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Abstract
In this paper, we study a three-dimensional stochastic vegetation–water model in
arid ecosystems, where the soil water and the surface water are considered. First,
for the deterministic model, the possible equilibria and the related local asymptotic
stability are studied. Then, for the stochastic model, by constructing some suitable
stochastic Lyapunov functions, we establish sufficient conditions for the existence and
uniqueness of an ergodic stationary distribution�(·). In a biological interpretation, the
existence of the distribution�(·) implies the long-termpersistence of vegetation under
certain conditions. Taking the stochasticity into account, a quasi-positive equilibrium
D

∗
related to the vegetation-positive equilibrium of the deterministic model is defined.

By solving the relevant Fokker–Planck equation,we obtain the approximate expression
of the distribution �(·) around the equilibrium D

∗
. In addition, we obtain sufficient

condition RE
0 < 1 for vegetation extinction. For practical application, we further

estimate the probability of vegetation extinction at a given time. Finally, based on some
actual vegetation data from Wuwei in China and Sahel, some numerical simulations
are provided to verify our theoretical results and study the impact of stochastic noise
on vegetation dynamics.
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1 Introduction

Desertification, as a process of land degradation, is formed by human activity struc-
ture and irregular climatic variations under the condition of arid and semi-arid areas
(London and Unep 1994). In recent few decades, land desertification has been one
of the worldwide ecological environmental issues and become increasingly serious
(Hautier et al. 2015). According to statistics reported by the United Nation’s Division
for Sustainable Development (UNDSD), land desertification has led to a decline in
living standards of approximately 25% of the world’s population (Chen et al. 2021;
Dai 2013). Worse yet, the area of semi-arid regions in recent years is at least 7% larger
than that in 1960s (Huang et al. 2016). In particular, the total area of arid and semi-arid
land accounts for about 24.6% of China (Li et al. 2004). Thus, an urgent task is to
provide effective strategies to prevent land desertification and prompt the restoration
of degraded ecosystems.

Theoretically, mathematical modeling is an important tool for studying the mech-
anism of desertification formation and providing some dynamical schemes to curb
land desertification (Chen et al. 2021; Shnerb et al. 2003; May 1977; Marinov et al.
2013; Gilad et al. 2007; Saco et al. 2007; Kefi et al. 2008, 2010; Sun et al. 2013). Tak-
ing the evaporation of water and the consumption of herbivores into account, Shnerb
et al. (2003) initially proposed a two-dimensional vegetation–water model, namely the
S2003 model. Marinov et al. (2013) further studied the global stability of the possible
equilibria of the S2003 model and obtained the existence of non-trivial periodic vege-
tation states when the rainfall rate maintains at an appropriate level. But in fact, most
of the rain first falls on the soil surface and become soil water through the infiltration,
then being absorbed by the plants through the capillary action of plant roots (Gilad
et al. 2007). In this sense, Saco et al. (2007) introduced two monotonically increasing
concave functions to describe the water infiltration and the capillary action of plant
roots, respectively. Considering the additional root-augmentation feedback, Kefi et al.
(2008, 2010) further established a three-variable vegetation–water model that distin-
guishes between soil water and surfacewater, which is usually named asK2008model.
Moreover, they analyzed the possible mechanism and bistability of desertification for-
mation under three future climatic scenarios predicted by the Hadley Center Cox et al.
(2000). Recently, Chen et al. (2021) applied the K2008 model to study the influences
of temperature and precipitation change on the vegetation patterns of Wuwei (37.4N,
103.1E) in China. Moreover, it was numerically proved that the K2008model can well
describe the local vegetation state according to the local image of Wuwei taken from
Google Earth.

However, the majority of the research results obtained by these models above are
mainly experimental results, and there is a lack of quantitative analysis of the deserti-
fication restoration problem. That is to say, some theoretical dynamical behavior of a
vegetation–water model should be analyzed for better practical application in arid and
semi-arid ecosystems, such as long-term persistence of vegetation, vegetation extinc-
tion and the related mean extinction time. Thus, in this paper, we will show some
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dynamical analysis for the existing vegetation–water models with good applicability
(K2008 model as a case). Motivated by the idea of K2008 model mentioned in Chen
et al. (2021), Kefi et al. (2008), Kefi et al. (2010), let P(t), W (t) and S(t) be the
vegetation density (g/m2), soil water volume (mm) and surface water volume (mm)
at time t , respectively. A deterministic vegetation–water model with non-runoff then
takes the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP(t)

dt
= cα2gco2W (t)P(t)

W (t) + k1
− RespP(t),

dW (t)

dt
= α(P(t) + k2w0)S(t)

P(t) + k2
− qα2gH2OW (t)P(t)

W (t) + k1
− rwW (t),

dS(t)

dt
= R − α(P(t) + k2w0)S(t)

P(t) + k2
,

(1.1)

where Resp is the average loss rate including consumptionof herbivores and autotrophic
respiration in plants. rw denotes the average loss rate of soil water due to drainage
and evaporation. R is the average rainfall rate. The infiltration capacity Ir of water is
denotedby the term α(P+k2w0)S

P+k2
with themaximuminfiltration rateα and the infiltration

saturation constant k2. Moreover,w0 ∈ (0, 1) is the measure of the infiltration contrast
between vegetated and bare soils. The term

qα2gH2OWP
W+k1

denotes the water conductance
capacity Tr, which results from the difference between saturated and actual specific
humidity. α2 is the conversion rate of roots, q denotes the positive humidity difference,
and k1 is the half-saturated constant of water uptake. gco2 and gH2O separately denotes
the leaf conductance to CO2 and H2O, which satisfy gH2O = γ gco2 with γ denoting
the conversion coefficient for the molecular diffusivities of CO2 and H2O Kefi et al.
(2008). The term

cα2gco2WP
W+k1

describes the carbon gain capacity of vegetation biomass,
where c is the carbon gain rate. In addition, the units of the above parameters are
presented in Table 1, and the relevant schematic diagram of system (1.1) is shown in
Fig. 1.

In this paper, we define a critical value by R0 = cα2gco2 R
(R+rwk1)Resp

. By a standard
argument (Chen et al. 2021; Kefi et al. 2008), system (1.1) has a vegetation-free
equilibrium D0 = (P0,W0, S0) = (0, R

rw
, R
αw0

), which always exists. In addition to
the equilibrium D0, a unique vegetation-positive equilibrium D∗ = (P∗,W ∗, S∗) =
( c
qγ ( R

Resp
− rwk1

cα2gco2−Resp
),

k1Resp
cα2gco2−Resp

,
R(P∗+k2)

α(P∗+k2w0)
) will exist in system (1.1) when

cα2gco2 > Resp and R >
rwk1Resp

cα2gco2−Resp
, which are equivalent toR0 > 1.

It should be noted that the system (1.1) is established under a constant ecological
environment. However, due to a continuous spectrum of disturbances in the actual
situation (Beddington and May 1977), many of the main parameters in vegetation
evolution, such as the rainfall rate, the intensity of grazing and the photosynthetic
capacity, are not constants but rather fluctuate around some average values (Guttal
and Jayaprakash 2007). Thus, it is important to study randomly perturbed vegetation–
water models (Pan et al. 2022). So far, only a few stochastic vegetation–water models
have been formulated to analyze the impact of stochastic noise on vegetation dynamics
(Guttal and Jayaprakash 2008; Zhang et al. 2019; Han et al. 2014; Pan et al. 2020;
Zhang et al. 2020). Specifically, Guttal and Jayaprakash (2008) established a two-
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Fig. 1 The schematic diagram of deterministic vegetation–water system (1.1)

dimensional stochastic vegetation–water model with density-dependent effect, which
is usually named as G2008 model. Recently, considering the random perturbations of
the density-dependent effect and the rainfall rate, Zhang et al. (2019) developed amod-
ified version of the G2008 model, and studied the transient dynamic properties of the
stochastic system in terms of two important indexes including the first escape proba-
bility (FEP) and themean first exit time (MFET).Moreover, it was numerically proved
that the increase of noise intensity decreases basin stability of the vegetation–water
system. Considering adding two factors, the pulse control strategy and the random per-
turbation of the growth response function of vegetation, in the G2008 model, Zhang
et al. (2020) obtained the sufficient conditions for vegetation persistence and extinc-
tion in the mean sense. Based on the ecological model with runoff mentioned in Liu
et al. (2019) and the linear perturbation approach proposed by Imhof and Walcher
(2005), Pan et al. (2020) established a two-dimensional stochastic vegetation–water
system with runoff, and theoretically obtained the sufficient and necessary conditions
for the system’s near-optimal control problem (i.e., higher vegetation density andwater
density can be obtained at the lowest cost). Clearly, all the dimensions of the above
stochastic vegetation–water models are no more than two dimensions.

As far as we know, no relevant investigations concerning the impact of stochastic
noise on three-dimensional system (1.1) have been published yet, which is possibly
resulted from the complexity of the system. Thus, in this paper, we will examine a
stochastic version of system (1.1) fromboth transient and stationary dynamics perspec-
tives. In practice, the loss rate Resp of vegetation, the loss rate rw of soil water and the
rainfall rate R are three key parameters of vegetation evolution. In this sense, Resp, rw
and R should be regarded as three random variables R̃esp, r̃w and R̃, respectively. Cur-
rently, the linear and second-order perturbation approaches are two well-established
ways of introducing stochastic noise into biologically realistic dynamicmodels (Zhang
and Zhang 2020; Liu et al. 2020; Cai et al. 2017; Zu et al. 2018; Han et al. 2020; Liu
and Jiang 2018; Liu et al. 2018). Inspired by the fact, we assume that R̃esp, r̃w and R̃
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separately fluctuate around the average values Resp, rw and R, and satisfy

(i) − R̃espdt = −Respdt + σ1dB1(t),

(ii) − r̃wdt = −rwdt + σ2dB2(t), (iii). R̃dt = Rdt + σ3S(t)dB3(t),

where Bi (t) (i = 1, 2, 3) are three independent Brownian motions with σi > 0 denot-
ing their intensities. The expressions (i)–(ii) can be derived by the linear perturbation
approach (Liu et al. 2020; Cai et al. 2017), and the form of (iii) is based on the second-
order perturbation approach (Zu et al. 2018; Liu and Jiang 2018). From (i), for any time
interval [t, t + τ), −R̃espτ is normally distributed with mean E(−R̃espτ) = −Respτ

and variance Var(−R̃espτ) = σ 2
1 τ . Hence, the stochastic term −R̃espτ will fluctuate

around an average value−Respτ for some small τ , and its variance (i.e., the fluctuation
intensity) will tend to zero if τ → 0, implying that (i) is a biologically reasonable
assumption involved in the stochasticity. The analysis of (ii) can be completely analo-
gous to (i). Moreover, the relevant biological explanation of (iii) can be obtained from
Zu et al. (2018), Han et al. (2020) and is omitted here.

Thus, we replace −Respdt , −rwdt and Rdt in system (1.1) with −R̃espdt , −r̃wdt
and R̃dt , respectively. Combined with (i)–(iii), the stochastic version of system (1.1)
then takes the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t) =
[
cα2gco2W (t)P(t)

W (t) + k1
− RespP(t)

]

dt + σ1P(t)dB1(t),

dW (t) =
[
α(P(t) + k2w0)S(t)

P(t) + k2
− qα2γ gco2W (t)P(t)

W (t) + k1
− rwW (t)

]

dt

+σ2W (t)dB2(t),

dS(t) =
[

R − α(P(t) + k2w0)S(t)

P(t) + k2

]

dt + σ3S(t)dB3(t),

(1.2)

where Bi (t) and σi (i = 1, 2, 3) are the same as above. Moreover, Bi (t) (i = 1, 2, 3)
are all defined on a complete probability space {�,F , {Ft }t≥0,P}with an increasing
and right continuous σ -field filtration {Ft }t≥0 (Mao 1997).

The primary purpose of this paper is to investigate system (1.2) from both long-term
and transient dynamics perspectives. In the study of long-term dynamics of vegetation,
on the one hand, the stability of the positive equilibrium state, which means that the
vegetation in the deterministic model can stably coexist with other environmental
variables (Marinov et al. 2013), is a very important topic in ecological protection. On
the other hand, when stochastic noise is taken into account, the positive equilibrium
states of most stochastic ecological models will no longer exist. Hence, there is a need
to investigate the stability of the “stochastic positive equilibrium state” of stochastic
vegetation–water models, namely the existence of a stationary distribution of their
stochastic solutions (Pan et al. 2022). However, to the best of our knowledge, no
relevant theoretical analysis has been reported yet in terms of the stability of the
equilibria D0 and D∗ in the deterministic system (1.1) and the existence of a stationary
distribution of the stochastic system (1.2). To this end, in this paper,wewill try to fill the
gap. Furthermore, to better predict the statistical characteristics of vegetation dynamics
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in arid ecosystems, such as the index FEP (Zhang et al. 2020a) of basin stability, the
probability density function of the stationary distribution should be studied. In fact, the
density function is determined by the Fokker–Planck equation, but the equation will
often be difficult to solve for complex stochastic models. Thus, some new techniques
should be developed to overcome the difficulty.

