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Abstract
In a recent paper by the author (K. Yagasaki, Nonintegrability of the restricted three-
body problem, submitted for publication), a technique was developed for determining
whether nearly integrable systems are notmeromorphicallyBogoyavlenskij-integrable
such that the first integrals and commutative vector fields also dependmeromorphically
on the small parameter.Herewe continue to demonstrate the technique for someclasses
of dynamical systems. In particular, we consider time-periodic perturbations of single-
degree-of-freedom Hamiltonian systems and discuss a relationship of the technique
with the subharmonic Melnikov method, which enables us to detect the existence of
periodic orbits and their stability. We illustrate the theory for the periodically forced
Duffing oscillator and twomore additional examples: second-order coupled oscillators
and a two-dimensional system of pendulum-type subjected to a constant torque.

Keywords Nonintegrability · Perturbation · Resonance · Morales-Ramis theory ·
Melnikov method

Mathematics Subject Classification 37J30 · 34E10 · 34M15 · 34M35

1 Introduction

In this paper, we consider systems of the form

İ = εh(I , θ; ε), θ̇ = ω(I ) + εg(I , θ; ε), (I , θ) ∈ R
� × T

m, (1.1)
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and study its nonintegrability near resonant periodic orbits, where �,m ∈ N, Tm =
(R/2πZ)m , ε is a small parameter such that 0 < |ε| � 1, and ω : R

� → R
m ,

h : R
� × T

m × R → R
� and g : R

� × T
m × R → R

m are meromorphic or
analytic in the arguments. We extend the domain of the independent variable t to a
domain includingR inC and do so for the dependent variables. Wemean a non-empty
connected open set by “a domain” through this paper. The system (1.1) is Hamiltonian
if � = m as well as ε = 0 or

DI h(I , θ; ε) ≡ −Dθg(I , θ; ε),

and non-Hamiltonian if not. When ε = 0, Eq. (1.1) becomes

İ = 0, θ̇ = ω(I ), (1.2)

which we refer to as the unperturbed system for (1.1). Here we adopt the following
definition of integrability due to Bogoyavlenskij (1998).

Definition 1.1 (Bogoyavlenskij) For n ∈ N an n-dimensional dynamical system

ẋ = f (x), x ∈ R
n or Cn,

is called (q, n−q)-integrableor simply integrable if there existq vector fields f1(x)(:=
f (x)), f2(x), . . . , fq(x) and n − q scalar-valued functions F1(x), . . . , Fn−q(x) such
that the following two conditions hold:

(i) f1(x), . . . , fq(x) are linearly independent almost everywhere and commute with
each other, i.e., [ f j , fk](x) := D fk(x) f j (x) − D f j (x) fk(x) ≡ 0 for j, k =
1, . . . , q, where [·, ·] denotes the Lie bracket;

(ii) The derivatives DF1(x), . . . ,DFn−q(x) are linearly independent almost every-
where and F1(x), . . . , Fn−q(x) are first integrals of f1, . . . , fq , i.e., DFk(x) ·
f j (x) ≡ 0 for j = 1, . . . , q and k = 1, . . . , n − q, where “·” represents the inner
product.

We say that the system is meromorphically (resp. analytically) integrable if the first
integrals and commutative vector fields are meromorphic (resp. analytic).

Definition 1.1 is considered as a generalization of Liouville-integrability for Hamil-
tonian systems (Arnold 1989; Morales-Ruiz 1999) since an n-degree-of-freedom
Liouville-integrable Hamiltonian system with n ≥ 1 has not only n functionally
independent first integrals but also n linearly independent commutative (Hamiltonian)
vector fields generated by the first integrals. The unperturbed system (1.2) is meromor-
phically or analytically (m, �)-integrable in the Bogoyavlenskij sense: Fj (I , θ) = I j ,
j = 1, . . . , �, are first integrals, and f j (I , θ) = (0, e j ) ∈ R

� × R
m , j �= j0, give

m commutative vector fields along with its own vector field if ω j0(I ) �= 0 almost
everywhere, where for j = 1, . . . ,m, ω j (I ) is the j th element of ω(I ) and e j is the
m-dimensional vector of which the j th element is the unit and the other elements are
zero. Conversely, a general (m, �)-integrable system is transformed to the form (1.2) if
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the level set for the first integrals F1(x), . . . , Fm(x) has a connected compact compo-
nent. See Bogoyavlenskij (1998); Motonaga and Yagasaki (2021b); Zung (2018) for
more details. Thus, the system (1.1) can be regarded as a normal form for perturbations
of general (m, �)-integrable systems.

In a recent paper (Yagasaki 2021a), a technique was developed for determining
whether the system (1.1) is not meromorphically Bogoyavlenskij-integrable such that
the first integrals and commutative vector fields also depend meromorphically on the
small parameter ε near ε = 0. Moreover, the technique was applied to prove that the
restricted three-body problem is not meromorphically integrable in both the planar
and spatial cases even if the first integrals are not required to depend meromorphically
on the parameter, the mass ratio of the primaries. The basic idea used there was similar
to that of Morales-Ruiz (2002), who studied time-periodic Hamiltonian perturbations
of single-degree-of-freedom Hamiltonian systems and showed a relationship of their
nonintegrabilitywith a version due toZiglin (1982) of theMelnikovmethod (Melnikov
1963). The version of the Melnikov method enables us to detect transversal self-
intersection of complex separatrices of periodic orbits unlike the standard version
(Guckenheimer and Holmes 1983; Melnikov 1963; Wiggins 1990). More concretely,
under some restrictive conditions, he essentially proved that they are meromorphically
nonintegrable when the small parameter is taken as one of the state variables if the
Melnikov functions are not identically zero, based on a generalized version due to
Ayoul and Zung (2010) of the Morales-Ramis theory (Morales-Ruiz 1999; Morales-
Ruiz and Ramis 2001). Their generalized versions for the Morales-Ramis theory and
its extension, the Morales-Ramis-Simó theory (Morales-Ruiz et al. 2007), were also
used in Yagasaki (2021a). The developed technique was also applied to give a new
proof of the result of Poincaré (1992) on the restricted three-body problem in Yagasaki
(2021b).

