, z)|

|x − u∗
1|

≤ C3,

|Pxz(x, y, z)|
|u∗

2 − y| ,
|Pxz(x, y, z)|

|y| ,
|Pxz(x, y, z)|

|x − u∗
1|

,
|Pxz(x, y, z)|

|u∗
2 − z| ≤ C3,

|Qxx (x, y, z)|
|y| ,

|Qxx (x, y, z)|
|v∗

2 − y| ,
|Qxx (x, y, z)|

|v∗
2 − z| ,

|Qyy(x, y, z)|
|x − v∗

1 |
,
|Qyy(x, y, z)|

|v∗
2 − z| ,

|Qyy(x, y, z)|
|v∗

2 − x | + |z| ≤ C3,

|Qzz(x, y, z)|
|x − v∗

1 |
,
|Qzz(x, y, z)|

|v∗
2 − y| ,

|Qzz(x, y, z)|
|y| ,

|Qxy(x, y, z)|
|v∗

2 − z| ,
|Qyz(x, y, z)|

|x − v∗
1 |

≤ C3,

|Qxz(x, y, z)|
|v∗

2 − y| ,
|Qxz(x, y, z)|

|y| ,
|Qxz(x, y, z)|

|x − v∗
1 |

,
|Qxz(x, y, z)|

|v∗
2 − z| ≤ C3.

Proof Note that P can be rewritten as

P(x, y, z) = x + (x − u∗
1)(u

∗
2 − y)

u∗
2(z − x)

u∗
2(x − u∗

1)(u
∗
2 − y) + (u∗

2 − u∗
1)y(u∗

2 − z)
,

P(x, y, z) = z + y(u∗
2 − z)

(u∗
2 − u∗

1)(x − z)

u∗
2(x − u∗

1)(u
∗
2 − y) + (u∗

2 − u∗
1)y(u∗

2 − z)
.

Similarly, Q can be rewritten as

Q(x, y, z) = x + (x − v∗
1)(v

∗
2 − y)

v∗
2(z − x)

v∗
2(x − v∗

1)(v
∗
2 − y) + (v∗

2 − v∗
1)y(v∗

2 − z)
,

Q(x, y, z) = z + y(v∗
2 − z)

(v∗
2 − v∗

1)(x − z)

v∗
2(x − v∗

1)(v
∗
2 − y) + (v∗

2 − v∗
1)y(v∗

2 − z)
.

With the help of the above formulas, the calculations of derivatives can be simplified
and we omit the details of calculations in the rest of the proof. 
�

In order to obtain a pair of suitable super- and sub-solutions, we denote some
notations. As stated in Remark 3.4, throughout this subsection we need to choose that

s1 := c2, s2 := ĉ0, s3 := c0. (3.11)
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Recall that (c2,
2), (ĉ0, 
̂), and (c0,
) are the traveling wave solutions of (1.1). For
convenience, we denote

φ1 = (φ11, φ12) := 
2 = (ϕ2, ψ2),

φ2 = (φ21, φ22) := 
̂ = (ϕ̂, ψ̂),

φ3 = (φ31, φ32) := 
 = (ϕ, ψ).

Then, φi = (φi1, φi2) with i ∈ {1, 2, 3} satisfies
{

siφ
′
i1(ξ) = J1 ∗ φi1(ξ) − φi1(ξ) − αφi1(ξ) + h(φi2(ξ)),

siφ
′
i2(ξ) = J2 ∗ φi2(ξ) − φi2(ξ) − βφi2(ξ) + g(φi1(ξ)),

and

(
φ1(−∞),φ1(+∞),φ2(−∞),φ2(+∞),φ3(−∞),φ3(+∞)

)
= (E1, E2, E2, E0, E0, E2).

By a translation if necessary, we may assume

φ11(0) = u∗
1 + u∗

2

2
, (φ21(0), φ22(0)) ≥

(
u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
, and (φ31(0), φ32(0))

≤ (u∗
1, v

∗
1). (3.12)

By a transformation (u(x, t), v(x, t)) = (U (ξ, t), V (ξ, t)) with ξ := x + c̄t and
c̄ := s1+s2

2 , (1.1) becomes

⎧⎪⎪⎨
⎪⎪⎩

∂U (ξ, t)

∂t
= (J1 ∗ U − U )(ξ, t) − c̄Uξ (ξ, t) + f1(U (ξ, t), V (ξ, t)), (ξ, t) ∈ R

2,

∂V (ξ, t)

∂t
= (J2 ∗ V − V )(ξ, t) − c̄Vξ (ξ, t) + f2(U (ξ, t), V (ξ, t)), (ξ, t) ∈ R

2,

(3.13)

where

f1(U , V ) := −αU + h(V ), f2(U , V ) := −βV + g(U ). (3.14)

It is easy to check that (3.13) has three traveling wave solutions, namely

φ1(ξ − ν1t), φ2(ξ + ν1t), and φ3(ξ + ν2t),

where ν1 and ν2 are defined by (3.1) and ν2 > ν1 > 0. We define the super- and
sub-solutions of (3.13) similarly to Definition 3.1 for (1.1).
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Now, we construct

{
U (ξ, t) = P(φ11(ξ − p1(t)), φ21(ξ + p1(t)), φ31(ξ + p2(t))),

V (ξ, t) = Q(φ12(ξ − p1(t)), φ22(ξ + p1(t)), φ32(ξ + p2(t)))
(3.15)

and
{

U (ξ, t) = P(φ11(ξ − r1(t)), φ21(ξ + r1(t)), φ31(ξ + r2(t))),

V (ξ, t) = Q(φ12(ξ − r1(t)), φ22(ξ + r1(t)), φ32(ξ + r2(t))),
(3.16)

where (p1(t), p2(t), r1(t), r2(t)) is the solution of (3.2). In what follows, our purpose
is to prove that (U (ξ, t), V (ξ, t)) and (U (ξ, t), V (ξ, t)) are a pair of super- and sub-
solution of (3.13), and apply it to complete the proof of Theorem 3.5. We accomplish
this purpose (see Lemma 3.15) by showing lots of estimates for some related functions
(see Lemmas 3.7–3.14).

For convenience, we first restate the results in Theorems 2.6, 2.7, and 2.16 about
the asymptotic behavior of φ1, φ2, and φ3 in a uniform format, and hence, the proof
of the following lemma is omitted.

Lemma 3.7 Assume (J1)–(J4) hold. Let

η1 = min{λ+
1 (c2), λ

+
2 (ĉ0), λ

+
0 (c0)}, η2 = min{λ−

2 (c2), λ
−
0 (ĉ0), λ

−
2 (c0)}.

There are three positive numbers C0, C1, and C2 such that

(i) for x ≤ m,

|φ′
11(x)|, |φ′

12(x)|, |φ′
21(x)|, |φ′

22(x)|, |φ′
31(x)|, |φ′

32(x)| ≤ C0eη1x , C1

≤ |φ′
11(x)|

|φ11(x) − u∗
1|

,
|φ′

12(x)|
|φ12(x) − v∗

1 |
,

|φ′
21(x)|

|u∗
2 − φ21(x)| ,

|φ′
22(x)|

|v∗
2 − φ22(x)| ,

|φ′
31(x)|

|φ31(x)| ,
|φ′

32(x)|
|φ32(x)|

≤ C2;

(ii) for x ≥ −m,

|φ′
11(x)|, |φ′

12(x)|, |φ′
21(x)|, |φ′

22(x)|, |φ′
31(x)|, |φ′

32(x)| ≤ C0e−η2x , C1

≤ |φ′
11(x)|

|u∗
2 − φ11(x)| ,

|φ′
12(x)|

|v∗
2 − φ12(x)| ,

|φ′
21(x)|

|φ21(x)| ,
|φ′

22(x)|
|φ22(x)| ,

|φ′
31(x)|

|u∗
2 − φ31(x)| ,

|φ′
32(x)|

|v∗
2 − φ32(x)|

≤ C2,

where m is defined in (J4). Moreover, there is a constant C > 0 such that for any
x ∈ R and y ∈ supp(J ),

φ11(x + y) − u∗
1

φ11(x) − u∗
1

,
φ12(x + y) − v∗

1

φ12(x) − v∗
1

,
u∗
2 − φ11(x + y)

u∗
2 − φ11(x)

,
v∗
2 − φ12(x + y)

v∗
2 − φ12(x)

≤ C,

u∗
2 − φ21(x + y)

u∗
2 − φ21(x)

,
v∗
2 − φ22(x + y)

v∗
2 − φ22(x)

,
φ21(x + y)

φ21(x)
,
φ22(x + y)

φ22(x)
≤ C,
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|φ31(x + y)|
|φ31(x)| ,

|φ32(x + y)|
|φ32(x)|

|u∗
2 − φ31(x + y)|
|u∗

2 − φ31(x)| ,
|v∗

2 − φ32(x + y)|
|v∗

2 − φ32(x)| ≤ C .

Next, we give estimates for some related functions defined below. To increase the
readability of the paper, their proofs are given in the Appendix at the end of the paper.
Suppose that q1 and q2 : R

− → R
− are two smooth functions satisfying

q2(t) ≤ q1(t) ≤ 0 for any t < 0. (3.17)

Define four functions from R × R
− to R as follows:

P0(ξ, t) := P (φ11(ξ − q1(t)), φ21(ξ + q1(t)), φ31(ξ + q2(t))) , (ξ, t) ∈ R × R
−,

Px (ξ, t) := Px (φ11(ξ − q1(t)), φ21(ξ + q1(t)), φ31(ξ + q2(t))) , (ξ, t) ∈ R × R
−,

P y(ξ, t) := Py (φ11(ξ − q1(t)), φ21(ξ + q1(t)), φ31(ξ + q2(t))) , (ξ, t) ∈ R × R
−,

Pz(ξ, t) := Pz (φ11(ξ − q1(t)), φ21(ξ + q1(t)), φ31(ξ + q2(t))) , (ξ, t) ∈ R × R
−.

Note that all the functions P0, Px , P y , and Pz are dependent on q1, q2, and φi1 with
i ∈ {1, 2, 3}. The next lemma gives some lower bounds of Px , P y , and Pz .

Lemma 3.8 Assume (J1)–(J4) hold. There are some positive constants μ1, μ2, and μ3
such that for any t < 0,

Px (ξ, t) ≥ μ1 when ξ ≤ −q1(t),

P y(ξ, t) ≥ μ2 when q1(t) ≤ ξ ≤ −q2(t),

Pz(ξ, t) ≥ μ3 when ξ ≥ −q1(t).

For given δ ∈ R
+, we further assume that the functions q1, q2 : R

− → R
− satisfy

q1(t) < −δ, q2(t) < −δ for any t ∈ R
−. (3.18)

For (ξ, t) ∈ R × R
−, define

A1(ξ, t) := Px (ξ, t)φ′
11(ξ − q1(t)) − P y(ξ, t)φ′

21(ξ + q1(t))

+Pz(ξ, t)φ′
31(ξ + q2(t)).