In the study of transient dynamics of vegetation, an interesting but challenging
problem is to estimate the average residence time of the solution trajectory escaping
from high vegetation state to low vegetation state even bare vegetation state (i.e.,
extinction) (Zhang et al. 2019), which can provide an early warning to make people
take some effective measures such as artificial rainfall, to suppress the emergence
of land desertification. So far, very few studies have directly analyzed the impact
of stochastic noise on the average residence time of the state shifts of vegetation,
and these analysis are only established under the stationary state shifts of several
one-dimensional vegetation model (Zhang et al. 2020a, b). For example, Zhang et al.
(2020a) first used a new signal, the maximum of the stationary probability density
function (SPDF), to derive the analytical expression of the MFET escaping from high
vegetation state to low vegetation state. In the present paper, we will generalize these
results above to obtain the probability of vegetation extinction of system (1.2) at any
given time, which is a new mathematical attempt in the study of transient dynamics
of vegetation.

In comparison with the existing results, our main innovations and contributions are
as follows. To better study the impact of stochastic noise on vegetation dynamics, we
first use the Routh–Hurwitz criterion (Ma et al. 2015) to obtain the local stability of the
equilibria D0 and D∗ of system (1.1). Using Assumption (B) in Khasminskii (2011)
and the strong law of large numbers (Lipster 1980), we construct some appropriate
stochastic Lyapunov functions to obtain a critical valueRH

0 and prove that system (1.2)
has a unique ergodic stationary distribution if RH

0 > 1. Using novel techniques (i.e.,
combining Lemma 2.6 in Zhou et al. (2021) and the transformation theory of matrix
algebra), we further derive an approximate expression of a local density function of the
stationary distribution and combine a number of numerical examples to illustrate that
the approximate local density function has a good global fitting effect for the realistic
probability density function under some small stochastic noises. Another critical value
RE

0 is defined, and it is theoretically proved that the vegetation will be exponentially
extinct for any positive initial conditions when RE

0 < 1. Furthermore, the exact
expression of the probability of vegetation extinction of system (1.2) at any given time
is derived based on the stochastic comparison theorem (Ikeda and Watanade 1977).
Under the precise condition that required in practical need, we estimate the maximal
extinction time of vegetation.

The rest of our paper is organized as follows. We introduce some necessary math-
ematical notations and lemmas in Sect. 2. In Sect. 3, the existence and uniqueness
of an ergodic stationary distribution �(·) of the solution of system (1.2) is studied.
By defining a quasi-positive equilibrium D

∗
related to D∗, Sect. 4 shows that the sta-

tionary distribution around the equilibrium D
∗
can be approximated by a log-normal

distribution.Moreover, the explicit form of its log-normal density function is obtained.
In Sect. 5, we establish sufficient criterionRE

0 < 1 for vegetation extinction, and the
probability of extinction at a given time is calculated. Using some actual data from
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Sahel, Yushu and Wuwei, Sect. 6 shows some numerical simulations to verify our
theoretical results, and the impact of stochastic noise on the vegetation stability is
investigated. Conclusion and further discussion are shown in Sect. 7. The local stabil-
ity of deterministic system (1.1) is discussed in “Appendix A.”

2 Preliminary

Throughout this paper, unless otherwise specified, letRl and || · || be the l-dimensional
Euclidean space and the Euclidean norm, respectively.We defineR

l+ = {(x1, ..., xl) ∈
R
l |x j > 0, 1 ≤ j ≤ l}. If A is vector or matrix, its transpose is denoted by AT. If A is

a square matrix, let A−1 and φA(·) be its inverse matrix and characteristic polynomial,
respectively. If A is a real symmetric matrix, we define

A � 0 : A is a positive definite matrix,

A � 0 : A is at least a positive semi-definite matrix.

For any (a1, a2, ..., al) ∈ R
l , let a1 ∨a2 ∨ ...∨an := max1≤i≤n{ai } and a1 ∧a2 ∧ ...∧

an := min1≤i≤n{ai }. The one-dimensional standard normal distribution function is

denoted by	(·), namely	(x) = 1√
2π

∫ x
−∞ e− t2

2 dt , where x ∈ R. Let	−1(χ) := 	χ

be theχ -quantile of	(·), such as	0.975 = 1.96 and	0.01 = −2.326.P{·} denotes the
probability measure of the complete probability space {�,F , {Ft }t≥0,P}. Moreover,
we define Q(t) = (P(t),W (t), S(t))T as the solution of system (1.2) with the initial
value (P(0),W (0), S(0))T = Q(0).

By a standard argument (Zhou et al. 2021) and the Routh–Hurwitz criterion (Ma
et al. 2015), we obtain the following:

Definition 2.1 (Ma et al. 2015) A is called a three-dimensional Hurwitz matrix if and
only if A has all negative real part eigenvalues, that is, a1 > 0, a3 > 0 and a1a2−a3 >

0, where ai (i = 1, 2, 3) are the coefficients of φA(λ) = λ3 + a1λ3 + · · · + a2λ+ a3.
In this case, we write A ∈ RH(3).

Lemma 2.1 (Zhou et al. 2021) For any three-dimensional real matrices A = (ai j )3×3,
Λ0 = diag{δ21, δ22, δ23}, where δk 
= 0 (k = 1, 2, 3). If �0 is a symmetric matrix, for
the three-dimensional algebraic equation

Λ0 + A�0 + �0A
T = 0. (2.1)

If A ∈ RH(3), then �0 is unique and �0 � 0.

Let Z(t) be a homogeneous Markov process satisfying the following stochastic dif-
ferential equation (SDE):

dZ(t) = b(Z(t))dt + f (Z(t))dB(t), (2.2)
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where the drift term b(Z) : R
l → R

l and the diffusion term f (Z) = ( f (i)j (Z))l×l :
R
l → R

l×l are both Borel measurable. f (i)j (Z) denotes the i th element of the j th col-

umn of the diffusion term f (·). B(t) denotes a l-dimensional Brownianmotion defined
on the probability space {�,F , {Ft }t≥0,P}. By a standard argument (Khasminskii
2011; Gard 1988), system (2.2) has a diffusion matrix F0(Z) = f (Z) f T (Z) :=
(ψi j )l×l , where ψi j =∑n

k=1 f (i)k (Z) f ( j)k (Z).

Lemma 2.2 (Khasminskii 2011; Zhu and Yin 2007; Gard 1988) If there exists a
bounded domain G0 ⊂ R

l with a regular boundary Γ0 satisfying the following con-
ditions:

(A1). There is a non-negative C2-Lyapunov function V (z) such that L V (z) is
negative for any z ∈ R

l \ G0,
(A2). There is a positive numberm0 such that

∑l
i, j=1 ψi j (z)ζiζ j ≥ m0||ζ ||2, ∀ z ∈

G0; ζ = (ζ1, ..., ζl) ∈ R
l ,

then the Markov process Z(t) of system (2.2) is ergodic and has a unique stationary
distribution ϑ(·) on R

l , or rather Z(t) has a unique ergodic stationary distribution
ϑ(·) on R

l . In addition, by the ergodicity theorem Nguyen et al. (2020) and the strong
law of large numbers, one has

P

{

lim
t→∞

1

t

∫ t

0
r(Z(t))dt =

∫

Rl
r(z)ϑ(dz)

}

= 1,

where r(·) be an integrable function with respect to the distribution ϑ(·).
In practical terms, P, W and S represent the numbers of different kinds of subpop-
ulations, which means that the solution Q(t) of system (1.2) should be global and
non-negative. Hence, we must first give the existence and uniqueness of global solu-
tion to systems (1.2). Since the proof is similar to that of Theorem 2.1 in Gao et al.
(2021), we omit it here and only state the related result.

Lemma 2.3 For any initial value Q(0) ∈ R
3+, system (1.2) has a unique solution

Q(t) on t ≥ 0 and the solution will remain in R
3+ with probability 1, namely

(P(t),W (t), S(t)) ∈ R
3+ for any t ≥ 0 almost surely (a.s.).

From now on, unless specifically stated, we always assume that Q(0) ∈ R
3+ for system

(1.2).

3 Existence of Ergodic Stationary Distribution

In this section, we will investigate the stability of stochastic positive equilibrium state
of system (1.2), i.e., the existence of an ergodic stationary distribution of system (1.2).
First, we define

RH
0 = cα2gco2rwαw0R

(R + rwk1)

(

rw + σ 2
2
2

)(

αw0 + σ 2
3
2

)(

Resp + σ 2
1
2

) .
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Theorem 3.1 IfRH
0 > 1, then the solution Q(t) of system (1.2) has a unique ergodic

stationary distribution �(·) on R
3+.

Proof By Lemma 2.3, we determine that system (1.2) has a unique global positive
solution Q(t) ∈ R

3+. Hence, all of the descriptions of the spaceR
l ofLemma2.2 should

be modified as R
3+ in the following proof. We divide the proof of Theorem 3.1 into

three steps. The first step is to construct a suitableC2-Lyapunov function V (P,W , S).
The second is to use the function V (P,W , S) to verify condition (A1) in Lemma 2.2,
and the third is to prove condition (A2) in Lemma 2.2.
Step 1. We define a C2-Lyapunov function V (P,W , S) : R

3+ → R by

V (P,W , S) =M0

[
− ln P + b1(W + S) − b2 lnW − b3 ln S

]

+ 1

θ + 1

(
P + cW

qγ
+ 2cS

qγ

)θ+1 − lnW − ln S

:=M0V1(P,W , S) + V2(P,W , S) + V3(W , S),

where V1(P,W , S) = − ln P + b1(W + S) − b2 lnW − b3 ln S, V2(P,W , S) =
1

θ+1 (P + cW
qγ + 2cS

qγ )θ+1 and V3(W , S) = − lnW − ln S. The positive constants
bi (i = 1, 2, 3) are determined in (3.5), and M0 > 0 is a sufficiently large constant
satisfying the inequality (3.8). In addition, θ > 0 satisfies the following condition:

β0 :=
(
Resp ∧ rw ∧ αw0

2

)
− θ

2

(
σ 2
1 ∨ σ 2

2 ∨ σ 2
3

)
> 0. (3.1)

Note that the function V (P,W , S) tends to ∞ as (P,W , S) approaches the boundary
ofR

3+ or as ||(P,W , S)|| → ∞. Thus, there exists a point (P0,W 0, S0) in the interior
ofR3+, atwhichV (P,W , S)will beminimized.Anon-negativeC2-Lyapunov function
V (P,W , S) can then be constructed as follows:

V (P,W , S) = V (P,W , S) − V (P0,W 0, S0).

Applying the Itô’s formula (cf. Mao 1997) to − lnW , − ln S andW + S, we calculate
that

L (− lnW ) = − α(P + k2w0)S

(P + k2)W
+ qα2γ gco2 P

W + k1
+ rw + σ 2

2

2

≤ − αk2w0S

(P + k2)W
+ qα2γ gco2 P

k1
+ rw + σ 2

2

2
. (3.2)

L (− ln S) = − R

S
+ α(P + k2w0)

P + k2
+ σ 2

3

2
≤ − R

S
+
(
αw0 + σ 2

3

2

)
+ αP

k2
. (3.3)

L (W + S) =R − qα2γ gco2WP

W + k1
− rwW ≤ (R + rwk1) − rw(W + k1). (3.4)
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Combining (3.2)–(3.4), we have

L V1 ≤
(
−cα2gco2W

W + k1
+ Resp + σ 2

1

2

)

+ b1[(R + rwk1) − rw(W + k1)] + b2
[
− αk2w0S

(P + k2)W
+ qα2γ gco2 P

k1

+ rw + σ 2
2

2

]
+ b3

[
− R

S
+
(
αw0 + σ 2

3

2

)
+ α

k2
P
]

− b4(P + k2) + b4(P + k2)

= −
[
cα2gco2W

W + k1
+ b1rw(W + k1) + b2αk2w0S

(P + k2)W
+ b3R

S
+ b4(P + k2)

]

+
(
Resp + σ 2

1

2

)
+ b1

(
R + rwk1

)

+ b2
(
rw + σ 2

2

2

)
+ b3

(
αw0 + σ 2

3

2

)
+ b4k2

+
(
b4 + b3α

k2
+ b2qα2γ gco2

k1

)
P

≤ − 5 5

√
cα2gco2W

W + k1
· b1rw(W + k1) · b2αk2w0S

(P + k2)W
· b3R

S
· b4(P + k2)

+
(
Resp + σ 2

1

2

)
+ b1

(
R + rwk1

)

+ b2
(
rw + σ 2

2

2

)
+ b3

(
αw0 + σ 2

3

2

)
+ b4k2

+
(
b4 + b3α

k2
+ b2qα2γ gco2

k1

)
P

= − 5 5
√
cα2gco2rwαk2w0Rb1b2b3b4

+
(
Resp + σ 2

1

2

)
+ b1

(
R + rwk1

)

+ b2
(
rw + σ 2

2

2

)
+ b3

(
αw0 + σ 2

3

2

)
+ b4k2

+
(
b4 + b3α

k2
+ b2qα2γ gco2

k1

)
P.