In this paper, we continue to demonstrate the technique of Yagasaki (2021a) for
some classes of dynamical systems. In particular, we consider time-periodic pertur-
bations of single-degree-of-freedom Hamiltonian systems and discuss a relationship
of the technique with the subharmonic Melnikov method (Guckenheimer and Holmes
1983; Wiggins 1990; Yagasaki 1996), which enables us to detect the existence of
periodic orbits and their stability and bifurcations, likeMorales-Ruiz (2002) for homo-
clinic orbits. So we show that they are nonintegrable in the meaning stated above if
certain complex integrals similar to the subharmonic Melnikov functions are not zero.
See Theorem 3.1 for the precise statement. The similarity of this result to that of
Morales-Ruiz (2002) is very remarkable.

We also illustrate the theory for the periodically forced Duffing oscillator

ẅ + εδẇ + aw + w3 = εβ cos νt, w ∈ R,

or as a first-order system

ẋ1 = x2, ẋ2 = −ax1 − x31 + ε(β cos νt − δx2), x1, x2 ∈ R, (1.3)

where a = ±1 or 0, and β, ν > 0 and δ ≥ 0 are constants. It is well known that Duffing
(1918) studied this type of system early in the twentieth century, but it is interesting that
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Poincaré (1992) also discussed the existence of periodic solutions for δ = 0 about the
end of the nineteenth century in hismemoir. See also Sect. 5.6 ofBarrow-Green (1996).
Holmes (1979) used the homoclinic Melnikov method (Guckenheimer and Holmes
1983;Melnikov1963;Wiggins 1990) to prove the occurrence of transverse intersection
between the stable and unstable manifolds of a periodic orbit near (x1, x2) = (0, 0) for
a = −1 with ε > 0 sufficiently small. The occurrence of such transverse intersection
implies, e.g., by Theorem 3.10 of Moser (1973), the nonexistence of real-analytic
first integrals near the unperturbed homoclinic orbit. Motonaga and Yagasaki (2021b)
recently showed the real-analytic nonintegrability of (1.3) with a = −1 near the
unperturbed homoclinic orbits in the meaning stated above even when such transverse
intersection does not occur (see Remark 4.6(ii) for more details). Ueda (1978) also
found chaotic motions in both analog and numerical simulations when a = 0, but ε

is not small. Moreover, the rational nonintegrability of the parametric excitation case,
e.g.,

ẋ1 = x2, ẋ2 = ax1 − x31 − δx2 + βx1 cos νt,

was proved inMotonaga and Yagasaki (2018) when eiνt = cos νt + i sin νt is taken as
a state variable. So the Duffing oscillator (1.3) has been believed to be nonintegrable
besides near the unperturbed homoclinic orbits for a = −1, but its proof has not
been given. We show that the system (1.3) is meromorphically nonintegrable near the
resonant periodic orbits in the meaning stated above when a = ±1 and 0.

Moreover, we give two more concrete examples. The first one is second-order
coupled oscillators of which the special case is often referred to as the second-order
Kuramoto model (Rodrigues et al. 2016). The second one is a two-dimensional system
of pendulum-type subjected to a constant torque. We show that it is not integrable as
a system on C × (C/2πZ) although it has a first integral as a system on R

2 or C2.
This paper is organized as follows: In Sect. 2, we review the technique of Yagasaki

(2021a) in a necessary context. In Sect. 3, we apply the technique to time-periodic
perturbations of single-degree-of-freedom Hamiltonian systems and discuss a rela-
tionship of the result with the subharmonic Melnikov method. We illustrate the theory
for the periodically forced Duffing oscillator (1.3) in Sect. 4. Finally, we provide the
additional two examples in Sect. 5.

2 General Technique

In this section, we review the technique of Yagasaki (2021a) for the nonintegrability
of (1.1). We make the following assumption on the unperturbed system (1.2):

(A1) For some I ∗ ∈ R
�, a resonance of multiplicity m − 1,

dimQ〈ω1(I
∗), . . . , ωm(I ∗)〉 = 1,

occurs with ω(I ∗) �= 0, i.e., there exists a constant ω∗ > 0 such that

ω(I ∗)
ω∗ ∈ Z

m \ {0}.
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Fig. 1 Assumption (A2)
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Note that we can replace ω∗ with ω∗/k for any k ∈ N in (A1). We refer to the m-
dimensional torus T ∗ = {(I ∗, θ) | θ ∈ T

m} as the resonant torus and to periodic
orbits (I , θ) = (I ∗, ω(I ∗)t + θ0), θ0 ∈ T

m , on T ∗ as the resonant periodic orbits.
Let T ∗ = 2π/ω∗. We also make the following assumption.

(A2)For some θ ∈ T
m , there exists a closed loop γθ in a domain including (0, T ∗) ⊂ R

in C such that γθ ∩ (iR ∪ (T ∗ + iR)) = ∅ and

I (θ) := Dω(I ∗)
∫

γθ

h(I ∗, ω(I ∗)τ + θ; 0)dτ (2.1)

is not zero. See Fig. 1

Note that the condition γθ ∩ (iR ∪ (T ∗ + iR)) = ∅ is not essential in (A2), since it
always holds by replacing ω∗ with ω∗/k for sufficiently large k ∈ N and shifting the
time variable by a positive constant if necessary. We can prove the following theorem
which guarantees that conditions (A1) and (A2) are sufficient for nonintegrability of
(1.1) in the meaning stated in Sect. 1.

Theorem 2.1 Let� be any domain inC/T ∗
Z containingR/T ∗

Z and γθ . Suppose that
assumptions (A1) and (A2) hold for some θ0 ∈ T

m. Then the system (1.1) is not mero-
morphically integrable in the Bogoyavlenskij sense near the resonant periodic orbit
(I , θ) = (I ∗, ω(I ∗)τ + θ0) with τ ∈ � such that the first integrals and commutative
vector fields also depend meromorphically on ε near ε = 0. Moreover, if (A2) holds
for θ ∈ , where  is a dense set in T

m, then the conclusion holds for any resonant
periodic orbit on the resonant torus T ∗.