Obviously, A1 is bounded from above. The next lemma shows that under some appro-
priate conditions on q1 and q2, the function A1 also has a positive bound from below.

Lemma 3.9 Assume (J1)–(J4) hold. There exists a sufficiently large constant δ > 0
such that if q1 and q2 satisfy (3.18) and q2(t) − q1(t) < −δ for any t < 0, then

A1(ξ, t) > 0 for (ξ, t) ∈ R × R
−,

and for any t < 0, we have that
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(i) when ξ ≤ q1(t), A1(ξ, t) ≥ 1
2 Px (ξ, t)|φ′

11(ξ − q1(t))|;
(ii)when q1(t) ≤ ξ ≤ −q1(t),

A1(ξ, t) ≥ 1

2

[
Px (ξ, t)|φ′

11(ξ − q1(t))| + P y(ξ, t)|φ′
21(ξ + q1(t))|

] ;

(iii)when −q1(t) ≤ ξ ≤ −q2(t),

A1(ξ, t) ≥ 1

2

[
P y(ξ, t)|φ′

21(ξ + q1(t))| + Pz(ξ, t)|φ′
31(ξ + q2(t))|

] ;

(iv)when ξ ≥ −q2(t), A1(ξ, t) ≥ 1
2 Pz(ξ, t)|φ′

31(ξ + q2(t))|.
For (ξ, t) ∈ R × R

−, we define

H1(ξ, t) :=(J1 ∗ P0(ξ, t) − P0(ξ, t)) − Px (ξ, t)(J1 ∗ φ11(ξ − q1(t)) − φ11(ξ − q1(t)))

− P y(ξ, t)(J1 ∗ φ21(ξ + q1(t)) − φ21(ξ + q1(t)))

− Pz(ξ, t)(J1 ∗ φ31(ξ + q2(t)) − φ31(ξ + q2(t))).

The following lemma gives some estimates for H1(ξ, t)/A1(ξ, t).

Lemma 3.10 Assume (J1)–(J4) hold. For the δ given by Lemma 3.9, if q1 and q2 satisfy
(3.18) and q2(t) − q1(t) < −δ for any t ∈ R

−, then there is a positive constant M̃
such that for any t < 0,

∣∣∣∣H1(ξ, t)

A1(ξ, t)

∣∣∣∣ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̃
(
eη1q1 + eη1q2

)
when ξ ≤ 0,

M̃
(

eη2q1 + eη1(q2−q1)/2
)

when 0 ≤ ξ ≤ −q1(t) − q2(t)

2
,

M̃
(

eη2q1 + eη2(q2−q1)/2
)

when ξ ≥ −q1(t) − q2(t)

2
.

(3.19)

For (ξ, t) ∈ R × R
−, we define

F1(ξ, t) := f1(P0(ξ, t), Q0(ξ, t)) − Px (ξ, t) f1(φ11(ξ − q1(t)), φ12(ξ − q1(t)))

− P y(ξ, t) f1(φ21(ξ + q1(t)), φ22(ξ + q1(t)))

− Pz(ξ, t) f1(φ31(ξ + q2(t)), φ32(ξ + q2(t))),

where f1 is defined by (3.14), and

Q0(ξ, t) := Q (φ12(ξ − q1(t)), φ22(ξ + q1(t)), φ32(ξ + q2(t))) , (ξ, t) ∈ R × R
−.

By a similar argument to Wu et al. (2018, Lemma 4.4), there is some positive constant
C5 such that

{
F1(ξ, t) ≤C5(φ11 − u∗

1 + φ12 − v∗
1 )(u

∗
2 − φ21 + v∗

2 − φ22)[(u∗
2 − φ11 + v∗

2 − φ12) + (φ31 + φ32)],
F1(ξ, t) ≤C5(φ21 + φ22)(u

∗
2 − φ31 + v∗

2 − φ32)[(u∗
2 − φ11 + v∗

2 − φ12) + (φ31 + φ32)].
(3.20)
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With the help of (3.20), we can obtain the following result similar to Lemma 3.10, and
the details of the proof are omitted.

Lemma 3.11 Assume (J1)–(J4) hold. For the δ given by Lemma 3.9, if q1 and q2 satisfy
(3.18) and q2(t) − q1(t) < −δ for any t ∈ R

−, then there is a positive constant M̄
such that for any t < 0,

∣∣∣∣ F1(ξ, t)

A1(ξ, t)

∣∣∣∣ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̄
(
eη1q1 + eη1q2

)
when ξ ≤ 0,

M̄
(

eη2q1 + eη1(q2−q1)/2
)

when 0 ≤ ξ ≤ −q1(t) − q2(t)

2
,

M̄
(

eη2q1 + eη2(q2−q1)/2
)

when ξ ≥ −q1(t) − q2(t)

2
.

Note that Lemmas 3.9–3.11 provide the estimates for A1(ξ, t), F1(ξ, t), and
H1(ξ, t), which are related to P0(ξ, t), Px (ξ, t), P y(ξ, t), and Pz(ξ, t). For (ξ, t) ∈
R × R

−, we define

A2(ξ, t) := Qx (ξ, t)φ′
12(ξ − q1(t)) − Qy(ξ, t)φ′

22(ξ + q1(t)) + Qz(ξ, t)φ′
32(ξ + q2(t)),

H2(ξ, t) := (J2 ∗ Q0(ξ, t) − Q0(ξ, t)) − Qx (ξ, t)(J2 ∗ φ12(ξ − q1(t)) − φ12(ξ − q1(t)))

− Qy(ξ, t)(J2 ∗ φ22(ξ + q1(t)) − φ22(ξ + q1(t)))

− Qz(ξ, t)(J2 ∗ φ32(ξ + q2(t)) − φ32(ξ + q2(t))),

F2(ξ, t) := f2(P0(ξ, t), Q0(ξ, t)) − Qx (ξ, t) f2(φ11(ξ − q1(t)), φ12(ξ − q1(t)))

− Qy(ξ, t) f2(φ21(ξ + q1(t)), φ22(ξ + q1(t)))

− Qz(ξ, t) f2(φ31(ξ + q2(t)), φ32(ξ + q2(t))),

where f2 is defined by (3.14), and

Qx (ξ, t) := Qx (φ12(ξ − q1(t)), φ22(ξ + q1(t)), φ32(ξ + q2(t))) , (ξ, t) ∈ R × R
−,

Qy(ξ, t) := Qy (φ12(ξ − q1(t)), φ22(ξ + q1(t)), φ32(ξ + q2(t))) , (ξ, t) ∈ R × R
−,

Qz(ξ, t) := Qz (φ12(ξ − q1(t)), φ22(ξ + q1(t)), φ32(ξ + q2(t))) , (ξ, t) ∈ R × R
−.

The next three lemmas give estimates for Qx (ξ, t), Qy(ξ, t), Qz(ξ, t), A2(ξ, t),
F2(ξ, t), and H2(ξ, t). The proofs of these three lemmas, which are omitted, are sim-
ilar to Lemmas 3.8, 3.9, and the combination of Lemmas 3.10 and 3.11, respectively.

Lemma 3.12 Assume (J1)–(J4) hold. There are some positive constants μ1, μ2, and
μ3 such that for any t < 0,

Qx (ξ, t) ≥ μ1 when ξ ≤ −q1(t),

Qy(ξ, t) ≥ μ2 when q1(t) ≤ ξ ≤ −q2(t),

Qz(ξ, t) ≥ μ3 when ξ ≥ −q1(t).

Lemma 3.13 Assume (J1)–(J4) hold. There exists a sufficiently large constant δ > 0
such that if q1 and q2 satisfy (3.18) and q2(t) − q1(t) < −δ for any t < 0, then
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A2(ξ, t) > 0 for (ξ, t) ∈ R × R
−,

and for any t < 0, we have that

(i) when ξ ≤ q1(t), A2(ξ, t) ≥ 1
2 Qx (ξ, t)|φ′

12(ξ − q1(t))|;
(ii)when q1(t) ≤ ξ ≤ −q1(t),

A2(ξ, t) ≥ 1

2

[
Qx (ξ, t)|φ′

12(ξ − q1(t))| + Qy(ξ, t)|φ′
22(ξ + q1(t))|

] ;

(iii)when −q1(t) ≤ ξ ≤ −q2(t),

A2(ξ, t) ≥ 1

2

[
Qy(ξ, t)|φ′

22(ξ + q1(t))| + Qz(ξ, t)|φ′
32(ξ + q2(t))|

] ;

(iv)when ξ ≥ −q2(t), A2(ξ, t) ≥ 1
2 Qz(ξ, t)|φ′

32(ξ + q2(t))|.
Lemma 3.14 Assume (J1)–(J4) hold. For the δ given by Lemma 3.13, if q1 and q2
satisfy (3.18) and q2(t) − q1(t) < −δ for any t < 0, then there is a positive constant
M̂ such that for any t < 0,

∣∣∣∣ H2(ξ, t)

A2(ξ, t)

∣∣∣∣ +
∣∣∣∣ F2(ξ, t)

A2(ξ, t)

∣∣∣∣ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̂
(
eη1q1 + eη1q2

)
when ξ ≤ 0,

M̂
(

eη2q1 + eη1(q2−q1)/2
)

when 0 ≤ ξ ≤ −q1(t) − q2(t)

2
,

M̂
(

eη2q1 + eη2(q2−q1)/2
)

when ξ ≥ −q1(t) − q2(t)

2
.

Finally, we can give a pair of suitable super- and sub-solutions for the first type of
entire solution and complete the proof of Theorem 3.5 by applying them.

Lemma 3.15 Assume that (J1)–(J4) hold, and c0 > ĉ0 > c2. Let (p1(t), p2(t), r1(t),
r2(t)) be the solution of (3.2). Then, the functions defined by (3.15) and (3.16), namely,

{
U (ξ, t) = P(φ11(ξ − p1(t)), φ21(ξ + p1(t)), φ31(ξ + p2(t))),

V (ξ, t) = Q(φ12(ξ − p1(t)), φ22(ξ + p1(t)), φ32(ξ + p2(t)))

and

{
U (ξ, t) = P(φ11(ξ − r1(t)), φ21(ξ + r1(t)), φ31(ξ + r2(t))),

V (ξ, t) = Q(φ12(ξ − r1(t)), φ22(ξ + r1(t)), φ32(ξ + r2(t)))

are a pair of super- and sub-solutions of (3.13) for t ≤ t0 < 0 with some t0 < 0, when
the constant L in (3.2) and (3.3) is sufficiently large. Moreover, there exists μ > 0
such that

U (ξ, t) ≤ U (ξ, t), sup
ξ∈R

{U (ξ, t) − U (ξ, t)} ≤ μeκν1t for ξ ∈ R, t ≤ t0, (3.21)
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V (ξ, t) ≤ V (ξ, t), sup
ξ∈R

{V (ξ, t) − V (ξ, t)} ≤ μeκν1t for ξ ∈ R, t ≤ t0. (3.22)

where ν1 and κ are defined by (3.1) and (3.4), respectively.