Let

b1
(
R + rwk1

) = b2
(
rw + σ 2

2

2

)
= b3

(
αw0 + σ 2

3

2

)
= b4k2

= cα2gco2rwαw0R

(R + rwk1)
(
rw + σ 2

2
2

)(
αw0 + σ 2

3
2

) .
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The solution of the above equations is unique, and it is

b1 = cα2gco2rwαw0R

(R + rwk1)2(rw + σ 2
2
2 )(αw0 + σ 2

3
2 )

, b2 = cα2gco2rwαw0R

(R + rwk1)(rw + σ 2
2
2 )2(αw0 + σ 2

3
2 )

,

b3 = cα2gco2rwαw0R

(R + rwk1)(rw + σ 2
2
2 )(αw0 + σ 2

3
2 )2

, b4 = cα2gco2rwαw0R

(R + rwk1)(rw + σ 2
2
2 )(αw0 + σ 2

3
2 )k2

.

(3.5)

Then, we obtain

L V1 ≤ − cα2gco2rwαw0R

(R + rwk1)(rw + σ 2
2
2 )(αw0 + σ 2

3
2 )

+
(
Resp + σ 2

1

2

)

+
(
b4 + b3α

k2
+ b2qα2γ gco2

k1

)
P

= −
(
Resp + σ 2

1

2

)(
RH

0 − 1
)+

(
b4 + b3α

k2
+ b2qα2γ gco2

k1

)
P. (3.6)

Let f1(W ) = cα2gco2W
W+k1

and f2(P) = α(P+k2w0)
P+k2

, it can be noticed that f2(P) is
monotonically increasing function defined on [0,∞). Thus, f2(P) ≥ f2(0) = αw0.
By defining β1 = (Resp ∧ rw ∧ αw0

2 ) and β2 = 1 ∧ ( cq )
θ+1, we combine the Itô’s

formula and (3.1) to obtain

L V2 =
(
P + cW

qγ
+ 2cS

qγ

)θ{[
f1(W )P − RespP

]

+ c

qγ

[
f2(P)S − qγ

c
f1(W )P − rwW

]
+ 2c

qγ

[
R − f2(P)S

]}

+ θ

2

(
P + cW

qγ
+ 2cS

qγ

)θ−1(
σ 2
1 P

2 + c2σ 2
2

q2γ 2W
2 + 4c2σ 2

3

q2γ 2 S2
)

≤
(
P + cW

qγ
+ 2cS

qγ

)θ[2cR

qγ
− RespP − crw

qγ
W

− cαw0

qγ
S
]

+ θ

2

(
σ 2
1 ∨ σ 2

2 ∨ σ 2
3

)(
P + cW

qγ
+ 2cS

qγ

)θ+1

≤
(
P + cW

qγ
+ 2cS

qγ

)θ[2cR

qγ

− β1

(
P + cW

qγ
+ 2cS

qγ

)]
+ θ

2

(
σ 2
1 ∨ σ 2

2 ∨ σ 2
3

)(
P + cW

qγ
+ 2cS

qγ

)θ+1

≤Θ0 − β0

2

(
P + cW

qγ
+ 2cS

qγ

)θ+1

≤Θ0 − β0β2

2

(
Pθ+1 + W θ+1 + Sθ+1), (3.7)
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where

Θ0 := sup
(P,W ,S)∈R3+

{2cR

qγ

(
P + cW

qγ
+ 2cS

qγ

)θ − β0

2

(
P + cW

qγ
+ 2cS

qγ

)θ+1}
< ∞.

We choose M0 > 0, which satisfies the condition M0 ≥ 2(Θ0+rw+αw0)+σ 2
2 +σ 2

3 +4

(2Resp+σ 2
1 )(R

H
0 −1)

. That

is,

− M0

(
Resp + σ 2

1

2

)(
RH

0 − 1
)+ Θ0 + rw + αw0 + σ 2

2 + σ 2
3

2
≤ −2. (3.8)

According to (3.2)–(3.3) and (3.6)–(3.8), we then obtain that

L V ≤ − M0

(
Resp + σ 2

1

2

)(
RH

0 − 1
)+ M0

(
b4 + b3α

k2
+ b2qα2γ gco2

k1

)
P

+ Θ0 − β0β2

2

(
Pθ+1 + W θ+1 + Sθ+1)

− αk2w0S

(P + k2)W
+ qα2γ gco2

k1
P + rw + σ 2

2

2
− R

S
+ αw0 + σ 2

3

2
+ α

k2
P

≤ − 2 − αk2w0S

(P + k2)W
− R

S
+ β3P − β0β2

2

(
Pθ+1 + W θ+1 + Sθ+1), (3.9)

where β3 := M0(b4 + b3α
k2

+ b2qα2γ gco2
k1

) + qα2γ gco2
k1

+ α
k2

> 0.
Step 2. We define the bounded closed set

Gε =
{
Q(t) ∈ R

3+
∣
∣
∣P(t) ∈

[
ε,

1

ε

]
,W (t) ∈

[
ε3,

1

ε3

]
, S(t) ∈

[
ε,

1

ε

]}
,

where ε ∈ (0, 1) is a sufficiently small constant satisfying the following inequalities:

−2 + Θ1 − β0β2

4

(1

ε

)θ+1 ≤ −1, (3.10)

−2 + Θ1 − β0β2

2

(1

ε

)3(θ+1) ≤ −1, (3.11)

−2 + β3ε ≤ −1, (3.12)

−2 + Θ1 − R ∧ (αk2w0)

(1 + k2ε)ε
≤ −1, (3.13)

where Θ1 = supP∈R1+{β3P − β0β2
4 Pθ+1} < ∞.

Next, we need to divide R
3+ \ Gε into the following six subsets:

G1,ε =
{
Q(t) ∈ R

3+
∣
∣
∣P >

1

ε

}
,
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G2,ε =
{
Q(t) ∈ R

3+
∣
∣
∣S >

1

ε

}
, G3,ε =

{
Q(t) ∈ R

3+
∣
∣
∣W >

1

ε3

}
,

G4,ε = {Q(t) ∈ R
3+
∣
∣P < ε

}
,

G5,ε = {Q(t) ∈ R
3+
∣
∣S < ε

}
, G6,ε =

{
Q(t) ∈ R

3+
∣
∣
∣W < ε3, S ≥ ε, P ≤ 1

ε

}
.

Clearly, R
3+ \ Gε = ⋃6

l=1 Gl,ε . Below we verify that L V (Q(t)) ≤ −1 for any
Q(t) ∈ R

3+ \ Gε , the relevant proof can be divided into five cases.
Case 1. If Q(t) ∈⋃2

i=1 Gi,ε , combining (3.9)–(3.10), we have

L V ≤ − 2 +
(
β3P − β0β2

4
Pθ+1

)
− β0β2

4

(
Pθ+1 + Sθ+1)

≤ − 2 + Θ1 − β0β2

4

(1

ε

)θ+1 ≤ −1.

Case 2. If Q(t) ∈ G3,ε , by (3.9) and (3.11), we have

L V ≤ − 2 +
(
β3P − β0β2

4
Pθ+1

)
− β0β2

2
W θ+1

≤ − 2 + Θ1 − β0β2

2

(1

ε

)3(θ+1) ≤ −1.

Case 3. If Q(t) ∈ G4,ε , by (3.9) and (3.12), we obtain

L V ≤ −2 + β3P ≤ −2 + β3ε ≤ −1.

Case 4. If Q(t) ∈ G5,ε , combining (3.9) and (3.13), we obtain

L V ≤ −2 − R

S
+
(
β3P − β0β2

4
Pθ+1

)
≤ −2 + Θ1 − R

ε

≤ −2 + Θ1 − R ∧ (αk2w0)

(1 + k2ε)ε
≤ −1.

Case 5. If Q(t) ∈ G6,ε , in view of (3.9) and (3.13), we obtain

L V ≤ − 2 + Θ1 − αk2w0S

(P + k2)W
≤ −2 + Θ1 − αk2w0ε

( 1
ε

+ k2)ε3

≤ − 2 + Θ1 − R ∧ (αk2w0)

(1 + k2ε)ε
≤ −1.

In summary, for a sufficiently small ε satisfying the inequalities (3.10)–(3.13), we
determine that

L V (Q(t)) ≤ −1, ∀ Q(t) ∈ R
3+ \ Gε .

This implies that the condition (A1) in Lemma 2.2 holds when RH
0 > 1.
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Step 3. For any given Q(t) ∈ Gε , the diffusion matrix of system (1.2) is as follows:

F0(Q(t)) =
⎛

⎝
σ 2
1 P

2 0 0
0 σ 2

2W
2 0

0 0 σ 2
3 S

2

⎞

⎠ := (ψi j )3×3.

Obviously, F0(Q(t)) � 0 for any t ≥ 0, which means that the smallest eigenvalue
of F0(Q(t)) is bounded away from zero. Thus, we can determine a positive number
K0 := infQ(t)∈Gε

{σ 2
1 P

2 ∧ σ 2
2W

2 ∧ σ 3
3 S

2} satisfying

3∑

i=1

3∑

j=1

ψi jζiζ j = σ 2
1 P

2ζ 21 + σ 2
2W

2ζ 22

+σ 2
3 S

2ζ 23 ≥ K0‖ζ‖2, ∀ Q(t) ∈ Gε, ζ = (ζ1, ζ2, ζ3) ∈ R
3.

Thus, the condition (A2) in Lemma 2.2 is verified.
According to the above three steps, if RH

0 > 1, the solution Q(t) is ergodic and
has a unique stationary distribution�(·). This completes the proof of Theorem 3.1. ��

Remark 3.1 Clearly, RS
0 ≤ R0, and the sign holds if and only if σ1 = σ2 = σ3 = 0.

As shown before in Section 1, by Theorems 3.1 and the local stability of the positive
equilibrium D∗ (i.e., Theorem A.2), RS

0 can be regarded as the unified critical value
for determining the persistence of vegetation of systems (1.1) and (1.2).

4 Probability Density Function

ByTheorem 3.1, we obtain that the solution Q(t) has an ergodic stationary distribution
�(·) if RH

0 > 1. In this section, we will employ the similar method as in Zhou et al.
(2021), Han et al. (2020) to study the approximate expression of the probability density
function of the stationary distribution �(·). Before this, we define

RC
0 = cα2gco2αw0R

[αw0R + k1(rw + σ 2
2
2 )(αw0 + σ 2

3
2 )](Resp + σ 2

1
2 )

,

RC
1 = qγ k2(Resp + σ 2

1
2 )(αw0 + σ 2

3
2 )2

cαR(1 − w0)
− σ 2

3

2
.

Moreover, two main transformations of system (1.2) should be first presented.
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4.1 Logarithmic Transformation of System (1.2)

Let z1 = ln P , z2 = lnW and z3 = ln S. Applying the Itô’s formula to zi , i = 1, 2, 3,
we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dz1 =
[cα2gco2e

z2

ez2 + k1
−
(
Resp + σ 2

1

2

)]
dt + σ1dB1(t),

dz2 =
[α(ez1 + k2w0)ez3−z2

ez1 + k2
− qα2γ gco2e

z1

ez2 + k1
−
(
rw + σ 2

2

2

)]
dt + σ2dB2(t),

dz3 =
[
Re−z3 − α(ez1 + k2w0)

ez1 + k2
− σ 2

3

2

]
dt + σ3dB3(t).

(4.1)

Similar to the vegetation-positive equilibrium D∗ of deterministic system (1.1), we
define a quasi-positive equilibrium D

∗ = (P
∗
,W

∗
, S

∗
)T , which satisfies the follow-

ing:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cα2gco2W
∗

W
∗ + k1

−
(
Resp + σ 2

1

2

)
= 0,

α(P
∗ + k2w0)S

∗

(P
∗ + k2)W

∗ − qα2γ gco2 P
∗

W
∗ + k1

−
(
rw + σ 2

2

2

)
= 0,

R

S
∗ − α(P

∗ + k2w0)

P
∗ + k2

− σ 2
3

2
= 0.