Note that the first integrals and commutative vector fields are assumed to depend
meromorphically not only on ε but also on the state variables (I , θ) in the conclusion
of Theorem 2.1. See Sect. 2 of Yagasaki (2021a) for a proof of Theorem 2.1. A more
general result was obtained there.

Systems of the form (1.1) have attracted much attention, especially when they are
Hamiltonian. See (Arnold 1989; Arnold et al. 2006; Kozlov 1996) and references
therein for more details. In particular, Kozlov (1996) extended the famous result of
Poincaré (1890, 1992) for Hamiltonian systems to the general case of (1.1) and gave
sufficient conditions for nonexistence of additional real-analytic first integrals depend-
ing analytically on ε near ε = 0. See also Arnold et al. (2006); Kozlov (1983) for
his result in Hamiltonian systems. Moreover, Motonaga and Yagasaki (2021b) gave
sufficient conditions for the system (1.1) to be real-analytically nonintegrable in the
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Bogoyavlenskij sense such that the first integrals and commutative vector fields also
depend real-analytically on ε near ε = 0. Some details on these results are provided
in our context and compared with Theorem 2.1 in Appendix A. We remark that the
results of Kozlov (1996), Motonaga and Yagasaki (2021b), Poincaré (1890, 1992) say
nothing about the integrability of (1.1) under the hypotheses of Theorem 2.1.

3 Time-Periodic Perturbations of Single-Degree-of-Freedom
Hamiltonian Systems

We next apply the technique of Sect. 2 to time-periodic perturbations of single-degree-
of-freedom Hamiltonian systems, and discuss a relationship of our result with the
subharmonic Melnikov method (Guckenheimer and Holmes 1983; Wiggins 1990;
Yagasaki 1996), as in the related work (Motonaga and Yagasaki 2021a, 2021b).

Consider two-dimensional systems of the form

ẋ = JDH(x) + εu(x, νt), x ∈ R
2, (3.1)

where ν > 0 is a constant, H : R2 → R and u : R2 × S
1 are analytic, and J is the

2 × 2 symplectic matrix,

J =
(

0 1
−1 0

)
.

When ε = 0, Eq. (3.1) becomes a planar Hamiltonian system

ẋ = JDx H(x) (3.2)

with a Hamiltonian function H(x). Letting ψ = νt mod 2π , we rewrite (3.1) as an
autonomous system

ẋ = JDH(x) + εu(x, ψ), ψ̇ = ν, (3.3)

and discuss its meromorphic Bogoyavlenskij-nonintegrability under condition that the
first integrals and commutative vector fields also depend meromorphically on ε near
ε = 0, as in Theorem 2.1.

We make the following assumptions on the unperturbed system (3.2):

(M1) There exists a one-parameter family of periodic orbits xα(t), α ∈ (α1, α2), with
period T α > 0 for some α1 < α2 (see Fig. 2);

(M2) xα(t) is analytic with respect to α ∈ (α1, α2).

Note that in assumption (M1) xα(t) is automatically analytic with respect to t since
the vector field of (3.2) is analytic. Following an approach of Yagasaki (1996), we can
transform (3.1) into the form (1.1) as follows.
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xα (t)

Fig. 2 Assumption (M1)

We first assume that dT α/dα �= 0 and define the scalar action variable I for each
periodic orbit xα(t) = (xα

1 (t), xα
2 (t)) as

I = 1

2π

∫
xα

x2dx1 = 1

2π

∫ T α

0
xα
2 (t)ẋα

1 (t)dt (3.4)

in the standard manner (see, e.g., Chapter 10 of Arnold (1989)). The action variable
I can thus be determined only by α. We assume that dα/dI > 0 without loss of
generality, and apply the implicit function theorem to (3.4) to represent α as a function
of I : α = α(I ). We can show that the symplectic transformation from (I , θ1) to x is
given by

x = xα(I )
(

θ1

�(I )

)
, (3.5)

where

�(I ) = 2π

T α(I )
.

We see that d�/dI �= 0 at I = I α since dT α/dα �= 0. Moreover, we have the
relations

Dx I = −J
∂x

∂θ1
, Dxθ1 = J

∂x

∂ I
. (3.6)

Let θ2 = νt mod 2π in (3.1). Using (3.5) and (3.6), we transform (3.1) into

İ = εh(I , θ1, θ2), θ̇1 = �(I ) + εg1(I , θ1, θ2), θ̇2 = ν, (3.7)

where

h(I , θ1, θ2) = 1

�(I )
DH

(
xα(I )

(
θ1

�(I )

))
· u

(
xα(I )

(
θ1

�(I )

)
, θ2

)
,

g1(I , θ1, θ2) = J
∂

∂ I
xα(I )

(
θ1

�(I )

)
· u

(
xα(I )

(
θ1

�(I )

)
, θ2

)
.
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See Sect. 2 of Yagasaki (1996) for the details on these computations. The system (3.7)
has the form (1.1) with � = 1, m = 2 and ω(I ) = (�(I ), ν)T, where the superscript
“T” represents the transpose operator.

We assume that at α = αl/n

2π

T α
= n

l
ν,

where l and n are relatively prime integers, so that assumption (A1) holds with ω∗ =
2π/nT α = ν/l. We define the subharmonic Melnikov function as

Ml/n(φ) =
∫ 2πl/ν

0
DH(xα(t)) · u(xα(t), νt + φ)dt, (3.8)

where α = αl/n . If Ml/n(φ) has a simple zero at φ = φ0 and dT α/dα �= 0, i.e.,
d�(Iα)/dI �= 0, then there exists a periodic orbit near (x, φ) = (xα(t), νt + φ0) in
(3.1). See Theorem 3.1 of Yagasaki (1996). A similar result is also found in Guck-
enheimer and Holmes (1983); Wiggins (1990). The stability of the periodic orbit can
also be determined easily (Yagasaki 1996). Moreover, several bifurcations of periodic
orbits when d�(Iα)/dI �= 0 or not were discussed in Yagasaki (1996, 2002, 2003).

Noting that �(Iα) = nν/l at α = αl/n and applying Theorem 2.1 to (3.7), we
obtain the following.