Proof Let δ be a positive constant such that Lemmas 3.9 and 3.13 hold. By (3.2), it
is easy to get that p2(t) − p1(t) → −∞ and r2(t) − r1(t) → −∞ as t → −∞. By
(3.4), there exists a constant t0 < 0 such that

p2(t) − p1(t) < −δ, r2(t) − r1(t) < −δ when t ≤ t0,

and

max

{
η1(p2(t) − p1(t))

2
,
η2(p2(t) − p1(t))

2

}
< κ p1(t) < 0 when t ≤ t0,

(3.23)

max

{
η1(r2(t) − r1(t))

2
,
η2(r2(t) − r1(t))

2

}
< κr1(t) < 0 when t ≤ t0.

(3.24)

Recall that s1, s2, and s3 satisfy (3.11). For simplicity, we denote

�1(U , V )(ξ, t) := ∂U

∂t
− (J1 ∗ U − U ) + c̄Uξ − f1(U , V ),

�2(U , V )(ξ, t) := ∂V

∂t
− (J2 ∗ V − V ) + c̄Vξ − f2(U , V ),

where ξ = x + c̄t , c̄ = s1+s2
2 , and f1, f2 are defined by (3.14). To prove the first

conclusion of this lemma, it is sufficient to show that

�i (U , V )(ξ, t) ≥ 0 and �i (U , V )(ξ, t) ≤ 0, for any ξ ∈ R, t ≤ t0, i = 1, 2.

Next, we only prove �i (U , V )(ξ, t) ≥ 0 with i = 1, 2 for ξ ∈ R and t ≤ t0, since the
proof of �i (U , V )(ξ, t) ≤ 0 is similar. Direct calculations give that

�1(U , V ) = −Pxφ′
11(p′

1 − ν1) + P yφ′
21(p′

1 − ν1) + Pzφ′
31(p′

2 − ν2)

− (J1 ∗ U − U ) + Px (J1 ∗ φ11 − φ11) + P y(J1 ∗ φ21 − φ21)

+ Pz(J1 ∗ φ31 − φ31)

− f1(U , V ) + Px f1(φ11, φ12) + P y f1(φ21, φ22) + Pz f1(φ31, φ32),

where ν1 and ν2 are defined in (3.1). By (3.2) and the definitions of the functions
A1(ξ, t), F1(ξ, t), and H1(ξ, t), we get that

�1(U , V )(ξ, t) =(Pxφ′
11 − P yφ′

21 + Pzφ′
31)Leκ p1(t) − H1(ξ, t) − F1(ξ, t)

=A1(ξ, t)Leκ p1(t) − H1(ξ, t) − F1(ξ, t).
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From Lemmas 3.10, 3.11, and (3.23), it follows that

|H1(ξ, t) + F1(ξ, t)| ≤ A1(ξ, t)(M̃ + M̄)eκ p1(t), for any ξ ∈ R, t ≤ t0.

By choosing L > M̃ + M̄ , we have

�1(U , V )(ξ, t) ≥ A1(ξ, t)[Leκ p1(t) − (M̃ + M̄)eκ p1(t)] ≥ 0, for any ξ ∈ R, t ≤ t0.

Bya similar argument to�1(U , V )(ξ, t) (with replacingLemmas3.8, 3.9, 3.10, 3.11,
and (3.23) by Lemmas 3.12, 3.13, 3.14, and (3.24)), we can take L ≥ M̂ such that

�2(U , V )(ξ, t) = (Qxφ′
12 − Qyφ′

22 + Qzφ′
32)Leκ p1(t) − H2(ξ, t) − F2(ξ, t)

≥ A2(ξ, t)(L − M̂)eκ p1(t) ≥ 0, for any ξ ∈ R, t ≤ t0.

Finally, we prove (3.21), and the proof of (3.22) is similar to (3.21). We see that

U (ξ, t) − U (ξ, t)

=P1(φ11(ξ − p1), φ21(ξ + p1), φ31(ξ + p2)) − P1(φ11(ξ − r1), φ21(ξ + r1), φ31(ξ + r2)).

From Newton–Leibniz formula, it follows that

U (ξ, t) − U (ξ, t)

= (r1 − p1)
∫ 1

0
Px (φ11(ξ − θ p1 − (1 − θ)r1), φ21(ξ + p1), φ31(ξ + p2))φ

′
11dθ

− (r1 − p1)
∫ 1

0
Py(φ11(ξ − r1), φ21(ξ + θ p1 + (1 − θ)r1), φ31(ξ + p2))φ

′
21dθ

+ (p2 − r2)
∫ 1

0
Pz(φ11(ξ − r1), φ21(ξ + r1), φ31(ξ + θ p2 + (1 − θ)r2)φ

′
31dθ.

(3.25)

Obviously, the integral terms in (3.25) are bounded and positive. Then, by (3.6), we
can easily obtain that

U (ξ, t) ≤ U (ξ, t) and sup
ξ∈R

{U (ξ, t) − U (ξ, t)} ≤ μeκν1t , for any ξ ∈ R, t ≤ t0.

It completes the proof. 
�

Proof of Theorem 3.5 Wedefine (U , V ) and (U , V ) by the same functions as in Lemma
3.15. Let c̄ = (c2 + ĉ0)/2, and denote

ω(x, t) := (u, v)(x, t) = (U , V )(x + c̄t, t),

ω(x, t) := (u, v)(x, t) = (U , V )(x + c̄t, t).
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By Lemma 3.15, ω(x, t) and ω(x, t) are a pair of super- and sub-solutions of (1.1) for
x ∈ R and t ≤ t0. Now, we consider the following Cauchy problem

⎧⎪⎨
⎪⎩

∂t un(x, t) = (J1 ∗ un − un)(x, t) − αun(x, t) + h(vn(x, t)),

∂tvn(x, t) = (J2 ∗ vn − vn)(x, t) − βvn(x, t) + g(un(x, t)),

(un, vn)(x,−n) = ω(x,−n), x ∈ R, t > −n.

(3.26)

ByLemma2.10, (3.26) has a unique solutionωn(x, t) = (un(x, t), vn(x, t)) satisfying

E0 ≤ ωn(x, t) ≤ E2, for any x ∈ R, t > −n.

Since ω(x, t) is also a sub-solution of (3.26), we have

ω(x,−n) = ωn(x,−n) ≤ ωn+1(x,−n) ≤ E2, for any x ∈ R, t > −n.

It follows from Lemma 3.2 that

E0 ≤ ω(x, t) ≤ ωn(x, t) ≤ ωn+1(x, t) ≤ min{E2,ω(x, t)}, for any x ∈ R, t > −n.

Therefore, {ωn(x, t)}∞n=1 is bounded and nondecreasing with respect to n for any
(x, t) ∈ R × (−n,+∞). Then, there exists a function ω(x, t) = (u(x, t), v(x, t))
with E0 ≤ ω(x, t) ≤ E2 such that for any (x, t) ∈ R

2,

lim
n→∞(un(x, t), vn(x, t)) = (u(x, t), v(x, t)).

Note that for any given t0 ∈ R, there exists n ∈ N such that t0 > −n and

ωωωn(x, t) = P(t)[ωωωn(·, t0)](x) +
∫ t

t0
P(t − s)[F(ωωωn(·, s))](x)ds, x ∈ R, t ≥ t0.

By Lebesgue dominated convergence theorem, we have that

ωωω(x, t) = P(t)[ωωω(·, t0)](x) +
∫ t

t0
P(t − s)[F(ωωω(·, s))](x)ds.

We easily check that ωωω(x, t) is continuous and differentiable with respect to t . Thus,
we obtain

ut (x, t) = ∂

∂t
P1(t)[u(·, t0)](x) +

∫ t

t0

∂

∂t
P1(t − s)[−αu(·, s) + h(v(·, s))](x)ds

+ [−αu(x, t) + h(v(x, t))].
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From (2.17), it follows that

ut (x, t) = −P1(t)[u(·, t0)](x) + J1 ∗ P1(t)[u(·, t0)](x) + [−αu(x, t) + h(v(x, t))]
+
∫ t

t0
{−P1(t)[−αu(·, s) + h(v(·, s))](x) + J1 ∗ P1(t)

[−αu(·, s) + h(v(·, s))](x)} ds

= J1 ∗ u(x, t) − u(x, t) − αu(x, t) + h(v(x, t)).

Similarly, we have that

vt (x, t) = J2 ∗ v(x, t) − v(x, t) − βv(x, t) + g(u(x, t)).

Thus,ωωω(x, t) = (u(x, t), v(x, t)) is an entire solution of (1.1). The asymptotic behav-
ior and the smooth property of ωωω(x, t) can be obtained by similar arguments to Chen
et al. (2018, Theorem 4.3) and Zhang et al. (2016, Theorem 1.8), respectively, and
we only give an outline of the proof here. According to Lemma 3.7, (3.5), (3.21), and
(3.22), we can prove (3.7). By applying Lemma 3.3, Arzela–Ascoli theorem, a diago-
nal extraction process, and the uniqueness of the solution of (3.26), we can obtain the
last assertion of this theorem. Therefore, the proof is completed. 
�

3.3 II-Type Entire Solution

In this subsection, we construct the second type of entire solution, which originates
from one monostable and two bistable traveling wave solutions, namely (ĉ1, 
̂1),
(c0,
), and (ĉ0, 
̂) with ĉ1 < c0 < ĉ0. We see Fig. 1b for the profile of this entire
solution as t → −∞. As stated in Sect. 3.2, the difficulty in the study of entire solutions
is how to construct appropriate auxiliary functions and super- and sub-solutions for
different types of entire solutions. Hence, we only provide the construction of auxiliary
functions and super- and sub-solutions and omit the other details, which are similar
to Theorem 3.5. The second type of entire solution is considered in the following
theorem.

Theorem 3.16 Assume (J1)–(J4) hold and ĉ0 > c0 > ĉ1. Then, (1.1) admits an entire
solution W2(x, t) : R

2 → [0, u∗
2] × [0, v∗

2 ] satisfying

lim
t→−∞

{
sup

x≤ρ1(t)
‖W2(x, t) − 
̂1(x + ĉ1t − ϑ3)‖

+ sup
ρ1(t)≤x≤ρ2(t)

‖W2(x, t) − 
(x + c0t + ϑ3)‖

+ sup
ρ2(t)≤x

‖W2(x, t) − 
̂(x + ĉ0t + ϑ4)‖
}

= 0,
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where ϑ3 and ϑ4 are some constants satisfying

ϑ3 := − 1

κ
ln

[
e−κ p0 − L

ν1

]
, ϑ4 := 1

κ
ln

[
e−κ p0 − L

ν1

]
+ p0 + r0,

and ρ1, ρ2 : R �→ R are defined by

ρ1(t) := −(ĉ1 + c0)t

2
, ρ2(t) := −(c0 + ĉ0)t

2
.