(4.2)

Bydirect calculation,weobtain thatW
∗ = k1(Resp+σ21

2 )

cα2gco2−(Resp+σ21
2 )

, S
∗ = 2R(P

∗+k2)
(2α+σ 2

3 )P
∗+k2(2αw0+σ 2

3 )
,

and P
∗
is the root of the nonlinear equation

R − k1(rw + σ 2
2
2 )(Resp + σ 2

1
2 )

cα2gco2 − (Resp + σ 2
1
2 )

= qγ (Resp + σ 2
1
2 )P

∗

c

+ σ 2
3 R(P

∗ + k2)

(2α + σ 2
3 )P

∗ + k2(2αw0 + σ 2
3 )

. (4.3)

Let F(p) := qγ (Resp+ σ21
2 )p

c + σ 2
3 R(p+k2)

(2α+σ 2
3 )p+k2(2αw0+σ 2

3 )
, where p ≥ 0. If RC

1 ≥ 0, we

have

F ′(p) =qγ (Resp + σ 2
1
2 )

c
− 2ασ 2

3 Rk2(1 − w0)

[(2α + σ 2
3 )p + k2(2αw0 + σ 2

3 )]2

≥qγ (Resp + σ 2
1
2 )

c
− 2ασ 2

3 R(1 − w0)

k2(2αw0 + σ 2
3 )

2
= 4αR(1 − w0)R

C
1

k2(2αw0 + σ 2
3 )

2
≥ 0.
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This implies that F(p) is a monotonically increasing function on [0,∞). Thus, Eq.
(4.3) has atmost one positive root. Clearly,RH

0 ≤ RC
0 ≤ R0, whichmeans thatRC

0 >

1 ifRH
0 > 1. Moreover, ifRH

0 > 1, we easily obtain that cα2gco2 > (Resp + σ 2
1
2 ),

(i) R − k1(rw + σ 2
2
2 )(Resp + σ 2

1
2 )

cα2gco2 − (Resp + σ 2
1
2 )

− F(0)

= [αw0R + k1(rw + σ 2
2
2 )(αw0 + σ 2

3
2 )](Resp + σ 2

1
2 )

(αw0 + σ 2
3
2 )[cα2gco2 − (Resp + σ 2

1
2 )]

(
RC

0 − 1
)
> 0,

and (ii) R − k1(rw+ σ22
2 )(Resp+ σ21

2 )

cα2gco2−(Resp+ σ21
2 )

− F(∞) = −∞.

In summary, ifRH
0 > 1 andRC

1 ≥ 0, the solution of Eq. (4.3) is unique and D
∗ ∈ R

3+.
In this sense, we define D

∗ = (ez
∗
1 , ez

∗
2 , ez

∗
3 )T , i.e., z∗1 = ln P

∗
, z∗2 = lnW

∗
and

z∗3 = ln S
∗
.

If there is no environmental noise, D
∗
coincides with D∗ in deterministic system

(1.1). In addition, the conditionsRH
0 > 1 andRC

1 ≥ 0 are equivalent toR0 > 1. Thus,
D

∗
andRC

1 ≥ 0 are biologically reasonable assumptions involved in the stochasticity.

4.2 Linearized Transformation of System (4.1)

We define B(t) = (B1(t), B2(t), B3(t))T and X(t) = (x1, x2, x3)T, where xi =
zi−z∗i , i = 1, 2, 3.Then, the linearized equationof system (4.1) around the equilibrium
(z∗1, z∗2, z∗3)T is as follows:

dX(t) =
⎛

⎝
0 a12 0

−a21 −a22 a23
−a31 0 −a33

⎞

⎠ X(t)dt +
⎛

⎝
σ1 0 0
0 σ2 0
0 0 σ3

⎞

⎠ dB(t)

:=A0X(t)dt + ΛdB(t), (4.4)

where a12 = cα2gco2 k1W
∗

(W
∗+k1)2

> 0, a21 = qα2γ gco2 P
∗

W
∗+k1

− αk2(1−w0)P
∗
S

∗

(P
∗+k2)2W

∗ , a22 =
α(P

∗+k2w0)S
∗

(P
∗+k2)W

∗ − qα2γ gco2 P
∗
W

∗

(W
∗+k1)2

, a23 = α(P
∗+k2w0)S

∗

(P
∗+k2)W

∗ > 0, a31 = αk2(1−w0)P
∗

(P
∗+k2)2

> 0

and a33 = R
S

∗ > 0.

4.3 Local Density Function of Stationary Distribution$(·)

By the theory of Gardiner (1983), for any time t , the transient density function
�(X(t), t) of the solution X(t) of system (4.4) is determined by the following Fokker–
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Planck equation Jordan et al. (1998):

∂�(X(t), t)

∂t
= −

3∑

j=1

∂

∂x j

[
A( j)
0 X(t)�(X(t), t)

]+
3∑

j=1

σ 2
j

2

∂2�(X(t), t)

∂x2j
, (4.5)

where A(i)
0 denotes the i th row vector of A0, i = 1, 2, 3. By the standard argument

of Mao (1997) and Roozen (1989), system (4.4) with the initial value X(0) has a
unique explicit solution X(t) = eA0t X(0) + ∫ t0 eA0(t−ς)ΛdB(ς). Note that Λ is a
constant matrix, thus

∫ t
0 e

A0(t−ς)ΛdB(ς) follows a Gaussian distribution, implying
that system (4.4) has a unique invariant (or stationary) Gaussian distribution F(·) and
the distribution of the solution X(t) will approach F(·) as t → ∞. For simplicity,

let �∗(X(t)) = χ0e− 1
2 X

T LX be the density function of F(·), where χ0 satisfies the
normalization condition and L is a real symmetric matrix. In this sense, the transient
density function�(X(t), t) will converge to the invariant density function�∗(X(t)),
that is, limt→∞

∫

R3 |�(X(t), t) − �∗(X(t))|dX = 0 (Liu et al. 2020; Lin and Jiang

2014).Combining ∂�∗(X(t))
∂t = 0 andEq. (4.5), the invariant density function�∗(X(t))

satisfies the following equation:

−
3∑

j=1

σ 2
j

2

∂2�∗

∂x2j
+ ∂

∂x1
(a12x2�

∗) + ∂

∂x2

[
(−a21x1 − a22x2 + a23x3)�

∗]

+ ∂

∂x3

[
(−a31x1 − a33x3)�

∗] = 0. (4.6)

Substituting the expression of �∗(X(t)) into Eq. (4.6), L satisfies the following real
algebraic equation:

LΛ2L + L A0 + AT
0 L = 0.

We consider the following auxiliary algebraic equation:

Λ2 + A0� + �AT
0 = 0. (4.7)

If we can prove that� in (4.7) is unique and positive definite, then L = �−1 � 0. By
Lemma 2.1, we determine that A0 ∈ RH(3) is the necessary condition for� � 0. By
direct calculation, we have

φA0(y) = y3 + λ1y
2 + λ2y + λ3,

where λ1 = a22 + a33, λ2 = a22a33 + a12a21 and λ3 = a12(a23a31 + a21a33).
Combined with Definition 2.1, we get that A0 ∈ RH(3) if and only if λ1 > 0, λ3 > 0
and λ1λ2 − λ3 > 0. In view of the second equality of Eq. (4.2), one can see that

a22 ≥ α(P
∗ + k2w0)S

∗

(P
∗ + k2)W

∗
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−qα2γ gco2 P
∗

W
∗ + k1

= rw + σ 2
2

2
> 0,

which implies that λ1 = a22 +a33 > 0. We consider the following necessary assump-
tion:

Assumption 4.1 RC
1 ≥ 0, λ3 > 0 and λ1λ2 − λ3 > 0.

It is evident that A0 ∈ RH(3) if Assumption 4.1 holds. Moreover, we define an
important critical value by � = a23a31+a21(a33−a22)

a31
.

Theorem 4.1 Under Assumption 4.1, if RH
0 > 1, then the stationary distribution

�(·) around the equilibrium D
∗
approximately has a log-normal probability density

function �(P,W , S) which take form of

�(P,W , S) = (2π)−
3
2 |�|− 1

2 (PWS)−1e
− 1

2 (ln
P
P∗ ,ln W

W∗ ,ln S
S∗ )�−1(ln P

P∗ ,ln W
W∗ ,ln S

S∗ )T

,

(4.8)

where � � 0, and the special form of � is given as follows.
(i) If � = 0, then

� = δ1(J1H1)
−1Π1[(J1H1)

−1]T + δ2(J2H2)
−1Π0[(J2H2)

−1]T
+δ3(J3H3)

−1Π0[(J3H3)
−1]T,

(ii) If � 
= 0, then

� = δ1�
2( Ĵ1H1)

−1Π0[( Ĵ1H1)
−1]T + δ2(J2H2)

−1Π0[(J2H2)
−1]T

+δ3(J3H3)
−1Π0[(J3H3)

−1]T

with

H1 =
⎛

⎝
1 0 0
0 0 1
0 1 − a21

a31

⎞

⎠ , Π0 =
⎛

⎜
⎝

λ2
2(λ1λ2−λ3)

0 − 1
2(λ1λ2−λ3)

0 1
2(λ1λ2−λ3)

0

− 1
2(λ1λ2−λ3)

0 λ1
2λ3(λ1λ2−λ3)

⎞

⎟
⎠ ,

Π1 =
⎛

⎝

1
2a33

0 0
0 1

2a12a21a33
0

0 0 0

⎞

⎠ ,

H2 =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ , H3 =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ ,

Ĵ1 =
⎛

⎝
−a31� −(a22 + a33)� a222

0 � −a22
0 0 1

⎞

⎠ ,
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J1 =
⎛

⎝
−a31 −a33 0
0 1 0
0 0 1

⎞

⎠ , J2 =
⎛

⎝
−a12a31 a31a33 a233

0 −a31 −a33
0 0 1

⎞

⎠ ,

J3 =
⎛

⎝
a12a23 −a12a22 −a12a21

0 a12 0
0 0 1

⎞

⎠

and δ1 = (a31σ1)2, δ2 = (a12a31σ2)2, δ3 = (a12a23σ3)2.

Proof Note thatΛ2 = diag{σ 2
1 , σ

2
2 , σ

2
3 },whereσ 2

i > 0 (∀ i = 1, 2, 3). Combinedwith
Lemma 2.1, we obtain that � is unique and positive definite under Assumption 4.1,

implying that L � 0. Thus, we compute that χ0 = (2π)− 3
2 |�|− 1

2 . Moreover, the
solution X(t)of system (4.4) has a stationary normal distributionF(·). ByTheorem3.1,
the solution (P(t),W (t), S(t))T of system (1.2) has a unique stationary distribution
�(·) whenRH

0 > 1. In view of the transformation X(t) = (ln P(t)
P

∗ , ln W (t)
W

∗ , ln S(t)
S

∗ )T

and the relationship between systems (1.2) and (4.4), we determine that the stationary
distribution �(·) around the equilibrium D

∗
can be approximated by a log-normal

distribution. That is to say, the stationary distribution�(·) around the equilibrium D
∗

approximately has a log-normal density function �(P,W , S) and it is

�(P,W , S) = (2π)−
3
2 |�|− 1

2 (PWS)−1e
− 1

2 (ln
P
P∗ ,ln W

W∗ ,ln S
S∗ )�−1(ln P

P∗ ,ln W
W∗ ,ln S

S∗ )T

.

To prove Theorem 4.1, we only need to obtain the explicit form of� in Eq. (4.7). Using
the finite independent superposition principle, let �i (i = 1, 2, 3) be the solutions of
the following algebraic equations, respectively:

Λ j + A0� j + � j A
T
0 = 0,

where Λ1 = diag{1, 0, 0}, Λ2 = diag{0, 1, 0} and Λ3 = diag{0, 0, 1}. Obviously,
� = σ 2

1�1 + σ 2
2�2 + σ 2

3�3. The explicit form of� is derived by the following three
steps.
Step 1. Consider the algebraic equation

Λ1 + A0�1 + �1A
T
0 = 0. (4.9)

For the following first elimination matrix H1, by letting C1 = H1A0H
−1
1 , we obtain

H1 =
⎛

⎝
1 0 0
0 0 1
0 1 − a21

a31

⎞

⎠ , C1 =
⎛

⎝
0 a12a21

a31
a12

−a31 −a33 0
0 � −a22

⎞

⎠ ,

where � is the same as that in Theorem 4.1. We consider the following two cases of
�:

(B1). � = 0, (B2). � 
= 0.
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Case 1. If � = 0, i.e., a23a31 = a21(a22 − a33), then λ3 = a12a21a22. By Assump-
tion 4.1, we determine that a12a21 > 0. Let C̃1 = J1C1 J

−1
1 , where the standardized

transformation matrix J1 and C̃1 are obtained by

J1 =
⎛

⎝
−a31 −a33 0
0 1 0
0 0 1

⎞

⎠ , C̃1 =
⎛

⎝
−a33 −a12a21 −a12a31
1 0 0
0 � −a22

⎞

⎠ . (4.10)

According to Zhou et al. (2021), C̃1 is a standard R2 matrix. In view of (J1H1)Λ
2
1

(J1H1)
T = a231Λ1, Eq. (4.9) can then be equivalently transformed into

Λ1 + C̃1

[ 1

a231
(J1H1)�1(J1H1)

T
]

+
[ 1

a231
(J1H1)�1(J1H1)

T
]
C̃T
1 = 0.