Theorem 3.1 Suppose that at α = αl/n, dT α/dα �= 0 and there exists a closed loop
γφ in a domain including (0, 2πl/ν) in C such that γφ ∩ (iR ∪ (2πl/ν + iR)) = ∅
and

Î (φ) =
∫

γφ

DH(xα(τ )) · u (
xα(τ ), ντ + φ

)
dτ (3.9)

is not zero for some φ = φ0 ∈ S
1. Then the system (3.7), equivalently (3.3), is not

meromorphically integrable in the meaning of Theorem 2.1 near the resonant periodic
orbit (x, φ) = (xα(t), νt + φ0) with α = αl/n on any domain �̂ in C/(2πl/ν)Z

containing R/(2πl/ν)Z and γφ . Moreover, if the integral Î (φ) is not zero for any
φ ∈ ̂, where ̂ is a dense set of S1, then the conclusion holds for any periodic orbit
on the resonant torus T ∗ = {(xα(τ ), ντ + φ) | τ ∈ �̂, φ ∈ S

1, α = αl/n}.
Remark 3.2 (i) We see that when the closed loop γφ can be taken independently of

φ, the integral Î (φ) is an analytic function of φ, so that by the identity theorem
(e.g., Theorem 3.2.6 of Ablowitz and Fokas (2003)) it is not zero on a dense set
of S1 if it is not identically zero.

(ii) LetU be a neighborhood of α = α0 ∈ (α1, α2). From Theorem A.2, we obtain the
following for (3.1) (see Theorem 5.2 of Motonaga and Yagasaki (2021b)): If there
exists a key set D ⊂ DR := {αl/n ∈ U | l, n ∈ N are relatively prime} for Cω(U )

such that Ml/n(φ) is not constant for αl/n ∈ D, then for |ε| �= 0 sufficiently small
the system (3.1) is not real-analytically integrable in the meaning of Theorem A.2
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near {xα(t) | t ∈ [0, T α)} × S
1 with α = α0. See Appendix A for the definition

of a key set. Note that DR is a key set for Cω(U ).

Note that the integrand in (3.9) is the same as in theMelnikov function (3.8) although
the path of integration is different. An integral similar to (3.9) for not periodic but
homoclinic orbits was used in Morales-Ruiz (2002); Ziglin (1982).

4 Periodically Forced Duffing oscillator

Wenowconsider the periodically forcedDuffingoscillator (1.3) and applyTheorem3.1.
When ε = 0, Eq. (1.3) becomes a single-degree-of-freedom Hamiltonian system with
the Hamiltonian

H = 1

2
ax21 + 1

4
x41 + 1

2
x22 ,

and it is a special case of (3.2). Letting ψ = νt mod 2π , we also rewrite (1.3) as an
autonomous system

ẋ1 = x2, ẋ2 = −ax1 − x31 + ε(β cos νt − δx2), ψ̇ = ν, (4.1)

as in (3.3).

4.1 Case of a = 1

We begin with the case of a = 1. The phase portraits of (1.3) with ε = 0 are shown
in Fig. 3. In particular, there exists a one-parameter family of periodic orbits

xk(t) =
( √

2k√
1 − 2k2

cn

(
t√

1 − 2k2

)
,

−
√
2k

1 − 2k2
sn

(
t√

1 − 2k2

)
dn

(
t√

1 − 2k2

))
, k ∈ (

0, 1/
√
2
)
,

and their period is given by T k = 4K (k)
√
1 − 2k2 (seeYagasaki (1994, 1996)), where

sn, cn and dn represent the Jacobi elliptic functions, k is the elliptic modulus and K (k)
is the complete elliptic integral of the first kind. See, e.g., Byrd and Friedman (1954);
Whittaker and Watson (1927) for general information on elliptic functions. We see
that dT k/dk > 0 for k ∈ (0, 1/

√
2). Assume that the resonance condition

nT k = 2πl

ν
, i.e., ν = πl

2nK (k)
√
1 − 2k2

, (4.2)
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Fig. 3 Phase portraits of (1.3)
with ε = 0 and a = 1

-3
-6

0

0 3

6

x1

x 2

holds at k = kl/n for l, n > 0 relatively prime integers. We compute the subharmonic
Melnikov function (3.8) for xk(t) as

Ml/n(φ) =
∫ 2πl/ν

0
xk2 (t)(−δxk2 (t) + β cos(νt + φ))dt

= − δ J1(k, n) + β J2(k, l, n) sin φ,

where

J1(k, n) = 8n[(2k2 − 1)E(k) + k′2K (k)]
3(1 − 2k2)3/2

,

J2(k, l, n) =
⎧⎨
⎩
2
√
2πν sech

(
πlK (k′)
2K (k)

)
(for n = 1 and l odd);

0 (for n �= 1 or l even).

Here E(k) is the complete elliptic integral of the second kind and k′ = √
1 − k2 is the

complementary ellipticmodulus. See alsoYagasaki (1994, 1996) for the computations
of the Melnikov function.

On the other hand, we write the integral (3.9) as

Î (φ) = − 2k2δ

(1 − 2k2)2

∫
γφ

sn2
(

τ√
1 − 2k2

)
dn2

(
τ√

1 − 2k2

)
dτ

−
√
2kβ

1 − 2k2

∫
γφ

sn

(
τ√

1 − 2k2

)
dn

(
τ√

1 − 2k2

)
cos(ντ + φ)dτ. (4.3)
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Letting γφ be a circle centered at τ = i
√
1 − 2k2K (k′)with a sufficiently small radius,

we compute

Î (φ) = −2
√
2πνβ

(
cosh

(
πlK (k′)
2nK (k)

)
sin φ − i sinh

(
πlK (k′)
2nK (k)

)
cosφ

)
, (4.4)

which is not zero for any φ ∈ S
1. See Appendix B for the derivation of (4.4). Applying

Theorem 3.1, we obtain the following.

Proposition 4.1 Let �̂ be a domain in C/(2πl/ν)Z containing R/(2πl/ν)Z and
τ = i

√
1 − 2k2K (k′). The periodically forced Duffing oscillator (4.1) with a = 1

is meromorphically nonintegrable in the meaning of Theorem 2.1 near any periodic
orbit on the resonant torus T k = {(xk(τ ), ντ + φ) | τ ∈ �̂, φ ∈ S

1, k = kl/n} for
l, n > 0 relatively prime integers.