Moreover, when (J5) holds, there are two positive constants D1 and D2 such that for
any (x, t) ∈ R

2 and η > 0,

‖W2(x + η, t) − W2(x, t)‖ ≤ D1η,

∥∥∥∥∂W2

∂t
(x + η, t) − ∂W2

∂t

∥∥∥∥ ≤ D2η.

Now, we show the construction of auxiliary functions and super- and sub-solutions
forW2. Throughout this subsection, choose the values of s1, s2, and s3 as follows:

s1 := ĉ1, s2 := c0, s3 := ĉ0.

For convenience, we denote

φ1(ξ) := 
̂1(ξ), φ2(ξ) := 
(ξ), φ3(ξ) := 
̂(ξ),

and assume that

φ11(0) = u∗
1

2
, (φ21(0), φ22(0)) ≥

(
u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
, and (φ31(0), φ32(0))

≥
(

u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
.

Corresponding to (3.9) and (3.10) for the first type of entire solution, two auxiliary
functions for this case to link traveling wave solutions are defined as follows:

P(x, y, z) = y + (u∗
1 − x)y(u∗

2 − z)(−y) + x(u∗
2 − y)z(u∗

1 − y)

(u∗
1 − x)yu∗

2 + u∗
1(u

∗
2 − y)z

, (x, y, z) ∈ D1

and

Q(x, y, z) = y + (v∗
1 − x)y(v∗

2 − z)(−y) + x(v∗
2 − y)z(v∗

1 − y)

(v∗
1 − x)yu∗

2 + v∗
1(v

∗
2 − y)z

, (x, y, z) ∈ D2,

where

D1 := {
(x, y, z) ∈ [0, u∗

1] × [0, u∗
2] × [0, u∗

2]
∣∣(u∗

1 − x)yu∗
2 + u∗

1(u
∗
2 − y)z > 0

}
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and

D2 := {
(x, y, z) ∈ [0, v∗

1 ] × [0, v∗
2 ] × [0, v∗

2 ]
∣∣(v∗

1 − x)yu∗
2 + v∗

1(v
∗
2 − y)z > 0

}
.

The following lemma constructs a pair of super- and sub-solutions, and by this lemma
we can prove Theorem 3.16. We omit the proofs, which are similar to Lemma 3.15
and Theorem 3.5.

Lemma 3.17 Assume (J1)–(J4) hold and ĉ0 > c0 > ĉ1. Let (p1(t), p2(t), r1(t), r2(t))
be the solution of (3.2), and let c̄ := (ĉ1 + c0)/2. Then, the functions defined by

{
u(x, t) = P(φ11(x + c̄t − r1(t)), φ21(x + c̄t + r1(t)), φ31(x + c̄t + r2(t))),

v(x, t) = Q(φ12(x + c̄t − r1(t)), φ22(x + c̄t + r1(t)), φ32(x + c̄t + r2(t)))

and

{
u(x, t) = P(φ11(x + c̄t − p1(t)), φ21(x + c̄t + p1(t)), φ31(x + c̄t + p2(t))),

v(x, t) = Q(φ12(x + c̄t − p1(t)), φ22(x + c̄t + p1(t)), φ32(x + c̄t + p2(t)))

are a pair of super- and sub-solutions of (1.1) for (x, t) ∈ R × (−∞, t1] with some
t1 < 0. Moreover, (3.21) and (3.22) hold for (u(x, t), v(x, t)) and (u(x, t), v(x, t)).

3.4 III-Type Entire Solution

The third type of entire solution originates from two monostable and one bistable
traveling wave solutions, namely (c1,
1), (ĉ1, 
̂1), and (c0,
) with c1 < ĉ1 < c0.
We see Fig. 1c for the profile of this entire solution as t → −∞.

Theorem 3.18 Assume (J1)–(J4) hold and c0 > ĉ1 > c1. Then, (1.1) admits an entire
solution W3(x, t) : R

2 → [0, u∗
2] × [0, v∗

2 ] satisfying

lim
t→−∞

{
sup

x≤ρ1(t)
‖W3(x, t) − 
1(x + c1t − ϑ1)‖

+ sup
ρ1(t)≤x≤ρ2(t)

‖W3(x, t) − 
̂1(x + ĉ1t + ϑ1)‖

+ sup
ρ2(t)≤x

‖W3(x, t) − 
(x + c0t + ϑ2)‖
}

= 0,

where ϑ1 and ϑ2 are some constants satisfying

ϑ1 := − 1

κ
ln

[
e−κr0 + L

ν1

]
, ϑ2 := 1

κ
ln

[
e−κr0 + L

ν1

]
+ p0 + r0,
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and ρ1, ρ2 : R �→ R are defined by

ρ1(t) := −(c1 + ĉ1)t

2
, ρ2(t) := −(ĉ1 + c0)t

2
.

Moreover, when (J5) holds, there are two positive constants D1 and D2 such that for
any (x, t) ∈ R

2 and η > 0,

‖W3(x + η, t) − W3(x, t)‖ ≤ D1η,

∥∥∥∥∂W3

∂t
(x + η, t) − ∂W3

∂t

∥∥∥∥ ≤ D2η.

Similar to the case ofW2, we only provide the construction of auxiliary functions and
super- and sub-solutions for W3 and omit the other details in the proof of Theorem
3.18. Throughout this subsection, we choose the values of s1, s2, and s3 as follows:

s1 := c1, s2 := ĉ1, s3 := c0.

Denote

φ1(ξ) := 
1(ξ), φ2(ξ) := 
̂1(ξ), φ3(ξ) := 
(ξ),

and assume that

(φ11(0), φ21(0)) ≥
(

u∗
1

2
,
v∗
1

2

)
, φ21(0) = u∗

1

2
, and (φ31(0), φ32(0))

≤
(

u∗
1

4
,
v∗
1

4

)
.

The two auxiliary functions are defined as follows:

P(x, y, z) = y + x(u∗
1 − y)z(u∗

2 − y) + (u∗
1 − x)y(u∗

2 − z)(−y)

x(u∗
1 − y)u∗

2 + u∗
1 y(u∗

2 − z)
, (x, y, z) ∈ D1

and

Q(x, y, z) = y + x(v∗
1 − y)z(v∗

2 − y) + (v∗
1 − x)y(v∗

2 − z)(−y)

x(v∗
1 − y)v∗

2 + v∗
1 y(v∗

2 − z)
, (x, y, z) ∈ D2,

where

D1 := {
(x, y, z) ∈ [0, u∗

1] × [0, u∗
1] × [0, u∗

2]
∣∣x(u∗

1 − y)u∗
2 + u∗

1y(u∗
2 − z) > 0

}

and

D2 := {
(x, y, z) ∈ [0, v∗

1 ] × [0, v∗
1 ] × [0, v∗

2 ]
∣∣x(v∗

1 − y)v∗
2 + v∗

1 y(v∗
2 − z) > 0

}
.

The super- and sub-solutions are given by the following lemma.
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Lemma 3.19 Assume (J1)–(J4) hold and c0 > ĉ1 > c1. Let (p1(t), p2(t), r1(t), r2(t))
be the solution of (3.2), and c̄ := (c1 + ĉ1)/2. Then, the functions defined by

{
u(x, t) = P(φ11(x + c̄t − p1(t)), φ21(x + c̄t + p1(t)), φ31(x + c̄t + p2(t))),

v(x, t) = Q(φ12(x + c̄t − p1(t)), φ22(x + c̄t + p1(t)), φ32(x + c̄t + p2(t)))

and
{

u(x, t) = P(φ11(x + c̄t − r1(t)), φ21(x + c̄t + r1(t)), φ31(x + c̄t + r2(t))),

v(x, t) = Q(φ12(x + c̄t − r1(t)), φ22(x + c̄t + r1(t)), φ32(x + c̄t + r2(t)))

are a pair of super- and sub-solutions of (1.1) for (x, t) ∈ R × (−∞, t2] with some
t2 < 0. Moreover, (3.21) and (3.22) hold for (u(x, t), v(x, t)) and (u(x, t), v(x, t)).

3.5 IV-Type Entire Solution

The fourth type of entire solution originates from two monostable and one bistable
traveling wave solutions, namely (ĉ2, 
̂2), (ĉ1, 
̂1), and (c0,
) with ĉ2 < ĉ1 < c0.
We see Fig. 1d for the profile of this entire solution as t → −∞.

Theorem 3.20 Assume (J1)–(J4) hold and c0 > ĉ1 > ĉ2. Then (1.1) admits an entire
solution W4(x, t) : R

2 → [0, u∗
2] × [0, v∗

2 ] satisfying

lim
t→−∞

{
sup

x≤ρ1(t)
‖W4(x, t) − 
̂2(x + ĉ2t − ϑ5)‖

+ sup
ρ1(t)≤x≤ρ2(t)

‖W4(x, t) − 
̂1(x + ĉ1t + ϑ5)‖

+ sup
ρ2(t)≤x

‖W4(x, t) − 
(x + c0t + ϑ5)‖
}

= 0,

where ϑ5 is a constant satisfying

ϑ5 := − 1

κ
ln

[
e−κr0 − L

ν1

]
,

and ρ1, ρ2 : R �→ R are defined by

ρ1(t) := −(ĉ2 + ĉ1)t

2
, ρ2(t) := −(ĉ1 + c0)t

2
.

Moreover, when (J5) holds, there are two positive constants D1 and D2 such that for
any (x, t) ∈ R

2 and η > 0,

‖W4(x + η, t) − W4(x, t)‖ ≤ D1η,

∥∥∥∥∂W4

∂t
(x + η, t) − ∂W4

∂t

∥∥∥∥ ≤ D2η.
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Now, we give the construction of auxiliary functions and super- and sub-solutions
forW4, which is the main difficulty, and the other details in the proof of Theorem 3.20
are omitted. Throughout this subsection, we choose the values of s1, s2, and s3 as
follows:

s1 := ĉ2 ≤ ĉ∗
2 < 0, s2 := ĉ1 ≥ ĉ∗

1 > 0, s3 := c0.

Denote

φ1(ξ) := 
̂2(ξ), φ2(ξ) := 
̂1(ξ), φ3(ξ) := 
(ξ)

and assume that

φ11(0) = u∗
1

2
, (φ21(0), φ22(0)) ≥

(
u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
, and (φ31(0), φ32(0))

≥
(

u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
.