Using Lemma 5 of Han et al. (2020), we obtain

1

a231
(J1H1)�1(J1H1)

T = Π1 =
⎛

⎝

1
2a33

0 0
0 1

2a12a21a33
0

0 0 0

⎞

⎠ � 0. (4.11)

Thus, �1 = a231(J1H1)
−1Π1[(J1H1)

−1]T � 0.
Case 2. If � 
= 0, we define Ĉ1 = Ĵ1C1 Ĵ

−1
1 , where Ĉ1 and the new standardized

transformation matrix Ĵ1 are derived by

Ĵ1 =
⎛

⎝
−a31� −(a22 + a33)� a222

0 � −a22
0 0 1

⎞

⎠ , Ĉ1 =
⎛

⎝
−λ1 −λ2 −λ3
0 1 0
0 0 1

⎞

⎠ , (4.12)

whereλi (i = 1, 2, 3) are the sameas those inTheorem4.1.ByHanet al. (2020), Ĉ1 is a
standard R1 matrix. A direct calculation shows that ( Ĵ1H1)Λ

2
1( Ĵ1H1)

T = (a31�)2Λ1.
Then, Eq. (4.9) can be equivalently transformed into

Λ1 + Ĉ1

[ 1

(a31�)2
( Ĵ1H1)�1( Ĵ1H1)

T
]

+
[ 1

(a31�)2
( Ĵ1H1)�1( Ĵ1H1)

T
]
ĈT
1 = 0.

(4.13)

As shown in Lemma 2.3 of Zhou et al. (2021), we can determine that 1
(a31�)2

( Ĵ1H1)�1

( Ĵ1H1)
T := Π0 � 0 and

Π0 =
⎛

⎜
⎝

λ2
2(λ1λ2−λ3)

0 − 1
2(λ1λ2−λ3)

0 1
2(λ1λ2−λ3)

0

− 1
2(λ1λ2−λ3)

0 λ1
2λ3(λ1λ2−λ3)

⎞

⎟
⎠ . (4.14)

Thus, �1 = (a21�)2( Ĵ1H1)
−1Π0[( Ĵ1H1)

−1]T � 0.
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Step 2. Consider the following algebraic equation:

Λ2 + A0�2 + �2A
T
0 = 0. (4.15)

Let C2 = H2A0H
−1
2 , where the second elimination matrix H2 and C2 are

H2 =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ , C2 =
⎛

⎝
−a22 −a21 a23
a12 0 0
0 −a31 −a33

⎞

⎠ .

By a method similar to that shown in Case 2 of Step 1, we construct a standardized
transformation matrix J2 as follows:

J2 =
⎛

⎝
−a12a31 a31a33 a233

0 −a31 −a33
0 0 1

⎞

⎠ . (4.16)

Let C̃2 = J2C2 J
−1
2 , a direct calculation shows that C̃2 = Ĉ1, that is, C̃2 is also a

standard R1 matrix. Combined with (J2H2)Λ2(J2H2)
T = (a12a31)2Λ1, we can then

transform Eq. (4.15) into

Λ1 + Ĉ1

[ 1

(a12a31)2
(J2H2)�1(J2H2)

T
]

+
[ 1

(a12a31)2
(J2H2)�1(J2H2)

T
]
ĈT
1 = 0.

(4.17)

Combining (4.13)–(4.14), the solution of Eq. (4.17) is unique and it is

1

(a12a31)2
(J2H2)�1(J2H2)

T = Π0 � 0.

Thus, �2 = (a12a31)2(J2H2)
−1Π0[(J2H2)

−1]T � 0.
Step 3. Consider the following algebraic equation:

Λ3 + A0�3 + �3A
T
0 = 0. (4.18)

Similarly, we define C3 = (J3H3)A0(J3H3)
−1, where the third elimination H3 and

standardized transformation matrix J3 are

H3 =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ , J3 =
⎛

⎝
a12a23 −a12a22 −a12a21

0 a12 0
0 0 1

⎞

⎠ .

By direct calculation, we obtain thatC3 = Ĉ1 and (J3H3)Λ3(J3H3)
T = (a12a23)2Λ1.

Thus, Eq. (4.18) can be equivalently rewritten as

Λ1 + Ĉ1

[ 1

(a12a23)2
(J3H3)�1(J3H3)

T
]

+
[ 1

(a12a23)2
(J3H3)�1(J3H3)

T
]
ĈT
1 = 0.
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By Eqs. (4.13) and (4.17), we easily get that

1

(a12a23)2
(J3H3)�1(J3H3)

T = Π0,

implying that �3 = (a12a23)2(J3H3)
−1Π0[(J3H3)

−1]T � 0.
According to the above three steps, the explicit form of � shown in Theorem 4.1

can be obtained by the definitions of δi (i = 1, 2, 3).
In summary, the stationary distribution �(·) around the equilibrium D

∗
approxi-

mately has a three-dimensional log-normal density function�(P,W , S)which shown
in (4.8). This completes the proof of Theorem 4.1. ��
Remark 4.1 IfRH

0 > 1, Theorem 3.1 shows that all of the distributions of the subpop-
ulations P(t),W (t) and S(t) will separately converge to the corresponding stationary
marginal distributions μ1(P), μ2(W ) and μ3(S) of �(·) as t → ∞. By letting
� = (ρi j )3×3, we then combine Theorem 4.1 to obtain that the distribution μ1(P)

around P
∗
approximately has a log-normal density function �1(P). Moreover, the dis-

tribution μ2(W ) around W
∗
approximately has a log-normal density function �2(W )

and the distributionμ3(S) around S
∗
approximately has a log-normal density function

�3(S), where

�1(P) = 1

P
√
2πρ11

e
− (ln P−ln P∗

)2
2ρ11 , �2(W ) = 1

W
√
2πρ22

e
− (lnW−lnW∗

)2
2ρ22 ,

�3(S) = 1

S
√
2πρ33

e
− (ln S−ln S∗

)2
2ρ33 .

5 Vegetation Extinction

As iswell known, amajor concern of ecological protection is how to prevent vegetation
extinction in arid ecosystems. In this section,wewill first establish sufficient conditions
for the exponential extinction of vegetation of system (1.2).

Theorem 5.1 If RE
0 := cα2gco2

Resp+ σ21
2

< 1, then the vegetation of system (1.2) will die out

with probability 1, namely limt→∞ P(t) = 0 a.s. Moreover,

lim sup
t→∞

ln P(t)

t
≤
(
Resp + σ 2

1

2

)(
RE

0 − 1
)
< 0 a.s., (5.1)

whichmeans that the exponential decay rate of vegetation is at least (Resp+ σ 2
1
2 )(RE

0 −
1) in the long term.

Proof Applying the Itô’s formula to ln P(t), we have

d ln P(t) =
[cα2gco2W (t)

W (t) + k1
−
(
Resp + σ 2

1

2

)]
dt + σ1dB1(t)
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≤
[
cα2gco2 −

(
Resp + σ 2

1

2

)]
dt + σ1dB1(t). (5.2)

Integrating from 0 to t and dividing by t on both sides of (5.2), we obtain

ln P(t)

t
− ln P(0)

t
≤1

t

∫ t

0

[
cα2gco2 −

(
Resp + σ 2

1

2

)]
dς +

∫ t
0 σ1dB1(ς)

t

=
(
Resp + σ 2

1

2

)(
RE

0 − 1
)+

∫ t
0 σ1dB1(ς)

t
. (5.3)

Using the strong law of large numbers for the local martingale (Lipster 1980), we
have

lim
t→∞

∫ t
0 σ1dB1(ς)

t
= 0 a.s. (5.4)

Taking the superior limit of t → ∞ on both sides of (5.3), (5.1) can then be proved
by (5.4), which implies that limt→∞ P(t) = 0 a.s. and the exponential decay rate of

vegetation P(t) of system (1.2) is at least (Resp+ σ 2
1
2 )(RE

0 −1) in the long term. Thus,
the proof of Theorem 5.1 is completed. ��
Remark 5.1 Clearly, RH

0 ≤ RE
0 . By Theorems 3.1 and 5.1, we can determine that

the impact of stochastic noise on long-time stability of vegetation system is generally
negative. Specifically, for some stochastic noises satisfying the condition (RH

0 ≤
)RE

0 < 1 < R0, the vegetation P(t) of deterministic system (1.1) may be persistent,
but it will go to extinction in the stochastic system (1.2).

Theorem 5.1 presents a criterionRE
0 < 1 for the extinction of vegetation in system

(1.2). However, if the average extinction time is large, then this criterion may be not
useful in practice. In this sense, when RE

0 < 1, we need to estimate the probability
of vegetation extinction at a given time. In practical terms, we usually select a critical
value ε as an index of the extinction of vegetation in an arid ecosystem. That is, we
think that the vegetation P(t) is extinct if P(t) ≤ ε for any t ≥ t0(ε).

Theorem 5.2 For any ε > 0, if RE
0 < 1, then the vegetation P(t) (t > 0) of system

(1.2) follows:

P
{
P(t) ≤ ε

} ≥ 	
(βt + ln ε − ln P(0)

σ1
√
t

)
a.s.,

where β = (Resp + σ 2
1
2 )(1 − RE

0 ) > 0. In particular, if ε ≤ P(0), then for some
sufficiently small δ ∈ (0, 1), one has

P
{
P(t) ≤ ε

} ≥ 1 − δ, ∀ t ≥
(σ1	1−δ +

√

σ 2
1	

2
1−δ + 4β ln P(0)

ε
)2

4β2 a.s.

123



Journal of Nonlinear Science (2022) 32 :30 Page 25 of 46 30

Proof We consider the following auxiliary one-dimensional SDE:

dU (t) =
(
Resp + σ 2

1

2

)(
RE

0 − 1
)
dt + σ1dB1(t) (5.5)

with the initial value U (0) = ln P(0). Let U (t) be the solution of Eq. (5.5), by direct
calculation, Eq. (5.5) has a unique explicit solution

U (t) = −βt +U (0) +
∫ t

0
σ1dB1(ς).

Since B1(t) is a standard Brownian motion, we obtain that B1(0) = 0 and B1(t) ∼
N(0, t) for any t > 0, which means that

∫ t
0 σ1dB1(ς) = B1(t) and

B1(t)√
t

∼ N(0, 1).
Thus,

P
{
U (t) ≤ ln ε

} =P
{−βt +U (0) + σ1B1(t) ≤ ln ε

}

=P

{ B1(t)√
t

≤ βt + ln ε − ln P(0)

σ1
√
t

}

=	
(βt + ln ε − ln P(0)

σ1
√
t

)
. (5.6)

Applying the comparison theorem of one-dimensional SDE (Ikeda and Watanade
1977), we then obtain from Eqs. (5.2) and (5.5) that ln P(t) ≤ U (t) for any t > 0 a.s.
Combining (5.6), one can see that

P
{
P(t) ≤ ε

} = P
{
ln P(t) ≤ ln ε

} ≥ 	
(βt + ln ε − ln P(0)

σ1
√
t

)
a.s. (5.7)

In particular, if ε ≤ P(0), we define ϕ(t) = βt+ln ε−ln P(0)
σ1

√
t

(t > 0). It is clear to see

that ϕ(t) and 	(ϕ(t)) are both monotonically increasing functions on (0,∞). Note
that limt→∞ 	(ϕ(t)) = 	(∞) = 1. Combined with (5.7), we determine that for any

small δ ∈ (0, 1), there exists a constant t (1−δ)
ε = (σ1	1−δ+

√

σ 2
1	

2
1−δ+4β ln P(0)

ε
)2

4β2 such

that ϕ(t (1−δ)
ε ) = 	1−δ and

P
{
P(t) ≤ ε

} ≥ 	(ϕ(t (1−δ)
ε )) = 1 − δ, ∀ t ≥ t (1−δ)

ε a.s. (5.8)

Hence, this completes the proof of Theorem 5.2. ��
Remark 5.2 By (5.8), t (1−δ)

ε is an increasing function with respect to P(0), which
implies that the initial value P(0) has a negative influence on the extinction of
vegetation in system (1.2). In practice, the initial state of the vegetation in an arid
ecosystem is not usually considered an extinction state. Thus, we need to choose
the index ε satisfying ε ≤ P(0). Combining Theorem 5.2 and 	0.999 = 3.09, we
can determine that the probability of vegetation extinction is at least 99.9% when
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t ≥ t (0.999)ε = (3.09σ1+
√

9.5481σ 2
1 +4β ln P(0)

ε
)2

4β2 . This implies that t (0.999)e can be regarded
as the maximal extinction time of vegetation if the probability of error does not exceed
0.1%. In summary, we call t (1−δ)

ε the maximum vegetation extinction time in the sense
of at least probability 1 − δ.