Remark 4.2 (i) If β = 0, then Proposition 4.1 says nothing about the nonintegrability
of (4.1) since the integral (4.4) is identically zero.

(ii) For any neighborhoodU of k ∈ (0, 1/
√
2) there is not a key set D ⊂ U forCω(U )

such that Ml/n(φ) is not constant for k ∈ D satisfying (4.2). Hence, Theorem A.2
is not applicable. See also Remark 3.2(ii).

4.2 Case of a = 0

We turn to the case of a = 0 in (1.3) or (4.1). The phase portraits of (1.3) with
ε = 0 are shown in Fig. 4. In particular, there exists a one-parameter family of periodic
orbits

xα(t) =(α cn αt,−α2 sn αt dn αt), α ∈ (
0,∞),

Fig. 4 Phase portraits of (1.3)
with ε = 0 and a = 0

0

6

x 2

-6
-3 0 3

x1
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and their period is given by T α = 4K (1/
√
2)/α, where the elliptic modulus in the

Jacobi elliptic functions is k = 1/
√
2 and K (1/

√
2) = 1.854 . . .. Assume that the

resonance condition

nT α = 2πl

ν
, i.e., ν = πlα

2nK (1/
√
2)

, (4.5)

holds at α = αl/n for l, n > 0 relatively prime integers. As in the case of a = 1, we
compute the subharmonic Melnikov function (3.8) for xk(t) as

Ml/n(φ) =
∫ 2πl/ν

0
xα
2 (t)(−δxα

2 (t) + β cos(νt + φ))dt

= − δ J1(α, n) + β J2(α, l, n) sin φ,

where

J1(α, n) = 4nα3K (1/
√
2)

3
,

J2(α, l, n) =
⎧⎨
⎩
2
√
2πν sech

(
πl

2

)
(forn = 1 and l odd);

0 (for n �= 1 or l even).

On the other hand, we write the integral (3.9) as

Î (φ) = −α4δ

∫
γφ

sn2 αt dn2 ατdτ − α2β

∫
γφ

sn ατ dn ατ cos(ντ + φ)dτ.

We take a circle centered at τ = iαK (1/
√
2) with a sufficiently small radius as γφ ,

and compute

Î (φ) = −2
√
2πνβ

(
cosh

(
πl

2n

)
sin φ − i sinh

(
πl

2n

)
cosφ

)
, (4.6)

which is not zero for any φ ∈ S
1, as in (4.4).

Proposition 4.3 Let �̂ be a domain in C/(2πl/ν)Z containing R/(2πl/ν)Z and
τ = iαK (1/

√
2). The periodically forced Duffing oscillator (4.1) with a = 0 is

meromorphically nonintegrable in the meaning of Theorem 2.1 near any periodic
orbit on the resonant torus T α = {(xα(τ ), ντ + φ) | τ ∈ �̂, φ ∈ S

1, α = αl/n} for
l, n > 0 relatively prime integers.

Remark 4.4 (i) As in Remark 4.2(i), if β = 0, then Proposition 4.3 says nothing about
the nonintegrability of (4.1) since the integral (4.6) is identically zero.

(ii) For any neighborhood U of α ∈ (0,∞) there is not a key set D ⊂ U for Cω(U )

such that Ml/n(φ) is not constant for α ∈ D satisfying (4.5). Hence, Theorem A.2
is not applicable, as in Remark 4.2(ii).
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Fig. 5 Phase portraits of (1.3)
with ε = 0 and a = −1

0

2

-2 0 2
-2

x 2

x1

4.3 Case of a = −1

We turn to the case of a = −1 in (1.3) or (4.1). The phase portraits of (1.3) with
ε = 0 are shown in Fig. 5. In particular, there exist a pair of homoclinic orbits

xh±(t) = (±√
2 sech t,∓√

2 sech t tanh t),

a pair of one-parameter families of periodic orbits

xk±(t) =
(

±
√
2√

2 − k2
dn

(
t√

2 − k2

)
,

∓
√
2k2

2 − k2
sn

(
t√

2 − k2

)
cn

(
t√

2 − k2

))
, k ∈ (0, 1),

inside each of them, and a one-parameter periodic orbits

x̃ k(t) =
( √

2k√
2k2 − 1

cn

(
t√

2k2 − 1

)
,

−
√
2k

2k2 − 1
sn

(
t√

2k2 − 1

)
dn

(
t√

2k2 − 1

))
, k ∈ (

1/
√
2, 1

)
,

outside of them. The periods of xk±(t) and x̃ k(t) are given by T k = 2K (k)
√
2 − k2 and

T̃ k = 4K (k)
√
2k2 − 1, respectively (seeGreenspan andHolmes 1983;Guckenheimer

and Holmes 1983; Wiggins 1990). We see that dT k/dk > 0 and dT̃ k/dk > 0 for
k ∈ (0, 1) and (1/

√
2, 1), respectively. Note that xk±(t) and x̃ k(t) approach xh±(t) as

k → 1.
Assume that the resonance conditions

nT k = πl

ν
, i.e., ν = πl

nK (k)
√
2 − k2

, (4.7)
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and

nT̃ k = 2πl

ν
, i.e., ν = πl

2nK (k)
√
2k2 − 1

, (4.8)

hold at k = kl/n with l, n > 0 relatively prime integers for xk±(t) and x̃ k(t), respec-
tively. We compute the subharmonic Melnikov function (3.8) as

Ml/n
± (τ ) = −δ J1(k, n) ± β J2(k, l, n) sin τ

and

M̃l/n(τ ) = −δ J̃1(k, n) + β J̃2(k, l, n) sin τ,

for xk±(t) and x̃ k(t), respectively, where

J1(k, n) = 4n[(2 − k2)E(k) − 2k′2K (k)]
3(2 − k2)3/2

,

J2(k, l, n) =
⎧⎨
⎩

√
2πν sech

(
πlK (k′)
K (k)

)
(forn = 1);

0 (forn �= 1),

J̃1(k, n) = 8n[(2k2 − 1)E(k) + k′2K (k)]
3(2k2 − 1)3/2

,

J̃2(k, l, n) =
⎧⎨
⎩
2
√
2πν sech

(
πlK (k′)
2K (k)

)
(for n = 1 and l odd);

0 (for n �= 1 or l even).