The two auxiliary functions are defined as follows:

P(x, y, z) = y + (u∗
2 − y)

(u∗
2 − x)(u∗

1 − y)z + (x − u∗
1)y(u∗

2 − z)

(u∗
2 − x)(u∗

1 − y)u∗
2 + (u∗

2 − u∗
1)y(u∗

2 − z)
, (x, y, z) ∈ D1

and

Q(x, y, z) = y + (v∗
2 − y)

(v∗
2 − x)(v∗

1 − y)z + (x − v∗
1)y(v∗

2 − z)

(v∗
2 − x)(v∗

1 − y)v∗
2 + (v∗

2 − v∗
1)y(v∗

2 − z)
, (x, y, z) ∈ D2,

where

D1 := {
(x, y, z) ∈ [u∗

1, u∗
2] × [0, u∗

1] × [0, u∗
2]
∣∣x(u∗

1 − y)u∗
2 + u∗

1y(u∗
2 − z) > 0

}

and

D2 := {
(x, y, z) ∈ [v∗

1 , v
∗
2 ] × [0, v∗

1 ] × [0, v∗
2 ]
∣∣x(v∗

1 − y)v∗
2 + v∗

1 y(v∗
2 − z) > 0

}
.

The super- and sub-solutions are given by the following lemma.

Lemma 3.21 Assume (J1)–(J4) hold and c0 > ĉ1 > ĉ2. Let ( p̃1(t), p̃2(t), r̃1(t), r̃2(t))
be the solution of (3.3). Then, the functions defined by

{
u(x, t) = P(φ11(x + c̄t − p̃1(t)), φ21(x + c̄t + r̃1(t)), φ31(x + c̄t + p̃2(t))),

v(x, t) = Q(φ12(x + c̄t − p̃1(t)), φ22(x + c̄t + r̃1(t)), φ32(x + c̄t + p̃2(t)))
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and
{

u(x, t) = P(φ11(x + c̄t − r̃1(t)), φ21(x + c̄t + p̃1(t)), φ31(x + c̄t + r̃2(t))),

v(x, t) = Q(φ12(x + c̄t − r̃1(t)), φ22(x + c̄t + p̃1(t)), φ32(x + c̄t + r̃2(t)))

are a pair of super- and sub-solutions of (1.1) for (x, t) ∈ R × (−∞, t3] with some
t3 < 0. Moreover, (3.21) and (3.22) hold for (u(x, t), v(x, t)) and (u(x, t), v(x, t)).

3.6 V-Type Entire Solution

The fifth type of entire solution originates from two monostable and one bistable
traveling wave solutions, namely (c1,
1), (c2,
2), and (ĉ0, 
̂) with c1 < c2 < ĉ0.
We see Fig. 1e for the profile of this entire solution as t → −∞.

Theorem 3.22 Assume (J1)–(J4) hold and ĉ0 > c2 > c1. Then, (1.1) admits an entire
solution W5(x, t) : R

2 → [0, u∗
2] × [0, v∗

2 ] satisfying

lim
t→−∞

{
sup

x≤ρ1(t)
‖W5(x, t) − 
1(x + c1t − ϑ6)‖

+ sup
ρ1(t)≤x≤ρ2(t)

‖W5(x, t) − 
2(x + c2t + ϑ5)‖

+ sup
ρ2(t)≤x

‖W5(x, t) − 
̂(x + ĉ0t + ϑ6)‖
}

= 0,

where ϑ5 and ϑ5 are some constants satisfying

ϑ5 := − 1

κ
ln

[
e−κr0 − L

ν1

]
, ϑ6 := − 1

κ
ln

[
e−κ p0 + L

ν1

]
,

and ρ1, ρ2 : R �→ R are defined by

ρ1(t) := −(c1 + c2)t

2
, ρ2(t) := −(c2 + ĉ0)t

2
.

Moreover, when (J5) holds, there are two positive constants D1 and D2 such that for
any (x, t) ∈ R

2 and η > 0,

‖W5(x + η, t) − W5(x, t)‖ ≤ D1η,

∥∥∥∥∂W5

∂t
(x + η, t) − ∂W5

∂t

∥∥∥∥ ≤ D2η.

Similar to other types of entire solutions, we focus only on the construction of auxiliary
functions and super- and sub-solutions for W5 and omit the other details in the proof
of Theorem 3.22. Throughout this subsection, we choose the values of s1, s2, and s3
as follows:

s1 := c1, s2 := c2, s3 := ĉ0.
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Denote

φ1(ξ) := 
1(ξ), φ2(ξ) := 
2(ξ), φ3(ξ) := 
̂(ξ)

and assume that

φ11(0) = u∗
1

2
, φ21(0) = u∗

1 + u∗
2

2
, and (φ31(0), φ32(0)) ≥ (u∗

1, v
∗
1).

The two auxiliary functions are defined as follows:

P(x, y, z) = y + (−y)
x(y − u∗

1)(u
∗
2 − z) + (u∗

1 − x)(u∗
2 − y)z

x(y − u∗
1)u

∗
2 + u∗

1(u
∗
2 − y)z

, (x, y, z) ∈ D1

and

Q(x, y, z) = y + (−y)
x(y − v∗

1 )(v
∗
2 − z) + (v∗

1 − x)(v∗
2 − y)z

x(y − v∗
1 )v

∗
2 + v∗

1 (v
∗
2 − y)z

, (x, y, z) ∈ D2,

where

D1 := {
(x, y, z) ∈ [0, u∗

1] × [u∗
1, u∗

2] × [0, u∗
2]
∣∣x(y − u∗

1)u
∗
2 + u∗

1(u
∗
2 − y)z > 0

}

and

D2 := {
(x, y, z) ∈ [0, v∗

1 ] × [v∗
1 , v

∗
2 ] × [0, v∗

2 ]
∣∣x(y − v∗

1)v
∗
2 + v∗

1(v
∗
2 − y)z > 0

}
.

The super- and sub-solutions are given by the following lemma.

Lemma 3.23 Assume (J1)–(J4) hold and ĉ0 > c2 > c1. Let ( p̃1(t), p̃2(t), r̃1(t), r̃2(t))
be the solution of (3.3), and c̄ := (c1 + c2)/2. Then, the functions defined by

{
u(x, t) = P(φ11(x + c̄t − r̃1(t)), φ21(x + c̄t + p̃1(t)), φ31(x + c̄t + r̃2(t))),

v(x, t) = Q(φ12(x + c̄t − r̃1(t)), φ22(x + c̄t + p̃1(t)), φ32(x + c̄t + r̃2(t)))

and

{
u(x, t) = P(φ11(x + c̄t − p̃1(t)), φ21(x + c̄t + r̃1(t)), φ31(x + c̄t + p̃2(t))),

v(x, t) = Q(φ12(x + c̄t − p̃1(t)), φ22(x + c̄t + r̃1(t)), φ32(x + c̄t + p̃2(t)))

are a pair of super- and sub-solutions of (1.1) for (x, t) ∈ R × (−∞, t4] with some
t4 < 0. Moreover, (3.21) and (3.22) hold for (u(x, t), v(x, t)) and (u(x, t), v(x, t)).
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3.7 VI-Type Entire Solution

The sixth type of entire solution originates from two monostable and one bistable
traveling wave solutions, namely (ĉ2, 
̂2), (c2,
2), and (ĉ0, 
̂) with ĉ2 < c2 < ĉ0.
We see Fig. 1f for the profile of this entire solution as t → −∞.

Theorem 3.24 Assume (J1)–(J4) hold and ĉ0 > c2 > ĉ2. Then, (1.1) admits an entire
solution W6(x, t) : R

2 → [0, u∗
2] × [0, v∗

2 ] satisfying

lim
t→−∞

{
sup

x≤ρ1(t)
‖W6(x, t) − 
̂2(x + ĉ2t − ϑ3)‖

+ sup
ρ1(t)≤x≤ρ2(t)

‖W6(x, t) − 
2(x + c2t + ϑ3)‖

+ sup
ρ2(t)≤x

‖W6(x, t) − 
̂(x + ĉ0t + ϑ4)‖
}

= 0,

where ϑ3 and ϑ4 are some constants satisfying

ϑ3 := − 1

κ
ln

[
e−κ p0 − L

ν1

]
, ϑ4 := 1

κ
ln

[
e−κ p0 − L

ν1

]
+ p0 + r0,

and ρ1, ρ2 : R �→ R are defined by

ρ1(t) := −(ĉ2 + c2)t

2
, ρ2(t) := −(c2 + ĉ0)t

2
.

Moreover, when (J5) holds, there are two positive constants D1 and D2 such that for
any (x, t) ∈ R

2 and η > 0,

‖W6(x + η, t) − W6(x, t)‖ ≤ D1η,

∥∥∥∥∂W6

∂t
(x + η, t) − ∂W6

∂t

∥∥∥∥ ≤ D2η.

Now, the construction of auxiliary functions and super- and sub-solutions for W6 is
provided, and the other details in the proof of Theorem 3.24, which are similar to
other types of entire solutions, are omitted. Throughout this subsection, we choose the
values of s1, s2, and s3 as follows:

s1 := ĉ2, s2 := c2, s3 := ĉ0.

Denote

φ1(ξ) := 
̂2(ξ), φ2(ξ) := 
2(ξ), φ3(ξ) := 
̂(ξ)

and assume that

(φ11(0), φ12(0)) <

(
u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
, φ21(0) = u∗

1 + u∗
2

2
, (φ31(0), φ32(0))
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>

(
u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
.

The two auxiliary functions are defined as follows:

P(x, y, z) = y

+ (u∗
2 − x)(y − u∗

1)(u
∗
2 − z)(−y) + (x − u∗

1)(u
∗
2 − y)z(u∗

2 − y)

(u∗
2 − x)(y − u∗

1)u
∗
2 + (u∗

2 − u∗
1)(u

∗
2 − y)z

, (x, y, z) ∈ D1

and

Q(x, y, z) = y

+ (v∗
2 − x)(y − v∗

1)(v
∗
2 − z)(−y) + (x − v∗

1)(v
∗
2 − y)z(v∗

2 − y)

(v∗
2 − x)(y − v∗

1)v
∗
2 + (v∗

2 − v∗
1)(v

∗
2 − y)z

, (x, y, z) ∈ D2,

where

D1 := {
(x, y, z) ∈ [u∗

1, u∗
2] × [u∗

1, u∗
2] × [0, u∗

2]
∣∣(u∗

2 − x)(y − u∗
1)u

∗
2

+(u∗
2 − u∗

1)(u
∗
2 − y)z > 0

}

and

D2 := {
(x, y, z) ∈ [v∗

1 , v
∗
2 ] × [v∗

1 , v
∗
2 ] × [0, v∗

2 ]
∣∣(v∗

2 − x)(y − v∗
1)v

∗
2

+(v∗
2 − v∗

1)(v
∗
2 − y)z > 0

}
.