6 Numerical Simulations

In this section, we will introduce Milstein’s higher-order method (Higham 2001) to
verify our theoretical results. For any finite time interval [0, T0], the corresponding
discretization equation of system (1.2) on t ∈ [0, T0] is obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P j+1 = P j +
(cα2gco2W

j P j

W j + k1
− RespP j

)
�t + σ1P j

√
�tξ j + σ 2

1 P
j

2

(
ξ2j − 1

)
�t

W j+1 = W j +
[α(P j + k2w0)S j

P j + k2
− qα2γ gco2W

j P j

W j + k1
− rwW j

]
�t

+σ2W j
√
�tη j + σ 2

2W
j

2

(
η2j − 1

)
�t,

S j+1 = S j +
[
R − α(P j + k2w0)S j

P j + k2

]
�t + σ3S j

√
�tζ j + σ 2

3 S
j

2

(
ζ 2j − 1

)
�t,

where ξ j , η j and ζ j ( j = 1, 2, ..., n) are three independent random variables which
follow the Gaussian distribution N(0, 1). n is the total number of iterations, �t is the
length of one iteration step. Moreover, (P j ,W j , S j )T is the value of the j th iteration
of the discretized equation. Based on some actual experimental data from Wuwei in
China (from 2001 to 2019) (Chen et al. 2021), Yushu in China (from 1951 to 2008)
(Yang et al. 2016) and Sahel (from 2002 to 2007) (Kefi et al. 2008), the corresponding
average physiological parameters in system (1.2) are shown in Table 1.

Throughout the remainder of this section, we choose �t = 0.001 days. By a
standard argument (Chen et al. 2021; Kefi et al. 2008, 2010), we obtain that Resp and
q are both monotonically increasing functions of the air temperature Te. In addition, c
is a monotonically increasing function with respect to the air CO2 concentration (Ca).
They satisfy:

Resp = RbQ
Te−10
10

10 , q = 0.00482(1 − Rh)e
17.502Te
Te+240.97 , c = m0Ca, (6.1)

where Rb is the respiration per unit of vegetation biomass (day−1), Q10 is a Michaelis
function andm0 is the coefficient of conversion of photosynthesis (mol) into vegetation
biomass (g). Rh is the air relative humidity. According to Chen et al. (2021), Kefi et al.
(2008), the values of these parameters are given by Rb = 0.1, Q10 = 1.6, Rh = 40%
and m0 = 4.8. Using (6.1), the corresponding climatic parameters in Wuwei, Yushu
and Sahel are obtained and shown in Table 2. To better study the mechanism of
desertification formation, some future climatic scenarios in arid ecosystems should
be introduced. Thus, Table 2 also presents two future climatic scenarios RCP4.5 and
RCP8.5 of Wuwei.
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By means of different combinations of stochastic noise and climatic parameters,
we will numerically focus on the following four aspects:
(i) The equilibria and related stability of deterministic system (1.1).
(ii) The impact of stochastic noise and rainfall rate on vegetation dynamics of system
(1.2).
(iii) The existence of the ergodic stationary distribution �(·) of system (1.2) under
RH

0 > 1, and the explicit expression and the local fitting effect of the approximate
probability density function of the stationary distribution �(·).
(iv) Vegetation extinction and the expected extinction time of system (1.2) under
RE

0 < 1.

Remark 6.1 As is well known, the unique stationary distribution�(·) underRH
0 > 1

denotes a long-time, stochastic, positive steady state of the vegetation of system (1.2)
and is a distribution function defined in infinite time. The existence of the distribution
�(·) cannot be directly verified due to the finite number of iterations of the computer
simulation. According to Zhou et al. (2021), for any finite time interval [0, T0], if
RH

0 > 1, system (1.2) will have a transient distribution function �̃ (·, T0) that relies
on the variable T0, and the function �̃ (·, T0) can reflect most of the dynamic behavior
of �(·). In addition, for some sufficiently large T0, �̃ (·, T0) will fluctuate around
�(·) and satisfies limT0→∞ �̃ (·, T0) = �(·) Zhou et al. (2021). Hence, we will use
the transient distribution function �̃ (·, T0) with a large enough time interval and a
sufficient number of iterations to indirectly examine the existence of the distribution
�(·) of system (1.2) under RH

0 > 1.

6.1 Equilibria and Related Stability of Deterministic System (1.1)

In this section,we select the initial value of deterministic system (1.1) and the total time
of iterations as (P(0),W (0), S(0))T = (500, 40, 5)T andT0 = 400days, respectively.
Next, we will use system (1.1) to describe the vegetation dynamics of Wuwei, Yushu
and Sahel.

Example 6.1 According to the relevant climatic parameters of Sahel in Table 2, we
compute that R0 = 0.8033. By Theorem A.1, system (1.1) has an LAS vegetation-
free equilibrium D0, which implies that the vegetation P in Sahel will go to extinction
(i.e., P(t) → 0 as t → ∞) without human intervention. Figure 2a–c can illustrate
it. Using the climatic parameters of Wuwei in Table 2, a direct calculation shows that
R0 = 3.5883 andR1 = 7.5494× 1016. According to Theorem A.2, system (1.1) has
an LAS vegetation-positive equilibrium D∗. This means that the vegetation in Yushu
will be persistent, which is supported in Fig. 2d–f. For the climatic parameters of
Wuwei, we have R0 = 2.5196 and R1 = 1.0023 × 1016. Figure 2g–i shows that the
vegetation in Wuwei will have a stable positive equilibrium state, which is consistent
with Theorem A.2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 a–c The solution of system (1.1) with the climatic parameters of Sahel; d–f the solution of system
(1.1) with the climatic parameters of Yushu; g–i: the solution of system (1.1) with the climatic parameters
of Wuwei. All the observation interval are [0, 400] (day), and the number of observations in the interval
[0, 400] is 400,000

6.2 Impact of Rainfall Rate R

It is well known that semi-arid area refers to climate type area with average annual
precipitation between 200 and 500 mm (i.e., 0.5479 ≤ R ≤ 1.3699). Similar to Sect
6.1, we will use stochastic system (1.2) to describe the vegetation dynamics of Sahel.
Moreover, let (P(0),W (0), S(0))T = (500, 40, 5)T be the initial value of system
(1.2).

Example 6.2 We fix T0 = 1600 days and consider three cases of the noise intensity:

(i) (σ1, σ2, σ3) = (0.01, 0.01, 0.01), (ii) (σ1, σ2, σ3) = (0.04, 0.04, 0.04),

(iii) (σ1, σ2, σ3) = (0.1, 0.1, 0.1).

Using the variable-controlling approach, we will fix the values of the CO2 concentra-
tion and air temperature in Sahel. That is, Resp ≡ 0.23303, c ≡ 1440 and q ≡ 0.0179.
Figure 3 presents the variation trends of RH

0 with different R ∈ [0.4, 3]. According
to Theorem 3.1, we can determine that the rainfall rate is helpful for the persistence
of vegetation in Sahel for all cases (i)–(iii). In particular, under case (i), we can take
some effective measures such as artificial rainfall, to make R ≥ 1.656 (mm day−1)

to maintain vegetation persistence in Sahel. Moreover, we consider the following four
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Fig. 3 The variation trends of RH
0 with different rainfall rates R ∈ [0.4, 3] and different cases of noise

intensity, where case (i): (σ1, σ2, σ3) = (0.01, 0.01, 0.01), case (ii): (σ1, σ2, σ3) = (0.04, 0.04, 0.04) and
case (iii): (σ1, σ2, σ3) = (0.1, 0.1, 0.1). Other fixed parameters: (Resp, c, q) = (0.23303, 1440, 0.0179)

(a) (b)

Fig. 4 The diagram tracks variation trends of vegetation P(t) and soil water W (t) of system (1.2) with
different rainfall rates R = 2.6, 2.2, 1.8 and 1.4. Other parameters are the same as in Fig. 3. The observation
interval is [0, 1600] (day), and the number of observations in the interval [0, 1600] is 1,600,000

cases of R under case (i):

(C1) R = 2.6, (C2) R = 2.2, (C3) R = 1.8, (C4) R = 1.4.

Figure 4 shows the corresponding variation trends of the vegetation P(t) and soil water
W (t) of system (1.2) under case (i). Clearly, we obtain from Fig. 4a that the vegetation
of system (1.2) will shift from a dense state to a sparse state or even desertification as
the value of R decreases.

Based on the expression of RH
0 , Figs. 3 and 4, we conclude that the rainfall rate

has a positive influence on prompting the persistence of vegetation. Furthermore, the
critical value R satisfying RH

0 > 1 will increase as the noise intensity increases.
This implies that the impact of the holistic noise intensity (σ1, σ2, σ3) on vegetation
persistence is negative.
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Fig. 5 The color phase diagrams for the variation trends of RH
0 and RE

0 with different noise intensities
(σ1, σ2) ⊆ [0, 1] × [0, 1] (Color figure online)

6.3 Impact of Noise Intensities�i (i = 1, 2, 3)

According to Sect. 6.2, we will separately study the impacts of σ1, σ2 and σ3 on
vegetation dynamics. Note that the values of RH

0 and RE
0 are both affected by the

noise intensity σ1; thus, the impact of σ1 should be emphatically analyzed.

6.3.1 Impact of �1

In this subsection, we will study the dynamical behavior of system (1.2) based on
the climatic data from Wuwei. For simplicity, we assume that σ2 = σ3. Figure 5
shows the color phase diagrams for the variation trends ofRH

0 andRE
0 with different

stochastic noises (σ1, σ2) ⊆ [0, 1]× [0, 1]. Combined with Theorems 3.1 and 5.1, for
any initial value (P(0),W (0), S(0))T ∈ R

3+, the vegetation will be coexistent with
the water environment in the long term if (σ1, σ2) ⊆ [0, 0.2] × [0, 0.2], but it will go
to extinction when σ1 ≥ 0.92.

Example 6.3 We select the initial value (P(0),W (0), S(0))T = (1250, 2, 3)T and
σ2 = 0.001. As shown in Fig. 5, we consider the following five cases of σ1:

(i) σ1 = 0.01, (ii) σ1 = 0.1, (iii) σ1 = 0.6, (iv) σ1 = 0.8, (v) σ1 = 1.

For case (i), a direct calculation shows thatRH
0 = 2.5182. On the one hand, according

to Theorem 3.1, the solution Q(t) of system (1.2) has a unique stationary distribution
�(·). Based on Remark 6.1, we select the observation interval as [0, 50,000] (day),
i.e., T0 = 50,000 days. The corresponding marginal frequency histograms of P , W
and S with respect to the transient distribution �̃ (·, 50,000) are shown in the right-
hand column of Fig. 6. This indirectly verifies the existence of the distribution �(·).
Furthermore, the left-hand column of Fig. 6 presents the corresponding solutions
of systems (1.1) and (1.2) within 5000 days. On the other hand, we compute that
RC

1 = 5.2596 × 10−6, D
∗ = (100036023.45, 1.1158, 4.2500)T , λ3 = 0.0084 and

λ1λ2−λ3 = 0.1409. By Theorem 4.1, the distribution�(·) around D
∗
approximately
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has a three-dimensional log-normal density function �(P,W , S). Combined with
� = −3.2260 × 107, we obtain that

� =
⎛

⎝
0.0008652 −0.0006715 0.0000007

−0.0006715 0.000575 0.0000018
0.0000007 0.0000018 0.0000025

⎞

⎠ .

Then, it follows from Remark r4.1 that �(P,W , S) has the following three marginal
density functions:

�1(P) = 13.563

P
e−577.901(ln P

100036023.45 )
2
, �2(W ) = 16.637

W
e−869.565(ln W

1.1158 )
2
,

�3(S) = 252.313

S
e−200000(ln S

4.25 )
2
.