See also Greenspan and Holmes (1983); Guckenheimer and Holmes (1983); Wiggins
(1990) for the computations of the Melnikov functions.

On the other hand, we write the integral (3.9) as

Î (φ) = − 2k4δ

(2 − k2)2

∫
γφ

sn2
(

τ√
2 − k2

)
cn2

(
τ√

2 − k2

)
dτ

∓
√
2k2β

2 − k2

∫
γφ

sn

(
τ√

2 − k2

)
cn

(
τ√

2 − k2

)
cos(ντ + φ)dτ (4.9)

and

Î (φ) = − 2k2δ

(2k2 − 1)2

∫
γφ

sn2
(

τ√
2k2 − 1

)
dn2

(
τ√

2k2 − 1

)
dτ

−
√
2kβ

2k2 − 1

∫
γφ

sn

(
τ√

2k2 − 1

)
dn

(
τ√

2k2 − 1

)
cos(ντ + φ)dτ (4.10)
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for xk±(t) and x̃ k(t), respectively. We take circles centered at τ = i
√
2 − k2K (k′) and

τ = i
√
2k2 − 1K (k′)with sufficiently small radii as γφ , and compute (4.9) and (4.10)

as

Î (φ) = ∓2
√
2πνβ

(
cosh

(
πlK (k′)
nK (k)

)
sin φ − i sinh

(
πlK (k′)
nK (k)

)
cosφ

)
, (4.11)

and

Î (φ) = −2
√
2πνβ

(
cosh

(
πlK (k′)
2nK (k)

)
sin φ − i sinh

(
πlK (k′)
2nK (k)

)
cosφ

)
, (4.12)

respectively. See Appendix C for the derivation of (4.11). The expression (4.12) is
derived as in (4.4). Note that the integrals (4.11) and (4.12) are not zero for any
φ ∈ S

1. Applying Theorem 3.1, we obtain the following.

Proposition 4.5 Let �̂ be a domain in C/(2πl/ν)Z containing R/(2πl/ν)Z and
τ = i

√
2 − k2K (k′) (resp. τ = i

√
2k2 − 1K (k′)). The periodically forced Duff-

ing oscillator (4.1) with a = −1 is meromorphically nonintegrable in the meaning of
Theorem 2.1 near any periodic orbit on the resonant torus T k = {(xk(τ ), ντ + φ) |
τ ∈ �̂, φ ∈ S

1, k = kl/n} (resp. T k = {(x̃ k(τ ), ντ + φ) | τ ∈ �̂, φ ∈ S
1, k = kl/n})

for l, n > 0 relatively prime integers.

Remark 4.6 (i) As Remarks 4.2(i) and 4.4(i), if β = 0, then Propositions 4.5 says
nothing about the nonintegrability of (4.1) since the integral (4.4) is identically
zero.

(ii) Since for any neighborhood U of k ∈ (0, 1) (resp. k ∈ (1/
√
2, 1)) there is not

a key set D ⊂ U for Cω(U ) such that Ml/n(φ) (resp. M̃l/n(φ)) is not constant
for k ∈ U satisfying (4.7) (resp. (4.8)), Theorem A.2 is not applicable, as in
Remarks 4.2(ii) and 4.4(ii). On the other hand, for any neighborhood U of k = 1
there is a key set D ⊂ U for Cω(U ) such that Ml/n(φ) (resp. M̃l/n(φ)) is not
constant for k ∈ D satisfying (4.7) (resp. (4.8)). Hence, TheoremA.2 is applicable
to show that the periodically forced Duffing oscillator (4.1) with a = −1 is real-
analytically nonintegrable near the surface ({xh(t) | t ∈ R} ∪ {0}) × S

1.

5 Additional Examples

We give two more examples to illustrate Theorem 2.1.

5.1 Second-order Coupled Oscillators

Let m = � and consider

İ j = ε

(
−δ I j + � j + β

�∑
k=1

sin(θk − θ j )

1 − κ cos(θk − θ j )

)
, θ̇ j = I j ,
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j = 1, . . . , �, (5.1)

where δ, β, κ,� j > 0, j = 1, . . . , �, are constants such that κ < 1. Equation (5.1) is
rewritten in a system of second-order differential equations as

θ̈ j + εδθ̇ = ε

(
� j + β

�∑
l=1

sin(θl − θ j )

1 − κ cos(θl − θ j )

)
, j = 1, . . . , �,

which is often referred to as second-order Kuramoto model (Rodrigues et al. 2016)
when κ = 0. When δ,� j = 0, j = 1, . . . , �, the system (5.1) is an �-degree-of-
freedom Hamiltonian system with the Hamiltonian

H(I , θ) = 1
2 |I |2 + εβ

κ

�∑
j=2

j−1∑
l=1

log(1 − κ cos(θl − θ j )).

Henceforth we only treat a special case of condition (A1) in which

2I1 = I2 = · · · = I� �= 0

although infinitely many resonances of multiplicity � − 1 can occur in (5.1).
Let ω∗ = I1, so that T ∗ = 2π/I1. Assume that

|θ j − θk | �= |θ1 − θ2| for ( j, k) �= (1, 2),

and let γθ be a closed loop with a center at

τ = θ1 − θ2

ω∗ + i

ω∗ arccosh

(
1

κ

)
=: τ ∗,

and a sufficiently small radius. Using the method of residues, we compute the first and
second components of (2.1) as

I1(θ) = β

∫
γθ

sin(ω∗τ + θ2 − θ1)

1 − κ cos(ω∗τ + θ2 − θ1)
dτ = 2π iκω∗β

and

I2(θ) = −β

∫
γθ

sin(ω∗τ + θ2 − θ1)

1 − κ cos(ω∗τ + θ2 − θ1)
dτ = −2π iκω∗β,

respectively, while its other components are zero since the integrands are analytic
inside of the loop γθ . Applying Theorem 2.1, we obtain the following.
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Proposition 5.1 Let � be a domain in C/T ∗
Z containing R/T ∗

Z and τ = τ ∗. The
system (5.1) is nonintegrable near any periodic orbit on

{(I , ω∗τ + θ) | τ ∈ �, I ∈ R
�, θ ∈ T

�, 2I1 = I2 = · · · = I� �= 0}

in the meaning of Theorem 2.1.