The super- and sub-solutions are given by the following lemma.

Lemma 3.25 Assume (J1)–(J4) hold and ĉ0 > c2 > ĉ2. Let (p1(t), p2(t), r1(t), r2(t))
be the solution of (3.2), and c̄ := (ĉ2 + c2)/2. Then, the functions defined by

{
u(x, t) = P (φ11(x + c̄t − r1(t)), φ21(x + c̄t + r1(t)), φ31(x + c̄t + r2(t))) ,

v(x, t) = Q (φ12(x + c̄t − r1(t)), φ22(x + c̄t + r1(t)), φ32(x + c̄t + r2(t)))

and

{
u(x, t) = P (φ11(x + c̄t − p1(t)), φ21(x + c̄t + p1(t)), φ31(x + c̄t + p2(t))) ,

v(x, t) = Q (φ12(x + c̄t − p1(t)), φ22(x + c̄t + p1(t)), φ32(x + c̄t + p2(t)))

are a pair of super- and sub-solutions of (1.1) for (x, t) ∈ R × (−∞, t5] with some
t5 < 0. Moreover, (3.21) and (3.22) hold for (u(x, t), v(x, t)) and (u(x, t), v(x, t)).
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3.8 Nonexistence of N-Wave Entire Solutions for N ≥ 5

In this subsection, we show that when c0 
= ĉ0, there is no entire solution originating
from more than four traveling wave solutions. When we say c0 = ĉ0, it means that
the nondecreasing bistable traveling wave solution 
(x + c0t) and the nonincreasing
bistable traveling wave solution 
̂(x + ĉ0t) have the same propagating direction and
the same speed. For the special case where the nondecreasing bistable traveling wave
solution and the nonincreasing bistable traveling wave solution are symmetric, we
write not c0 = ĉ0, but c0 = −ĉ0. Obviously, the assumption c0 
= ĉ0 covers most
cases of bistable spreading speeds. However, when c0 = ĉ0, we cannot prove whether
or not there exists N -wave entire solution with N ≥ 5.

We first introduce some definitions. Let (c j ,φ j ) with j = 1, 2, . . . , N be N trav-
eling wave solutions of (1.1). We say that SN = {(c1,φ1), (c2,φ2), . . . , (cN ,φN )}
is a generative sequence, if there is an entire solution (u, v) of (1.1) originating from
SN , in the sense that, (u, v) and SN satisfy that

c1 ≤ c2 ≤ . . . ≤ cN , (3.27)

and there exist constants ϑ j with j = 1, 2, . . . , N such that (1.4) holds. For example,
the sequences corresponding to W1–W6 in Sects. 3.2–3.7 are generative, which are
given by

{(c2,
2), (ĉ0, 
̂), (c0,
)}, {(ĉ1, 
̂1), (c0,
), (ĉ0, 
̂)}, {(c1,
1), (ĉ1, 
̂1), (c0,
)},
{(ĉ2, 
̂2), (ĉ1, 
̂1), (c0,
)}, {(c1,
1), (c2,
2), (ĉ0, 
̂)}, {(ĉ2, 
̂2), (c2,
2), (ĉ0, 
̂)}.

For any j = 1, 2, . . . , N − 1, when x = ρ j+1(t), it follows from (1.4) that

lim
t→−∞(u, v)(ρ j+1(t), t) = lim

t→−∞ φ j (ρ j+1(t) + c j t + ϑ j )

= lim
t→−∞ φ j+1(ρ j+1(t) + c j+1t + ϑ j+1),

namely,

lim
t→−∞ φ j

(
(c j − c j+1)t

2
+ ϑ j

)
= lim

t→−∞ φ j+1

(
(c j+1 − c j )t

2
+ ϑ j+1

)
.

By (3.27), we have that

φ j (+∞) = φ j+1(−∞) for any j = 1, 2, . . . , N − 1. (3.28)

Therefore, (3.27) and (3.28) are necessary for that SN is a generative sequence. By
(3.28), when SN is a generative sequence, we can denote a sequence

PN = {p0, p1, . . . , pN },
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where

p0 � φ1(−∞), p j � φ j (+∞) = φ j+1(−∞), j ∈ {1, . . . , N − 1}, and pN � φN (+∞).

We say that SN = {(c1,φ1), (c2,φ2), . . . , (cN ,φN )} is a non-generative sequence,
if there is no entire solution originating from SN . Obviously, SN is non-generative
if φ j (+∞) 
= φ j+1(−∞) for some j ∈ {1, 2, . . . , N − 1} or there exist i, j ∈
{1, 2, . . . , N } such that ci > c j and i < j .

Lemma 3.26 In the following two cases, the sequence SN = {(c1,φ1), (c2,φ2), . . . ,

(cN ,φN )} is non-generative.

(i)When c0 
= ĉ0, there exist i, j ∈ {1, 2, . . . , N } with i < j such that

(ci ,φi ) = (c j ,φ j ) = (c0,
) or (ci ,φi ) = (c j ,φ j ) = (ĉ0, 
̂).

(ii) There exist i, j ∈ {1, 2, . . . , N } with i < j such that

φi (−∞) = φ j (+∞) = E1.

Proof (i) We only consider the case where there exist i, j ∈ {1, 2, . . . , N } with
i < j such that (ci ,φi ) = (c j ,φ j ) = (c0,
), and the proof for the case

(ci ,φi ) = (c j ,φ j ) = (ĉ0, 
̂) is similar. Suppose, by contradiction, that SN is gener-
ative. Obviously, it holds that i < j −1; otherwise, φi (+∞) = E2 
= φ j (−∞) = E0
with i = j −1. Note that pi = φi (+∞) = E2 and p j−1 = φ j (−∞) = E0. Consider
the sequence {pi , . . . , p j−1}, and choose i0 with i ≤ i0 < j satisfying that pi0 is the
last E2 in {pi , . . . , p j−1}. Next, consider the sequence {pi0 , . . . , p j−1} and choose
j0 with i0 < j0 ≤ j satisfying that p j0−1 is the first E0 in {pi0 , . . . , p j−1}. Let
S = {pi0 , . . . , p j0−1}. Then, we have either

S = {pi0 , p j0−1} = {E2, E0} with i0 = j0 − 2. (3.29)

or

S = {pi0 , pi0+1 = p j0−2, p j0−1} = {E2, E1, E0} with i0 = j0 − 3. (3.30)

When (3.29) holds, we have that φi0+1 = 
̂ and ci0+1 = ĉ0. Then, (3.27) and
ci = c j = c0 imply that ci0+1 = c0 = ĉ0. It is a contradiction with c0 
= ĉ0.
When (3.30) holds, we have that φi0+1 = 
̂2 and φi0+2 = 
̂1 with ci0+1 = ĉ2 and
ci0+2 = ĉ1. From (3.27) and ci = c j = c0, it follows that ĉ2 = ĉ1 = c0, which is a
contradiction with ĉ2 ≤ cR < cL ≤ ĉ1 in (2.3).

(ii) By Theorems 2.1 and 2.2 , φi must be 
̂1 or 
2 (which implies that ci ≥ cL ),
and φ j must be 
1 or 
̂2 (which implies that c j ≤ cR). From (2.3), it follows that
ci ≥ cL > cR ≥ c j . Hence, SN is non-generative. 
�
Theorem 3.27 When c0 
= ĉ0, any sequence SN = {(c1,φ1), (c2,φ2), . . . , (cN ,φN )}
with N ≥ 5 is non-generative.
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Proof Let SN be a generative sequence. Obviously, there are at most two bistable
traveling wave solutions in SN (otherwise, Lemma 3.26 (i) happens). Now, we prove
that there are at most two monostable traveling wave solutions in SN . We claim that
E1 appears at most one time in PN . Indeed suppose, by contradiction, that E1 appears
at least two times in PN . Then, any two E1 in PN must be nonadjacent since there is no
travelingwave solution (c,φc) satisfying thatφc(±∞) = E1. Let i, j ∈ {0, 1, . . . , N }
satisfy pi = p j = E1 and i + 1 < j . Then, we have that

φi+1(−∞) = pi = E1, φ j (+∞) = p j = E1.

From Lemma 3.26 (ii), we get that SN is non-generative, which is a contradiction.
Therefore, E1 appears at most one time in PN , which implies that there are at most two
monostable traveling wave solutions in SN . Finally, we get that if SN be a generative
sequence, then N ≤ 4, namely, there exist at most two monostable and two bistable
traveling wave solutions in SN . 
�

Discussions.These twelve types of three-wave entire solutions in Figs. 1 and 2 contain
all possibilities of entire solutions originating from three traveling wave solutions
(c j ,φ j ) j=1,2,3.By (3.28) inSect. 3.8, the profilesmust satisfyφ j (+∞) = φ j+1(−∞)

for j = 1, 2. The twelve types in Figs. 1 and 2 show all possibilities of (c j ,φ j ) j=1,2,3
satisfying this condition. Moreover, the wave speeds {c j } j=1,2,3 also satisfy c1 ≤
c2 ≤ c3, and otherwise, the two adjacent traveling wave solutions with c j > c j+1 for
some j ∈ {1, 2} must intersect at some negative time. When the speeds of bistable
and monostable traveling wave solutions are nonzero, the existence results in Sect. 3
show all possibilities of three-wave entire solutions satisfying c1 < c2 < c3. But for
the case c1 = c2 or c2 = c3, it remains open whether or not the entire solution of (1.1)
originating from (c j ,φ j ) j=1,2,3 exists.

Note that four-wave entire solutions have not been considered in this paper, and it
is interesting to show whether or not there exist four-wave entire solutions of (1.1).
The main difficulty in the proof of the existence is how to construct some appropriate
auxiliary functions. We will consider this problem in future research.
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ported by China Postdoctoral Science Foundation funded project (2019M660047, 2020T130679).
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Appendix A. Proofs of Some Lemmas in Section 3.2

A.1 Proof of Lemma 3.8

We denote

ε1 := min
{φ11(0)

u∗
1

,
φ12(0)

v∗
1

}
, ε2 := max

{φ11(0)

u∗
2

,
φ12(0)

v∗
2

}
,
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ε3 := min
{φ21(0)

u∗
1

,
φ22(0)

v∗
1

}
, ε4 := max

{φ21(0)

u∗
2

,
φ22(0)

v∗
2

}
,

ε5 := min
{φ31(0)

u∗
1

,
φ32(0)

v∗
1

}
, ε6 := max

{φ31(0)

u∗
2

,
φ32(0)

v∗
2

}
.