To verify the correctness of Theorem 4.1 and study the local fitting effect of
�(P,W , S), based on the command “ksdensity(·, ·)” in MATLAB (MathWorks,
R2019b), we plot the frequency histogram fitting curves of P ,W and S at the iteration
time equals to 10,000, 20,000 and 40,000 days, each in a different color. Clearly,
the above functions �1(P), �2(W ) and �3(S) all almost coincide with the corre-
sponding three fitting curves, see Fig. 7. To conceptualize this more intuitively, we
assume the three fitting curves of (P,W , S) as (�1(P, j), �2(W , j), �3(S, j)) ( j =
10,000, 20,000, 40,000). In the observation interval of the value of (P,W , S) in
Fig. 7, by selecting 5000 equidistant observation points, we further define e(m)

a (P, i),
ea(P, i) and er(P, i) as the maximum and average absolute errors, and the average
relative error between the functions �1(P) and �1(P, i), respectively, i = 10,000,
20,000, 40,000. The relevant notations for the variables W and S can be similarly
defined. Table 3 shows the corresponding error values of (P,W , S) at different itera-
tion times. Evidently, all the average relative errors inspected are less than 5%. This
together with Fig. 7 means that the fitting effect of �1(P), �2(W ) and �3(S) for the
corresponding theoretical marginal densities of the distribution �(·) is not only local
but also global. That is to say, the global density function of the distribution �(·) can
be greatly approximated by �(P,W , S). Thus, Theorem 4.1 and �(P,W , S) are well
verified. Additionally, we plot the functions �1(P), �2(W ) and �3(S) in the right-hand
column of Fig. 6. They also have a good approximation for the marginal frequency
histograms of the transient distribution �̃ (·, 50,000).

For case (ii),weobtain thatRH
0 = 2.3884,D

∗ = (92606371.95, 1.1909, 4.2501)T ,
RC

1 = 5.5721 × 10−6, λ3 = 0.008 and λ1λ2 − λ3 = 0.1247. Thus, by Theorems 3.1
and 4.1, the solution Q(t) of system (1.2) still has a unique stationary distribution�(·),
and�(·) around the equilibrium D

∗
approximately has a log-normal density function

�(P,W , S). In this example,we still select T0 = 50,000 days. Then by calculation,we
have� = −2.4673×107 
= 0, and the marginal densities of the function �(P,W , S)

are obtained by �1(P) = 1.366
P e−5.8617(ln P

92606371.95 )
2
, �2(W ) = 1.7184

W e−9.2764(ln W
1.1909 )

2

and �3(S) = 252.313
S e−200000(ln S

4.2501 )
2
.
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Fig. 6 The left-hand column shows the solutions of deterministic system (1.1) and of stochastic system (1.2)
on t ∈ [0, 5000] (day). The right-hand column presents the frequency histograms with 50,000,000 iteration
points (i.e., T0 = 50,000 days), and the marginal densities �1(P), �2(W ) and �3(S) of the approximate
density function �(P,W , S). Fixed parameters: (P(0),W (0), S(0))T = (1250, 2, 3)T , σ1 = 0.01, σ2 =
σ3 = 0.001

Fig. 7 The blue, green and black lines separately represent the frequency histogram fitting curves of the
subpopulations P ,W and Swith the iteration time equals to 10,000, 20,000 and 40,000 days of the total time
T0. The red lines denote the corresponding marginal densities �1(P), �2(W ) and �3(S) of the approximate
density function �(P,W , S). All of the parameter values are the same as in Fig. 6 (Color figure online)

Analogous to case (i), we first plot the frequency histograms of P , W and S with
respect to the transient distribution �̃ (·, 50,000), see the right-hand column of Fig. 8.
Evidently, the existence of the distribution �(·) are indirectly verified. Compared
with the above functions �1(P), �2(W ) and �3(S), Fig. 9 presents the frequency his-
togram fitting curves of the subpopulations P , W and S at the iteration time equals
to 10,000, 20,000 and 40,000 days of the total time T0, each in a different color.
Moreover, we still select 5000 equidistant observation points in the observation inter-
val of the value of (P,W , S) in Fig. 9, and the corresponding errors e(m)

a (·, ·), ea(·, ·)
and er(·, ·) of (P,W , S) at different iteration times are presented in Table 4. It can be
easily noticed from Fig. 9 and Table 4 that the functions �1(P), �2(W ) and �3(S) all
almost coincide with the corresponding three fitting curves. Thus, the local approxi-
mate density function �(P,W , S) has a good global fitting effect for the theoretical
density function of the distribution �(·). These verify �(P,W , S) and Theorem 4.1
again.
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Fig. 8 The left-hand column shows the solutions of deterministic system (1.1) and of stochastic system
(1.2) on t ∈ [0, 5000] (day). The right-hand column presents the frequency histograms with the iteration
time T0 = 50,000 days, and the marginal densities �1(P), �2(W ) and �3(S) of the approximate density
function �(P,W , S). A fixed parameter: σ1 = 0.1. The other fixed parameter values and the observation
interval are the same as Fig. 6

Fig. 9 The blue, green and black lines separately denote the frequency histogram fitting curves of the
subpopulations P , W and S with the iteration time equals to 10,000, 20,000 and 40,000 days of the total
time T0. The red lines represent the marginal densities �1(P), �2(W ) and �3(S) of the approximate density
function �(P,W , S). All of the parameter values are the same as in Fig. 8

Fig. 10 Computer simulations for variation trends of vegetation P(t) of system (1.2) with different noise
intensities σ1 = 0.6, 0.8 and 1. The observation interval is [0, 200] (day), and the number of observations
in the interval [0, 200] is 200,000. The other fixed parameter values and the observation interval are the
same as Fig. 6

For cases (iii)–(v), Fig. 10 presents the corresponding variation trends of the veg-
etation P(t) of system (1.2). It is clear that the vegetation of system (1.2) will go
to extinction for all cases (iii)–(v). Moreover, as the noise intensity σ1 increases, the
extinction time decreases. In particular, we computeRH

0 = 0.3881 andRE
0 = 0.8446

under case (v). Combined with the green line in Fig. 10, Theorem 5.1 is well verified.
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Table 5 List of values ofRE
0 , t(0.90)ε and t(0.99)ε under different cases (i)–(viii) of the parameters (P(0), σ1)

(P(0), σ1) (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

t(0.90)ε (day) 328.27 315.91 299.33 286.57 100.36 95.11 88.05 82.61

t(0.99)ε (day) 785.28 771.45 753.01 738.92 203.8a5 197.81 189.72 183.51

RE
0 0.8446 0.8446 0.8446 0.8446 0.7172 0.7172 0.7172 0.7172

In summary, we obtain that the impact of noise intensity σ1 on vegetation stability
of system (1.2) is generally negative. Specifically, based on cases (i)–(ii), Figs. 7 and 9,
it has numerically shown that for some small σ1, the vegetation P(t)will be persistent
and the solution Q(t) of system (1.2) has a unique stationary distribution. As the
value of σ1 increases, the marginal distribution of the vegetation P(t) will become
more scattered (see the right-hand columns of Figs. 6, 8), and even the vegetation will
die out exponentially for some large σ1 (see Fig. 10). Below we will further study
the impacts of the initial value P(0) and noise intensity σ1 on the extinction time of
vegetation when RE

0 < 1.

Example 6.4 We fix (W (0), S(0), σ2, σ3) = (40, 5, 0.01, 0.01) and consider the fol-
lowing eight cases of the parameters (P(0), σ1), which include: (i) (10,000, 1),
(ii) (5000, 1), (iii) (2000, 1), (iv) (1000, 1), (v) (10,000, 1.1), (vi) (5000, 1.1), (vii)
(2000, 1.1) and (viii) (1000, 1.1).

According to Theorem 5.2, we choose the index of vegetation extinction as ε =
10 (g/m2). Combined with the expression of the maximum extinction time t (1−δ)

ε of
vegetation in (5.8), Table 5 presents the corresponding values ofRE

0 , t
(0.90)
ε and t (0.99)ε

under different cases (i)–(viii).
For cases (i)–(iv), Fig. 11 presents the corresponding variation trends of vegetation

P(t) of system (1.2) with the iteration time T0 = 800 days. Similarly, for cases
(v)–(viii), the corresponding variation trends of vegetation P(t) with the iteration
time T0 = 300 days are shown in Fig. 12. Combining Table 5, Figs. 11 and 12, we
determine that the impacts of initial value P(0) and noise intensity σ1 have negative
and positive effects on the extinction time of vegetation, respectively. That is to say, the
vegetation P(t) of system (1.2) will die out faster as P(0) decreases or σ1 increases.
Furthermore, it is clear that the vegetation P(t) will go to extinction when t ≥ t (0.99)ε

for all cases (i)–(viii). This means that t (0.99)ε can be used as a vegetation extinction
time index applied in practice for some large σ1. In this sense, Theorem 5.2 is well
verified.

6.3.2 Impact of �2 and �3

In this subsection, we will analyze the vegetation dynamics of system (1.2) based on
the climatic data from Yushu.
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(a) (b)

(c) (d)

Fig. 11 The solid blue, red, green andpurple lines separately represent the variation trends of vegetation P(t)
of system (1.2) with the initial values P(0) = 10,000, 5000, 2000 and 1000 (g/m2). The dotted blue line
is the measure of vegetation extinction. The dotted black and pink lines denotes the maximum extinction
time of vegetation in the sense of at least probabilities 90% and 99%, respectively. Fixed parameters:
(W (0), S(0), σ1, σ2, σ3) = (40, 5, 1, 0.01, 0.01). All the observation interval is [0, 800] (day), and the
number of observations in the interval [0, 800] is 800,000 (Color figure online)

(a) (b)

(c) (d)

Fig. 12 The solid blue, red, green and purple lines separately represent the variation trends of vegetation
P(t) of system (1.2) with the initial values P(0) = 10,000, 5000, 2000 and 1000 (g/m2). The dotted blue
line is the measure of vegetation extinction. The dotted black and pink lines denote the maximum extinction
time of vegetation in the sense of at least probabilities 90% and 99%, respectively. A fixed parameter:
σ1 = 1.1. The other fixed parameter values are the same as Fig. 11. All the observation interval is [0, 300]
(day), and the number of observations in the interval [0, 300] is 300,000 (Color figure online)

Example 6.5 Using the variable-controlling approach, we fix Q(0) = (200, 20, 5)T

and T0 = 400 days and consider the following seven cases of (σ2, σ3):

(i) (σ2, σ3) = (0.001, 0.001), (ii) (σ2, σ3) = (0.05, 0.001),

(iii) (σ2, σ3) = (0.2, 0.001), (iv) (σ2, σ3) = (0.35, 0.001),

(v) (σ2, σ3) = (0.001, 0.05), (vi) (σ2, σ3) = (0.001, 0.2),
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(a) (b)

(c) (d)

Fig. 13 The diagram (a): Computer simulations for variation trends of vegetation P(t) of system (1.2)
with different σ2 = 0.001 0.05, 0.2 and 0.35 under (σ1, σ3) = (0.05, 0.001); The diagram (b): Computer
simulations for variation trends of vegetation P(t) of system (1.2) with different σ3 = 0.001 0.05, 0.2
and 0.35 under (σ1, σ2) = (0.05, 0.001); The diagram (c): Computer simulations for variation trends of
vegetation P(t) of system (1.2) with different σ2 = 0.001 0.05, 0.2 and 0.35 under (σ1, σ3) = (0.1, 0.001);
The diagram (d): Computer simulations for variation trends of vegetation P(t) of system (1.2) with different
σ3 = 0.001 0.05, 0.2 and 0.35 under (σ1, σ2) = (0.1, 0.001). Fixed parameters: Q(0) = (200, 20, 5)T .
All the observation interval are [0, 400] (day)

(vii) (σ2, σ3) = (0.001, 0.35).

Moreover, we select two special values of σ1, which includes: (I) σ1 = 0.05 and (II)
σ1 = 0.1. Figure 13 shows the corresponding variation trends of vegetation P(t) of
system (1.2) under different cases (i)–(vii). Note that RH

0 will decrease as the noise
intensity σi increases, i = 1, 2, 3. Combined withRH

0 = 1.0178 when (σ1, σ2, σ3) =
(0.1, 0.35, 0.35), we obtain that the vegetation P(t) of system (1.2) will be persistent
for all cases (i)–(vii), which is supported in Fig. 13. On the one hand, it follows from
Fig. 13a, c that the vegetation biomass will decrease slightly as the noise intensity σ2
increases. This implies that σ2 has a minor negative effect on vegetation growth. On
the other hand, it can be noticed from Fig. 13b, d that the larger noise intensity σ3 is,
the larger fluctuation (i.e., the larger variance) of the vegetation P(t) of system (1.2)
is. Thus, the increase of noise intensity σ3 decreases the stability of stochastic positive
equilibrium state of the vegetation of system (1.2).