5.2 Pendulum-Type Oscillator with a Constant Torque

We finally set � = m = 1 and consider the two-dimensional system

İ = ε

(
sin θ

1 − κ cos θ
+ 1

)
, θ̇ = I , (5.2)

where κ ∈ (0, 1) is a constant. When κ = 0, Eq. (5.2) represents an equation of
motion for the pendulum subjected to a constant torque. A similar example was treated
in Motonaga and Yagasaki (2021b). Assumption (A1) holds for any I ∗ = I �= 0 as
ω∗ = I and T ∗ = 2π/I . Let γθ be a closed loop with a center at

τ = −θ

I
+ i

I
arccosh

(
1

κ

)
=: τ ∗,

and a sufficiently small radius, as in Sect. 5.2. Noting that Dω(I ) = 1 and using the
method of residues, we compute (2.1) as

I (θ) =
∫

γθ

sin(I τ + θ)

1 − κ cos(I τ + θ)
dτ = 2π iκω∗.

Applying Theorem 2.1, we obtain the following.

Proposition 5.2 Let � be a domain in C/T ∗
Z containing R/T ∗

Z and τ = τ ∗. The
system (5.2) is nonintegrable near any periodic orbit {(I , ω∗τ + θ | τ ∈ �} for any
I ∈ R and θ ∈ S

1 in the meaning of Theorem 2.1.

We easily see that the system (5.2) has the first integral

F1(I , θ) = 1
2 I

2 − ε(log(1 − κ cos θ) + θ)

and it is integrable as a system on R×R, although F1(I , θ) is not even a function on
R × S

1.
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Appendix A. Previous related results for (1.1)

In this appendix, we review some previous related results for the integrability of (1.1).
We begin with the work of Kozlov (1996).

We first expand h(I , θ; 0) in Fourier series as

h(I , θ; 0) =
∑
r∈Zm

ĥr (I ) exp(ir · θ),

where ĥr (I ), r ∈ Z
m , are the Fourier coefficients, and assume the following for (1.1):

(K1) The system (1.1) has s first integrals Fj (I , θ; ε), j = 1, . . . , s, which are real-
analytic in (I , θ, ε);

(K2) If r ∈ Z
m and r · ω(I ) = 0 for any I ∈ R

�, then r = 0.

Under assumptions (K1) and (K2), we can show that Fj (I , θ; 0), j = 1, . . . , s, are
independent of θ (see Lemma 1 in Sect. 1 of Chapter IV of Kozlov (1996)), and write
Fj0(I ; 0) = Fj (I , θ; 0) and F0(I ) = (F10(I ), . . . , Fs0(I )). We refer to Ps ⊂ R

� as
a Poincaré set if for each I ∈ Ps there exists linearly independent vectors r j ∈ Z

m ,
j = 1, . . . , � − s, such that

(i) r j · ω(I ) = 0, j = 1, . . . , � − s;
(ii) ĥr j (I ), j = 1, . . . , � − s, are linearly independent.

Let U be a domain in R
�. A set  ⊂ U is called a key set (or uniqueness set) for

Cω(U ) if any analytic function vanishing on vanishes onU . For example, any dense
set in U is a key set for Cω(U ). In this situation, we can prove the following theorem
(see Sect. 1 of Chapter IV of Kozlov (1996) for its proof).

Theorem A.1 (Kozlov) Suppose that assumptions (K1) and (K2) hold, the Jacobian
matrix DF0(I ) has a maximum rank at a point I ∗ ∈ R

� and a Poincaré set Ps ⊂ U
is a key set for Cω(U ), where U is a neighborhood of I ∗ in R�. Then the system (1.1)
has no first integral which is real-analytic in (I , θ, ε) and functionally independent of
Fj (I , θ; ε), j = 1, . . . , s, in U × T

m near ε = 0.

A version of Theorem A.1 for the Hamiltonian case � = m was given in Kozlov
(1983) earlier (see also Theorem 7.1 of Arnold et al. (2006)). When s = 0 in (K1),
Theorem A.1 means that under the hypotheses there exists no first integral which is
real-analytic in (I , θ, ε). When s = 1 in (K1), which always occurs if the system
(1.1) is Hamiltonian, it means that under the hypotheses, which hold for �,m = 2
if besides (K1) and (K2) there exists a key set P1 for Cω(U ) with DF10(I ) �= 0 at
a point of U such that r · ω(I ) = 0 and ĥr (I ) �= 0 for some r ∈ Z

2 on P1, there
exists no first integral which is real-analytic in (I , θ, ε) and functionally independent
of F1(I , θ, ε). In the Hamiltonian case, the conclusion implies that the system (1.1)
is not Liouville-integrable in such a meaning of Theorem 2.1. However, in the non-
Hamiltonian case, this is not generally true: it may be Bogoyavlenskij-integrable since
it may have m + � − 1 commutative vector fields satisfying Definition 1.1. Thus, it
is difficult from Theorem A.1 to say anything about Bogoyavlenskij-integrability of
non-Hamiltonian systems directly.
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On the other hand, Motonaga and Yagasaki (2021b) recently discussed noninte-
grability of perturbations of general analytically integrable systems such that the first
integrals and commutative vector fields depend analytically on the small parameter,
based on the result of Motonaga and Yagasaki (2021a). Let U be a domain in R

�, as
above. We assume the following:

(MY1) A resonance of multiplicity m − 1,

dimQ〈ω1(I ), . . . , ωm(I )〉 = 1,

occurs with ω(I ) �= 0 for I ∈ DR, where DR is a key set for Cω(U ).
(MY2) For some I ∗ ∈ U rank Dω(I ∗) = �.