It follows that ε1, ε3 > 1, ε2, ε4, ε5, ε6 ∈ (0, 1) and

E1 � ε1E1 ≤ φ1(0) ≤ ε2E2 � E2,

E0 � ε3E1 ≤ φ2(0) ≤ ε4E2 � E2,

E0 � ε5E1 ≤ φ3(0) ≤ ε6E2 � E2.

In what follows, we give the upper and lower bounds of φ1(ξ − q1), φ2(ξ + q2), and
φ3(ξ + q2) in four cases. The calculations are not complicated and we omit them.
First, when ξ ≤ q1(t), it holds that

E1 ≤ φ1(ξ − q1) ≤ ε2E2, ε3E1 ≤ φ2(ξ + q2) ≤ E2, E0 ≤ φ3(ξ + q2) ≤ ε6E2.

Second, when q1(t) ≤ ξ ≤ −q1(t), we have

ε1E1 ≤ φ1(ξ − q1) ≤ E2, ε3E1 ≤ φ2(ξ + q2) ≤ E2, E0 ≤ φ3(ξ + q2) ≤ ε6E2.

Third, when −q1(t) ≤ ξ ≤ −q2(t), it follows that

ε1E1 ≤ φ1(ξ − q1) ≤ E2, E0 ≤ φ2(ξ + q2) ≤ ε4E2, E0 ≤ φ3(ξ + q2) ≤ ε6E2.

Fourth, when ξ ≥ −q2(t), we can get

ε1E1 ≤ φ1(ξ − q1) ≤ E2, E0 ≤ φ2(ξ + q2) ≤ ε4E2, ε5E1 ≤ φ3(ξ + q2) ≤ E2.

Some calculations imply that

0 < u∗
1u∗

2 min{ε3(1 − ε6)(u
∗
2 − u∗

1), (ε1 − 1)(1 − ε4)u
∗
2}

≤ u∗
2[φ11(ξ − q1) − u∗

1][u∗
2 − φ21(ξ + q1)]

+ (u∗
2 − u∗

1)φ21(ξ + q1)[u∗
2 − φ31(ξ + q2)]

≤ 2u∗
2
2
(u∗

2 − u∗
1)

and

0 < v∗
1v

∗
2 min{ε3(1 − ε6)(v

∗
2 − v∗

1), (ε1 − 1)(1 − ε4)v
∗
2}

≤ v∗
2

[
φ12(ξ − q1) − v∗

1

] [v∗
2 − φ22(ξ + q1)]

+ (v∗
2 − v∗

1)φ22(ξ + q1)[v∗
2 − φ32(ξ + q2)]

≤ 2v∗
2
2
(v∗

2 − v∗
1)
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for any ξ ∈ R and q2, q1 satisfying (3.17). Then, the second and third inequalities
in Lemma 3.8 can be easily obtained. For the first inequality, we get from (3.12) and
φ′
2 < 0 that

(φ21(ξ + q1), φ22(ξ + q1)) ≥ (φ21(0), φ22(0)) ≥
(

u∗
1 + u∗

2

2
,
v∗
1 + v∗

2

2

)
when ξ ≤ q1(t).

It follows that

u∗
2[φ31(ξ + q2) − u∗

1][u∗
2 − φ21(ξ + q1)] + φ21(ξ + q1)[u∗

2 − φ31(ξ + q2)](u∗
2 − u∗

1)

≥ u∗
2[φ31(ξ + q2) − u∗

1]
(

u∗
2 − u∗

1 + u∗
2

2

)
+ u∗

1 + u∗
2

2
[u∗

2 − φ31(ξ + q2)](u∗
2 − u∗

1)

≥ u∗
2

2
(u∗

2 − u∗
1)

2,

and then

Px (ξ, t) = φ21(u
∗
2 − φ31)

(u∗
2 − u∗

1)[u∗
2(φ31 − u∗

1)(u
∗
2 − φ21) + φ21(u∗

2 − φ31)(u∗
2 − u∗

1)]
[u∗

2(φ11 − u∗
1)(u

∗
2 − φ21) + (u∗

2 − u∗
1)φ21(u∗

2 − φ31)]2

≥ ε3(1 − ε6)u∗
1u∗

2(u
∗
2 − u∗

1)
u∗
2
2 (u∗

2 − u∗
1)

2

[2u∗
2
2(u∗

2 − u∗
1)]2

= ε3(1 − ε6)u∗
1(u

∗
2 − u∗

1)

8u∗
2
2 .

It completes the proof.

A.2 Proof of Lemma 3.9

When ξ ≤ −q1(t), we have that

φ31(ξ + q2) ≤ φ31(0) ≤ u∗
1 ≤ φ11(ξ − q1), and P y(ξ, t) ≥ 0.

By Pz, φ′
11, φ

′
31 ≥ 0 and φ′

21 ≤ 0, we have that when ξ ≤ q1(t),

A1(ξ, t) = Px (ξ, t)φ′
11 − P y(ξ, t)φ′

21 + Pz(ξ, t)φ′
31 ≥ Px (ξ, t)φ′

11 ≥ 1

2
Px (ξ, t)|φ′

11|,

and when ξ ≤ −q1(t),

A1(ξ, t) ≥ 1

2

[
Px (ξ, t)|φ′

11| + P y(ξ, t)|φ′
21|

]
.

When −q1(t) ≤ ξ ≤ −q2(t), we have that P y , Pz ≥ 0. Then, we compute that

A1(ξ, t) − 1

2

[
P y(ξ, t)|φ′

21(ξ + q1)| + Pz(ξ, t)|φ′
31(ξ + q2)|

]

= Px (ξ, t)φ′
11 + 1

2
P y(ξ, t)|φ′

21| + 1

2
Pz(ξ, t)φ′

31 ≥ Px (ξ, t)φ′
11 + 1

2
P y(ξ, t)|φ′

21|
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≥ φ21(u∗
2 − φ31)(u∗

2 − u∗
1)[u∗

2(φ31 − u∗
1)(u

∗
2 − φ21) + φ21(u∗

2 − φ31)(u∗
2 − u∗

1)]
[u∗

2(φ11 − u∗
1)(u

∗
2 − φ21) + (u∗

2 − u∗
1)φ21(u∗

2 − φ31)]2 φ′
11

+ ρφ21(φ11 − u∗
1)(u

∗
2 − φ31)u∗

2
2(u∗

2 − u∗
1)(φ11 − φ31)

2[u∗
2(φ11 − u∗

1)(u
∗
2 − φ21) + (u∗

2 − u∗
1)φ21(u∗

2 − φ31)]2

≥ φ21(u∗
2 − u∗

1)u
∗
1u∗

2
3

[2u∗
2(u

∗
2 − u∗

1)]2
[
−C0e−2η2δ + ρ

2
(ε1 − 1)(1 − ε6)(φ11(0) − φ31(0))

]
≥ 0

for δ sufficiently large. When ξ ≥ −q2(t), we have that Pz ≥ 0. Similarly, we obtain
that

A1(ξ, t) − 1

2
Pz(ξ, t)|φ′

31(ξ + q2)| = Px (ξ, t)φ′
11 + P y(ξ, t)|φ′

21|

+ 1

2
Pz(ξ, t)φ′

31 ≥ u∗
2 − φ31

[2u∗
2(u

∗
2 − u∗

1)]2
{
−(u∗

2 − u∗
1)u

∗
1u∗

2
3C0e−2η2δ

−(u∗
2 − u∗

1)
3u∗

2
2C0e−η2δ + ρ

2
[(ε1 − 1)u∗

1(1 − ε4)u
∗
2
2]2

}
≥ 0

for δ sufficiently large. It completes the proof.

A.3 Proof of Lemma 3.10

For given (ξ, t) ∈ R×R
− and s ∈ R, when there is no confusion, we simply write

φ̂11(θ) := φ11(ξ − q1(t) − θs), φ̂21(θ) := φ21(ξ + q1(t) − θs), and φ̂31(θ)

:= φ31(ξ + q2(t) − θs),

where θ ∈ [0, 1]. Then, H1(ξ, t) can be represented as follows:

H1(ξ, t) =
∫
R

J1(s)[P(φ̂11(1), φ̂21(1), φ̂31(1)) − P(φ̂11(0), φ̂21(0), φ̂31(0))]ds

− Px (φ̂11(0), φ̂21(0), φ̂31(0))
∫
R

J1(s)[φ̂11(1) − φ̂11(0)]ds

− Py(φ̂11(0), φ̂21(0), φ̂31(0))
∫
R

J1(s)[φ̂21(1) − φ̂21(0)]ds

− Pz(φ̂11(0), φ̂21(0), φ̂31(0))
∫
R

J1(s)[φ̂31(1) − φ̂31(0)]ds.

We denote

I1 = Px (φ̂11(0), φ̂21(0), φ̂31(0))[φ̂11(1) − φ̂11(0)],
I2 = Py(φ̂11(0), φ̂21(0), φ̂31(0))[φ̂21(1) − φ̂21(0)],
I3 = Pz(φ̂11(0), φ̂21(0), φ̂31(0))[φ̂31(1) − φ̂31(0)].
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By mean value theorem, there exist θ1, θ2, and θ3 in (0, 1) such that

P(φ̂11(1), φ̂21(1), φ̂31(1)) − P(φ̂11(0), φ̂21(0), φ̂31(0)) = I4 + I5 + I6,

where

I4 = Px (θ1φ̂11(1) + (1 − θ1)φ̂11(0), φ̂21(1), φ̂31(1))[φ̂11(1) − φ̂11(0)],
I5 = Py(φ̂11(0), θ2φ̂21(1) + (1 − θ2)φ̂21(0), φ̂31(1))[φ̂21(1) − φ̂21(0)],
I6 = Pz(φ̂11(0), φ̂21(0), θ3φ̂31(1) + (1 − θ3)φ̂31(0))[φ̂31(1) − φ̂31(0)].

Then, we can get that

H1(ξ, t) =
∫
R

J1(s)[I4 + I5 + I6 − I1 − I2 − I3]ds.

Also by mean value theorem, there exist θ4, θ5, and θ6 in (0, 1) such that

I4 − I1 = Pxx (θ4φ̂11(1) + (1 − θ4)φ̂11(0), φ̂21(1), φ̂31(1))θ1[φ̂11(1) − φ̂11(0)]2
+ Pxy(φ̂11(0), θ5φ̂21(1) + (1 − θ5)φ̂21(0), φ̂31(1))[φ̂21(1) − φ̂21(0)][φ̂11(1) − φ̂11(0)]
+ Pxz(φ̂11(0), φ̂21(0), θ6φ̂31(1) + (1 − θ6)φ̂31(0))[φ̂31(1) − φ̂31(0)][φ̂11(1) − φ̂11(0)]
= θ1G1(ξ, t, s; θ4) + G2(ξ, t, s; θ5) + G3(ξ, t, s; θ6),

where

G1(ξ, t, s; θ4) = Pxx (θ4φ̂11(1) + (1 − θ4)φ̂11(0), φ̂21(1), φ̂31(1))[φ̂11(1) − φ̂11(0)]2,
G2(ξ, t, s; θ5) = Pxy(φ̂11(0), θ5φ̂21(1) + (1 − θ5)φ̂21(0), φ̂31(1))

[φ̂21(1) − φ̂21(0)][φ̂11(1) − φ̂11(0)],
G3(ξ, t, s; θ6) = Pxz(φ̂11(0), φ̂21(0), θ6φ̂31(1) + (1 − θ6)φ̂31(0))[φ̂31(1) − φ̂31(0)]

[φ̂11(1) − φ̂11(0)].