6.4 Dynamical Analysis of Vegetation Under Future Climatic Scenarios

To better get a view of the trend of vegetation evolution, in this section, the dynamical
behavior of vegetation P(t) of system (1.2) is investigated based on two future climatic
scenarios RCP4.5 and RCP8.5 of Wuwei.

Example 6.6 We select (P(0),W (0), S(0))T = (1250, 20, 3)T , (σ1, σ2, σ3) =
(0.05, 0.001, 0.001) and T0 = 50,000 days. A direct calculation shows that RH

0 =
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(a) (b)

(c) (d)

Fig. 14 Figure 14a shows simulation of vegetation P(t) in deterministic system (1.1) and stochastic system
(1.2) on t ∈ [0, 4000] (day) and under the scenario RCP4.5; Fig. 14b presents the frequency histogram
with the iteration time T0 = 50,000 days, and the approximate density function �1(P) of vegetation
under the scenario RCP4.5; Fig. 14c shows simulation of vegetation P(t) in deterministic system (1.1)
and stochastic system (1.2) on t ∈ [0, 4000] (day) and under the scenario RCP8.5; Fig. 14d presents the
frequency histogram with the iteration time T0 = 50,000 days, and the approximate density function
�1(P) of vegetation under the scenario RCP8.5. Fixed parameters: (σ1, σ2, σ3) = (0.05, 0.001, 0.001) and
Q(0) = (1250, 2, 3)T

3.0013 and �1(P) = 2.8866
P e−26.178(ln P−18.5418)2 under the scenario RCP4.5, and

RH
0 = 2.4434 and �1(P) = 2.9653

P e−27.624(ln P−17.9229)2 under the scenario RCP8.5.
According to Remark r4.1 and Theorems 3.1, the vegetation P(t) of system (1.2) will
be persistent and has a unique stationary marginal distribution μ1(P) under both the
scenarios RCP4.5 andRCP8.5. Then, by Theorem4.1, the corresponding density func-
tion of the distributionμ1(P) around P

∗
can be approximated by �1(P). Figure 14a, b

presents the variation trends of vegetation P(t) of system (1.2) on t ∈ [0, 4000] (day),
the frequency histogram of vegetation with the iteration time T0 = 50,000 days, and
the function �1(P) under the scenario RCP4.5. The corresponding simulations under
the scenario RCP8.5 are shown in Fig. 14c, d. Analogous to Example 6.3, Fig. 15
shows the frequency histogram fitting curves of vegetation P at the iteration time
equals to 10,000, 20,000 and 40,000 days of the total time T0, each in a different
color. By selecting 5000 equidistant observation points in the observation interval of
the vegetation value in Fig. 15, Table 6 provides the corresponding values of some
error types between the functions �1(P) and �1(P, ·). In this example, it is clear to see
that the local approximate marginal density �1(P) has a good global fitting effect for
the density function of the distributionμ1(P). Furthermore, the vegetation state under
the scenario RCP4.5 is more dense than that under the scenario RCP8.5, which implies
that RCP4.5 may be a suitable climatic condition for vegetation growth than RCP8.5.
Combining Figs. 3 and 4, one further obtains that as the global CO2 concentration
rise, the climate conditions in Wuwei can be improved by implementing measures to
increase annual precipitation, such as artificial rainfall, to improve the luxuriance and
stability of vegetation in the future.
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(a) (b)

Fig. 15 Theblue, green andblack lines separately denote the frequencyhistogramfitting curves of vegetation
P with the iteration time equals to 10,000, 20,000 and 40,000 days of the total time T0. The red lines
represent the corresponding approximate density curve �1(P) of vegetation P . All of the parameter values
are the same as in Fig. 14

Table 6 List of the errors e(m)
a (P, ·), ea(P, ·) and er(P, ·) of vegetation P at different iteration times (Fix

parameters: σ1 = 0.05, σ2 = σ3 = 0.001

Time interval [0, T0] (day) [0, 10,000] [0, 20,000] [0, 40,000]

e(m)
a (P, ·) (RCP4.5) 6.374 × 10−10 7.892 × 10−10 1.166 × 10−9

e(m)
a (P, ·) (RCP8.5) 1.581 × 10−9 1.423 × 10−9 2.537 × 10−9

ea(P, ·) (RCP4.5) 2.478 × 10−10 3.054 × 10−10 6.142 × 10−10

ea(P, ·) (RCP8.5) 4.251 × 10−10 5.626 × 10−10 7.865 × 10−10

er(P, ·) (RCP4.5) 1.14% 1.36% 1.97%

er(P, ·) (RCP8.5) 1.32% 1.78% 2.57%

The observation interval: [0.4, 2.4] × 108 (RCP4.5) and [0.2, 1.2] × 108 (RCP8.5))

7 Discussions

In this paper, we investigate the interactions between the vegetation and two kinds of
water environments including surface water and soil water. Taking the stochastic noise
into account, a three-dimensional stochastic vegetation–water system (i.e., system
(1.2)) is the first to be proposed and investigated, providing a mathematical feasible
way for ecology research.

First, for its deterministic system (1.1), the local asymptotic stability of equilibria
are obtained. Then for the stochastic system (1.2), we characterize the vegetation
stability from both long-term and transient behavior perspectives. For the long-term
behavior of vegetation, we obtain sufficient condition RH

0 > 1 for the existence and
uniqueness of an ergodic stationary distribution�(·). This implies that the vegetation
will be persistentwhenRH

0 > 1.Moreover,we define a quasi-endemic equilibrium D
∗

of system (1.2). A novelty of this paper is that it theoretically derives an approximate
expression (4.8) of the probability density function of the distribution �(·) around
the equilibrium D

∗
, and it has numerically shown that the local approximate density

function �(·) in (4.8) has a good global fitting effect for the density function of the
distribution �(·) under some small stochastic noises (see Figs. 7, 9, 15). For the
transient behavior of vegetation, we establish sufficient condition RE

0 < 1 for the
exponential extinction of vegetation. Another novelty of this paper is that it derives
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the exact expression of the probability of vegetation extinction at any given time
under RE

0 < 1. Moreover, the maximum vegetation extinction time t (1−δ)
ε in the

sense of at least probability 1 − δ is obtained, and its rationality is verified based
on some actual data from semi-arid ecosystems. Finally, both the theoretical results
and numerical simulations show that the stochastic noises have a negative effect on
vegetation density and stability, and may even lead to vegetation extinction. Thus, in
practical terms, it is necessary to measure the environmental noise intensity to better
monitor vegetation state and provide some effective strategies to maintain vegetation
stability (via Theorems 3.1, 4.1, 5.1).

Several remaining interesting but challenging issues deserve further consideration.
First, a value gap exists between the parameters RH

0 and RE
0 . In other words, for

some sets of parameters satisfying neither Theorem 3.1 (RH
0 > 1) nor Theorem 5.1

(RE
0 < 1), the dynamical behavior of vegetation of system (1.2) is unknown. Thus,

we need to explore other effective ways to close this value gap in the future. Second,
the numerical simulations show a good global fitting effect of the local approximate
density function �(P,W , S) for some small stochastic noises. For better practical
application, we need to investigate the continuous dependence on small stochastic
noises of solution for Fokker–Planck equation, to obtain the global approximation
error between �(P,W , S) and the realistic density function of the distribution �(·)
for the same initial distribution. This work is currently underway. Certainly, for some
large stochastic noises, the corresponding approximate density function with good
fitting effect should also be investigated and constructed. Furthermore, it is interesting
to introduce other types of stochastic noise, such as impulsive perturbations (Zhang
et al. 2020a; Wang et al. 2014), mean-reverting Ornstein–Uhlenbeck processes (Pan
et al. 2022; Zhang andYuan 2021; Zhao et al. 2015), colored noises (Zhang et al. 2020;
Zhou et al. 2021), into system (1.2). The motivation is that the dynamics of vegetation
may encounter sudden environmental changes and human interventions (Pan et al.
2020). To this end, based on the actual situation of different arid ecosystems, the
corresponding vegetation–water system with suitable type of stochastic noise should
be established and analyzed, and that is one of our future research directions.
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Appendix A. (Local stability of system (1.1))

In this section, we will focus on the local stability of the equilibria D0 and D∗ of
system (1.1).

123



Journal of Nonlinear Science (2022) 32 :30 Page 43 of 46 30

Theorem A.1 IfR0 < 1, the vegetation-free equilibrium D0 of system (1.1) is locally
asymptotically stable (LAS), but it is unstable when R0 > 1.

Proof The Jacobi matrix of system (1.1) at the equilibrium D0 is

J (D0) =
⎛

⎜
⎝

Resp(R0 − 1) 0 0
R(1−w0)
k2w0

− qγ RespR0
c −rw αw0

− R(1−w0)
k2w0

0 −αw0

⎞

⎟
⎠ .

By direct calculation, the characteristic polynomial of D0 is

φJ (D0)(y) = [y − Resp(R0 − 1)](y + rw)(y + αw0).

Clearly, J (D0) has three real eigenvalues y1 = Resp(R0 − 1), y2 = −rw < 0 and
y3 = −αw0 < 0. IfR0 < 1, then J (D0) ∈ RH(3). Combining Definition 2.1 and the
Routh–Hurwitz criterion (Ma et al. 2015), we obtain that E0 is LAS when R0 < 1.
Conversely, if R0 > 1, we get that y1 = Resp(R0 − 1) > 0, implying that D0 is
unstable. This completes the proof of Theorem A.1. ��
Next, we define a critical value by

R1 =
[c(R + rwk1)(R0 − 1)

qγ (cα2gco2 − Resp)
+ k2w0

]2 − ck2R(1 − w0)

qαγ
.

Theorem A.2 IfR0 > 1 and R1 ≥ 0, the vegetation-positive equilibrium D∗ is LAS.

Proof Similar to Theorem A.1, the Jacobi matrix of system (1.1) at the equilibrium
D∗ is

J (D∗) =

⎛

⎜
⎜
⎝

0
cα2gco2 k1P

∗
(W ∗+k1)2

0
αk2(1−w0)S∗
(P∗+k2)2

− qα2γ gco2W
∗

W ∗+k1
− qα2γ gco2 k1P

∗
(W ∗+k1)2

− rw
α(P∗+k2w0)

P∗+k2

−αk2(1−w0)S∗
(P∗+k2)2

0 −α(P∗+k2w0)
P∗+k2

⎞

⎟
⎟
⎠

:=
⎛

⎝
0 a12 0
a21 −a22 a23
a31 0 −a23

⎞

⎠ ,

where a12 = cα2gco2 k1P
∗

(W ∗+k1)2
> 0, a21 = αk2(1−w0)S∗

(P∗+k2)2
− qα2γ gco2W

∗
W ∗+k1

, a22 = qα2γ gco2 k1P
∗

(W ∗+k1)2
+

rw > 0, a23 = α(P∗+k2w0)
P∗+k2

> 0 and a31 = αk2(1−w0)S∗
(P∗+k2)2

> 0. A direct calculation
shows that

φJ (D∗)(y) = y3 + l1y
2 + l2y + l3,

where l1 = a22 + a23 > 0, l2 = a22a23 − a12a21 and l3 = a12a23(a31 − a21).
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IfR0 > 1, we determine that P∗ = c(R+rwk1)(R0−1)
qγ (cα2gco2−Resp)

and a31−a21 = qα2γ gco2W
∗

W ∗+k1
> 0,

which means that l3 > 0. Moreover, if R1 ≥ 0, by the equality R = α(P∗+k2w0)S∗
P∗+k2

,
we have

a22a23 − a12a31 =α(P∗ + k2w0)

P∗ + k2

[qα2γ gco2k1P
∗

(W ∗ + k1)2
+ rw

]

− cα2gco2k1k2R(1 − w0)P∗

(W ∗ + k1)2(P∗ + k2)(P∗ + k2w0)

≥ qαα2γ gco2k1P
∗

(W ∗ + k1)2(P∗ + k2)(P∗ + k2w0)
[
(P∗ + k2w0)

2 − ck2R(1 − w0)

qαγ

]

= qαα2γ gco2k1P
∗R1

(W ∗ + k1)2(P∗ + k2)(P∗ + k2w0)
≥ 0.

Combinedwith a21 < a31, we obtain that l2 = a22a23−a12a21 > a22a23−a12a31 ≥ 0
and

l1l2 − l3 = a22l2 + a23(a22a23 − a12a31) ≥ a22l2 > 0.

According to the Routh–Hurwitz criterion, we determine that J (D∗) ∈ RH(3). Thus,
D∗ is LAS when R0 > 1 and R1 ≥ 0. This completes the proof of Theorem A.2. ��
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