Assumption (MY1) is similar to assumption (A1) in Sect. 1 but more restrictive. We
easily see that if rank Dω( Ī ) = m for some Ī ∈ R

�, then assumption (MY1) as well
as (K2) hold for a neighborhood U of Ī in R

�. In (MY1) we take a constant TI > 0
for I ∈ DR such that

ω j (I )TI ∈ 2πZ, j = 1, . . . ,m.

Let

ĪI (θ) =
∫ TI

0
h(I , ω(I )τ + θ; 0)dτ. (A.1)

Their result is stated for (1.1) as follows.

Theorem A.2 (Motonaga and Yagasaki) Suppose that assumptions (K2), (MY1) and
(MY2) hold. If there exists a key set D ⊂ DR for Cω(U ) such that ĪI (θ) is not constant
for I ∈ D, then for |ε| �= 0 sufficiently small the system (1.1) is not real-analytically
integrable in the Bogoyavlenskij sense in U × T

m such that the first integrals and
commutative vector fields also depend real-analytically on ε near ε = 0.

Remark A.3 (i) If assumption (A1) with rank Dω(I ∗) = m holds, then we can take a
neighborhood of the resonant torus T ∗ as U × T

m in Theorem A.2, like Theo-
rem 2.1. See Sect. 2 of Motonaga and Yagasaki (2021b) for the details.

(ii) The integral can also be expressed by the Fourier coefficient ĥr (I ), r ∈ Z
m . See

Sect. 4 of Motonaga and Yagasaki (2021b) for the details.

Using Theorem A.2, we can discuss Bogoyavlenskij-integrability of (1.1) even in
the non-Hamiltonian case. However, to determine whether a specific system of the
form (1.1) is nonintegrable in the meaning of Theorem A.2 or not, we need to show
that ĪI (θ) is not constant for infinitely many values of I since the key set D is an
infinite set. See Sect. 4 of Motonaga and Yagasaki (2021b) for more details.
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Appendix B. Derivation of (4.4)

We use the method of residues and compute the integral (4.3). We begin with the first
term in (4.3). Letting s = 1/ sn ζ , we have

∫
sn2 ζ dn2 ζ dζ = −

∫
1

s4

√
k2 − s2

1 − s2
ds (B.1)

from the basic properties of the Jacobi elliptic functions,

d

dζ
sn ζ = cn ζ dn ζ, cn2 ζ = 1 − sn2 ζ, dn2 ζ = 1 − k2 sn2 ζ. (B.2)

Obviously, the integrand in the right-hand side of (B.1) has a pole of order 4 at s = 0.
Since s = 1/ sn ζ = 0 when ζ = i K (k′) and

d3

ds3

√
k2 − s2

1 − s2
= 0

at s = 0, we obtain

∫
γ̂φ

sn2 ζ dn2 ζ dζ = −
∫

|s|=ρ

1

s4

√
k2 − s2

1 − s2
ds = 0

by the method of residues, where γ̂φ = {ζ ∈ C | ζ/
√
1 − 2k2 = γφ} and ρ > 0 is

sufficiently small.
We turn to the second term in (4.3). We have

d

dζ
cn ζ = − sn ζ dn ζ = i

k(ζ − i K (k′))2
+ O(1)

near ζ = i K (k′) since

cn ζ = − i

k(ζ − i K (k′))
+ O(1).

Hence,

sn ζ dn ζ cos
(√

1 − 2k2 νζ
)

= − i cosh
(√

1 − 2k2 νK (k′)
)

k(ζ − i K (k′))2
− ν

√
1 − 2k2 sinh

(√
1 − 2k2 νK (k′)

)
k(ζ − i K (k′))

+ O(1)
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near ζ = i K (k′), so that

∫
γ̂φ

sn ζ dn ζ cos
(√

1 − 2k2 νζ
)
dζ = − 2π iν

√
1 − 2k2

k
sinh

(
πlK (k′)
2nK (k)

)
,

where we have used the relation (4.2). Similarly,

∫
γ̂φ

sn ζ dn ζ sin
(√

1 − 2k2 νζ
)
dζ = 2π iν

√
1 − 2k2

k
cosh

(
πlK (k′)
2nK (k)

)
.

Thus, we obtain (4.4).

Appendix C. Derivation of (4.11)

We use the method of residues and compute the integral (4.9), as in Appendix B. We
begin with the first term in (4.9). Letting s = 1/ sn ζ , we have

∫
sn2 ζ cn2 ζ dζ = −

∫
1

s4

√
1 − s2

k2 − s2
ds (C.1)

by (B.2). Obviously, the integrand in the right-hand side of (C.1) has a pole of order
4 at s = 0. Since s = 1/ sn ζ = 0 when ζ = i K (k′) and

d3

ds3

√
1 − s2

k2 − s2
= 0

at s = 0, we obtain

∫
γ̂φ

sn2 ζ cn2 ζ dζ = −
∫

|s|=ρ

1

s4

√
1 − s2

k2 − s2
ds = 0

by the method of residues, where γ̂φ = {ζ ∈ C | ζ/
√
2 − k2 = γφ} and ρ > 0 is

sufficiently small.
We turn to the second term in (4.9). We have

d

dζ
dn ζ = −k2 sn ζ cn ζ = i

(ζ − i K (k′))2
+ O(1)

near ζ = i K (k′) since

dn ζ = − i

ζ − i K (k′)
+ O(1).
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Hence,

sn ζ cn ζ cos
(√

2 − k2 νζ
)

= − i cosh
(√

2 − k2 νK (k′)
)

k2(ζ − i K (k′))2
− ν

√
2 − k2 sinh

(√
2 − k2 νK (k′)

)
k2(ζ − i K (k′))

+ O(1)

near ζ = i K (k′), so that

∫
γ̂φ

sn ζ cn ζ cos
(√

2 − k2 νζ
)
dζ = − 2π iν

√
2 − k2

k2
sinh

(
πlK (k′)
nK (k)

)
,

where we have used the relation (4.7). Similarly,

∫
γ̂φ

sn ζ cn ζ sin
(√

2 − k2 νζ
)
dζ = 2π iν

√
2 − k2

k2
cosh

(
πlK (k′)
nK (k)

)
.

Thus, we obtain (4.11).
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