There exist θ7 and θ8 in (0, 1) such that

I5 − I2 = Pyy(φ̂11(0), θ7φ̂21(1) + (1 − θ7)φ̂21(0), φ̂31(1))θ2[φ̂21(1) − φ̂21(0)]2
− Pyz(φ̂11(0), φ̂21(0), θ8φ̂31(1) + (1 − θ8)φ̂31(0))

[φ̂31(1) − φ̂31(0)][φ̂21(1) − φ̂21(0)]
= θ2G4(ξ, t, s; θ7) + G5(ξ, t, s; θ8),

where

G4(ξ, t, s; θ7) = Pyy(φ̂11(0), θ7φ̂21(1) + (1 − θ7)φ̂21(0), φ̂31(1))[φ̂21(1) − φ̂21(0)]2,
G5(ξ, t, s; θ8) = Pyz(φ̂11(0), φ̂21(0), θ6φ̂31(1) + (1 − θ6)φ̂31(0))[φ̂31(1) − φ̂31(0)]

[φ̂21(1) − φ̂21(0)].
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There is a constant θ9 ∈ (0, 1) such that

I6 − I3 = Pzz(φ̂11(0), φ̂21(0), θ9φ̂31(1) + (1 − θ9)φ̂31(0))θ3[φ̂31(1) − φ̂31(0)]2
= θ3G6(ξ, t, s; θ9),

where

G6(ξ, t, s; θ9) := Pzz(φ̂11(0), φ̂21(0), θ9φ̂31(1) + (1 − θ9)φ̂31(0))[φ̂31(1) − φ̂31(0)]2.

Based on the above formulas, we can get that

H1(ξ, t) =
∫
R

J1(s)[θ1G1(ξ, t, s; θ4) + G2(ξ, t, s; θ5) + G3(ξ, t, s; θ6)

+ θ2G4(ξ, t, s; θ7) + G5(ξ, t, s; θ8) + θ3G6(ξ, t, s; θ9)]ds.
(3.31)

In what follows, we provide the detailed estimations only for |G1(ξ, t, s; θ4)/A1
(ξ, t)|, and for |Gi (ξ, t, s; θi+3)/A1(ξ, t)| with i = 2, . . . , 6, the methods are similar.
We get from the mean value theorem that

|φ̂11(1) − φ̂11(0)| = |φ11(ξ − q1 − s) − φ11(ξ − q1)| = |φ′
11(ξ − q1 − θ10s)s|

= |φ̂′
11(θ10)s|,

where θ10 is some constant in [0, 1]. In addition, for the C3 given by Lemma 3.6, there
is a sufficiently large constant C4 such that

C3|φ11(ξ − q1 − s) − φ11(ξ − q1)| < C4 for any (ξ, t) ∈ R × R
−, s ∈ R.

Now, we consider the following six cases. Recall that the constant m, which appears
below, is defined in assumption (J4).

Case 1:When ξ ≤ q1(t), based on Lemmas 3.6, 3.7, 3.8, and 3.9 (i), we have that
for s ∈ supp(J1), there exists a positive constant M̃1 such that

∣∣∣∣G1(ξ, t, s; θ4)

A1(ξ, t)

∣∣∣∣ ≤ 2C4|u∗
2 − φ̂21(1)| · |φ̂11(1) − φ̂11(0)|

Px (ξ, t)|φ′
11(ξ − q1)|

≤ 2C4|u∗
2 − φ̂21(1)| · |φ̂′

11(θ10)s|
μ1|φ′

11(ξ − q1)| ≤ 2C4m

μ1
|φ′

21(ξ + q1 − s)|

· |u
∗
2 − φ21(ξ + q1 − s)|
|φ′

21(ξ + q1 − s)| · |φ′
11(ξ − q1 − θ10s)|

|φ11(ξ − q1 − θ10s) − u∗
1|

· |φ11(ξ − q1 − θ10s) − u∗
1|

|φ11(ξ − q1) − u∗
1|

· |φ11(ξ − q1) − u∗
1|

|φ′
11(ξ − q1)|

≤ 2C4m

μ1
C0eη1(ξ+q1−s) 1

C1
C2C

1

C1
≤ M̃1eη1q1 .
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Case 2:When q1(t) ≤ ξ ≤ 0, based on Lemmas 3.6, 3.7, 3.8, and 3.9 (ii), we have
that for s ∈ supp(J1), there exists a positive constant M̃2 such that

∣∣∣∣G1(ξ, t, s; θ4)

A1(ξ, t)

∣∣∣∣ ≤ 2C4|u∗
2 − φ̂21(1)| · |φ̂11(1) − φ̂11(0)|

Px (ξ, t)|φ′
11(ξ − q1)| + P y(ξ, t)|φ′

21(ξ + q1)|

≤ 2C4|u∗
2 − φ̂21(1)| · |φ̂′

11(θ10)s|
μ1|φ′

11(ξ − q1)| ≤ 2C4m

μ1
|φ′

21(ξ + q1 − s)|

· |u
∗
2 − φ21(ξ + q1 − s)|
|φ′

21(ξ + q1 − s)| · |φ′
11(ξ − q1 − θ10s)|

|u∗
2 − φ11(ξ − q1 − θ10s)|

· |u
∗
2 − φ11(ξ − q1 − θ10s)|
|u∗

2 − φ11(ξ − q1)| · |u∗
2 − φ11(ξ − q1)|
|φ′

11(ξ − q1)|
≤ 2C4m

μ1
C0eη1(ξ+q1−s) 1

C1
C2C

1

C1
≤ M̃2eη1q1 .

Case 3: When 0 ≤ ξ ≤ −q1(t), based on Lemmas 3.6, 3.7, 3.8, and 3.9 (ii), we
have that for s ∈ supp(J1), there exists a positive constant M̃3 such that

∣∣∣∣G1(ξ, t, s; θ4)

A1(ξ, t)

∣∣∣∣ ≤ 2C4|u∗
2 − φ̂21(1)| · |φ̂11(1) − φ̂11(0)|

Px (ξ, t)|φ′
11(ξ − q1)| + P y(ξ, t)|φ′

21(ξ + q1)|

≤ 2C4|u∗
2 − φ̂21(1)| · |φ̂′

11(θ10)s|
μ2|φ′

21(ξ + q1)| ≤ 2C4m

μ2
|φ′

11(ξ − q1 − θ10s)|

· |u
∗
2 − φ21(ξ + q1 − s)|
|u∗

2 − φ21(ξ + q1)| · |u∗
2 − φ21(ξ + q1)|
|φ′

21(ξ + q1)|
≤ 2C4m

μ2
C0e−η2(ξ−q1−θ10s)C

1

C1
≤ M̃3eη2q1 .

Case 4:When −q1(t)v ≤ ξ ≤ (−q1(t)− q2(t))/2, based on Lemma 3.6, 3.7, 3.8,
and 3.9(iii), we have that for s ∈ supp(J1), there exists a positive constant M̃4 such
that

∣∣∣∣G1(ξ, t, s; θ4)

A1(ξ, t)

∣∣∣∣ ≤ 2C4|φ̂21(1)| · |φ̂11(1) − φ̂11(0)|
P y(ξ, t)|φ′

21(ξ + q1)| + Pz(ξ, t)|φ′
31(ξ + q2)|

≤ 2C4|φ̂21(1)| · |φ̂′
11(θ10)s|

μ2|φ′
21(ξ + q1)| ≤ 2C4m

μ2
|φ′

11(ξ − q1 − θ10s)|

· |φ21(ξ + q1 − s)|
|φ21(ξ + q1)| · |φ21(ξ + q1)|

|φ′
21(ξ + q1)|

≤ 2C4m

μ2
C0e−η2(ξ−q1−θ10s)C

1

C1
≤ M̃4eη2q1 .

Case 5:When (−q1(t) − q2(t))/2 ≤ ξ ≤ −q2(t), based on Lemmas 3.6, 3.7, 3.8,
and 3.9 (iii), we have that for s ∈ supp(J1), there exists a positive constant M̃5 such
that
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∣∣∣∣G1(ξ, t, s; θ4)

A1(ξ, t)

∣∣∣∣ ≤ 2C4|φ̂21(1)| · |φ̂11(1) − φ̂11(0)|
P y(ξ, t)|φ′

21(ξ + q1)| + Pz(ξ, t)|φ′
31(ξ + q2)|

≤ 2C4|φ̂21(1)| · |φ̂′
11(θ10)s|

μ2|φ′
21(ξ + q1)| ≤ 2C4m

μ2
|φ′

11(ξ − q1 − θ10s)|

· |φ21(ξ + q1 − s)|
|φ21(ξ + q1)| · |φ21(ξ + q1)|

|φ′
21(ξ + q1)|

≤ 2C4m

μ2
C0e−η2(ξ−q1−θ10s)C

1

C1
≤ M̃5eη2q1 .

Case 6: When ξ ≥ −q2(t), based on Lemmas 3.6, 3.7, 3.8, and 3.9 (iv), we have
that for s ∈ supp(J1), there exists a positive constant M̃6 such that

∣∣∣∣G1(ξ, t, s; θ4)

A1(ξ, t)

∣∣∣∣ ≤ 2C4|u∗
2 − φ̂31(1)| · |φ̂11(1) − φ̂11(0)|

Pz(ξ, t)|φ′
31(ξ + q2)|

≤ 2C4|u∗
2 − φ̂31(1)| · |φ̂′

11(θ10)s|
μ3|φ′

31(ξ + q2)| ≤ 2C4m

μ3
|φ′

11(ξ − q1 − θ10s)|

· |u
∗
2 − φ31(ξ + q2 − s)|
|u∗

2 − φ31(ξ + q2)| · |u∗
2 − φ31(ξ + q2)|
|φ′

31(ξ + q2)|
≤ 2C4m

μ3
C0e−η2(ξ−q1−θ10s)C

1

C1
≤ M̃6eη2q1 .

With the above estimates, we can get (3.19) from (3.31) and
∫
R

J1(x)dx = 1,
immediately. It completes the proof.
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